

OPERA-01: a phase III study of palazestrant for ER+, HER2- advanced breast cancer after CDK4/6 inhibitor therapy

Barbara Pistilli, Meritxell Bellet Ezquerra, Lucia Del Mastro, Joohyuk Sohn, Peter Schmid, Jane Meisel, Arlene Chan, Lianqing Zheng, Elisabeth de Kermadec & Heather McArthur

To cite this article: Barbara Pistilli, Meritxell Bellet Ezquerra, Lucia Del Mastro, Joohyuk Sohn, Peter Schmid, Jane Meisel, Arlene Chan, Lianqing Zheng, Elisabeth de Kermadec & Heather McArthur (2026) OPERA-01: a phase III study of palazestrant for ER+, HER2- advanced breast cancer after CDK4/6 inhibitor therapy, Future Oncology, 22:2, 157-166, DOI: [10.1080/14796694.2025.2608863](https://doi.org/10.1080/14796694.2025.2608863)

To link to this article: <https://doi.org/10.1080/14796694.2025.2608863>

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Published online: 29 Dec 2025.

Submit your article to this journal

Article views: 550

View related articles

View Crossmark data

CrossMark

OPERA-01: a phase III study of palazestrant for ER+, HER2– advanced breast cancer after CDK4/6 inhibitor therapy

Barbara Pistilli ^a, Meritxell Bellet Ezquerre ^b, Lucia Del Mastro ^c, Joohyuk Sohn ^d, Peter Schmid ^e, Jane Meisel ^f, Arlene Chan ^g, Lianqing Zheng ^h, Elisabeth de Kermadec ^h and Heather McArthur ⁱ

^aDepartment of Medical Oncology, Gustave Roussy, Villejuif, France; ^bBreast Cancer Unit, Vall d'Hebron Institute of Oncology, Barcelona, Spain;

^cClinical Oncology Unit, IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy; ^dDivision of Medical Oncology, Yonsei Cancer Center, Seoul, Republic of Korea; ^eCentre for Experimental Cancer Medicine, Barts Cancer Institute, London, UK; ^fDepartment of Hematology and Medical Oncology, Winship Cancer Institute, Atlanta, GA, USA; ^gBreast Cancer Research Centre-WA, Curtin University, Breast Clinical Trials Unit, Hollywood Private Hospital, Nedlands, WA, Australia; ^hOlema Oncology, San Francisco, CA, USA; ⁱDepartment of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA

ABSTRACT

Endocrine therapy (ET) resistance is a major concern when treating estrogen receptor-positive (ER+) human epidermal growth factor receptor 2-negative (HER2–) breast cancer. A combination of cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) and ET is the current first-line standard of care (SOC) for patients with ER+, HER2– advanced breast cancer. Despite the benefits of ET plus a CDK4/6i, disease progression due to endocrine resistance remains a significant challenge. More effective ETs that can overcome resistance are needed to improve clinical outcomes and maintain quality of life by delaying chemotherapy. Palazestrant is a novel oral, complete estrogen receptor antagonist (CERAN) and selective estrogen receptor degrader (SERD) that blocks both transcriptional activation function domains, AF1 and AF2, resulting in complete inhibition of ER-driven transcription, regardless of estrogen receptor 1 (*ESR1*) mutation status. As monotherapy, palazestrant showed tolerable safety, favorable pharmacokinetics, and antitumor efficacy in heavily pretreated patients during phase I/II studies. OPERA-01 (NCT06016738) is a phase III study designed to evaluate the safety and efficacy of palazestrant monotherapy compared to SOC ET in patients with ER+, HER2– locally advanced or metastatic breast cancer, regardless of *ESR1* mutation status, whose disease advanced following treatment with at least one ET in combination with a CDK4/6i.

Clinical Trial Registration: Clinicaltrials.gov NCT06016738. Registered 17 August 2023.

PLAIN LANGUAGE SUMMARY

The most common type of breast cancer (BC) is estrogen receptor-positive (ER+; responds to estrogen) and human epidermal growth factor receptor 2-negative (HER2–; does not overproduce HER2 protein). Because estrogen promotes the growth of ER+, HER2– BCs, endocrine therapy (ET) that reduces the amount or the effect of estrogen is typically used to treat this BC subtype. ET is often combined with another class of medications called cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) to treat ER+, HER2– advanced BC. Unfortunately, this combination eventually stops working due to mutations that develop in genes, including the estrogen receptor gene (*ESR1*), which allow cancers to grow without estrogen. Patients whose tumors develop mutations must then switch to a different ET to control their disease. Thus, there is a need for new ETs that are safe and can overcome ET resistance, thereby helping tumors remain under control which allows patients to maintain their quality of life by delaying the need for chemotherapy. Palazestrant is a new oral ET taken once daily that may be effective against tumors with or without a mutation in *ESR1*. Clinical studies showed that palazestrant was safe in people with ER+, HER2– BCs. To better understand how well palazestrant works, the ongoing OPERA-01 study is comparing the effects of palazestrant to standard-of-care ETs in patients with ER+, HER2– locally advanced or metastatic BC, with or without a mutation in *ESR1*, whose cancer is no longer under control after treatment with at least one ET in combination with a CDK4/6i.

