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The SPISE index was more strongly associated withmean LDL-C
particle compared to fasting insulin, HOMA-IR, and QUICKI

. Our study revealed an independent relationship between the mean LDL-C particle size and the SPISE index,
COnclusu)n suggesting the SPISE index could replace labor-intensive IR indices and sdLDL-C measuring methods, by
estimating IR-induced sdLDL-C predominance.
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ABSTRACT

Background: Insulin resistance (IR) influences lipid metabolism, particularly small dense low-density lipoprotein cholesterol
(sdLDL-C), a key feature of diabetic dyslipidemia and a predictor of cardiovascular disease. The single-point insulin sensitivity es-
timator (SPISE) index is an effective tool for assessing IR. This study explored the relationship between the SPISE index and aver-
age low-density lipoprotein cholesterol (LDL-C) particle size in obese Korean adults.

Methods: Cardiovascular risk was assessed in 161 obese individuals. The participants were divided into three groups based on
SPISE index tertiles. Steiger’s Z test was used to assess the differences in correlation coefficients among various IR indices and av-
erage LDL-C particle size. Multivariate linear regression models were used to determine the independent association between the
SPISE index and average LDL-C particle size. Receiver operating characteristic (ROC) curves established the SPISE index cut-off
for sdLDL-C particle dominance.

Results: The SPISE index was positively correlated with mean LDL-C particle size after adjusting for confounders. It demonstrated
a stronger independent association with average LDL-C particle size (r=0.679, P<0.001) than with fasting insulin, the homeostatic
model assessment for IR, and the quantitative insulin sensitivity check index (P<0.001 for all). ROC analysis identified an optimal
SPISE index cutoff for sdLDL-C predominance of 4.955, with an area under the curve of 0.745.

Conclusion: Our findings indicate a direct correlation between the SPISE index and average LDL-C particle size, suggesting that
the SPISE index may complement labor-intensive IR indices and sdLDL-C measurement techniques for estimating IR-induced

sdLDL-C predominance.
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Introduction

Insulin resistance (IR) is a physiological state where tissues that nor-
mally respond to insulin become less sensitive to its effects [1]. This
condition precedes elevated plasma glucose levels and leads to chron-
ic hyperinsulinemia, -cell failure, and eventually type 2 diabetes mel-
litus (T2DM) [1]. IR is also linked to low levels of high-density lipopro-
tein cholesterol (HDL-C), T2DM, and hypertriglyceridemia, all of
which increase the risk of cardiovascular disease (CVD) [2,3]. Multiple
studies have confirmed that IR is a potent independent predictor of
atherosclerotic CVD [3-5]. Several methods exist to measure IR, in-
cluding the hyperinsulinemic-euglycemic clamp test and the oral glu-
cose tolerance test. However, these methods are labor-intensive, time-
consuming, and expensive [6]. To simplify IR assessment, various sur-
rogate markers and indices, such as the homeostatic model assess-
ment for IR (HOMA-IR) and the quantitative insulin-sensitivity check
index (QUICKI), have been developed [7,8]. Despite their utility, their
widespread clinical use is restricted by the need for insulin measure-
ment [9]. Among non-insulin-derived indices, the single-point insulin
sensitivity estimator (SPISE) index is a recent innovation that relies on
body mass index (BMI) and the triglyceride (TG)/HDL-C ratio. This
demonstrated robust predictive capabilities for the assessment of IR
[10]. The SPISE index has been shown to predict nonalcoholic fatty liv-
er disease, a metabolic disorder associated with IR. Moreover, a high
SPISE index was independently associated with a reduced future car-
diovascular risk in patients with type 2 diabetes [11].

IR affects lipid metabolism, with small dense low-density lipopro-
tein cholesterol (sdLDL-C) being a hallmark of diabetic dyslipidemia
[12]. Recognized as an emerging biomarker and independent risk fac-
tor for CVD, sdLDL-C is considered a stronger predictor of CVD than

traditional low-density lipoprotein cholesterol (LDL-C) [13]. Smaller
LDL-C particles penetrate arterial walls, bind to proteoglycans, oxidize
rapidly, and release pro-inflammatory cytokines, contributing to ath-
erosclerosis and elevated ischemic heart disease risk [14]. A recent
study highlighted sdLDL-C as having the highest atherogenic potential
among lipoproteins [15]. However, correlations between sdLDL-C and
various IR markers have been inconsistent, partly due to differences in
the methods used to measure IR and LDL-C subfractions [2,16-18].
Additionally, these correlations are influenced by TG levels, which sig-
nificantly impact sdLDL-C and its association with insulin sensitivity
[19].

