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Abstract

Background: With advancements in deep learning-based dental imaging analysis, artificial intelligence (AI) models
are increasingly being employed to assist in mandibular third molar surgery. However, a comprehensive overview of
the clinical utility remains limited. This scoping review aimed to identify and compare deep learning models used
in the radiographic evaluation of mandibular third molar surgery, with a focus on Al model types, key performance
metrics, imaging modalities, and clinical applicability.

Material and Methods: Following the PRISMA-ScR guidelines, a comprehensive search was conducted in the
PubMed and Scopus databases for original research articles published between 2015 and 2024. Systematic reviews,
editorial articles, and studies with insufficient datasets were excluded. Studies utilising panoramic radiographs and
cone-beam computed tomography (CBCT) images for Al-based mandibular third molar analyses were included. The
extracted data were charted according to the Al model types, performance metrics (accuracy, sensitivity, and speci-
ficity), dataset size and distribution, validation processes, and clinical applicability. Comparative performance tables
and heat maps were utilised for visualisation.

Results: Of the initial 948 articles, 16 met the inclusion criteria. Various convolutional neural network (CNN)-based
models have been developed, with U-Net demonstrating the highest accuracy and clinical utility. Most studies em-
ployed panoramic and CBCT images, with U-Net outperforming other models in predicting nerve injury and evalu-
ating extraction difficulty. However, substantial variations in dataset size, validation procedures, and performance
metrics were noted, highlighting inconsistencies in model generalisability.

Conclusions: Deep learning shows promising potential in the radiographic evaluation of mandibular third molars. To date,
most studies have relied on two-dimensional images and focused on detection and segmentation, while predictive model-
ing and three-dimensional CBCT-based analysis are relatively limited. To enhance clinical utility, larger standardized
datasets, transparent multi-expert annotation, task-specific benchmarking, and robust external/multicenter validation are
needed. These measures will enable reliable pre-extraction risk prediction and support clinical decision-making.

Keywords: Deep learning, mandibular third molar, inferior alveolar nerve, artificial intelligence, CBCT,
panoramic radiograph.
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Introduction

Third molar extraction is among the most frequently
performed procedures in oral and maxillofacial sur-
gery. Sensory disturbances involving the lower lip
and chin, caused by the injury to the inferior alveolar
nerve (IAN), are rare complications that may impair
the patients’ quality of life. Among several contribut-
ing factors, such as patient age, surgeon experience,
traumatic tissue handling, and postoperative swell-
ing, the proximity of the tooth root to the inferior
alveolar nerve canal has been identified as the most
significant [1-3].

Artificial intelligence (AI)- and deep learning-based
diagnostic and predictive modelling methods have
demonstrated utility in addressing complex clinical
problems [4-8]. Several recent studies have explored deep
learning in clinical dentistry, particularly in analysing
panoramic radiographs and cone-beam computed
tomography (CBCT) images to predict the risk of inferior
alveolar nerve damage or evaluate extraction difficulty
based on the positional relationship between the third
molar and the mandibular canal [9-24].

However, despite advances in deep-learning-based den-
tal imaging analysis, comprehensive evaluations of the
clinical benefits of these models remains limited. This
scoping review aimed to systematically map the Al mod-
els employed for mandibular third molar image analysis
and to evaluate their potential clinical advantages.

Material and Methods

A comprehensive literature search was conducted us-
ing the PubMed and Scopus databases to identify rel-
evant studies published between 1 January 2015 and 31
December 2024. The search strategy was formulated
to capture studies employing deep learning models
for assessing the mandibular third molar and IAN us-
ing radiographic imaging. The following search query
was employed: (“deep learning” [Title/Abstract] OR
“inferior alveolar nerve” [Title/Abstract] OR “artificial
intelligence” [Title/Abstract] OR “radiography” [Title/
Abstract]) AND (“dental” [All Fields] OR “third mo-
lar” [All Fields]) AND (“image” [Title/Abstract] OR
“analysis” [All Fields]) AND (“detection” [All Fields]
OR “classification” [All Fields] OR “segmentation” [All
Fields] OR “prediction” [All Fields]). No restrictions
were applied to the study design, provided the studies
met the predefined eligibility criteria.

