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Abstract 

Somatic variants are increasingly recognized as contributors to diverse non-cancer, developmental, and aging-related disorders. However, most 
tools for detecting somatic single-nucleotide variants (sSNVs) were designed for DNA sequencing and primarily tailored to cancer datasets, 
leaving a critical gap in harnessing the rich potential of RNA-seq for sSNV identification, particularly in non-cancer tissues with low mutation 
rates. Here, we introduce RNA-MosaicHunter, a no v el bioinf ormatic tool f or accurate sSNV detection from bulk RNA-seq. In two benchmarking 
datasets, it demonstrated high precision (94.7% in TCGA and 99.3% in a cell-line mixture) with sensitivities of 53.4% and 38.9%, respectively, in 
the default mode that maximizes precision. We then applied RNA-MosaicHunter to profile 827 RNA-seq samples in three tissue types from the 
Genotype Tissue Expression project (GTEx), where it outperformed previous methods in capturing mutational characteristics associated with 
normal aging. We further utilized RNA-MosaicHunter to analyze RNA-seq data from 382 Alzheimer’s disease (AD) brain samples and 480 age- 
matched controls and re v ealed a significantly higher burden of sSNVs in AD cerebral cortex, suggesting the potential contribution of sSNVs to 
AD pathogenesis. RNA-MosaicHunter enables accurate profiling and characterization of sSNVs from RNA-seq data, advancing the understanding 
of the role of somatic variants across diverse tissues and diseases. 
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ntroduction 

omatic variants arise from inevitable errors in DNA replica-
ion and exposures to exogenous and endogenous mutagen-
sis factors [ 1 , 2 ]. Clonal somatic variants, which are shared
y a subset of cells, typically arise early in embryogenesis or
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undergo clonal expansion driven by natural selection; this en-
ables them to reach a high allele fraction, making them de-
tectable from sequencing of bulk tissue samples [ 3 ]. Increas-
ing evidence supports that clonal somatic variants are closely
associated with human diseases. It has long been known that
, 2025 

ons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), 
provided the original work is properly cited. 

https://doi.org/10.1093/nar/gkaf1450
https://orcid.org/0000-0002-5903-9773
mailto:ealice.lee@childrens.harvard.edu
mailto:yue.huang@childrens.harvard.edu
https://creativecommons.org/licenses/by/4.0/


2 Huang et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/54/1/gkaf1450/8417347 by Yonsei U

niversity M
edical C

ollege user on 29 January 2026
gain-of-function somatic variants in oncogenes and loss-of-
function variants in tumor suppressor genes contribute to can-
cer development [ 4 , 5 ]. More recently, the pathogenic role of
somatic variants has been revealed in more and more non-
cancerous diseases, including Mendelian monogenic diseases
such as Proteus syndrome [ 6 ] and congenital malformations
[ 7 , 8 ], as well as non-Mendelian complex diseases such as con-
genital heart disease [ 9 ], autism spectrum disorders [ 10 ], and
neurodegenerative diseases [ 11 ]. Additionally, somatic vari-
ants accumulate in normal tissues during early development
and aging across different types of tissues [ 12 –16 ]. For in-
stance, somatic variants in hematopoietic cells induce clonal
hematopoiesis [ 13 ], which has been associated with increased
risks of hematological neoplasms [ 17 ] and cardiovascular dis-
ease [ 18 ]. 

With the rapid development of next-generation sequencing
techniques in the last few decades, the identification of so-
matic variants from sequencing data has become available.
Due to the limitations of sequencing technologies, includ-
ing base-calling and alignment errors [ 19 ], many computa-
tional tools have been developed for somatic variant calling
from DNA-seq, first designed for cancer samples and then
adapted for non-cancer samples [ 20 –24 ]. Compared to DNA-
seq, bulk and single-cell RNA-seq have more datasets avail-
able generated for transcriptome profiling, demonstrating a
huge potential for somatic variant detection. However, RNA-
seq data have unique features that need to be addressed for
somatic variant calling. First, the exon-intron structure in
mRNA requires the spliced alignment of RNA-seq reads onto
the human reference genome, which increases the chance of
alignment errors when the overhang sequence is relatively
short [ 25 ]. Second, the widespread adenosine-to-inosine (A > I)
RNA-editing sites across the human genome [ 26 ] are indistin-
guishable from A > G somatic variants in RNA-seq data, be-
cause sequencers recognize inosine as guanine (G). Third, the
allele-specific expression [ 27 ], a phenomenon in which the pa-
ternal and maternal alleles have different expression levels, is
observed in many autosomal and X chromosome genes, lead-
ing to deviated allele fraction estimation in RNA-seq data.
Lastly, RNA-seq coverage is more variable across the genome
and between samples than DNA-seq coverage, primarily due
to the wide range of expression levels among genes and their
isoforms. 

Currently, most single-cell RNA-seq datasets are based on
the 10X Genomics platform, which only sequences the 5 

′

or 3 

′ end of mRNA molecules, thus limiting the capability
for variant calling across the entire protein-coding region.
In contrast, bulk RNA-seq provides better transcriptome-
wide coverage for expressed genes. Early efforts to detect so-
matic variants from bulk RNA-seq data primarily used cancer
datasets, which paved the way for demonstrating its feasibil-
ity [ 28 –31 ]. More recently, a few methods have been devel-
oped for non-cancer bulk RNA-seq, including RNA-MuTect
[ 32 ] and RnaMosaicMutationFinder [ 33 ]. RNA-MuTect uti-
lizes MuTect [ 23 ], originally designed for detecting cancer so-
matic variants from DNA-seq data as its backbone, and in-
tegrates a series of RNA-specific filters, such as an RNA-seq-
derived panel of normals and RNA editing databases. RnaMo-
saicMutationFinder incorporates a random forest model with
parameters trained on lymphocytic leukemia samples [ 33 ].
Both methods are based on models tailored to cancer datasets,
which may limit their performance on non-cancer datasets,
largely due to the substantially lower occurrence rate and vari-
ant allele fractions (VAFs) for somatic variants in non-cancer 
samples. 