TWEETABLE ABSTRACT

OPERA-01 is a phase III clinical trial comparing palazestrant to standard-of-care endocrine therapy for ER+, HER2– advanced breast cancer after endocrine and CDK4/6 inhibitor therapy. Enrolling at multiple sites worldwide. (NCT06016738)

ARTICLE HISTORY

Received 1 August 2025

Accepted 19 December 2025

KEYWORDS

CERAN; SERD; ER+; HER2– locally advanced or metastatic breast cancer; endocrine therapy; palazestrant; *ESR1* mutation

1. Introduction

Breast cancer is the most common cancer in women and the leading cause of cancer deaths globally. In 2022, an estimated

2.3 million women were diagnosed with breast cancer worldwide, and 666,000 succumbed to their disease [1]. The most common subtype of breast cancer is estrogen receptor-positive (ER+),

CONTACT Barbara Pistilli barbara.pistilli@gustaveroussy.fr Department of Medical Oncology, Gustave Roussy Cancer Campus, Cancer Campus Grand Paris, 114 Rue Edouard Vaillant, Villejuif 94800, France

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (<http://creativecommons.org/licenses/by-nc-nd/4.0/>), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

Article highlights

BACKGROUND AND RATIONALE

- A combination of cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) and endocrine therapy (ET) is the current first-line standard of care (SOC) for patients with estrogen receptor-positive (ER+), human epidermal growth factor 2-negative (HER2-) advanced breast cancer (ABC).
- Endocrine resistance remains a significant challenge and eventually develops in most patients, commonly due to mutations in the estrogen receptor 1 gene (*ESR1*).
- There is an unmet clinical need for effective ETs that can overcome and delay resistance and improve outcomes in patients with and without *ESR1* mutations.

PALAZESTRANT FOR TREATMENT OF ER+, HER2- LOCALLY ADVANCED OR METASTATIC BREAST CANCER

- Palazestrant is a novel oral, complete estrogen receptor antagonist (CERAN) and selective estrogen receptor degrader (SERD) that blocks both transcriptional activation function (AF) domains, AF1 and AF2, resulting in complete inhibition of ER-driven transcription regardless of *ESR1* mutation status.
- Palazestrant has demonstrated activity in both *ESR1*-wild type (*ESR1-wt*) and *ESR1*-mutated (*ESR1-mut*) preclinical models as well as central nervous system (CNS) penetration and demonstrated antitumor activity in brain metastasis models.
- In a phase I/II study, palazestrant monotherapy showed favorable tolerability, encouraging antitumor activity that may counteract endocrine resistance due to *ESR1* mutations, suppress the emergence of *ESR1* mutations, and demonstrate a pharmacokinetic profile supportive of once-daily oral dosing in patients with ER+, HER2- ABC.

OPERA-01 STUDY DESIGN

- OPERA-01 (NCT06016738) is an ongoing phase III study designed to evaluate the safety and efficacy of palazestrant monotherapy compared to SOC ET in patients with ER+, HER2- locally advanced or metastatic breast cancer, regardless of *ESR1* mutation status, whose disease advanced following treatment with at least one ET in combination with a CDK4/6i.
- Approximately 510 men or women (including 470 in the primary analysis) with ER+, HER2- locally advanced or metastatic breast cancer whose disease advanced following treatment with at least one ET in combination with a CDK4/6i will be enrolled.
- In Part 1, the dose-selection portion of the study, eligible patients were randomized 1:1:1 to receive once-daily oral palazestrant at a dose of 90 mg or 120 mg or investigator's choice of SOC ET (fulvestrant or an AI).
- In Part 2, eligible patients will be randomized 1:1 to receive once-daily oral palazestrant at the selected dose in Part 1 (i.e., 90 mg) or the investigator's choice of SOC ET.
- The dual primary endpoint of the overall study is blinded independent committee review (BICR)-assessed progression-free survival (PFS), in patients with *ESR1*-mut tumors and those with no mutation detected (*ESR1*-mut-nd), to be assessed separately.
- Additional ongoing studies show encouraging safety and preliminary efficacy with palazestrant in combination with the full dose of ribociclib, providing justification for future evaluation of combination treatment.

CONCLUSION

- This study will provide insights into the safety and efficacy of palazestrant compared to SOC ET in patients with pretreated ER+, HER2- ABC, regardless of the *ESR1* mutation status, potentially leading to a new and effective treatment option for this patient population.

human epidermal growth factor receptor 2-negative (HER2-) cancer, accounting for approximately 70% of all cases [2–6].

Patients with ER+ breast cancer typically receive endocrine therapy (ET) that acts to suppress ER signaling by one of the three primary mechanisms [2,7,8]. Aromatase inhibitors

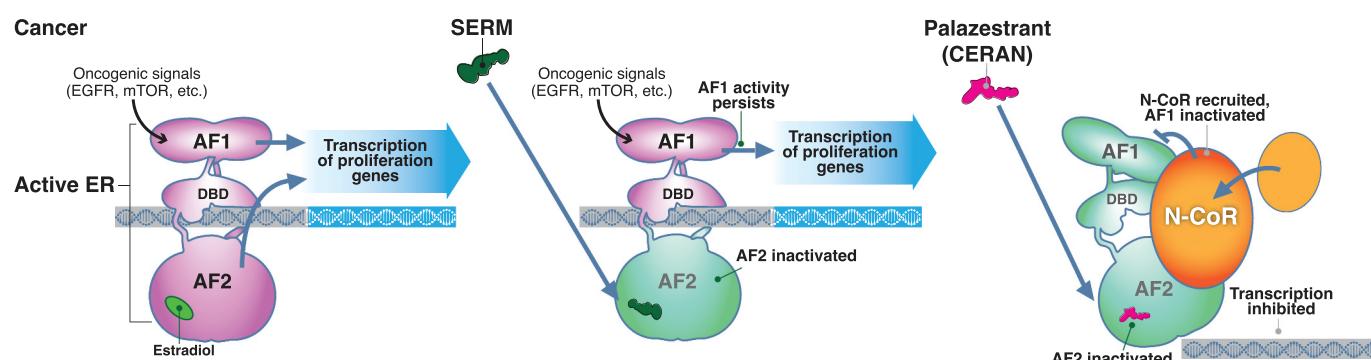
(AIs) block estradiol synthesis, selective estrogen receptor modulators (SERMs) antagonize the effects of estradiol via competitive ER binding, and selective estrogen receptor degraders (SERDs) fully antagonize the ER and target it for degradation [7,8]. However, each ET mechanism has drawbacks that impact therapeutic utilities such as development of resistance mutations in response to AIs and partial agonist activity of SERM in other organs, including the uterus [8,9]. SERDs have the potential to overcome some of these challenges, but the only SERD currently approved as monotherapy and combination therapy, fulvestrant, has challenging pharmacokinetic properties that necessitate intramuscular administration, limiting the volume of the administered dose and thereby its dose-dependent efficacy [10–12]. SERDs with improved pharmacological properties, including oral availability, are needed to overcome these limitations to provide more effective treatment options in this disease space.