This study aims to explore the relationship between the SPISE in-
dex—derived from BMI and the TG/HDL-C ratio—and average LDL-
C particle size, which decreases as sdLDL-C levels increase, in obese
Korean adults.

Methods

Study population

This study included 161 outpatients who voluntarily visited the Obe-
sity Clinic at Severance Hospital for cardiovascular risk evaluation be-
tween October 2016 and September 2021. Participants were recruited
based on the Asia-Pacific criteria for obesity, defined as a BMI of 25.0
kg/m? or higher [20]. The inclusion criteria required participants to
have no prior history of malignancy, thyroid disease, chronic liver dis-
ease (including cirrhosis, hepatitis B, or hepatitis C), kidney disease,
chronic inflammatory disease, or CVD. The exclusion criteria were as
follows: (1) diagnosis of dyslipidemia (n=38); (2) diagnosis of T2DM
(n=38); (3) missing data on BMI, fasting serum triglycerides, and HDL-
C levels (n=32); and (4) incomplete clinical data (n=8). Consequently,
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161 patients were included in the final analysis (Figure 1). This study
was approved by the Institutional Review Board (IRB) of Severance
Hospital and adhered to the guidelines of the Declaration of Helsinki
(IRB approval no., 4-2024-0883). The requirement for informed con-
sent from individual patients was omitted because of the retrospective
design of this study.

Clinical and anthropometric data

Information on medical and social history was gathered using self-
administered questionnaires, and past and current medical conditions
and health-related behaviors were verified using the patients’ medical
records. Smoking status was defined as any current smoking, and al-
cohol consumption was defined as consuming more than 72 g of alco-
hol per week [21]. Physical measurements were conducted by trained
medical staff. Height was measured to the nearest 0.1 cm, and body
weight were recorded to the nearest 0.1 kg. Body weight and composi-
tion were assessed using a bioelectrical impedance analyzer (InBody
720; Biospace), and BMI was calculated as weight in kilograms divided
by height in meters squared. Waist circumference (WC) was measured
at the midpoint between the lower costal margin and iliac crest while
the participant was standing. Blood pressure (BP) was measured from
the right arm of seated participants using an electronic manometer
(BPBio 320; Biospace). Heart rate was monitored using a Polar FS3c
heart rate monitor (Polar Electro Oy). Intra-abdominal visceral and
subcutaneous fat areas were evaluated using computed tomography
(TomoScan 350; Philips), following previously established protocols
[11].

Biochemical analyses

Blood tests were conducted after a minimum of 12 hours of over-
night fasting. The levels of total cholesterol, HDL-C, LDL-C, fasting
plasma glucose, gamma-glutamyl transferase (GGT), aspartate trans-
aminase (AST), alanine transaminase (ALT), uric acid, and high-sensi-
tivity C-reactive protein (hsCRP) were analyzed using a chemical ana-
lyzer (Hitachi 7600; Hitachi). Fasting insulin levels were measured us-
ing an immunology analyzer (Elecsys 2010; Roche).

277 Patients who had consultation with physicians in family
medicine department at Severance Hospital from October of
2016 to September of 2021

v
Exclusion criteria:
- 38 Patients who had dyslipidemia
- 38 Patients who had T2DM
- 32 Patients who had no data of fasting serum triglyceride,