To address the limitations of the previous tools, we in- 
troduce RNA-MosaicHunter, a novel somatic variant caller 
for bulk RNA-seq data. Building on MosaicHunter [ 22 ,
34 ], specifically developed for somatic variant calling from 

non-cancer DNA-seq data, RNA-MosaicHunter integrates 
a Bayesian genotyper and a series of empirical filters to 

distinguish real somatic variants from sequencing artifacts 
and RNA-editing sites. We benchmarked the performance of 
RNA-MosaicHunter on cancer and normal tissue datasets and 

demonstrated that it outperforms previous tools in profiling 
mutational burdens and signatures. We further applied RNA- 
MosaicHunter to cohorts of Alzheimer’s disease (AD) patients 
and matched controls, revealing an increasing burden of so- 
matic variants in the AD cerebral cortex, which highlights 
their potential role in AD pathogenesis. 

Materials and methods 

Design of RNA-MosaicHunter 

Here, we introduce RNA-MosaicHunter, a new bioinformatic 
tool designed to identify somatic single-nucleotide variants 
(sSNVs) from bulk RNA-seq data. Derived from DNA-seq- 
based MosaicHunter [ 22 , 34 ], RNA-MosaicHunter consists 
of two major components: a Bayesian genotyper to distinguish 

real variants from base-calling errors, followed by a series of 
filters to remove artifacts introduced from various sources and 

RNA-editing sites (Fig. 1 ). 
In the Bayesian genotyper, G denotes the genotype state, π

denotes the prior probability of each genotype inferred from 

the population variant allele frequency p alt and default so- 
matic variant rate p m 

. d, q, and o denote the depth, base 
qualities, and bases for calculating genotype likelihoods from 

the observed sequencing data, respectively. Since the VAF in 

RNA-seq data can be affected by allele-specific expression or 
copy number alterations, we considered the posterior prob- 
ability of both germline heterozygous genotype and somatic 
mosaic genotype in our list of variant candidates for subse- 
quent error filters and further distinguished somatic variants 
from germline variants by using the genotyping results from 

matched whole-genome or whole-exome sequencing data ob- 
tained from the same individual. RNA-MosaicHunter can also 

be run on RNA-seq samples without matched DNA-seq data.
In this case, we recommend that users utilize population poly- 
morphism databases such as dbSNP [ 35 , 36 ] and gnomAD 

[ 37 ] to filter out germline variants. As germline variants gener- 
ally have a median VAF around 0.5, whereas somatic variants 
usually show lower VAFs because they are present in only a 
subset of cells, users can further enrich for true somatic vari- 
ants and reduce potential germline contamination by applying 
a maximum RNA-seq VAF threshold of 0.5 or lower when 

matched DNA-seq data are unavailable. 
RNA-MosaicHunter also incorporated error filters to ex- 

clude (i) somatic candidates with < 5% VAF or < 5 variant- 
supporting reads; (ii) somatic candidates in repetitive and ho- 
mopolymer regions; (iii) somatic candidates with a signif- 
icant bias in read strand, mapping quality, or within-read 

position between the reference and variant alleles; (iv) so- 
matic candidates that show complete linkage to adjacent so- 
matic candidates on the same read or read pairs, which is 
more likely to be caused by alignment errors; and (v) so- 
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Figure 1. Ov ervie w of the RNA-MosaicHunter f or detecting clonal somatic v ariants from RNA-seq data. Candidate sSNVs w ere captured b y a B a y esian 
genotyper, f ollo w ed b y a series of artif act and RNA editing filters. Using the aligned BAM file as input, the B a y esian genotyper estimated the posterior 
probabilities of mosaic or germline genotypes by incorporating base-calling errors, random sampling variations, and population allele frequencies 
reported in dbSNP. Additionally, artifact filters were incorporated to eliminate false positives resulting from systematic base-calling and read alignment 
errors, as well as other genomic variants like str uct ural variations and indels. We further designed specific filters to remove RNA-editing sites from the 
somatic variant call set by considering public RNA editing databases as well as substitution type and gene-transcribed information of each candidate. 
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atic candidates that are supported by fewer than 50% of
high-quality”reads among all reads covering that position, in
hich “high-quality” reads are defined as those whose align-
ent has been confirmed by a second aligner BLAT [ 38 ] and

hose where the candidate was not located near the start, end,
r spliced junctions of the read. To exclude A > I(G) RNA-
diting sites, we removed all previously identified editing sites
eported in DARNED [ 39 ] and REDIportal [ 40 ]. Additionally,
e removed all A > G candidates on the transcribed strands

nd T > C candidates on the untranscribed strands of any
enes to account for potential RNA-editing sites that have
ot yet been reported. We also offered an option to fully re-
ove A > G/T > C variants for higher precision. The source

ode and default configuration file of RNA-MosaicHunter are
ublicly available at https:// github.com/ AugustHuang/ RNA- 
osaicHunter , and they support users to customize parame-

ers for the Bayesian genotyper and empirical error filters. 
RNA-MosaicHunter can complete somatic variant calling

or a typical RNA-seq dataset (with ∼50 million 151-bp
aired-end reads) in 3–5 hours using one CPU core and 32
B of memory. It also supports analyzing each chromosome

eparately, which can significantly reduce the memory require-
ent and enable parallelization to utilize multiple cores for a

iven RNA-seq dataset. 