Although only 5% of patients with ER+, HER2- breast cancer have metastases at diagnosis, approximately 30% of patients treated with ET for early-stage disease eventually develop metastatic disease [3,4,13–15]. The combination of a cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) with ET is the recommended first-line treatment for patients with ER+, HER2- advanced breast cancer (ABC) [16–18]. For those who progress on CDK4/6i and ET, international guidelines advise treatment with sequential endocrine therapy-based options, potentially delaying the need to transition to chemotherapy or antibody-drug conjugates that are recommended for patients who develop endocrine resistance [14,16–18]. These later lines of therapy are associated with increased toxicity that can negatively impact patient quality of life [19–21].

Endocrine resistance commonly occurs due to mutation of estrogen receptor 1 (*ESR1*), the gene encoding estrogen receptor alpha (ER α) [22,23]. While *ESR1* mutations are infrequent in treatment-naïve breast cancer, up to ~50% of patients receiving AI therapy have been reported to develop activating *ESR1* mutations that drive constitutive estrogen-independent receptor activation [9,23]. As resistance to ET develops, the therapeutic benefit generally decreases with each subsequent line of treatment [24,25]. Given the high prevalence of patients with resistance to ET, therapies with activity in patients with *ESR1*-activating mutations are an area of active development [23,26–30]. However, recent reports indicate that the clinical benefit in ER+, HER2- ABC may be limited to patients with *ESR1*-mutated (*ESR1-mut*) tumors, rather than the entire patient population: trials investigating the efficacy of the PROteolysis Targeting Chimera ER degrader (PROTAC), vepdegestrant, and the SERD, imlunestrant, showed progression-free survival (PFS) benefits specific to patients harboring *ESR1* mutations [28,29]. Similarly, the SERD elacestrant showed a more favorable risk–benefit ratio in patients with *ESR1* mutations and was recently approved for postmenopausal women or adult men with ER+, HER2- *ESR1*-mut advanced or metastatic breast cancer with disease progression following at least one prior line of ET [30,31].

While treatment with ET and CDK4/6i provides benefit to patients with ER+, HER2- ABC, disease progression due to acquired resistance to the combination remains a challenge [32–35]. There is an unmet need for therapies that can overcome or suppress the development of resistance and are effective regardless of *ESR1* mutation status. Targeting the ER with ETs that have more potent ER antagonism may prove to be an effective therapeutic strategy to improve outcomes and patient experience by delaying the transition to more toxic therapies.

1.1. Palazestrant for treatment of ER+, HER2- locally advanced or metastatic breast cancer


Palazestrant is a next-generation, orally bioavailable complete estrogen receptor antagonist (CERAN) and SERD with potent activity targeting the ER [36,37]. Palazestrant blocks both transcriptional activation function (AF) domains, AF1 and AF2 (Figure 1), resulting in a complete inhibition of ER-driven transcription regardless of *ESR1* mutation status [36]. Palazestrant promotes ER degradation at levels similar to that of fulvestrant and greater than that of elacestrant [36]. However, the presence of residual ER protein has been detected in vitro with these treatments [36], suggesting that additional ER antagonist activity may be required to fully abrogate ER function. Importantly, palazestrant showed high-affinity ER binding and pure ER antagonism by inhibiting the activity of both AF1 and AF2 domains [36]. Therefore, palazestrant demonstrates robust CERAN activity that completely blocks ER-induced transcription, ensuring full inhibition of any residually available ER remaining from its SERD activity.

Preclinical studies demonstrated that palazestrant exhibits potent antitumor activity in *ESR1*-wild-type (*ESR1*-wt) and *ESR1*-mut models. In xenograft breast cancer models, palazestrant induced greater shrinkage of both *ESR1*-wt and HCl-013 *ESR1*^{Y537S} tumors compared to fulvestrant with a more favorable pharmacokinetic profile, including oral bioavailability.

Palazestrant also showed robust brain penetrance with brain/plasma ratios >1 and decreased intracranial tumoral growth in ST941 *ESR1*^{Y537S} brain-metastasis models. Compared to elacestrant, palazestrant exhibited better antitumor activity at a fraction of the dose in the ST941 *ESR1*^{Y537S} breast cancer model and resulted in greater tumor volume reduction compared to both fulvestrant and elacestrant [36].

