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Background: Allergen sensitization patterns are heterogeneous, and their clinical relevance is often
obscured by extensive cross-reactivity. We applied non-negative matrix factorization (NMF) to disen-
tangle overlapping immunoglobulin E (IgE) signals and define clinically meaningful allergen signatures
in a large Korean cohort.
Methods: We analyzed 45,065 patients who underwent multiplex allergen testing (35 inhalants and
food components) between 2010 and 2025. Class-scaled specific IgE values (0—6) were factorized by
NMF (k = 4). Signature weights were related to asthma, allergic rhinitis, and atopic dermatitis using
multivariable logistic regression and to peripheral eosinophil counts and total IgE using age- and sex-
adjusted linear models.
Results: Four signatures―mite, grass/weed, pet, and tree―explained 77.7 % of the variance in sensiti-
zation. The mite signature predominated (57.6 % of patients) and was strongly associated with allergic
rhinitis (adjusted OR: 7.21, 95 % CI: 5.66—9.16), as well as marked increases in eosinophils and total IgE.
The pet signature was the strongest predictor of asthma (OR: 8.90, 6.48—12.24). The tree signature
showed the strongest association with atopic dermatitis (OR: 6.27, 3.81—10.32) and broader multi-
system allergic morbidity. The grass/weed signature exhibited a biphasic age trajectory with a late-adult
resurgence but had modest clinical impact. All signatures were significant and graded as determinants
of blood eosinophil counts and IgE levels.
Conclusions: Data-driven factorization of multiplex IgE panels yields portable allergen signatures that
refine attribution of asthma, allergic rhinitis, and atopic dermatitis and link serologic patterns to sys-
temic inflammation.
© 2025 Japanese Society of Allergology. Published by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Allergic diseases such as asthma, allergic rhinitis (AR), and
atopic dermatitis are highly prevalent chronic conditions driven by
abnormal immune responses.1—4 A central feature of these atopic
disorders is allergen sensitization―the production of specific
immunoglobulin E (IgE) antibodies against environmental and
food allergens―which is widely recognized as a key risk factor in
their pathophysiology.5—7 Numerous epidemiological studies have
documented strong associations between IgE sensitization and the
presence of asthma or AR.2,5 However, the strength of these as-
sociations varies significantly among individuals. To date, no reli-
able IgE-based biomarker can predict disease development or

stratify patients according to future risk.8 In other words, despite
the clear importance of allergen sensitization, clinicians still lack a
practical serological indicator to predict whether a sensitized pa-
tient will develop asthma, hay fever, or eczema or remain
asymptomatic.
The relationship between allergens that elicit sensitization and

the subsequent disease phenotype is complex but crucial. Allergic
sensitization patterns can influence the clinicalmanifestations and
severity of allergic diseases. For example, polysensitization (IgE
reactivity to more than one allergen) is frequently observed and is
associated with early onset of allergic diseases, severe symptoms,
and increased multimorbidity.9—12 Sensitization to house dust
mite (HDM) has been linked to an increased risk of asthma,2,13

whereas soybean or milk positivity has been associated with AR
multimorbidity.12 However, systematic research on major allergen
sensitization patterns and their impact on allergic diseases in the
general population remains limited. The interpretation of
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component-level data is further complicated by extensive cross-
reactivity among homologous allergen proteins and demographic
or exposure-related confounding factors that can mask true bio-
logical associations. Although several large-scale studies in East
Asia, including Korea5,14,15 and China,16 have profiled sensitization
prevalence, their conventional clustering approaches struggled to
parse these intertwined effects, and therefore rarely yielded clin-
ically actionable links to specific outcomes.
To overcome these challenges, we treated the high-

dimensional IgE matrix as a latent mixture problem and applied
non-negative matrix factorization (NMF), an unsupervised
deconvolution technique that separates overlapping IgE signals
into additive orthogonal components. Using this strategy, we
performed an unbiased analysis of allergen sensitization patterns
in a large cohort comprising 45,065 Korean patients. With a
comprehensive panel of more than 35 food and inhalant allergens,
we applied NMF to identify the latent allergen signatures in this
population. We then examined how these distinct signatures were
related to the prevalence of asthma, AR, and atopic dermatitis. By
elucidating the intricate relationship between molecular sensiti-
zation patterns and specific disease prevalence, this study aimed
to advance our understanding of the pathophysiology of allergic
diseases and support the development of more precise diagnostic
and prognostic strategies.