omatic variant calling from RNA-seq data 

ach downloaded RNA-seq BAM file was first converted back
o the FASTQ format by Picard (v1.138) and then aligned to
he GRCh37 human reference genome by STAR (v2.5.0a) [ 41 ]
n the two-pass mode, where the reference gene annotation
Gencode version 19) was used in the first pass, and then a
ample-specific annotation generated from the first pass was
sed in the second pass. The aligned reads were processed by
icard (v1.138) to remove duplicates, followed by SplitNCi-
arReads, indel realignment, and base quality recalibration of
ATK (v3.6) [ 42 ]. Reads that were improperly paired or with

mbiguous alignment were removed, and only genomic po-
itions covered by 10 or more reads were subject to RNA-

osaicHunter. 
We further excluded non-exonic candidates and candidates

hat are present in the polymorphism databases of the general
uman population, including dbSNP [ 35 ], the 1000 Genomes
Project [ 43 ], the Exome Sequencing Project [ 44 ], and the Ex-
ome Aggregation Consortium [ 45 ]. 

Analysis of The Cancer Genome Atlas (TCGA) 
dataset 

RNA-seq and whole-exome sequencing (exome-seq) data of
19 esophageal carcinoma samples as well as exome-seq data
of their matched normal samples were downloaded from the
TCGA Research Network ( Supplementary Table S1 ) [ 46 ]. So-
matic variants were called from the tumor RNA-seq sam-
ples using RNA-MosaicHunter with the default pipeline and
parameters ( Supplementary Table S2 ). We excluded somatic
candidates shared across multiple tumor samples, as they
were likely common sequencing artifacts, although this ap-
proach may inadvertently remove a small number of recur-
rent true cancer driver variants. Somatic variant calls cre-
ated by the Broad Institute through the comparison of tu-
mor and matched normal exome-seq pairs using MuTect [ 23 ]
were also downloaded. We estimated the sensitivity and pre-
cision of our model to evaluate the performance compared
to the MuTect call set. The sensitivity was calculated as the
percentage of somatic variants reported by MuTect that were
recaptured by RNA-MosaicHunter, within the genomic re-
gions covered by 10 or more reads in RNA-seq. The preci-
sion was estimated as the percentage of somatic variants called
by RNA-MosaicHunter that had also been called by MuTect
from tumor DNA-seq. Somatic variants missed by MuTect
but exhibiting a > 2% VAF in tumor DNA-seq and absent
in control DNA-seq were additionally considered as true so-
matic variants. We further assessed the performance of RNA-
MosaicHunter with the removal of each single filter and with-
out any filters by modifying the configuration file. 

Cell line mixture preparation and RNA sequencing 

Six human lymphoblastoid cell lines (GM12878, GM18620,
GM18865, GM19141, GM20126, and GM20904) were
kindly provided by Kathleen Burns’s lab at the Dana Far-
ber Cancer Institute. All cell lines were maintained in RPMI
1640 medium (Corning, Cat# 10-040-CV) supplemented with
2 mM l -glutamine and 15% fetal bovine serum (Gibco). Two
biological replicates of the cell mixture were independently
prepared, each consisting of 5 million viable cells as deter-

https://github.com/AugustHuang/RNA-MosaicHunter
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
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mined by a trypan blue exclusion assay. For each replicate,
the six cell lines were mixed based on cell counts in the
following proportions: GM12878 (45%), GM18620 (20%),
GM18865 (10%), GM19141 (10%), GM20126 (10%), and
GM20904 (5%). Total RNA was isolated using the Quick-
RNA Miniprep kit (Zymo Research, Cat# R1055) accord-
ing to the manufacturer’s protocol. For each replicate, a
stranded mRNA-seq library was constructed using the Illu-
mina Stranded mRNA Prep kit and sequenced on an Illumina
NovaSeqX platform to generate ∼160 million 151-bp paired-
end reads per library. 

Analysis of the cell-line mixture dataset 

Germline variants of the six cell lines, called from whole-
genome sequencing (WGS) data, were downloaded from the
1000 Genomes Project [ 47 ] in the VCF format. Variants were
merged by GATK (v4.6.1) [ 48 ] and then filtered by bcftools
(v1.21) based on read depth > 20 in all six lines to obtain high-
confidence germline variant calls [ 49 ]. Expected DNA VAFs
were calculated based on genotype and mixing proportion of
the lines and were further restricted to regions with RNA-seq
depth > 10 and to exonic variants defined by ANNOVAR [ 50 ]
and RefSeq [ 51 ]. These variants were considered the true set.

Somatic variants from the two cell-line mixture repli-
cates were detected using RNA-MosaicHunter, with the
same RefSeq-based exonic filter applied as for the true set
( Supplementary Table S3 ). Unlike the standard pipeline, we
did not apply the polymorphism database filter to the cell-line
mixture call set, because these germline variants used to simu-
late somatic variants are almost all common single-nucleotide
polymorphisms (SNPs) cataloged in such databases. 

As in the TCGA benchmarking, sensitivity and precision
were evaluated using the full set of filters, with individual fil-
ters removed, or with all filters removed. For both the com-
plete call set and bins stratified by expected DNA VAF, RNA
depth, and RNA VAF, true positives were defined as variants
found in both the RNA-MosaicHunter call set and the true
set, whereas false negatives were defined as variants in the true
set that were absent from the RNA-MosaicHunter calls. False
positives were defined as RNA-MosaicHunter-called variants
absent from the DNA-based true set in both the full set and
within each bin, except for DNA VAF bins, where all false pos-
itives were considered since they cannot be assigned to specific
DNA VAF bins. 