Based on these preclinical data, the first-in-human, open-label, phase I/II OP-1250-001 study (NCT04505826) evaluated the safety and efficacy of palazestrant in patients with previously treated ER+, HER2- locally advanced or metastatic breast cancer [27,40]. Single-agent palazestrant was well tolerated through dose escalation at doses up to 300 mg/day. There were no dose-limiting toxicities, and the maximum tolerated dose was not reached; palazestrant 120 mg/day was determined as the recommended phase II dose (RP2D). Of the 86 patients treated at RP2D, 97% had received prior CDK4/6i, 76% had received ≥2 prior lines of systemic therapy in the advanced setting (median 2; range 1–6), and 48% (36/75) harbored baseline-activating *ESR1* mutations. The most common all-grade treatment-related adverse events (TRAEs) were nausea (55%), vomiting (24%), and fatigue (20%). Most TRAEs were grade 1–2 in severity. Grade 3 TRAEs were reported in 10 (11.6%) patients, most commonly nausea and neutropenia (n = 3 each, 3.5%), and vomiting and fatigue (n = 2 each, 2.3%). Five (5.8%) patients experienced grade 4 neutropenia that was resolved with dose interruptions, reductions, colony-stimulating factors, or discontinuation (n = 3). Discontinuation due to TRAEs occurred in ≤6% of patients. The incidence of bradycardia and photopsia observed was relatively low (9% and 5%, respectively) [27,41,42]; all events were grade 1 and did not lead to dose modifications, interruptions, or discontinuations [27].

Antitumor activity was observed in patients regardless of the *ESR1* mutation status, suggesting that palazestrant counteracts endocrine resistance driven by *ESR1* mutations. The

Figure 1. Palazestrant mechanism of action. The ER is a nuclear receptor that functions as a ligand-activated transcription factor to regulate expression of genes involved in survival and proliferation. Binding of estrogen to ER α stimulates two activation function (AF) domains, AF-1 and AF-2, inducing conformational changes in AF-2 that modulate interactions with regulatory proteins to promote transcription and signaling. Selective estrogen receptor modulators (SERMs), such as tamoxifen, competitively block estrogen binding to inhibit AF-2-driven transcription but allow agonist signaling through AF-1 via other signaling pathways such as mTOR, PI3K, and MAPK [23]. Palazestrant is both a CERAN and a SERD that competes with estrogen and inhibits activities of ER α activation function (AF) domains AF-2 and AF-1. Palazestrant completely blocks ER-driven transcriptional activity, triggering subsequent proteasomal degradation of the inactive ER for both wild-type and mutated ER α [36]. While the mechanism of AF-1 inhibition by CERANs such as palazestrant has not been determined, inhibitory activity may occur through recruitment of ER corepressor proteins such as N-CoR [38,39].

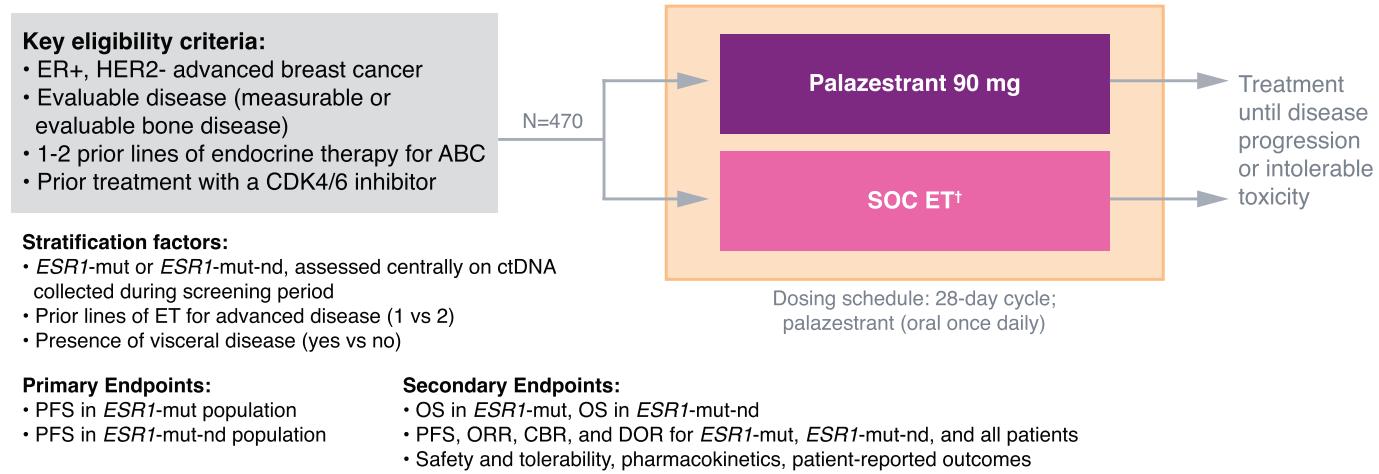
Abbreviations: AF, activation function; DBD, DNA-binding domain; EGFR, epidermal growth factor receptor; ER, estrogen receptor; mTOR, mammalian target of rapamycin; N-CoR, nuclear receptor corepressor; SERM, selective estrogen receptor modulator.

median PFS (mPFS) was 4.8 months (95% confidence interval [CI]: 3.5–7.1) in all patients and 5.6 months (95% CI: 4.8–not estimable [NE]) among patients with tumors harboring *ESR1* mutations. The clinical benefit rate (CBR) was 46% for all patients and 59% among patients with *ESR1*-mut disease [27]. In an analysis of 49 patients who received palazestrant as second- or third-line therapy, the mPFS was 7.2 months in all patients and 7.3 months for patients with *ESR1*-mut tumors (n = 23), demonstrating that palazestrant has promising clinical activity compared to historical data in heavily pretreated patients who have tumors with or without *ESR1* mutations [28,30,43]. Biomarker analysis showed that palazestrant led to a decrease in the number of *ESR1*-variant mutations that are associated with endocrine resistance, suggesting that palazestrant has activity across clinically relevant *ESR1* variants. These findings provide a rationale for the investigation of the safety and efficacy of palazestrant in patients with pretreated ER+, HER2– locally advanced or metastatic breast cancer, regardless of the *ESR1* mutation status, given the need for novel, effective treatment options for this patient population.