Methods

Study population and data acquisition

This retrospective cross-sectional analysis was conducted at
Yonsei University Severance Hospital, a tertiary academic medical
center in Seoul, Korea. The laboratory database was queried for all
AdvanSure™ Allostation Multiple Antigen Simultaneous Test
(MAST; LG Life Science, Korea) assays performed between January
2010 and June 2025, yielding 105,962 test panel results. We
included all individuals who underwent the MAST panel irre-
spective of prior allergic disease diagnoses, thereby capturing both
symptomatic and screening/non-allergic cases to minimize se-
lection bias. To establish a uniform baseline, only the earliest panel
for each individual was retained, reducing the dataset to 90,611
unique patients. The assay originally quantified serum IgE against
123 inhalant or food allergens; 87 allergens with missing results in
≥40 % of panels were excluded, leaving 35 allergens for analysis.
Panels with missing IgE values for the retained allergens were
excluded, resulting in a final analytic cohort of 45,065 patients. In
this final cohort, the proportions with ICD-10-coded allergic dis-
eases were 68.8 % for AR, 29.9 % for asthma, and 5.4 % for atopic
dermatitis (Table 1). The study complied with the Declaration of
Helsinki and was approved by the Institutional Review Board of
Yonsei University College of Medicine (IRB 4-2025-0708). The
requirement for informed consent was waived owing to the
retrospective nature of the study, and all data were anonymized
through IRB-approved procedures. Demographic characteristics
and baseline laboratory findings of the study subjects are pre-
sented in Table 1.

Allergen-specific IgE quantification

The 35 retained allergens were classified into seven groups:
HDM, tree pollen, grass pollen, weed pollen, animal dander, fungi,
and insects. Indoor allergens included HDM (Dermatophagoides
farinae [Der f] and Dermatophagoides pteronyssinus [Der p]), animal
dander (cat and dog), and insects (cockroach mix). Outdoor aller-
gens included tree pollen (acacia, ash mix, birch alder mix,
hazelnut, Japanese cedar, oak, pine, poplar mix, sallowwillow, and

sycamore mix), grass pollen (Bermuda grass, orchard grass, reeds,
rye grass, sweet vernal grass, and timothy grass), weed pollen
(dandelion, goldenrod, Japanese hop, mugwort, oxeye daisy,
ragweed, Russian thistle, and pigweed), and fungi (Alternaria,
Aspergillus, Cladosporium, and Penicillium). The test results were
classified into seven levels: class 0 (0.00—0.34 kU/L), class 1
(0.35—0.69 kU/L), class 2 (0.70—3.49 kU/L), class 3 (3.50—17.49 kU/
L), class 4 (17.50—49.99 kU/L), class 5 (50.00—99.99 kU/L), and
class 6 (>100 kU/L).

Clinical laboratory variables

Blood eosinophil percentage, absolute eosinophil count, and
total serum IgE levels were retrieved from the institutional elec-
tronic medical record (EMR). To minimize temporal heterogeneity,
only the first laboratory measurement obtained for each patient,
defined as the assay performed on or closest to the date of the
index MAST, was retained for analysis.

Clinical diagnoses of allergic diseases

As described in previous studies,17,18 asthma (J45—46), AR
(J30.1—30.4), and atopic dermatitis (L20) were identified from the
EMR using International Classification of Diseases, 10th Revision
(ICD-10) billing codes. A patient was considered positive for a
given condition if at least one relevant code had ever been
assigned at an outpatient or inpatient encounter. This one-code-
ever approach maximized sensitivity while minimizing misclas-
sification in such a large retrospective cohort.

Co-sensitization network construction

To elucidate population-level co-sensitization patterns, the
proportion of participants who were simultaneously sensitized to
both allergens was first computed for every allergen pair; self-
pairs were set to zero. Edges with a co-sensitization proportion
below 0.05 were pruned, and the retained values were used as
edge weights in an undirected graph built with NetworkX (Python
3.10). Each node was annotated with its prevalence (which later
drove the node size) and a manually curated allergen class (mite,
pet, insect, mold, tree, grass, weed, or food) that determined the
node color. The resulting GraphML file, together with matching
node and edge tables, was imported into Cytoscape 3.10 and
visualized using the edge-weighted spring-embedded layout,
which positions highly co-sensitized allergens close together
while respecting edge weights.

Table 1
Demographic and clinical characteristics of the study participants.