HDL level, and BMI
- 8 Patients who had incomplete data

b

161 Included participants in the final analysis

Figure 1. Flow chart for selecting participants. T2DM, type 2 diabetes mellitus; HDL,
high-density lipoprotein; BMI, body mass index.
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The Quantimetrix Lipoprint system categorizes LDL-C into seven
subfractions (LDL-C1 to LDL-C7) based on electrophoretic mobility
(Rf) ranging from very low-density lipoprotein (VLDL-C, Rf=0) to
HDL-C (Rf=1). Large buoyant LDL-C encompasses subclasses LDL-
C1 and LDL-C2, whereas sdLDL-C comprises subclasses LDL-C3-
LDL-C7. The mean LDL-C particle size and percentage of sdLDL-C
were computed and the ratio of sdLDL-C to large LDL-C was derived
by dividing the sum of LDL-C3 and LDL-C7 by the sum of LDL-C1 and
LDL-C2. This system also calculates the relative area of each lipopro-
tein band and determines VLDL-C and IDL concentrations by multi-
plying the area under the curve (AUC) for each fraction by the total
cholesterol concentration, thus providing detailed insights into LDL-C
particle size distribution and subfraction composition [22]. LDL-C
particles are classified into three categories based on size: particles
with a mean size of 268.0 A or larger are classified as pattern A, those
smaller than 265.0 A as pattern B, and those between 265.0 A and 268.0
Aas pattern1[23].

Insulin resistance index calculation

IR was assessed using three indices: HOMA-IR, QUICK], and the
SPISE index. HOMA-IR was calculated by multiplying the fasting se-
rum insulin level (uU/mL) by the fasting plasma glucose level (mg/
dL), and then dividing the result by 405 [7]. QUICKI was derived using
the inverse of the sum of the logarithms of fasting insulin (uU/mL) and
fasting glucose (mg/dL) [8]. SPISE index was calculated using the for-
mula, SPISE=600xHDL-C***/(TG*2xBMI****) [10].

Statistical analysis

Continuous variables are presented as means+standard deviation
for normally distributed data, and as medians and ranges for non-nor-
mally distributed data. Categorical variables are expressed as frequen-
cies and percentages. To compare clinical characteristics across SPISE
index tertiles, analysis of variance was used for normally distributed
variables, whereas the Kruskal-Wallis test was employed for non-nor-
mally distributed variables. The proportions were compared using
Pearson chi-square test. Spearman correlation coefficient was used to
assess the relationship between the SPISE index and clinical variables.

To evaluate the differences in absolute correlation coefficients be-
tween the mean LDL-C particle size and various IR indices, Steiger’s Z
tests were applied. Multivariable linear regression models were con-
structed to analyze the risk factors associated with the SPISE index,
with confounding variables (age, sex, mean arterial BP, mean LDL-C
particle size, LDL-C and VLDL-C concentrations, alcohol consump-
tion, smoking history, and fasting plasma glucose) were selected based
on clinical relevance. The final model was selected using the backward
elimination method, which involved sequentially removing predictors
from the full model. Linear regression results were reported as beta
coefficients, 95% confidence intervals (Cls), and P-values.

Receiver operating characteristic (ROC) curves were used to obtain
the AUC and to determine the SPISE index cutoff value for sdLDL-C

particle dominance. DeLong’s method was used to calculate the stan-
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dard error (SE) and 95% CI of the AUC. Using power calculations for
the 161 participants in this study, the power to test the AUC was con-
firmed to be above 90%. Statistical significance was defined as a two-
sided P-value of <0.05. All statistical analyses were performed using R
ver. 4.3.0 (R Foundation).

Results

Clinical characteristics of the study participants

Table 1 presents the clinical characteristics of the study participants,
categorized according to SPISE index tertiles. Among the 161 partici-
pants, 21.7% were male. The average BMI was 30.9 kg/m? and the av-
erage age was 39.2 years. Participants in the lowest SPISE tertile exhib-
ited significantly higher mean BP (P<0.001), heart rate (P=0.031), WC
(P<0.001), abdominal visceral fat area (P<0.001) and subcutaneous fat
area (P<0.001), serum markers, including AST (P=0.001), ALT (P<
0.001), GGT (P<0.001), hsCRP (P<0.001), uric acid (P<0.001), fasting
insulin (P<0.001), HOMA-IR (P<0.001), and TG/HDL-C ratio (P<
0.001). The QUICKI levels were notably lower (P<0.001).