The studies were selected based on predefined inclusion
and exclusion criteria to ensure relevance and methodolog-
ical rigor. Two independent reviewers initially screened the
articles by evaluating their titles and abstracts. Full-text
articles were subsequently assessed for final inclusion ac-
cording to the eligibility criteria. Disagreements between
reviewers were resolved through discussion; and if neces-
sary, a third reviewer was consulted.
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Studies were included if they used deep learning
models for mandibular third molar and IAN assessment,
employed panoramic radiographs or CBCT as imaging
modalities, reported quantitative performance metrics
such as accuracy, sensitivity, specificity, and area
under the curve (AUC); and were published in English
within the defined timeframe. Studies were excluded if
they applied non-deep learning methodologies, did not
directly pertain to mandibular third molar assessment,
or were categorised as review articles, case reports,
editorials, or conference abstracts.

The study selection process is illustrated in the PRISMA
2020 flow diagram (Figure 1). A total of 948 articles were
identified from PubMed (n=825) and Scopus (n=123).
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Figure 1: Study selection flow chart.

After the removing 23 duplicate records, 925 unique
records were retained for screening. Aftertitle and abstract
screening, 554 records were excluded for not meeting
the eligibility criteria. Subsequently, 371 reports were
retrieved in full-text and all were successfully obtained.
After full-text assessment, 124 reports were reviewed for
eligibility, of which 108 were excluded due to insufficient
data (n=68), irrelevance to the study topic (n=25), lack of
radiographic imaging (n=10), or unavailability of the full
text (n=1). Sixteen studies met the inclusion criteria, and
were included in the final systematic review.

Data charting was conducted using a standardised data
extraction form calibrated beforehand to ensure consis-
tency and accuracy. The extraction form included pre-
defined categories, such as study characteristics (author,
publication year, and country), methodological details
(study design, dataset size, and imaging modality), deep
learning model information (architecture and training
parameters), performance metrics (accuracy, sensitiv-
ity, specificity, and AUC), and clinical applicability.
Two independent reviewers charted the data in dupli-
cate to minimise errors and biases. Any discrepancies
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were resolved through discussion, and a third reviewer
was consulted, if necessary. This approach ensured high
reliability of data extraction and reduced subjectivity in
data interpretation. In cases of unclear or missing infor-
mation, the corresponding authors of the included stud-
ies were contacted for further clarification.

Results

Among the 16 articles reviewed, a notable increase was
observed by 2022 in studies evaluating deep learning
models for detecting and classifying the impaction
status of the third molar, assessing its positional
relationship with the mandibular canal, and predicting
the risk of IAN injury (Figure 2).

Number of Papers Published by Year

Count

2019 2020 2021

Year

Figure 2: Number of papers published annually.

2022 2023 2024

Deep learning models play a crucial role in evaluating
the positional relationship between the mandibular third
molar and the IAN, as well as in assessing the risk of
nerve injury. To systematically analyse, this study cat-
egorised Al models according to their imaging analysis
approaches and objectives.

The Al models were applied to four principal domains
of image analysis. Some models focused on determining
the presence and impaction status of the third molar,
whereas others were designed to identify its spatial
relationship with the IAN. Additionally, segmentation
techniques were employed to delineate anatomical
structures at the pixel level, thereby offering more
detailed spatial information. Predictive models were
used to assess extraction difficulty and estimate the risk
of nerve injury, thereby supporting clinical decision-
making. The distribution of model backbones across the
included studies is summarized in Figure 3.

Table 1-4 summarise the characteristics and training
methodologies of various Al models, thereby facilitating
a comparative analysis of their applications in assessing
mandibular third molar. These tables offer a comprehen-
sive overview of the utilisation of different Al techniques
in radiographic image analysis, aiding in the identifica-
tion of key patterns across different studies.
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Figure 3: Types of backbones used for data analysis in the in-
cluded papers.