Overall

Total number 45,065
Sex Male: 24,975 (55.4 %)

Female: 20,087 (44.6 %)
Age 39.8 (39.6—40.0)
Cluster Nonallergic: 18,686 (41.5 %)

Mite: 15,205 (33.7 %)
Pet: 4804 (10.7 %)
Grass: 3977 (8.8 %)
Tree: 2393 (5.3 %)

Asthma 13,453 (29.9 %)
Allergic rhinitis 31,025 (68.8 %)
Atopic dermatitis 2452 (5.4 %)
Total IgE mean (95 % CI) 250.2 (244.3—256.1)
Eosinophil count (95 % CI) 227.6 (224.1—231.1)
Eosinophil % (95 % CI) 3.2 (3.2—3.2)

IgE, immunoglobulin E; CI, confidence interval.
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NMF and visualization of allergen signatures

After excluding 18,686 patients whose serum IgE (sIgE) profiles
were completely negative across all 35 allergens, the analytical
matrix comprised 26,379 patients × 35 allergens. Class-scale sIgE
values (0—6) obtained from the MAST assay were used in their
original form. NMF was performed with the sklearn imple-
mentation (version 1.3.0) using non-negative double singular
value decomposition (NNDSVD) initialization and a maximum of
2000 iterations to ensure convergence. Because reconstruction
error decreased monotonically with k and no distinct “elbow” was
observed, we prioritized biological interpretability and parsimony;
k = 4 was selected as it yielded stable, non-redundant, and clini-
cally coherent components across random initializations. The
factorization yielded a sample × component matrix W (patient
signature scores) and a component × allergen matrix H (signature
loadings). The dominant signature for each allergenwas defined as
the component with the highest loading, and this labeling was
propagated to subsequent clinical association analyses.

Results

Class-based co-sensitization network

The allergen co-sensitization network graph comprised 35
allergen nodes connected by 357 weighted edges, giving an overall
network density of 0.60, meaning that 60 % of all possible allergen
pairs shared measurable co-sensitization. Spatially, the edge-
weighted spring-embedded layout placed biologically related al-
lergens into tight clusters (Fig. 1). Nodes belonging to the mite

class formed a dominant central hub and exhibited the largest
diameters, confirming that HDM sensitization was the most
common and interconnected allergen group in this population.
Quantitatively, D. farinae had the highest node prevalence (1.23 on
a class 0—6 scale), whereas Mackerel was the least common
allergen (0.006). The strongest pairwise co-sensitization occurred
between D. farinae and D. pteronyssinus (edge weight ≈ 3.98),
whereas the weakest retained edge above the 0.05 threshold
linked hop and soybean (edge weight≈ 0.05). Grass, weeds, pets,
trees, mold, food, and insect allergens were organized into distinct
peripheral subnetworks surrounding this core. These class-based
islands were linked to the mite hub by thinner inter-class edges,
reflecting weaker co-sensitization frequencies. Therefore, the
network visualizes a hierarchy in which HDM allergens act as
major hubs, while other classes maintain more localized, within-
class co-sensitization patterns.

Data-driven extraction of allergen signatures

Exploratory NMF of raw sIgE titers identified four reproducible
allergen signatures that together explained 77.7 % of the variance
in the sensitization matrix (Frobenius reconstruction error = 465;
Fig. 2). Signature composition closely mirrored biological group-
ings, allowing for an intuitive nomenclature. Specifically, the first
component, dominated by the two HDM species and tropomyosin-
bearing indoor allergens, was designated as the “mite signature.”
The second component, driven almost exclusively by grass (rye,
timothy, orchard, and Bermuda pollens) and weed (ragweed and
pigweed) pollens, was termed the “grass/weed signature.” The
third component was characterized by appreciable input from cat
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Fig. 1. Allergen co-sensitization network. Each node represents an individual allergen and is colored by allergen class (mite, pet, insect, mold, tree, grass, weed, or food). Node size
is proportional to the population prevalence of specific-IgE positivity for that allergen. Edge thickness denotes the strength of pairwise correlation between specific-IgE levels;
thicker edges indicate stronger correlations, highlighting common co-sensitization patterns.
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and dog dander, and was therefore labeled the “pet signature.”
Finally, the fourth component centered on tree pollens such as oak
and birch and was named the “tree signature.” These four signa-
tures are readily interpretable andmirror the major hubs observed
in the population-level co-sensitization network (Fig. 1). The full
35 × 4 loading matrix (H table) is provided in Supplementary
Table S1 to facilitate rapid application of this framework to inde-
pendent cohorts or single-patient analyses.