1.2. OPERA-01 rationale & study design

Based on the tolerability and promising efficacy of palazestrant demonstrated in early-phase studies, OPERA-01 (NCT06016738) was designed to evaluate the safety and efficacy of palazestrant monotherapy compared to standard-of-care (SOC) ET (fulvestrant, anastrozole, letrozole, or exemestane) in patients with ER+, HER2– locally advanced or metastatic breast cancer who have relapsed or progressed on 1–2 prior lines of ET, including a CDK4/6i [44].

2. Methods


2.1. Overview

The OPERA-01 study is a global phase III randomized, open-label, active-controlled study, consisting of two parts (Figure 2). In Part 1, the dose-selection portion of the study, eligible participants were randomized 1:1:1 to receive oral palazestrant at a dose of 90 mg or 120 mg once daily (QD) or investigator's choice of SOC ET [fulvestrant 500 mg D1 of each cycle and D15 of cycle 1 or AI (letrozole 2.5 mg QD, anastrozole 1 mg QD, or exemestane 2.5 mg QD)]. Fulvestrant was recommended to patients who have not previously received fulvestrant. The Independent Data Monitoring Committee recommended a 90-mg palazestrant QD dose based on the available safety, efficacy, patient-reported outcomes, and pharmacokinetic data from participants treated in Part 1. In Part 2, participants are randomized at a 1:1 ratio to receive once-daily oral palazestrant (90 mg QD) or the investigator's choice of SOC ET. All treatments are administered in 28-day cycles and continue until confirmed radiographic disease progression, intolerable toxicity, continuous dose-interruption >28 days, investigator or participant decision, or initiation of a non-protocol anti-cancer therapy. This study is sponsored by Olema Oncology.

2.2. Study design

2.2.1. Eligibility criteria

Male and female participants aged 18 years or older are eligible for enrollment in the OPERA-01 study if they have a confirmed diagnosis of inoperable locally advanced or metastatic ER+, HER2– breast cancer that is not amenable to curative treatment. Participants must have progressed following

[†]Fulvestrant 500 mg IM on day 1 of each 28-day cycle, with an additional dose on day 15 of cycle 1 (recommended for patients who had not previously received fulvestrant), anastrozole 1 mg (oral once daily), letrozole 2.5 mg (oral once daily), and exemestane 25 mg (oral once daily). GnRH agonist requested for premenopausal women and for men.

Figure 2. OPERA-01 study design.

Abbreviations: ABC, advanced breast cancer; CDK4/6, cyclin-dependent kinase 4/6; CDK4/6i, cyclin-dependent kinase 4/6 inhibitor; ctDNA, circulating tumor DNA; ER+, estrogen receptor-positive; ESR1-mut, estrogen receptor 1 mutation; ESR1-mut-nd, estrogen receptor 1 mutation not detected; ET, endocrine therapy; GnRH, gonadotropin-releasing hormone; HER2–, human epidermal growth factor receptor 2-negative; IM, intramuscular; pt, patient; QD, once a day; SOC, standard-of-care.

Table 1. Key eligibility criteria for OPERA-01.**Inclusion criteria**

- Male or female, age ≥ 18 years
- Histologically or cytologically confirmed adenocarcinoma of the breast with evidence of locally advanced or metastatic breast cancer that is not amenable to treatment
- Laboratory-confirmed ER+, HER2- breast cancer (per ASCO-CAP guidelines)
 - \geq ER positive staining by IHC
 - 0 or 1+ by IHC for HER2 membrane protein
- Evaluable disease:
 - ≤ 1 measurable lesion per RECIST v1.1, or
 - Bone-only disease with ≤ 1 radiographically evaluable lesion
- Prior treatment with 1 or 2 lines ET, including in combination with a CDK4/6 inhibitor for advanced or metastatic breast cancer
- ECOG PS ≥ 1
- Males and pre- or perimenopausal females must be willing to take a luteinizing hormone before the first dose of study treatment until the end of the treatment period
- Males and females of childbearing age must be willing to use effective contraception during the study and for 90 days or longer, following the last dose of study treatment
- Adequate hematologic, renal, hepatic, and coagulation function

Exclusion criteria

- Symptomatic visceral disease, imminent organ failure, or any disease burden causing ineligibility for ET; contraindications to the selected SOC ET
- Prior chemotherapy (including ADC) in the advanced/metastatic setting
- Treatment within the following windows prior to the first dose of study treatment:
 - Fulvestrant, <28 days prior
 - ET, CDK4/6i, everolimus, tacrolimus, alpelisib, or PARP inhibitors, <14 days prior
 - Any investigational cancer therapy, <28 days or 5 half-lives (whichever is shorter) prior
- Prior treatment with elacestrant or any investigational ER-directed therapy
- CNS metastases, carcinomatous meningitis, leptomeningeal disease, or spinal cord compression that requires immediate CNS-directed treatment
- Impaired cardiac function or clinically significant cardiac disease
- Cerebral vascular disease, pulmonary embolism, DVT <6 months prior to the first dose of study drug, or increased risk of thrombosis
- Have an active infection or at a high risk of developing serious infection during study treatment (e.g., participants with immunodeficiencies, uncontrolled diabetes mellitus, uncontrolled heart disease, poor general health, and poor nutritional status).