Table 1. Clinical characteristics of participants according to SPISE tertiles
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The relationship between lipid profiles, LDL-C particle size
and SPISE index

Lipid profiles and LDL-C particle sizes differed significantly among
the SPISE tertile groups after adjusting for age, sex, BMI, smoking sta-
tus, and alcohol consumption (Table 2). Participants in the lowest
SPISE tertile exhibited significantly higher TG levels (P<0.001) and a
greater proportion of small, dense LDL-C particles (P<0.001), which
were associated with an increased cardiovascular risk. Conversely, the
proportions of HDL-C, large buoyant LDL-C, and mean LDL-C parti-
cle size were significantly lower in this group (P<0.001 for all).

Figure 2 illustrates the associations between various lipid profiles
and the SPISE index adjusted for age, sex, and BMI. The SPISE index
was positively correlated with HDL-C levels (r=0.644, P<0.001) and
LDL-C particle size (r=0.679, P<0.001). However, it was negatively cor-
related with non-HDL-C (r=-0.290, P<0.001) and VLDL-C levels (r=-
0.584, P<0.001).

To determine the independent relationship between mean LDL-C
particle size and the SPISE index, multiple linear regression analysis
was conducted with adjustments for age, sex, mean BP, fasting glu-
cose, VLDL-C, alcohol consumption, and smoking history. The analy-
sis revealed a statistically significant independent association between
mean LDL-C particle size and the SPISE index (P<0.001) (Table 3).

SPISE index
Characteristic

Overall (n=161) Tertile 1 (n=54) Tertile 2 (n=53) Tertile 3 (n=54) P-value
Age (y) 39.2+13.4 36.7+11.6 39.4+13.8 4144146 0.192
Sex 0.002

Male 35.0 (21.7) 20.0 (37.0) 10.0 (18.9) 5.0(9.3
Female 126.0 (78.3) 34.0 (63.0) 43.0 (81.1) 49.0 (90.7)

Systolic blood pressure (mm Hg) 122.8+13.9 129.5+12.5 122.3+12.9 116.5+13.2 <0.001
Diastolic blood pressure (mm Hg) 72.7+10.0 76.4+9.8 72.0+9.8 69.5+9.4 0.001
Mean blood pressure (mm Hg) 89.4+10.8 94.1+10.1 88.8+10.4 85.1+10.2 <0.001
Heart rate (beat/min) 72.7+11.0 75.9+11.4 71.4+10.6 70.8+£10.4 0.031
Body mass index (kg/m?) 31.0+5.1 36.3+3.9 30.5+2.6 26.1£2.3 <0.001
Waist circumference (cm) 98.1+12.6 109.4+10.6 96.7+6.6 87.4+8.0 <0.001
Abdominal VAT area (cm?) 60.5 (27.4-165.0) 73.4(41.6-137.0) 56.6 (27.5-128.0) 52.3 (27.4-165.0) <0.001
Abdominal SAT area (cm?) 115.0 (49.0-311.0) 146.0 (65.3-311.0) 112.0 (63.2-297.0) 88.4 (49.0-154.0) <0.001
AST (U/L) 23.0 (11.0-130.0) 26.5(11.0-130.0) 25.0 (14.0-74.0) 21.0 (14.0-81.0) 0.001
ALT (UL) 25.0 (4.0-280.0) 42.0 (4.0-274.0) 27.0 (6.0-280.0) 18.5 (8.0-178.0) <0.001
GGT (UL 22.0 (8.0-247.0) 27.0(10.0-141.0) 23.0 (10.0-247.0) 15.5 (8.0-155.0) <0.001
hsCRP (mg/dL) 1.3(0.1-17.2) 3.3(0.4-15.3) 1.4 (0.20-17.20) 0.7 (0.1-6.3) <0.001
Uric acid (mg/dL) 5.8+1.4 6.5+1.3 57+1.3 5.2+1.1 <0.001
Fasting plasma glucose (mg/dL) 97.1+11.4 99.6+10.3 95.7+14.9 96.1+7.5 0.149
Insulin (mlU/L) 11.6 (1.1-61.4) 19.1 (6.1-47.8) 11.8 (4.1-61.4) 7.5(1.1-26.8) <0.001
HOMA-IR 51.4 (4.2-283.9) 82.9 (22.5-223.4) 51.4 (14.8-283.8) 30.5 (4.2-129.9) <0.001
QUICKI 0.1+0.0 0.1+0.0 0.1+0.0 0.2+0.0 <0.001
TG/HDL-C ratio 3.0+2.0 41+21 3.1+2.0 1.8+0.9 <0.001
Smoking history (yes) 15.0 (9.3 8.0 (14.8) 4.0(7.6) 3.0(5.6) 0.284
Alcohol consumption (yes) 33.0 (20.5) 11.0 (20.4) 10.0 (18.9) 12.0 (22.2) 0.911
Hypertension (yes) 25.0 (15.5) 12.0 (22.2) 6.0 (11.3) 7.0 (13.0) 0.243