Distribution of allergen signatures across patients

Heatmap visualization of individual signature weights (Fig. 3)
showed that most patients were driven by a single dominant
signature, although only 3.4 % met the definition of a mixed profile
(≥0.25 loading in at least two signatures). The mite signature
(comp 1) predominated, accounting for 57.6 % of patients, with the
grass/weed, pet, and tree signature were observed in 15.1 %, 18.2 %,
and 9.1 % of patients, respectively. Compared with the single-
signature group, the mixed-signature group exhibited signifi-
cantly elevated immunologic activity, as indicated by higher total
IgE levels (mean 1059 vs 340 kU/L) and blood eosinophil counts
(355 vs 256 cells/μL; both p < 0.001; Supplementary Fig. S1),
alongside a greater prevalence of allergic rhinitis (78.4 % vs 71.8 %,
p < 0.001) and atopic dermatitis (16.6 % vs 6.2 %, p < 0.001), while
asthma prevalence remained statistically comparable (30.9 % vs
28.1 %; not significant). These patterns alignwith prior reports that
allergen polysensitization correlates with increased symptom
burden and disease severity.33

Age-dependent dynamics of allergen signatures

Given that allergic phenotypes and sensitization are known to
be influenced by age,14,19,20 we investigated age-related dynamics
of allergic sensitization patterns. LOWESS-smoothed curves
(Fig. 4) revealed signature-specific age trajectories with well-
defined peak ages. The mite signature reached its maximum
average contribution at 14 years of age and declined progressively
across adulthood. Notably, the grass/weed signature displayed a
biphasic pattern: an initial peak at 11 years of age, a trough in early

adulthood, and a secondary increase peaking at 56 years of age,
suggesting the re-emergence of grass or weed sensitization in later
life. The pet signature peaked slightly later, at 16 years of age,
before tapering off with age. The tree signature exhibited a modest
early peak at 11 years of age and remained low but detectable
throughout the lifespan. These discrete peak ages may highlight
the developmental windows during which each allergen signature
exerts its greatest immunological influence.

Immunologic correlates of allergen signatures

Because allergic diseases are driven by IgE-mediated hyper-
sensitivity and are closely associated with eosinophilic inflam-
mation,21—23 we further analyzed the relationship between allergic
signatures and blood eosinophil counts and IgE levels. Age- and
sex-adjusted linearmodels quantified the impact of each signature
on blood eosinophil count (cells per μL) (Fig. 5A). Per unit increase
in signature weight, the mite signature increased eosinophil count
by β = 406 (95 % CI, 367—445), closely matched by the pet signa-
ture (β = 432, 381—483). The tree signature showed an interme-
diate effect (β = 259, 208—311), whereas the grass/weed signature
exerted the smallest, but still significant, increment (β = 149,
109—189). All associations were statistically significant (p < 0.001).
For total IgE (kU/L), the effect sizes were similarly substantial but
displayed a slightly different ranking (Fig. 5B). The mite signature
yielded the largest increment (β = 2367 kU/L, 2302—2432), fol-
lowed by the pet (β = 1517 kU/L, 1438—1597), the grass/weed
(β = 1375 kU/L, 1308—1441), and tree (β = 1282 kU/L, 1206—1358)
signatures. All β coefficients were statistically significant
(p < 0.001).

Association of allergen signatures with disease entity

Finally, we investigated the association between allergen sig-
natures and each allergic disease. Multivariable logistic regression
models (Fig. 6) revealed signature-specific disease patterns. For
asthma, the pet signature showed the greatest association
(OR = 8.90; 95 % CI, 6.48—12.23; p < 0.001), followed by the tree
signature (OR = 3.43, 2.41—4.89, p < 0.001). In contrast, the mite

Fig. 2. Top allergen loadings for each non-negative matrix factorization signature. Horizontal bar charts display the allergens contributing most to each component (comp 1—4).
Bar length equals loading coefficient magnitude; longer bars indicate greater influence. Bars are colored by component (blue, orange, green, red) and ordered from strongest to
weakest, emphasizing interpretable allergen composition of every signature.
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and grass/weed signatures were not significantly associated with
asthma (OR = 0.83, 0.64—1.07 and OR = 0.99, 0.76—1.29, respec-
tively). In AR, the mite signature exhibited the strongest associa-
tion (OR = 7.21, 5.66—9.17, p < 0.001), while the pet and tree
signatures had moderate associations (OR = 3.03, 2.17—4.25 and
OR = 3.59, 2.44—5.29). The grass/weed signature was not signifi-
cantly associated with AR (OR = 0.99, 0.75—1.30). For atopic
dermatitis, the tree signature was most strongly associated with
the disease (OR = 6.27, 3.81—10.33, p < 0.001), while the mite
(OR= 4.98, 3.33—7.45), pet (OR= 4.14, 2.56—6.70), and grass/weed
(OR= 1.61, 1.04—2.49) signatures were associatedwith smaller but
still significant risks. Altogether, these findings suggest that pet
and tree sensitization profiles are related to multi-organ allergic
morbidity, mite sensitization is strongly associated with AR, and
grass/weed sensitization exhibits relatively modest associations
with allergic diseases. We further analyzed the association