Segmentation

Table 1 provides an overview of the classification models
employed to detect the presence and impaction status of
mandibular third molars. The most frequently utilised
architectures comprised MobileNet-V2, VGG-16, and
ResNet-50 with dataset sizes ranging from 500 to 1,330
images. Multiple data augmentation techniques, such
as image rotation, flipping, and resizing, were applied to
enhance model generalisability. Classification models were
frequently integrated with detection and segmentation
models to strengthen multitask learning frameworks.
Table 2 summarises object detection models used
to automatically localise mandibular third molars
and analyse their spatial relationships with the TAN.
Commonly employed architectures include YOLOV3,
ResNet-50, and VGG-16, with dataset sizes ranging
from 440 to 579 panoramic images. Data augmentation
techniques, such as image rotation and flipping, were
frequently applied to improve model robustness.
Detection models are essential for preoperative risk
assessment, as they accurately delineate third molar
boundaries and estimate proximity to the IAN.

Table 3 outlines segmentation models employed to
delineate anatomical structures such as the mandibular
canal and third molars, at the pixel level. The U-Net
architecture was most frequently used, featuring in
five studies due to its up-sampling and skip connection
mechanisms, which facilitate precise segmentation
despite limited datasets. Other architectures, such as
SegNet and 3D U-Net, were applied in selected cases.
Dataset sizes varied considerably, ranging from 81 to
3,200 images, with data augmentation techniques, such
as image rotation, scaling, and elastic deformation,
enhancing model generalisation. Segmentation models
demonstrated high accuracy in outlining the mandibular
canal and third molars, with Dice coefficients ranging
from 0.80 to 0.94. These findings suggest that Al-based
segmentation may significantly enhance diagnostic
precision during third molar extractions.

Table 4 summarises predictive models developed to
assess extraction complexity and risk of IAN injury.
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Table 2: Characteristics of the Al models used in the included studies according to the object detection method: Detection.

Neural Data set used to Training and Dat
Author network Backbone develop the Al model Testing data set validation au m;ltaa tion
architecture (Number of datasets) datasets e
Detection
2022 | Takebe et al. CNN YOLOV3 579 panoramic images 96 images 483 images lm?:gliepfiﬁ;mn
. RCNN, ResNet-50, - . . Rotation by 5 degrees
2022 | Celik CNN VGG16 and YOLOV3 440 panoramic images Not specified Not specified Horizontal flipping

Table 3: Characteristics of the Al models used in the included studies according to the object detection method: Segmentation.

Neural .
Author network Backbone Dataset used to develop Testing dataset '.l“ral.n ing and Data .
. the Al model validation datasets augmentation
architecture
Segmentation
Image rotation
2019 | Vinayahalingam et al. CNN U-net 81 dental panoramic images 30 images 70 images Scaling and cropping
Color transformation
Random rotation
2020 | Jaskari et al. CONN U-net 637 cone beam CT volumes 128 cone beam 509 cone beam Horizontal and vemclal flipping
CT volumes CT volumes Random scaling
Elastic deformation
2020 | Orhan et al. CNN U-net 130 cone beam CT volumes Not specified Not specified Not specified
2020 | Kwak et al. CNN U-net 100 cone beam CT volumes 20 cone beam 80 cone beam Not specified
CT volumes CT volumes
2022 | Ariji et al. CNN U-net 3200 dental panoramic images 1380 images 881 images Not specified

Table 4: Characteristics of the Al models used in the included studies according to the object detection methods: Prediction.

Neural . Training and
Author network Backbone Dataset used to develop Testing validation Data augmentation
. the AI model data set
architecture datasets
Prediction
Perform image flipping with a probability of 0.5
600 preoperative Randomly adjust the image scale within the
~ panoramic radiographs . . range of (0.8, 1.0)
2021 | Yoo et al. CNN ResNet-34 including 1053 images of Not specified Not specified Randomly select brightness and contrast
third molars adjustment factors within the range of (0.8, 1.2)
Edit ROI within the scale range of (0.9, 1.0)
Retinaet Horssontal Fip
2023 | Jeon et al. CNN YOLOV3 901 panoramic images 178 images 723 images P
. Random scaling
EfficientDet-D4 . .
Adjust Brightness
For Winter’s
clas:;tc:ic(z:tl:;n:hzOOO For each For each dataset, }-‘;:)?—ig;o];g]al?ﬁn
2024 | Zirek et al. CNN YOLOV8 £rap dataset, 10% of | 90% of the total P
For All Impacted Teeth the total data data Random scaling
Detection: 2394 Translation
radiographs

Frequently utilised architectures included ResNet-34,
EfficientDet-D4, YOLOv3, and YOLOvVS, with dataset
sizes ranging from 600 to 2,394 panoramic radiographs.
To optimise prediction accuracy, various data augmen-
tation strategies, including brightness and contrast ad-
justments, image scaling, and region-of-interest modifi-
cations, were employed.