Analysis of the Genotype-Tissue Expression 

dataset 

Metadata for the Genotype-Tissue Expression (GTEx)
project were downloaded from dbGaP accession number
phs000424.v9.p2 on 02 September 2024 ( https://gtexportal.
org/ home/ aboutAdultGtex ). We extracted all RNA-seq sam-
ples from the brain cortex, cerebellum, hippocampus, liver,
and whole blood for which WGS data from the same in-
dividual are available. After removing duplicated samples,
we curated a final sample list consisting of 423 individuals
with WGS and 827 RNA-seq datasets ( Supplementary Table
S4 ). BAM files for WGS and fastq files for RNA-seq were
downloaded from Google Cloud using SRA-Toolkit (v3.0.10).
Clonal somatic variants in GTEx data were called using RNA-
MosaicHunter with the default pipeline and parameters. We
excluded somatic candidates shared by multiple individuals,
as they were likely to be common sequencing artifacts. Con-
sistent with previous studies on the GTEx dataset, we ob- 
served a substantial contribution of G > T candidates on the 
gene-transcribed strand in our call lists, a pattern most likely 
attributable to 8-oxo-guanine DNA oxidation artifacts in 

GTEx samples [ 32 ]. Such artifacts have been frequently re- 
ported in somatic variant studies using post-mortem samples 
[ 52 –54 ]. Therefore, we further removed G > T candidates de- 
tected on the transcribed strand and C > A candidates detected 

on the untranscribed strand of any genes. Somatic variants de- 
tected from RNA-seq by RNA-MosaicHunter were summa- 
rized in Supplementary Table S5 . 

The somatic variant call sets for GTEx samples, generated 

by RNA-Mutect [ 32 ] and RnaMosaicMutationFinder [ 33 ],
were extracted accordingly from their supplementary tables 
for the relevant tissue types. To estimate the expected num- 
ber of clonal somatic variants in RNA-seq powered regions 
of normal brain tissues, we extracted a list of somatic variants 
identified from deep ( ∼250 ×) WGS data of 15 normal brain 

samples [ 55 ]. We then calculated the average number of so- 
matic variants within the genomic regions covered by 10 or 
more reads in GTEx brain RNA-seq datasets. 

For mutational signature analysis, we identified the top 

10 COSMIC signatures with the highest contributions across 
three TCGA cancer types (glioblastoma, liver cancer, and 

acute myeloid leukemia) based on signature decomposition.
We chose these three cancer types because we analyzed their 
corresponding normal tissue types in GTEx (brain, liver, and 

blood). We then performed signature refitting for the variants 
detected by RNA-MosaicHunter in GTEx samples against 
these 10 signatures. The mutational spectrum was normalized 

by considering trinucleotide frequencies in RNA-seq powered 

regions before signature decomposition. MAFtools (v2.12.0) 
[ 56 ] was used for gene-level annotations for detected variants.
Clonal hematopoiesis of indeterminate potential (CHIP) vari- 
ants were annotated based on previously reported gene sets 
[ 57 , 58 ]. 

Analysis of the Alzheimer’s disease datasets 

Two large-scale AD cohorts, ROSMAP [ 59 ] and MayoR- 
NAseq [ 60 ], were included in our somatic variant analyses.
The ROSMAP study integrates two longitudinal aging studies,
namely the Religious Order Study (ROS) and the Memory and 

Aging Project (MAP), conducted by the Rush Alzheimer’s Dis- 
ease Center. Participants in these studies underwent compre- 
hensive cognitive and neuroimaging assessments and detailed 

neuropathological evaluations during autopsy. The MayoR- 
NAseq study involved thorough clinical phenotyping and 

multi-omic profiling of 300 samples provided by the Mayo 

Clinic Brain Bank and the Banner Sun Health Research In- 
stitute. AD diagnosis was established based on a consensus 
review of all postmortem data by neurologists specializing in 

dementia and neurodegenerative disorders. Sample informa- 
tion was summarized in Supplementary Table S6 . 

The BAM files of RNA-seq and VCF files containing 
germline variant calls from matched WGS data, generated 

by the ROSMAP and MayoRNAseq studies, were obtained 

from the AMP-AD Knowledge Portal. These files were accom- 
panied by comprehensive demographic and clinical data for 
each sample. Supplementary Table S7 summarized all the bulk 

brain RNA-seq samples analyzed for somatic variant calling.
The ROSMAP dataset includes prefrontal cortex (PFC) sam- 
ples from 225 AD patients and 337 age-matched controls 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
https://gtexportal.org/home/aboutAdultGtex
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data