Values are presented as means=standard deviation, number (%), or median (range).

SPISE, single-point insulin sensitivity estimator; VAT, visceral adipose tissue; SAT, subcutaneous adipose tissue; AST, aspartate aminotransferase; ALT, alanine
aminotransferase; GGT, gamma-glutamy! transferase; hsCRP, high-sensitivity C-reactive protein; HOMA-IR, homeostasis model assessment-estimated insulin resistance;
QUICKI, quantitative insulin sensitivity check index; TG, triglyceride; HDL-C, high density lipoprotein cholesterol.
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Table 2. Lipid and LDL-C subfractions profiles based on SPISE index tertiles

SPISE index
Variable

Overall (n=161) Tertile 1 (n=54) Tertile 2 (n=53) Tertile 3 (n=54) P-value
Total cholesterol 198.0 (116.0-335.0) 201.0 (116.0-274.0) 199.0 (143.0-335.0) 196.0 (147.0-295.0) 0.821
HDL-C 52.0 (33.0-94.0) 45.0 (33.0-75.0) 50.0 (34.0-91.0) 59.5 (36.0-94.0) <0.001
Non-HDL-C 144.5 (74.0-279.0) 155.5 (74.0-228.0) 146.0 (94.0-279.0) 137.0 (82.0-222.0) 0.010
Triglyceride (mg/dL) 143.50+76.46 182.22+82.58 144.89+77.42 103.4+42.2 <0.001
LDL-C 126.0 (68.0-205.0) 128.0 (68.0-192.0) 130.0 (83.0-200.0) 122.0 (72.0-205.0) 0.843
VLDL-C 19.5 (5.5-31.1) 21.8 (5.5-31.0) 20.0 (12.2-27.3) 16.9 (8.8-31.1) <0.001
|bLDL-C 28 3(0.7-37.3) 26 3(0.7-33.6) 28 7(8.5-37.3) 29.3 (13.1-37.0) 0.012
sdLDL-C .5(0.0-22.3) .5(0.0-20.3) .5(0.0-22.3) 1. 25 (0.0-12.9) <0.001
Percent sdLDL-C .7 (0.0-60.0) 16 8 (0.0-60.0) .7 (0.0-58.5) .9(0.0-41.8) <0.001
sdLDL-C : IbLDL-C ratio .1(0.0-1.5) .2 (0.0-1.5) 1(0.0-1.4) 0(0.0-0.7) <0.001
Mean LDL-C particle size 267.8 (247.5-274.8) 264,1 (247.5-272.7) 267.6 (248.4-274.8) 270.7 (256.3-274.8) <0.001

Values are presented as median (range) or means+standard deviation after adjusting age, sex, body mass index, smoking history, and alcohol consumption.
LDL-C, low-density lipoprotein cholesterol; SPISE, single-point insulin sensitivity estimator; HDL-C, high-density lipoprotein cholesterol; VLDL-C, very low-density lipoprotein
cholesterol; IbLDL-C, large buoyant low-density lipoprotein cholesterol; sdLDL-C, small dense low-density lipoprotein cholesterol.
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Figure 2. Relationship between single point
insulin sensitivity estimator (SPISE) & lipid
particles. To evaluate differences in absolute
correlation coefficients with lipid profiles and
the SPISE index, Steiger’s Z tests were ap-
plied. Multivariable linear regression models
were constructed to analyze the risk factors