Key predictive performance metrics-including accu-
racy, sensitivity, specificity, precision and F1 score-are
consolidated in Figure 4, which serves as a critical ref-
erence for assessing clinical applicability.

Studies employing predictive models demonstrated rel-
atively high performance, with certain models achiev-
ing >80% accuracy in predicting extraction difficulty
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and the risk of TAN injury. Such models offer clinically
meaningful insights that support preoperative decision-
making and risk stratification.

Deep-learning models have exhibited high reliability in
predicting extraction difficulty and the potential for man-
dibular nerve injury in multiple studies. For example, in a
study conducted by Yoo ef al. [22], the models predicted
the depth, ramal relationship, and angulation of the man-
dibular third molar with accuracies of 78.91%, 82.03%,
and 90.23%, respectively, and Cohen’s kappa values
ranging from 65.23 to 85.54. These findings suggest that
a predictive model integrating depth, angulation, and ra-
mal relationship can serve as a reliable tool in clinical
settings (Figure 4). Jeon et al. [23] evaluated the predic-
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tion of extraction difficulty and mandibular nerve dam-
age by comparing the EfficientDet-D4, YOLOV3, and
RetinaNet models and reported that the EfficientDet-
D4 model exhibited the highest performance (accuracy,
78.65%; sensitivity, 82.02%) (Figure 4), indicating its
clinical potential for precise preoperative evaluation.

To ensure comparability across studies, specific as-
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sumptions were applied when necessary. Studies report-
ing multiple performance metrics for various models or
configurations were standardised by selecting the most
clinically pertinent metrics (accuracy for overall clas-
sification and AUC for risk prediction tasks). In cases
where the sensitivity and specificity values were not ex-
plicitly reported, these values were calculated based on
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the available confusion matrix data, wherever possible.
An essential task in developing a predictive model is to
minimise both false-positive and false-negative results by
maintaining a balance between sensitivity and specificity.
Zirek et al. [24] reported promising performance metrics
for models such as WideResNet and LaplaceNet, with ac-
curacies ranging from 80-91%, depending on the specific
task (Figure 4). However, the reported precision and recall
values varied, suggesting that further optimisation is nec-
essary for the clinical application of these models.

A structured critical appraisal was conducted using a
modified Joanna Briggs Institute (JBI) checklist for di-
agnostic and prognostic studies. This evaluation focused
on study design, methodological rigour, dataset quality,
model performance evaluation, and risk of bias. Each
study was scored according to these criteria and those
with significant methodological limitations were inter-
preted cautiously during data synthesis. The appraisal
findings were discussed to highlight the strengths and
limitations of the existing literature.

Excluding five studies, the remainder employed data
augmentation techniques, such as image flipping, ro-
tation, and scaling, to enhance model generalisability
and reduce overfitting. Experts conducted annotations
for labelling standards, region-of-interest identification,
and segmentation tasks, applying various deep-learning
algorithms depending on the specific task. More than
50% of these studies provided detailed information
regarding the annotators (clinical experts and radiolo-
gists) and the annotation protocols employed. Several
studies demonstrated annotation robustness by involv-
ing multiple annotators and incorporating consensus
or correction steps to ensure accuracy. Despite high
performance on controlled datasets, real-world clinical
application remains challenging due to anatomical vari-
ability and inconsistencies in image quality.

The extracted data were synthesised using descriptive
and visual analyses. Descriptive statistics, including
means and standard deviations, were utilised to sum-
marise performance metrics across various Al models.
The key findings for predictive tasks are presented as a
comparative heat map to facilitate pattern recognition
and trends in performance (Figure 4).

Furthermore, the reported limitations of the included
studies, particularly dataset heterogeneity and external
validation constraints, were analysed to inform recom-
mendations for future research. These findings were in-
corporated into the Discussion section to suggest future
directions, such as the need for multicentre validation
studies and standardised evaluation frameworks.