Somatic SNV calling from bulk RNA-seq 5 

w  

R  

p  

8  

s  

d  

f  

S  

R  

g  

c  

s  

N  

a  

s  

2
 

c  

(  

i  

r  

t  

e  

t  

s  

e  

h  

f
 

l  

d
R  

t  

a  

F  

a  

w  

a  

r  

r  

b  

“  

o
 

t  

m  

n  

c  

r  

p  

h  

s  

v  

m

R

R
f

T  

fi  

t  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/54/1/gkaf1450/8417347 by Yonsei U

niversity M
edical C

ollege user on 29 January 2026
ith no or mild cognitive impairment, collected through the
OSMAP project. The MayoRNAseq dataset comprises tem-
oral cortex and cerebellum samples from 92 AD patients and
2 age-matched controls, with most participants having RNA-
eq data from both brain regions. RNA-MosaicHunter with
efault parameters was utilized to identify somatic variants
rom each RNA-seq sample of ROSMAP and MayoRNAseq.
omatic candidates shared by more than two individuals in
OSMAP or MayoRNAseq were excluded. For added strin-
ency in the context of disease-related studies, we further ex-
luded all A > G and T > C candidates to achieve higher preci-
ion. We further annotated all somatic candidates using AN-
OVAR [ 50 ] and classified a candidate as deleterious if it was

nnotated as splicing, stop-gain, or stop-loss, or if it was a mis-
ense variant predicted to be “deleterious”by either PolyPhen-
 [ 61 ] or SIFT [ 62 ]. 
To estimate the proportion of neurons and other brain

ell types in each RNA-seq sample, we applied CIBER SOR T
v1.05) [ 63 ] to deconvolute the cell-type composition by us-
ng the cell-type-specific expression reference for different neu-
onal and glial types (excitatory and inhibitory neuronal sub-
ypes in the cortex, cerebellar granule cells, Purkinje cells,
ndothelial cells, pericytes, astrocytes, oligodendrocytes and
heir precursor cells, and microglia), generated from a large-
cale brain single-cell RNA-seq dataset [ 64 ]. We summed the
stimated proportion of all subtypes of excitatory and in-
ibitory neurons to calculate the overall neuronal proportion
or each sample. 

Somatic variant density in each clinical group was calcu-
ated by counting the total number of somatic variants and
ividing it by the total size of powered regions with ≥10 ×
NA-seq coverage, and the odds ratio and the two-sample Z -

est of proportion were used to test whether the AD group had
 higher burden of somatic variants than the control group.
or the linear regression analysis, the count of somatic vari-
nts in each sample was modeled as a continuous outcome,
hereas clinical status and other covariates of interest (e.g.
ge, sex, sequencing depth, post-mortem interval, and neu-
onal proportion) were modeled as independent variables. In
egression analysis, we only considered donors with ages < 90,
ecause all the donors with age 90 or higher were labeled as
90 + ” in the demographic tables of the ROSMAP and May-
RNAseq studies. 
Functional enrichment analysis of Gene Ontology (GO)

erms was performed using GOseq (v1.34.1) [ 65 ]. Exonic so-
atic variants identified from the RNA-seq of AD patients or
ormal controls were used as the input, and Wallenius’ non-
entral hypergeometric distribution was used to test the en-
ichment, with a probability weighting function to control for
otential gene length bias. Only GO terms with three or more
its and an initial overrepresentation P -value < .01 were con-
idered. GO terms with > 1000 genes were excluded. The P -
alue was adjusted by Hommel’s method for the correction of
ultiple hypothesis testing. 

esults 

NA-MosaicHunter demonstrates high sensitivity 

or somatic variant calling in cancer datasets 

o benchmark the performance of RNA-MosaicHunter, we
rst utilized data of 19 esophageal carcinoma samples ob-
ained from the TCGA Network ( Supplementary Tables S1
and S2 ) [ 46 ]. We used the somatic variant call set generated
by MuTect [ 23 ] from exome-seq of tumor–normal pairs as the
true reference set and then applied RNA-MosaicHunter to the
RNA-seq data from the same tumor samples. By using the de-
fault parameters, RNA-MosaicHunter identified 626 sSNVs
from the tumor RNA-seq data, and 525 of them were also
called by MuTect from matched exome-seq data, confirming
the accuracy of RNA-MosaicHunter (Fig. 2 A). In addition,
68 of 101 sSNVs that were detected by RNA-MosaicHunter
but not MuTect showed variant-supporting reads with > 2%
VAF in the exome-seq data, suggesting that they were true
clonal somatic variants omitted by MuTect (Fig. 2 A). Among
984 MuTect-called exonic variants with at least 10 RNA-
seq reads, RNA-MosaicHunter successfully recaptured 525
of them. The sSNVs missed by RNA-MosaicHunter generally
had poor coverage or low VAF in RNA-seq data, likely due
to low expression levels or allele-specific expression, leading
to underrepresentation of the variant allele in the tumor sam-
ples [ 27 ]. Overall, RNA-MosaicHunter achieved 53.4% sen-
sitivity (Fig. 2 B) and 94.7% precision (Fig. 2 C) in identifying
sSNVs from these cancer datasets. We further benchmarked
RNA-MosaicHunter by selectively disabling individual empir-
ical error filters or by removing all filters. Although these fil-
ters reduced sensitivity, they markedly improved precision in
somatic variant detection—a crucial feature for accurate pro-
filing in non-cancer tissues with low mutation rates (Fig. 2 B
and C). 

Although we implemented a series of filters in RNA-
MosaicHunter to specifically remove RNA-editing sites, some
A > G editing sites may remain in the somatic variant call
list. To address this, RNA-MosaicHunter includes a mode
that fully excludes all A > G/T > C candidates. In this mode,
RNA-MosaicHunter slightly reduced the sensitivity to 50.6%,
while improving the precision to 94.9% (Fig. 2 D). In sum-
mary, RNA-MosaicHunter demonstrates high precision with
satisfactory sensitivity for somatic variant profiling from bulk
RNA-seq data in its default mode, while allowing users to eas-
ily adjust filters in the configuration file to prioritize either
sensitivity or precision. 