between each allergen signature and allergic multimorbidity
(Supplementary Fig. S2). Pet sensitization conferred the highest
multimorbid risk, with an OR of 9.22 (95 % CI, 6.57—12.94) for
asthma + rhinitis and 12.91 (5.68—29.31) for the triple-disease
combination. Tree sensitization also showed robust effects with
an OR of 9.31 (4.29—20.20) for asthma + dermatitis and 9.84
(4.28—22.63) for all three diseases. In contrast, mite and grass/
weed signatures were comparatively less associated with multi-
morbidity, with maximum ORs of 6.84 and 2.25, respectively.

Discussion

Our study demonstrates that NMF can disentangle overlapping
IgE signals in a large cohort of more than 45,000 individuals and
reveals four biologically coherent allergen signatures―mite, grass/
weed, pet, and tree―that explain nearly 80 % of the variance in a

Fig. 3. Heatmap of patient-level allergen signature weights. Columns represent individual patients, ordered by their dominant signature (color strip below: blue = comp 1,
orange = comp 2, green = comp 3, red = comp 4). Rows correspond to the four signatures. Cell color intensity (0—1) indicates the normalized contribution of each signature to a
patient's overall IgE profile.

Fig. 4. Trends in allergen signature weights according to age. LOWESS-smoothed lines depict mean signature contributions across age (0—100 years). Colors match signature IDs.
The mite signature peaks in childhood and declines with age, whereas the grass (comp 2) and pet (comp 3) signatures rise in adolescence, and the tree signature (comp 4) shows a
modest late-life increase.
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35-component sensitization panel. By deconvoluting cross-
reactive patterns that obscured previous analyses, we assigned
each patient a high-resolution serologic “allergen fingerprint” and
linked these fingerprints to distinct clinical and immunologic
phenotypes. This represents a substantive advance over earlier
clustering studies that grouped patients by raw positivity profiles
without correcting for cross-reactivity or confounders and there-
fore reported less specific, often population-dependent patterns.
The allergen signatures identified in this study have important

clinical implications. The mite signature demonstrated the stron-
gest association with AR and marked peripheral eosinophilia/IgE
elevations; however, it showed no independent association with
asthma after adjusting for age and sex. This indicates that earlier
univariable studies may have over-attributed asthma risk to mite
sensitization.10,13 However, in our adult cohort with near-
ubiquitous HDM exposure and extensive polysensitization,
asthma susceptibility is better explained by the pet and tree

signatures. Conversely, the pet signature emerged as the most
powerful predictor of asthma. Pet dander allergens are excep-
tionally small and remain airborne for prolonged periods, allowing
major cat (Fel d 1) and dog (Can f 1, Can f 5) proteins to reach the
bronchial mucosa, unlike larger pollen or mite particles that are
typically deposited in the upper airways.24,25 Once in the lower
airway, these proteins act as powerful Th2-skewing adjuvants,
driving IgE class switching, eosinophil recruitment, and airway
hyper-responsiveness.26,27 The tree signature, enriched in
pathogenesis-related class 10 proteins―Bet v 1 (birch) and Cor a 1
(hazelnut)―and plant lipid-transfer proteins―Pru p 3 (peach)―
captures IgE cross-reactivity across pollen and botanically related
foods. These homologous proteins constitute the molecular back-
bone of pollen—food syndrome, and IgE primed by inhaled tree
pollen recognizes structurally similar epitopes in fruits, nuts, and
vegetables, eliciting oral or systemic reactions upon
ingestion.28—30 This airway-to-gut-to-skin axis explains why high

Fig. 5. Associations between allergen signatures and blood eosinophil counts and IgE levels. (A) Signature weights vs. blood eosinophil counts. (B) Signature weights vs. total
serum IgE. Left: LOWESS-smoothed regression lines with 95 % confidence ribbons. Right: Multivariable β coefficients (circles) and 95 % CIs (horizontal bars) from age- and sex-
adjusted linear models, representing the expected change in the outcome per 1-unit increase in signature weight. Vertical dashed line marks no association; colors denote
signatures.
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tree signature weights in our cohort strongly predict atopic
dermatitis and broader multisystem allergic morbidity. The grass/
weed signature showed a modest association with atopic derma-
titis but was not significantly associated with asthma or AR.
Furthermore, it had the weakest impact on eosinophilia among all
signatures. Although a considerable portion of patients (15.1 %)
exhibited the grass/weed signature, its overall contribution to
allergic diseases may be relatively limited in Korean patients.
Previous studies have consistently reported that the prevalence