Discussion

Attempts to utilise imaging techniques for predicting
postoperative outcomes based on the anatomical rela-
tionship between the mandibular third molar and the in-
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ferior alveolar canal have been ongoing since the 1960s
[25]. In 1990, Rood and Shehab reported that features
such as curvature of the mandibular canal and tooth
root darkening were significantly associated with dam-
age to the JAN [25]. A systematic review published in
2017 concluded that, although predicting the absence
of nerve damage using panoramic radiographs alone
remains challenging, radiographic indicators such as
canal curvature and root darkening are valuable for as-
sessing the risk of postoperative nerve injury [26].
Subsequently, several studies have been undertaken to
more accurately evaluate the relationship between the
mandibular canal and third molars through advanced
imaging modalities, such as CT. However, a recent
review indicated that, while CBCT aids in bone removal
and surgical planning it does not significantly reduce the
incidence of AN injury following third molar extraction
[27]. In general, close proximity to the AN and curvature
of the mandibular canal are key anatomical factors that
elevate the risk of postoperative nerve injury. Recently,
Al has been employed to automate such assessments,
particularly for predicting the position of the mandibular
third molar and the associated risk of nerve injury.

This review presents an analysis of studies employing
deep learning techniques. The earliest study, published
in 2019, primarily focused on segmentation tasks using
the U-Net (Table 3) [17]. The U-Net model, initially de-
veloped for biomedical applications, demonstrated ex-
cellent performance in pixel-wise segmentation tasks.
This architecture is well-suited for medical image anal-
ysis applications, such as third molar extraction plan-
ning, enabling faster and more accurate segmentation
than conventional CNN models [28].

Furthermore, the analysed studies predominantly
employed classification methods (Table 1) [9-14].
Classification, the simplest form of image analysis,
assigns a single label to an entire image, whereas
segmentation is employed to detect abnormalities
such as tumours on magnetic resonance imaging
or CT, through pixel-level classification. Although
classification is used more frequently, segmentation
remains useful for complex assessments, including
evaluation of nerve proximity and extraction difficulty.
A key advantage of Al lies in its capacity to stream-
line and enhance surgical planning. Al assists clini-
cians in making informed decisions on extraction
strategies, thereby potentially reducing intraoperative
complications. Moreover, Al-driven risk assessment
tools support patient counselling by offering objective,
data-driven predictions of nerve injury risk, thereby en-
hancing patient understanding and the consent process.
Our analysis highlighted certain issues in the published
studies. Many studies have used relatively small datas-
ets and implemented data augmentation techniques to
prevent overfitting; however, the diversity in dataset
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sizes and the absence of standardised evaluation pro-
tocols hinder meaningful comparisons. Additionally,
due to anatomical variability among patients and dif-
ferences in image quality, models demonstrating high
accuracy in controlled environments may perform sub
optimally in actual clinical settings.

To address these limitations and ensure clinical appli-
cability of Al models, future studies should prioritise
several key areas. First, multicentre data collection is
essential for increasing dataset diversity and improve
model generalisability. Institutional collaboration will
facilitate the aggregation of heterogeneous imaging
datasets and the representation of diverse anatomical
variations and clinical contexts. Second, standardised
evaluation metrics must be established to ensure consis-
tent benchmarking across studies and enable meaning-
ful comparisons of Al model performances. Third, pro-
spective clinical trials should be conducted to validate
Al models in real-world clinical settings. These trials
should assess the diagnostic accuracy and the impact of
Al-assisted decision making on surgical outcomes and
patient safety. Finally, the development of clinically in-
tegrated Al tools should be prioritised. Future models
should incorporate user-friendly interfaces and real-
time processing capabilities to support intraoperative
decision making.

Conclusion

Overall, the included studies confirmed that Al and deep
learning have been actively used to evaluate the anatomical
relationship between mandibular third molars and the
IAN. The high values of performance indicators reported
in these studies suggested that Al could accurately predict
potential complications and support surgical decision-
making. However, further research is necessary before
clinical implementation becomes feasible.

Future studies should focus on enhancing the general-
isability and reliability of Al models by incorporating
more diverse datasets, establishing standardised evalu-
ation protocols, and conducting clinical trials to validate
Al-based decision support systems in real-world surgical
settings. These steps are essential to ensure the seamless
and effective integration of Al into clinical workflows,
thereby improving patient safety and surgical outcomes.
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