Cell-line mixture experiments validate 

RNA-MosaicHunter’s performance in non-cancer 
context 

To evaluate the performance of RNA-MosaicHunter be-
yond cancer datasets, we conducted additional benchmark-
ing using controlled cell-line mixture experiments. Six hu-
man lymphoblastoid cell lines, each previously subjected
to whole-genome sequencing for comprehensive genotyping,
were pooled at varying proportions. Germline variants present
in subsets of the six lines thereby served as surrogates for
somatic variants with defined expected allele fractions (Fig.
3 A). Two independent biological replicates of the mixtures
were prepared and subjected to conventional bulk RNA-seq.
This strategy yielded 26 915 simulated somatic variants in
RNA-seq-covered regions, including 21 037 with expected al-
lele fractions ranging from 0% to 45% (Fig. 3 B), which is the
typical range observed for real-world somatic variants. As ex-
pected, the proportion of variants supported by sufficient mu-
tant reads for confident calling increased from 35.5% at allele
fractions between 0% and 5% to > 85% when the allele frac-
tions were over 20% (Fig. 3 B). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
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Figure 2. Benchmarking the performance of RNA-MosaicHunter using the TCGA cancer data. ( A ) Comparison of variant allele fraction of somatic 
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We next applied RNA-MosaicHunter to the two RNA-seq
datasets independently and assessed sensitivity and precision
at sites with sufficient mutant-supporting reads for somatic
variant calling ( Supplementary Table S3 ). With default pa-
rameters, RNA-MosaicHunter achieved an overall sensitivity
of 38.9% and precision of 99.3% across all simulated so-
matic variants (Fig. 3 C and D). Consistent with the TCGA
benchmarking results, removal of individual empirical error
filters slightly increased sensitivity while decreasing precision
(Fig. 3 C and D). Taking advantage of the larger number of
simulated variants, we further evaluated the effects of allele 
fraction and RNA-seq depth on performance. As shown in 

Supplementary Fig. S1 , RNA-MosaicHunter maintained con- 
sistent performance across both parameters, highlighting its 
robustness. Notably, the precision estimates depend on the rel- 
ative abundance of true somatic variants versus artifacts. Al- 
though the number of artifacts is expected to remain relatively 
stable across RNA-seq datasets, the number of true somatic 
variants may be substantially lower in non-cancer samples 
compared with benchmarking datasets. Therefore, we recom- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
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end retaining all error filters to maximize accuracy in such
pplications. 

NA-MosaicHunter reveals somatic variant 
atterns across normal tissue types 

ext, we applied RNA-MosaicHunter to identify somatic
ariants in normal tissue samples from the GTEx dataset. We
elected three tissue types—brain, liver, and whole blood—as
epresentatives of the three embryonic germ layers. To fur-
her benchmark RNA-MosaicHunter, we compared its results
ith the somatic variant lists for the same GTEx tissue types

alled by two previous RNA-based methods: RNA-MuTect
 32 ] and RnaMosaicMutationFinder [ 33 ]. Of the three meth-
ds, RNA-MosaicHunter reported the closest clonal sSNV
urden (0.101 per sample) to the gold-standard burden es-
imated by deep WGS (0.137 per sample, within RNA-seq
owered regions) [ 55 ] in brain samples (Fig. 4 A); in contrast,
NA-MuTect and RnaMosaicMutationFinder reported 4.3
nd 8.2 times higher burdens than the gold standard (Fig. 4 A),
uggesting that their call lists likely contain many false posi-
ives. RNA-MosaicHunter also reported the lowest sSNV bur-
en in liver samples (0.218 per sample) among the three meth-
ds (Fig. 4 A), in line with previous findings that liver cells ac-
cumulate sSNVs two to three times faster than brain cells [ 66 ,
67 ]. We further compared the mutation spectrum of brain sS-
NVs identified by each of the three RNA-based methods, and
again RNA-MosaicHunter achieved the highest cosine simi-
larity to the WGS-based gold standard (Fig. 4 B). These results
suggest that RNA-MosaicHunter outperforms other tools in
accurately identifying somatic variants from real-world non-
cancer RNA-seq datasets. 

Using RNA-MosaicHunter, we investigated the clonal so-
matic variant patterns in brain, liver, and whole blood samples
from non-cancer GTEx individuals. In total, we identified 274
sSNVs from 827 RNA-seq samples ( Supplementary Fig. S2
and Supplementary Tables S4 and S5 ). After normalizing by
the genomic size of RNA-seq-powered region in each sam-
ple, we observed that the blood had the highest sSNV burden,
followed by the liver and then the brain (Fig. 5 A; P < .05,
Wilcoxon rank-sum test with Benjamini–Hochberg correc-
tion), consistent with previous findings that proliferating cells
accumulate somatic variants faster than non-proliferating
cells like neurons [ 12 ]. We further confirmed that the ob-
served rate difference could not be explained by variations
in detection sensitivity, as the VAF distribution across all
brain regions and tissues showed no significant differences

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
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( Supplementary Fig. S3 A and B). Our mutational signatures
of somatic variants revealed a comparable level of SBS5 con-
tribution across brain, liver, and blood samples (Fig. 5 B),
as SBS5 is known as an age-related signature that accumu-
lates universally in all cell types [ 68 ]. In contrast, the other
age-related signature, SBS1, which is closely associated with
cell proliferation and consists of C > T variants at CpG sites
[ 69 ], was primarily observed in blood samples (Fig. 5 B and
Supplementary Fig. S3 C). 