of allergic sensitization decreases with increasing age.2,14,20 Simi-
larly, we found that the peak age of all allergen signatures was
approximately 10—20 years old, followed by a gradual decrease.
Intriguingly, the grass/weed signature displayed a biphasic age
trajectory with a late-life resurgence. This result may derive from a
potential increase in outdoor activities, such as gardening after
retirement, coupled with age-related alterations in the immune
system, including diminished type-2 immune regulation and
regulatory T-cell efficacy,31,32 thereby lowering the threshold for
novel sensitization―a phenomenon infrequently documented in
previous research.
Methodologically, our use of class-levelMAST data in the native

0—6 scale avoids the assumptions imposed by arbitrary log
transformations, while NNDSVD initialization enhances the
reproducibility of the NMF solution. Integrating prevalence-
weighted network analysis with signature-specific regression
further bridges population-level patterns and individual-level risk,
providing a template for precision allergy diagnostics. We provide
a 35 × 4 loading matrix (H table) for the four signatures
(Supplementary Table S1). This will allow external investigators to
estimate signature weights in new cohorts, or even in a single
patient, by simple matrix multiplication of their class 0—6 IgE
vector using this public H table, without having to rerun NMF. The
portability of the H table enables rapid external validation and
facilitates its application in prospective clinics, biobanks, and
geographically distinct allergen panels.
This study had several limitations. First, the single-center,

retrospective design and reliance on ICD-10 billing codes for
diagnosis may have led to misclassification of disease status
despite our one-code-ever rule. Although this potential

misclassification is unlikely to be systematically related to the
NMF-derived signature structure, it may slightly affect the
observed associations between allergen signatures and each dis-
ease entity. Second, the proportion of patients varied across
allergic disease entities, which may have influenced the results.
Third, this study lacked longitudinal IgE data from individual pa-
tients to test the temporal stability of the signatures. Future pro-
spective cohorts with repeated MAST testing are required to
quantify the within-person stability of NMF-derived signature
weights and to evaluate their predictive value for disease onset,
exacerbations, and progression. Incorporating in vivo functional
readouts (e.g., basophil activation and skin prick tests) will help
clarify causal pathways and guide selection and monitoring of
allergen-specific immunotherapy.
In summary, decoding high-dimensional IgE landscapes with

NMF reveals individualized allergen signatures that capture
immunologic heterogeneity, predict organ-specific disease risks,
and lay the groundwork for precision management of allergic
disorders.

Acknowledgements

This study was supported by the Bio & Medical Technology
Development Program of the National Research Foundation of
Korea (NRF), funded by the Korea government (MSIT) (RS-2024-
00439160), and by the NRF grant funded by the Korea government
(MSIT) (RS-2025-00516950).
MID (Medical Illustration & Design), as a member of the Med-

ical Research Support Services of Yonsei University College of
Medicine, providing excellent support with medical illustration.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.alit.2025.09.003.

Conflict of interest
The authors have no conflict of interest to declare.

Fig. 6. Adjusted odds ratios for allergic diseases. Forest plots display age- and sex-adjusted odds ratios (log scale) with 95 % CIs for asthma, allergic rhinitis, and atopic dermatitis.
Each row represents a non-negative matrix factorization signature (colors as above). The vertical dashed line (OR = 1) denotes no association; points to the right (OR > 1) indicate
increased odds, and points to the left (OR < 1) indicate decreased odds with higher signature weight.

D. Kim et al. / Allergology International 75 (2026) 150—157156

https://doi.org/10.1016/j.alit.2025.09.003


Authors’ contributions
DK: Study design, Data collection, Data analysis, Writing original draft,

Reviewing, Revising the manuscript.
HJC: Study design, Data collection, Reviewing, Revising the manuscript.
CHK: Study design, Data collection, Reviewing, Revising the manuscript.
MSR: Study design, Data collection, Data analysis, Funding acquisition,

Reviewing, Revising the manuscript.

References

1. Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, et al. International
consensus statement on allergy and rhinology: Allergic rhinitis — 2023. Int
Forum Allergy Rhinol 2023;13:293—859.

2. Chang SW, Lee HY, Kim JH, Chang JH, Choi HS, Kang JW. Sensitization of
common allergens and co-sensitization patterns in the Korean population. Sci
Rep 2025;15:13664.