. associated with the SPISE index. (A) SPISE &
N R=0.679

P<0.001

SPISE index

Comparisons of correlation coefficients of LDL-C particle
size and insulin resistance indices
Correlation coefficients between mean LDL-C particle size and vari-
ous IR indices were compared using Steiger’s Z test (Table 4). Pearson

correlation analysis showed that the SPISE index was more strongly

https://doi.org/10.4082/kjfm.24.0202

SPISE index

high-density lipoproteins (HDL), (B) SPISE &
non-HDL, (C) SPISE & very-low-density lipo-
protein particles (VLDL), and (D) SPISE &
mean LDL particle size.

associated with mean LDL-C particle size (r=0.679) than fasting insu-
lin (r=-0.255), HOMA-IR (r=-0.224), and QUICKI (r=0.209), with Stei-

ger’s Z-test indicating P<0.001 for all comparisons.
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Table 3. Multiple linear regression analysis to determine relationship between SPISE index and clinical metabolic variables

Enter Stepwise
Variable

Estimate (95% Cl) P-value Estimate (95% Cl) P-value
Age (y) 0.03(0.02 t0 0.04) <0.001 0.03 (0.02 t0 0.04) <0.001
Mean arterial pressure (mm Hg) —0.05 (-0.07 to —0.03) <0.001 —0.05 (-0.07 to —0.04) <0.001
VLDL-C (mg/dL) —0.06 (-0.11 t0 -0.02) 0.006 —0.07 (-0.11 t0 -0.03) 0.001
Mean LDL-C particle size (A) 0.08 (0.05t0 0.11) <0.001 0.08 (0.05t0 0.11) <0.001
Alcohol consumption (yes) 0.47 (0.0210 0.92) 0.041 0.42 (0.0210 0.83) 0.041
Female sex 0.25 (-0.19t0 0.70) 0.258
Fasting plasma glucose (mg/dL) —0.01 (-0.02 t0 0.01) 0.379
Smoking history (yes) —0.04 (-0.69 t0 0.61) 0.896
LDL-C (mg/dL) 0.00 (-0.01t0 0.01) 0.971

SPISE, single-point insulin sensitivity estimator; Cl, confidence interval; VLDL-C, very low-density lipoprotein cholesterol; LDC-C, low-density lipoprotein cholesterol.

Table 4. Comparisons of correlation coefficients of LDL-C particle size and insulin
resistance indices

Variable r P-value? P-valug”
Mean LDL-C particle size
Insulin —0.251 0.001 <0.001
HOMA-IR —0.224 0.004 <0.001
QUICKI 0.209 0.008 <0.001
SPISE index 0.679 <0.001 Ref?

Between the mean LDL-C particle size and insulin, HOMA-IR, QUICKI and SPISE
index, partial correlation coefficients are defined as r values, adjusted for age, sex,
and body mass index.

LDC-C, low-density lipoprotein cholesterol; HOMA-IR, homeostatic model
assessment for insulin resistance; QUICKI, quantitative insulin-sensitivity check
index; SPISE, single-point insulin sensitivity estimator.

IP-values for r between the mean LDL-C particle size and insulin, HOMA-IR, QUICKI,
and SPISE index. "P-values for comparing absolute correlation coefficients via
Steiger’s Z test between the mean LDL-C particle size and insulin, HOMA-IR, QUICKI
and SPISE index. “The reference value is defined as r between the SPISE index and
mean LDL-C particle size.

Optimal cutoff value of SPISE index for sdLDL-C particles
predominance
The optimal cut-off value of the SPISE index for sdLDL-C particle
predominance was determined using ROC curve analysis (Figure 3).
The AUC was 0.745 (SE, 0.039; 95% CI, 0.668-0.821), and the cutoff val-
ue was 4.955. Additionally, we estimated the diagnostic performance
of other IR indices by AUC values using ROC curve analysis (Supple-

ments 1, 2).

Discussion

After adjusting for relevant confounders, we identified an indepen-
dent association between the SPISE index and average LDL-C particle
size. The SPISE index showed a stronger correlation with LDL-C parti-
cle size compared to other IR markers, highlighting its effectiveness as
apractical predictor of sdLDL-C predominance.