Abbreviations: ADC, antibody-drug conjugate; ASCO-CAP, American Society of Oncology-College of American Pathologists; CDK4/6i, cyclin-dependent kinase 4/6 inhibitor; CNS, central nervous system; DVT, deep vein thrombosis; ECOG PS, Eastern Cooperative Oncology Group Performance Status; ER, estrogen receptor; ER+, estrogen receptor-positive; ET, endocrine therapy; HER2, human epidermal growth factor receptor; HER2-, human epidermal growth factor receptor 2-negative; IHC, immunohistochemistry; PARP, poly(ADP-ribose) polymerase; RECIST v1.1, Response Evaluation Criteria in Solid Tumors, version 1.1; SOC, standard-of-care.

treatment with the combination of ET and a CDK4/6i; one additional line of ET is allowed. Additional eligibility criteria are listed in Table 1. Enrollment began in November 2023. Approximately 510 participants are expected to be enrolled, including 470 for the primary analysis.

2.2.2. Treatment arms

Part 1 was a three-arm dose selection part, in which participants received palazestrant 90 mg QD, palazestrant 120 mg QD, or an investigator's choice of SOC ET (fulvestrant or anastrozole, letrozole, or exemestane).

The Independent Data Monitoring Committee recommended a 90-mg palazestrant QD dose based on the available safety, efficacy, patient-reported outcomes, and pharmacokinetic data from participants treated with palazestrant 90 mg and 120 mg in Part 1. In Part 2, participants receive once-daily palazestrant (90 mg QD) or SOC ET as described in Part 1. Fulvestrant or the AIs letrozole, anastrozole, or exemestane (with gonadal suppression in pre- and perimenopausal women or men) are included as the physician's choice of SOC ET monotherapy for the control arm. The SOC ET in the control arm aligns with the NCCN and ASCO guidelines recommending ET monotherapy as a treatment option to delay chemotherapy, supported by evidence demonstrating sustained endocrine sensitivity and responsiveness of ER+, HER2- breast cancer to fulvestrant, tamoxifen, or non-steroidal AIs ET, even after prior ET failures [16–18,45–51]. As a global study, the SOC control arm has been planned to account for regional variations in standard practices. The inclusion of AI

monotherapy ensures consistency with guideline-supported treatment options across diverse clinical settings [16–18,49].

2.2.3. Randomization

Participants (N = 510 overall and 470 in the primary analysis) are randomized to treatment arms using Interactive Response Technology, and randomization is stratified based on 1) the presence of *ESR1*-mut or absence of detectable *ESR1* mutations (*ESR1*-mut-nd), assessed centrally on circulating tumor DNA (ctDNA) collected during screening period in line with NCCN Guidelines [16]; 2) prior lines of ET for advanced disease (1 vs 2); and 3) presence of visceral disease (yes vs no).

2.2.4. Endpoints

The dual primary endpoint of the overall study is blinded independent committee review (BICR)-assessed PFS, defined as the time from randomization to the date of the first documented progression or death due to any cause, in participants with *ESR1*-mut and *ESR1*-mut-nd tumors, to be assessed separately. Key secondary endpoints of overall survival (OS), defined as the time from randomization to the date of death due to any cause regardless of whether the patient withdraws from randomized therapy or receives another subsequent anti-cancer therapy, will be assessed separately in participants with *ESR1*-mut and *ESR1*-mut-nd tumors. Additional detailed outcomes are available in Table 2.

Table 2. OPERA-01 endpoints.**Primary endpoint**

- BICR-assessed PFS in patients with *ESR1*-mut and *ESR1*-mut-nd tumors

Secondary endpoints

- OS in patients with *ESR1*-mut and *ESR1*-mut-nd tumors
- BICR-assessed PFS in the ITT population
- OS in the ITT population
- Investigator-assessed PFS in patients with *ESR1*-mut and *ESR1*-mut-nd tumors and in the ITT population
- BICR-assessed ORR, DoR, CBR
- Investigator-assessed ORR, DoR, CBR
- Safety and tolerability (AEs, SAEs, dose modifications, clinical laboratory parameters, ECGs, performance status, and vital sign measurements)
- PK parameters (including C_{\max} , C_{\min} , T_{\max} , AUC, $t_{1/2}$, and palazestrant trough concentration at steady state)
- PROs (assessed using EQ-5D-5 L and EORTC QLQ-C30)

Exploratory endpoints

- Time to subsequent anticancer therapy
- PRO endpoints (assessed using PRO-CTCAE)
- Alterations in ctDNA or markers of oncogenic pathways, cell proliferation, and cell cycle and associations with clinical response
- Safety, efficacy, and PRO outcomes at the non-selected dose

Abbreviations: AE, adverse event; AUC, area under the curve; BICR, blinded independent committee review; CBR, clinical benefit rate; C_{\max} , maximum plasma concentration; C_{\min} , minimum plasma concentration; ctDNA, circulating tumor DNA; DoR, duration of response; ECG, electrocardiogram; EORTC QLQ-C30, European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire Core 30; EQ-5D-5 L, EuroQol 5 Dimension 5 Level; *ESR1*-mut, *ESR1* mutated; *ESR1*-mut-nd; *ESR1* mutation not detected; ITT, intent-to-treat; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PK, pharmacokinetic; PRO, patient-reported outcome; PRO-CTCAE, Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events; SAE, serious AE; $t_{1/2}$, effective half-life; T_{\max} , time to maximum plasma concentration.