3. Foong R-X, du Toit G, Fox AT. Asthma, food allergy, and how they relate to
each other. Front Pediatr 2017;5:89.

4. Mersha TB, Afanador Y, Johansson E, Proper SP, Bernstein JA, Rothenberg ME,
et al. Resolving clinical phenotypes into endotypes in allergy: Molecular and
omics approaches. Clin Rev Allergy Immunol 2021;60:200—19.

5. Yun J-E, Ko EB, Jung HI, Gu K-M, Kim TW, Park S-Y, et al. Allergen sensitization
and its association with allergic diseases in the Korean population: Results
From the 2019 Korea National Health and Nutrition examination survey. Al-
lergy Asthma Immunol Res 2024;16:534—45.

6. Zhang W, Xie B, Liu M, Wang Y. Associations between sensitisation to aller-
gens and allergic diseases: a hospital-based case—control study in China. BMJ
Open 2022;12:e050047.

7. Falcon RMG, Caoili SEC. Immunologic, genetic, and ecological interplay of
factors involved in allergic diseases. Front Allergy 2023;4:1215616.

8. Custovic A, Custovic D, Fontanella S. Understanding the heterogeneity of child-
hood allergic sensitization and its relationship with asthma. Curr Opin Allergy
Clin Immunol 2024;24:79.

9. Bousquet J, Anto JM, Bachert C, Baiardini I, Bosnic-Anticevich S, Walter
Canonica G, et al. Allergic rhinitis. Nat Rev Dis Primer 2020;6:1—17.

10. Burte E, Bousquet J, Siroux V, Just J, Jacquemin B, Nadif R. The sensitization
pattern differs according to rhinitis and asthma multimorbidity in adults: the
EGEA study. Clin Exp Allergy J Br Soc Allergy Clin Immunol 2017;47:520—9.

11. Gonz�alez-P�erez R, Poza-Guedes P, Pineda F, Gal�an T, Mederos-Luis E, Abel-
Fern�andez E, et al. Molecular mapping of allergen exposome among different
atopic phenotypes. Int J Mol Sci 2023;24:10467.

12. Li Y-T, Ye Q-Q, Lu Y-X, Yang K-X, Zhang P-P, Chen C, et al. Allergen sensiti-
zation patterns: Allergic rhinitis with multimorbidity versus alone―A real-
world study. Clin Transl Allergy 2025;15:e70030.

13. Valero A, Quirce S, D�avila I, Delgado J, Domínguez-Ortega J. Allergic respiratory
disease: Different allergens, different symptoms. Allergy 2017;72:1306—16.

14. Choi JH, Suh JD, Kim I, Kim JK, Cho JH. Changes in sensitization rates for
respiratory and food allergens by age. Clin Exp Allergy 2024;54:219—21.

15. Park SC, Hwang CS, Chung HJ, Purev M, Al Sharhan SS, Cho H-J, et al.
Geographic and demographic variations of inhalant allergen sensitization in
Koreans and non-Koreans. Allergol Int Off J Jpn Soc Allergol 2019;68:68—76.

16. Luo W, Wang D, Zhang T, Zheng P, Leng D, Li L, et al. Prevalence patterns of
allergen sensitization by region, gender, age, and season among patients with
allergic symptoms in mainland China: A four-year multicenter study. Allergy
2021;76:589—93.

17. Oh J, Lee M, Kim M, Kim HJ, Lee SW, Rhee SY, et al. Incident allergic diseases in
post-COVID-19 condition: multinational cohort studies from South Korea,
Japan and the UK. Nat Commun 2024;15:2830.

18. Oh J, Kim S, Kim MS, Abate YH, Abd ElHafeez S, Abdelkader A, et al. Global,
regional, and national burden of asthma and atopic dermatitis, 1990—2021,
and projections to 2050: a systematic analysis of the Global Burden of Disease
Study 2021. Lancet Respir Med 2025;13:425—46.

19. Warm K, Backman H, Lindberg A, Lundb€ack B, R€onmark E. Low incidence and
high remission of allergic sensitization among adults. J Allergy Clin Immunol
2012;129:136—42.

20. Warm K, Hedman L, Lindberg A, L€otvall J, Lundb€ack B, R€onmark E. Allergic
sensitization is age-dependently associated with rhinitis, but less so with
asthma. J Allergy Clin Immunol 2015;136:1559—65. e2.

21. Asano K, Ueki S, Tamari M, Imoto Y, Fujieda S, Taniguchi M. Adult-onset
eosinophilic airway diseases. Allergy 2020;75:3087—99.