When we grouped the GTEx samples by age, we found a
significant association between age and sSNV burden only in
the blood samples (Fig. 5 C; P = .013, linear regression). This
result aligns with previous findings that clonal somatic vari-
ants accumulate with age in blood cells, linked to the clonal
expansion of blood cells driven by somatic variants associated
with CHIP [ 70 ]. Indeed, we found that several cancer-related
genes were recurrently hit by somatic variants in multiple non-
cancer blood samples (Fig. 5 D), including three previously re-
ported CHIP genes: IGLL5 , RAD21 , and IDH2 [ 57 , 58 , 70 ].
Notably, IGLL5 , which encodes the immunoglobulin lambda-
like polypeptide 5, a protein involved in memory B cell ex-
pansion [ 71 ] and lymphoid neoplasms reported by COSMIC
[ 72 ], exhibited blood somatic variants across several individu-
als; all of these variants were enriched in the N-terminus of the
protein (Fig. 5 E), consistent with findings from a prior CHIP
study based on DNA-seq data [ 70 ]. 

We further investigated whether somatic variants could be
shared across multiple tissue types within the same individ-
ual and identified three such variants. One of the variants was
shared across the brain cortex, cerebellum, hippocampus, and
blood, though its VAFs were significantly lower in the lat-
ter two tissues, preventing detection by RNA-MosaicHunter
(Fig. 5 F). Two variants from another individual were shared
between the liver and blood; however, since brain samples
were unavailable, we cannot determine whether these variants
were also present in brain tissues (Fig. 5 F). 

Overall, our analysis of GTEx data revealed a dynamic ac-

cumulation of clonal somatic variants in normal blood sam- 
ples with aging, reflecting the characteristics of cell prolifera- 
tion and CHIP. In contrast, brain and liver samples exhibited 

a much lower burden of clonal somatic variants, likely due to 

lower cell turnover rates and more spatially-restricted clonal 
architectures in these tissues. 

Higher burden of clonal somatic variants in AD 

cortex 

Somatic variants in the brain have been recently associated 

with neurodegenerative diseases, including AD [ 67 , 73 , 74 ].
Here, we applied RNA-MosaicHunter to 862 brain RNA-seq 

datasets generated by two large-scale AD cohorts, ROSMAP 

[ 59 ] and MayoRNAseq [ 60 ] (Fig. 6 A and Supplementary 
Table S 6). In each dataset, the AD and control samples were 
matched for sex, age ( Supplementary Fig. S4 A), post-mortem 

interval, and sequencing depth ( Supplementary Fig. S4 B).
Across these samples, RNA-MosaicHunter identified a total 
of 178 sSNVs in AD and control brains ( Supplementary Table 
S7 ). 

From the ROSMAP cohorts, AD PFC samples exhibited a 
significantly higher burden of somatic variants compared to 

controls with no or only mild cognitive impairment (Fig. 6 B; 
P < .01, two-tailed proportion test; OR = 2.1). This find- 
ing was further validated in a second, independent RNA-seq 

dataset from MayoRNAseq, where AD temporal cortex sam- 
ples showed a consistent increase of sSNV burden compared 

to neurotypical controls (Fig. 6 C; P = .01, two-tailed pro- 
portion test; OR = 2.2), with a remarkably similar odds ra- 
tio to that seen in the ROSMAP PFC samples. Interestingly,
the disease-specific enrichment of sSNVs was observed only 
in the temporal cortex and not in the cerebellum (Fig. 6 C; 
P = 1, two-tailed proportion test), a brain region not severely 
affected in AD [ 75 ]. The observed greater sSNV burden in 

AD remained significant after controlling for potential con- 
founding factors, including sex, age, RNA-seq coverage, post- 
mortem interval, neuronal proportion, and batch effects (Fig.
6 D and Supplementary Fig. S4 A and B; P = .01, linear regres- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
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ion). This enrichment persisted even when only the subset of
SNVs predicted to have a deleterious impact on protein func-
ion was considered (Fig. 6 E and Supplementary Fig. S4 C; P
 .047, linear regression). 
Next, we compared the composition of variant types for sS-
Vs identified from AD and control brain samples. A previous

ingle-neuron WGS study [ 67 ] reported an increased burden
f sSNVs in AD brains, driven primarily by a mutational sig-
ature dominated by C > A/G > T variants, which likely reflects
levated oxidative stress during AD pathogenesis. Consis-
tently, we observed a similar trend in our RNA-MosaicHunter
results, with sSNVs from AD samples exhibiting a higher
proportion of C > A/G > T variants than those from controls
( Supplementary Fig. S4 D; 22.4% in AD versus 17.2% in con-
trol). We further examined the distribution of these somatic
variants across different gene functions. Using GO annotation,
we observed that sSNVs found in AD brains were significantly
enriched in genes related to ubiquitin-dependent proteolysis
(Fig. 6 F), which has been reported to be associated with AD
[ 76 ]. Moreover, there was an enrichment of genes that regulate

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1450#supplementary-data
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Figure 6. RNA-MosaicHunter re v eals an ele v ated burden of somatic variants in the cerebral cortex of AD patients. ( A ) Transcriptome-wide screen of 
sSNVs among 862 RNA-seq datasets of AD and control brain samples from ROSMAP [ 59 ] and MayoRNAseq [ 60 ] datasets. Somatic variants were called 
by RNA-MosaicHunter. MCI, mild cognitive impairment; NCI, no cognitive impairment. ( B , C ) Greater variant burden in cerebral cortex samples of AD 

patients when compared to matched controls. A significant tw o-f old increase of sSNV density in AD prefrontal cortex and temporal cortex was 
consistently found in both ROSMAP ( B ) and MayoRNAseq ( C ) cohorts. The burden increase was not observed in the AD cerebellum. CI, cognitive 
impairment. ( D ) Linear regression modeling confirms that the sSNV increase in AD brains remains significant after controlling for potential covariates. 
PMI, post-mortem interval. ( E ) AD brains had significantly more deleterious sSNVs than controls ( P = .047, linear regression) after controlling for 
potential confounding factors. ( F ) GO terms enriched for AD sSNVs. Genes regulating cell cycle and proliferation are specifically enriched for AD but not 
control sSNVs. ( B –E ) Error bar, 95% CI. 
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cell cycle and proliferation (adjusted P < .05, hypergeomet-
ric test), which was not found in sSNVs identified in control
brains (Fig. 6 F). 