2.3. Study procedures

Adverse event (AE) severity is determined according to the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE) v5.0.

Tumor response and disease progression are assessed locally and centrally using body imaging by computed tomography (preferred) or magnetic resonance imaging. Baseline tumor imaging is performed during screening, within 28 days of randomization, and radiographic assessments are conducted periodically. After disease progression, participants are followed to assess survival status.

Health-related quality-of-life patient-reported outcomes (HRQoL PROs) are assessed using the EQ-5D-5 L, EORTC QLQ-C30, and PRO-CTCAE instruments. Pharmacokinetic (PK) parameters are determined using plasma levels of palazestrant from blood samples collected at protocol-defined timepoints.

An independent data monitoring committee (IDMC), comprising medical and statistical representatives not involved in the trial, is monitoring the safety, efficacy, and conduct of the trial. The dose selected for Part 2 of this study was recommended by the IDMC.

2.4. Statistical analyses

In Part 1 of the study, the selected dose was based on analyses of safety, preliminary efficacy, PK/pharmacodynamic (PD) parameters, and other relevant clinical and laboratory data, and there was no formal statistical comparison.

Blinded independent committee review (BICR)-assessed PFS, locally assessed PFS, and overall survival (OS) will be analyzed

separately in participants with *ESR1*-mut tumors and participants with *ESR1*-mut-nd tumors by Kaplan–Meier (KM) methods; median and 95% confidence intervals (CIs) will be reported. Significant differences between treatment groups will be analyzed using the stratified log-rank test, stratified by a number of prior lines of ET and presence or absence of visceral metastases. Cox regression models will be used to estimate hazard ratios and 95% CIs.

Other secondary endpoints – overall response rate (ORR), CBR, and duration of response (DoR) – will be analyzed using both BICR- and investigator-assessed response evaluations.

3. Conclusion

There is an unmet need for novel therapies to overcome and suppress the development of ET resistance in patients with ER+, HER2– ABC, including those who acquire *ESR1* mutations. Preclinical data suggest that palazestrant, a novel oral CERAN and SERD, exhibits potent suppression of ER activity in tumors with and without *ESR1*. Furthermore, in early-phase clinical studies, palazestrant showed a tolerable safety profile, favorable pharmacokinetics, and encouraging antitumor efficacy in heavily pretreated patients, regardless of *ESR1* mutation status, providing support for further investigation.

3.1. Additional ongoing studies in advanced breast cancer

Given the tolerability and promising efficacy of palazestrant monotherapy and the potential for palazestrant to serve as a backbone ET for combination regimens, early-phase studies are evaluating combinations of palazestrant with CDK4/6i or

targeted therapies [52,53]. Ongoing phase Ib/II studies evaluating the combination of palazestrant with palbociclib (OP-1250-002; NCT05266105) or with ribociclib, alpelisib, everolimus, or atirmociclib (OP-1250-003; NCT05508906) in patients with pretreated ER+, HER2- ABC, including prior CDK4/6i, has demonstrated the feasibility of combining palazestrant with CDK4/6i [54,55]. In an analysis of the palazestrant in combination with ribociclib arm, palazestrant was well tolerated in all doses when combined with the full dose of ribociclib, and safety was consistent with the safety profile for each drug. Neutropenia (55%) was the most common grade 3–4 event in patients treated with palazestrant and ribociclib, compared to 60% observed in patients treated with ribociclib and SOC ET [56,57]. Median PFS (mPFS) was 15.5 months in all patients and 12.2 months in patients with prior CDK4/6i. In patients with prior CDK4/6i therapy, mPFS was 9.2 months in patients with *ESR1*-wt disease and 13.8 months in patients with *ESR1*-mut disease [56]. These ongoing studies support further clinical development of palazestrant-based combinations for first-line treatment of ER+, HER2- locally advanced or metastatic breast cancer.

3.2. Concluding remarks on the OPERA-01 study

The OPERA-01 study is an ongoing phase III study being conducted to investigate palazestrant monotherapy versus SOC ET in patients with ER+, HER2- locally advanced or metastatic breast cancer whose disease has advanced on ET in combination with a CDK4/6i. Findings from this study will provide insights into the safety and efficacy of palazestrant compared to SOC ET in patients with pretreated ER+, HER2- ABC, regardless of *ESR1* mutation status, potentially leading to a new and effective treatment option for this patient population.

Acknowledgments

The authors thank the patients and their caregivers whose participation makes this study possible. Medical writing support was provided by Leslie Mitchell, PhD, and Melanie Styers, PhD of Verascity Science. This trial protocol was presented at the San Antonio Breast Cancer Symposium 2023, 5–9 December 2023 in San Antonio, TX, USA, the American Society of Clinical Oncology Annual Meeting 2024, 31 May–4 June 2024 in Chicago, IL, USA, and the American Society of Clinical Oncology Annual Meeting 2025, 30 May–3 June 2025 in Chicago, IL, USA.

Author contributions

Conceptualization: All authors; Writing – original draft: BP, LZ, EdK, HM; Writing – review & editing: MBE, LDM, JS, PS, JM, AC; Methodology: LZ, EdK; Software: LZ; Project Administration: EdK.