22. Shamji MH, Valenta R, Jardetzky T, Verhasselt V, Durham SR, Würtzen PA,
et al. The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy
2021;76:3627—41.

23. Smith KA, Gill AS, Pollard CE, Sumsion JS, Saffari H, Ashby S, et al. An eosin-
ophil peroxidase activity assay accurately predicts eosinophilic chronic rhi-
nosinusitis. J Allergy Clin Immunol 2023;152:400—7.

24. Torres-Borrego J, S�anchez-Solís M. Dissecting airborne allergens. J Clin Med
2023;12:5856.

25. Gauvreau GM, El-Gammal AI, O’Byrne PM. Allergen-induced airway responses.
Eur Respir J 2015;46:819—31.

26. Stark JM, Liu J, Tibbitt CA, Christian M, Ma J, Wintersand A, et al. hyper-
responsiveness in a model of asthma marked by vigorous TH 2 and TH 17 cell
responses. Allergy 2022;77:2987—3001.

27. Tsolakis N, Malinovschi A, Nordvall L, Mattsson L, Lidholm J, Pedroletti C, et al.
Sensitization to minor cat allergen components is associated
with type-2 biomarkers in young asthmatics. Clin Exp Allergy 2018;48:
1186—94.

28. Heratizadeh A. Atopic dermatitis: new evidence on the role of allergic
inflammation. Curr Opin Allergy Clin Immunol 2016;16:458.

29. Hoffmann-Sommergruber K, Roesner LM. The clinical impact of cross-re-
actions between allergens on allergic skin diseases. Curr Opin Allergy Clin
Immunol 2020;20:374.

30. Mittermann I, Wikberg G, Johansson C, Lupinek C, Lundeberg L, Crameri R,
et al. IgE Sensitization Profiles Differ between Adult Patients with Severe and
Moderate Atopic Dermatitis. PLOS ONE 2016;11:e0156077.

31. Jagger A, Shimojima Y, Goronzy JJ, Weyand CM. Regulatory T cells and the
immune aging process: a mini-review. Gerontology 2013;60:130—7.

32. Erin Diane Lewis. Age-associated alterations in immune function
and inflammation. Prog Neuropsychopharmacol Biol Psychiatry 2022;118:
110576.

33. Cacheiro-Llaguno C, M€osges R, Calzada D, Gonz�alez-de la Fuente S, Quintero E,
Carn�es J. Polysensitisation is associated with more severe symptoms: the re-
ality of patients with allergy. Clin Exp Allergy 2024;54:607—20.

D. Kim et al. / Allergology International 75 (2026) 150—157 157

http://refhub.elsevier.com/S1323-8930(25)00109-1/sref1
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref1
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref1
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref2
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref2
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref2
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref3
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref3
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref4
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref4
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref4
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref5
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref5
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref5
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref5
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref6
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref6
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref6
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref7
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref7
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref8
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref8
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref8
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref9
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref9
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref10
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref10
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref10
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref11
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref11
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref11
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref12
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref12
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref12
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref13
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref13
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref14
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref14
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref15
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref15
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref15
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref16
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref16
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref16
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref16
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref17
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref17
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref17
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref18
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref18
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref18
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref18
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref19
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref19
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref19
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref20
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref20
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref20
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref21
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref21
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref22
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref22
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref22
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref23
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref23
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref23
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref24
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref24
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref25
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref25
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref26
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref26
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref26
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref27
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref27
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref27
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref27
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref28
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref28
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref29
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref29
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref29
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref30
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref30
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref30
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref31
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref31
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref32
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref32
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref32
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref33
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref33
http://refhub.elsevier.com/S1323-8930(25)00109-1/sref33

	Association of allergen signatures with individualized allergic phenotypes
	Introduction
	Methods
	Study population and data acquisition
	Allergen-specific IgE quantification
	Clinical laboratory variables
	Clinical diagnoses of allergic diseases
	Co-sensitization network construction
	NMF and visualization of allergen signatures

	Results
	Class-based co-sensitization network
	Data-driven extraction of allergen signatures
	Distribution of allergen signatures across patients
	Age-dependent dynamics of allergen signatures
	Immunologic correlates of allergen signatures
	Association of allergen signatures with disease entity

	Discussion
	IntroductionAllergic diseases such as asthma, allergic rhinitis (AR), and atopic dermatitis are highly prevalent chronic co ...
	flink5
	flink6
	References