To summarize, by applying RNA-MosaicHunter to two dis-
tinct AD cohorts, we consistently observed approximately a
two-fold increase in clonal somatic variants in AD brain cor-
tex samples compared to matched controls, underscoring the
potential role of brain somatic variants in increasing AD risk.
These AD somatic variants were specifically enriched in genes
that regulate cell cycle and proliferation, aligning with previ-
ous reports that such proliferation-related somatic variants,
particularly in microglia, may contribute to the pathogenesis
of neurodegeneration [ 11 , 77 –79 ]. 

Discussion 

Detecting somatic variants from RNA-seq data has been a
demanding challenge, with existing tools often lacking re-
producibility and generalizability, particularly for non-cancer
samples. We introduce RNA-MosaicHunter, a novel tool de-
signed to accurately identify clonal somatic variants from 

bulk RNA-seq data in both cancerous and non-cancerous tis- 
sues. Through benchmarking on TCGA cancer, cell-line mix- 
ture, and GTEx normal tissue datasets, we demonstrated that 
RNA-MosaicHunter generally outperforms previous tools,
particularly with its high precision, leading to a more accurate 
estimation of somatic variant burden in normal tissues. We 
further applied RNA-MosaicHunter to profile somatic vari- 
ants in AD and control brain samples from the ROSMAP and 

MayoRNAseq datasets and observed a significant enrichment 
of somatic variants in the cortex of AD brains, highlighting 
the potential contribution of somatic variants to AD patho- 
genesis. 

Excluding RNA-editing sites is a critical step in somatic 
variant calling from RNA-seq data. In addition to filtering 
out variants listed in existing RNA editing databases, we pro- 
vided a filter that specifically removes RNA-editing sites by 
considering both mutation type and gene transcription direc- 
tion. After applying these RNA-editing filters, we achieved a 
high concordance in the burden and spectrum of somatic vari- 
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nts compared to DNA-based methods (Fig. 4 ). However, it is
mportant to note that these filters may inadvertently discard
eal A > G somatic variants if they share characteristics with
NA editing. Thus, RNA-MosaicHunter also allows users to
isable RNA-editing filters or flag, rather than remove, these
ltered sites, providing greater flexibility for specific applica-
ions. 

Analysis of the GTEx dataset revealed that the brain ex-
ibits the lowest somatic variant burden, followed by the liver
nd the blood. Since neurons are the predominant cell type in
he brain and are generally post-mitotic after birth, somatic
ariants accumulated in neurons during aging cannot form
arge clones and thus remain undetectable by bulk sequenc-
ng methods. This aligns with our findings that show no age-
elated accumulation trend in GTEx brain samples (Fig. 5 C).
n the other hand, liver and blood cells continue to proliferate

n adult humans: hepatocytes have an average age of 2.7–2.9
ears in adult humans, with a 17%–19% birth rate each year
 80 ], whereas most blood cells display a significantly faster
urnover rate compared to liver cells, with a turnover rate
arying from a few hours to a few months [ 81 , 82 ]. Previ-
us single-cell sequencing studies reported that liver cells may
ccumulate somatic variants faster than blood cells [ 66 , 83 ],
hough our analyses showed that the blood exhibits a stronger
ge-dependent accumulation of clonal somatic variants than
he liver. This inconsistency could be explained by differences
n clonal architecture between the two tissues: blood cells
ay more readily expand into larger clones that dominate the
lood cell pool [ 84 ], allowing these variant-carrying clones to
e captured in bulk RNA-seq data, whereas liver clones are
ore focal and spatially restricted [ 85 ], resulting in a lower

ikelihood of detection by conventional bulk tissue sequenc-
ng used in GTEx, unless clones are carefully microdissected. 

Our analysis of two AD datasets consistently revealed a
igher burden of somatic variants in the prefrontal and tempo-
al cortex of AD patients compared to age-matched controls;
owever, cerebellum samples from AD patients in the same
ohort showed a similar burden to both control cerebellum
nd cortex samples (Fig. 6 C). Unlike the cerebral cortex, the
erebellum is relatively intact in the early stages of AD and
s significantly less affected by the disease’s pathological pro-
esses, with much lower accumulation of amyloid-beta and
au pathology [ 75 , 86 ]. Together with the previous single-cell

GS study showing elevated somatic variant burdens in neu-
ons of the PFC and hippocampus that are associated with in-
reased oxidative stress in AD [ 67 ], our findings suggest that
omatic variants in the cerebral cortex may play a role during
D pathogenesis. 
Currently, RNA-MosaicHunter employs empirical filters to
itigate artifacts attributable to various biological processes

nd sequencing errors. Moving forward, the integration of
eep learning models promises to enhance the discrimina-
ion of true somatic variants from false positives, particu-
arly as large-scale training datasets for somatic variants be-
ome available. Furthermore, we plan to expand the capacity
f our tool to analyze single-cell RNA-seq data, enabling a
ore detailed exploration of somatic variants across various

ell types in human tissues. In summary, RNA-MosaicHunter
pens the possibility for somatic variant profiling in existing
arge-scale RNA-seq datasets, enabling a better understanding
f the characteristics and contributions of somatic variants in

uman tissue and pathology. 
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