The SPISE index is a non-invasive tool for evaluating IR based on
fasting TG, HDL-C, and BML. This tool facilitates easy diagnosis across
age groups, from pediatric to adult populations [10,24]. Comparably

sensitive and specific to the clamp-derived M-value, the SPISE index is
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Figure 3. Receiver operating characteristic (ROC) curve analysis of single-point
insulin sensitivity estimator (SPISE) and other insulin resistance (IR) indices. ROC
curve was performed for diagnostic ability of SPISE, fasting insulin, homeostatic
model assessment for IR, and quantitative insulin sensitivity check index, assuming
null hypothesis of no difference in area under the curve (AUC) at 0.5. The red spot
and number means the cut off value of SPISE index for small dense low-density
lipoprotein predominance.

a hepatic IR indicator and has shown superiority to insulin-based IR
indices [25]. Additionally, sdLDL-C significantly contributes to athero-
sclerosis and CVDs through lipid metabolism, inflammation, oxidative
stress, and fibrinolytic system activation [26].

The specific mechanisms underlying the close relationship between
sdLDL-C predominance and the SPISE index remain unclear. Howev-
e, this relationship may be explained by early alterations in lipid and
lipoprotein metabolism in IR [27]. Elevated TG levels lead to TG-rich
VLDL-C, which undergoes hydrolysis and exchanges with LDL-C and
HDL-C, resulting in TG-rich LDL-Cs that are further processed into
sdLDL-C by hepatic lipase [28]. Indeed, elevated TG levels and re-
duced HDL-C levels are significant risk factors for CVD, regardless of
LDL-C levels [3]. In addition, the superior correlation of the SPISE in-
dex with LDL-C particle size to other IR indices in this study might be
explained by the feature of the SPISE index. Because the SPISE index is
a representative non-insulin-derived IR index that includes TG and
HDL-C, which have a strong relationship with LDL-C concentration,
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the SPISE index could overcome the limitations of other insulin-de-
rived IR indices, such as HOMA-IR [24]. Further research is needed to
elucidate the pathophysiological mechanisms underlying the relation-
ship between IR and sdLDL-C.

Our results indicated that the SPISE index cutoff value for sdLDL-C
particle predominance was 4.995, aligning with previous findings in
obese Korean adolescents, where a SPISE index below 4.49 was associ-
ated with the onset of type 2 diabetes [29]. Furthermore, this aligns
with a 2020 study suggesting that a low SPISE index (females, <6.0;
males, <5.0) is associated with increased cardiometabolic risk [24].
However, due to the retrospective study design and the limited sample
size, precise cutoff values could not be proposed, necessitating larger
prospective studies for accurate determination.

Our study had several limitations. The cross-sectional design pre-
vents the assessment of causality and limits conclusions regarding the
longitudinal relationship between the SPISE index and sdLDL-C. Ad-
ditionally, the sample size was relatively small, and the study partici-
pants were health examinees rather than a general population sample,
which could have introduced an unintentional selection bias. More-
over, as this study was conducted at a single institution, the findings
may not be generalizable to a broader population. The specific charac-
teristics of the patients who sought care at our facility could have influ-
enced the results, necessitating caution when generalizing these find-
ings to other demographic groups or clinical settings. Future studies
involving larger and more diverse populations across multiple centers
are necessary to validate these findings and ensure their generalizabil-
ity. Observational studies are also susceptible to confounding factors
that cannot be fully accounted for in the analyses. Nevertheless, a
strength of this study is that, to our knowledge, this is the first study to
investigate and establish a connection between the SPISE index and
the predominance of sdLDL-C. We also assessed the predictive ability
of the SPISE index in identifying sdLDL-C dominance in obese pa-
tients in Korea.

In conclusion, our study established an independent relationship
between the mean LDL-C particle size and the SPISE index, with the
SPISE index exhibiting a stronger association than the other IR indices.
This suggests that the SPISE has the potential to replace current labor-
intensive and time-consuming IR indices and sdLDL-C measurement
methods, thereby effectively estimating individual IR-induced sdLDL-
C predominance and future CVD risks. However, given the limitations

of this study, further research is required to validate this index.
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