Disclosure statement

Barbara Pistilli has received institutional consulting fees from AstraZeneca plc, Gilead Sciences, Novartis AG, Eli Lilly and Company, Daiichi-Sankyo Company, MSD Pharmaceuticals, and Olema Oncology; received payments or honoraria from Daiichi-Sankyo Company, AstraZeneca plc, Seagen, and Eli Lilly and Company; participated on institutional data safety monitoring boards (DSMB) or advisory boards for AstraZeneca plc, Daiichi-Sankyo Company, and Novartis AG.

Meritxell Bellet Ezquerra has received consulting fees from F Hoffmann-La Roche AG, Stemline Therapeutics, Menarini Group, Novartis AG, and Pfizer Inc; received payment or honoraria from

Pfizer Inc, Novartis AG, and Eli Lilly and Company; received payment for expert testimony from Pfizer Inc, Novartis AG, and Eli Lilly and Company; and received payment for travel expenses or meeting support from F Hoffmann-La Roche AG and Pfizer Inc.

Lucia Del Mastro has grants or contracts with Eli Lilly and Company, Novartis AG, F Hoffmann-La Roche AG, Daiichi-Sankyo Company, Seagen, Gilead Sciences, Pfizer Inc, Stemline Therapeutics, MS Pharma, and Pierre Fabre Group; received consulting fees from Novartis AG, F Hoffmann-La Roche AG, Daiichi-Sankyo Company, Eli Lilly and Company, Gilead Sciences, Pfizer Inc, Stemline Therapeutics, Olema Oncology, and AstraZeneca plc; received payment or honoraria from Eli Lilly and Company, Novartis AG, Daiichi-Sankyo Company, Seagen, AstraZeneca plc, Gilead Sciences, Pierre Fabre Group, Stemline Therapeutics, Pfizer Inc, MSD Pharmaceuticals, Exact Sciences, GSK plc, Ipsen, and Eisai Co., Ltd; participated on DSMBs or advisory boards for Eli Lilly and Company, Novartis AG, Daiichi-Sankyo Company, Seagen, AstraZeneca plc, Gilead Sciences, Pierre Fabre Group, Pfizer Inc, Stemline Therapeutics, MSD Pharmaceuticals, Exact Sciences, GSK plc, Ipsen, and Eisai Co., Ltd; received meeting or travel support from F Hoffmann-La Roche AG, Gilead Sciences, Stemline Therapeutics, AstraZeneca plc, and Daiichi-Sankyo Company; and received equipment, materials, medical writing, drugs, or other services from Foundation Medicine.

Joohyuk Sohn has institutional grants or contracts from Seagen, MSD Pharmaceuticals, F Hoffmann-La Roche AG, Pfizer Inc, Novartis AG, AstraZeneca plc, Eli Lilly and Company, GSK plc, Boehringer Ingelheim GmbH, Sanofi SA, Daiichi-Sankyo Company, Qurient Co., Ltd, Dragonfly Therapeutics, Eikon Therapeutics, Gilead Sciences, Celularity, Bristol-Myers Squibb, HLB Life Science, Sermonix Pharmaceuticals, Olema Oncology, Hammi Pharmaceutical, Illdong Pharmaceutical, and Samyang Holdings Corporation; and reported prior Daiichi-Sankyo Company stock holdings by an immediate family member.

Peter Schmid has grants or contracts with Astellas Pharma Inc, AstraZeneca plc, Genentech, Novartis AG, OncoGenex Pharmaceuticals, F Hoffmann-La Roche AG, Medivation, and Merck & Co., Inc; received consulting fees, payments, or honoraria from AstraZeneca plc, Bayer, Boehringer Ingelheim GmbH, Merck & Co, Novartis AG, Pfizer Inc, Puma Biotechnology, F Hoffmann-La Roche AG, Eisai Co., Ltd and Celgene Corporation; and received payment for expert testimony from Pinsent Masons LLP.

Jane Meisel has received consulting fees from Pfizer, AstraZeneca plc, Olema Oncology Inc, Sermonix Pharmaceuticals, Novartis AG, and Genentech; received honoraria from PRIME Oncology, a property of Everyday Health Group, and Medscape; participated on advisory boards for AstraZeneca plc, Olema Oncology, and Sermonix Pharmaceuticals, and on a DSMB for the American Society of Clinical Oncology.

Arlene Chan has served as a member of the Olema Steering Committee and received consulting fees from Olema Oncology.

Lianqing Zheng is an employee of Olema Oncology and owns stock or stock options.

Elisabeth de Kermadec is an employee of Olema Oncology; as an employee of Olema Oncology has participated on DSMBs or advisory boards, received travel support, and holds stock or stock options; and holds a patent for amcenestrant.

Heather McArthur has institutional grants or contracts from Bristol-Myers Squibb, MedImmune, AstraZeneca plc, BTG Limited, and Merck & Co., Inc; received consulting fees from ALX Oncology Holdings Inc; honoraria from Merck & Co., Inc, and Stemline Therapeutics; served on advisory boards for Daiichi-Sankyo Company, Pfizer Inc, Moderna, Gilead Sciences, Eli Lilly and Company, Novartis AG, and Genentech; and acted on advisory boards and a Steering Committee for AstraZeneca plc.

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Medical writing support was provided by Leslie Mitchell, PhD, and Melanie Styers, PhD, from Verascity Science and was funded by Olema Oncology.

Reviewer disclosures

Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

Ethical declaration

This trial is conducted in accordance with the Declaration of Helsinki and Good Clinical Practices (GCP) according to International Council on Harmonization (ICH) guidelines and applicable national regulations. The protocol was reviewed and approved by Internal Review Boards or Ethics Committees at each site prior to study activation. Participants are referred to the study investigator (if different from the medical provider), and written informed consent is provided by each participant prior to study entry. All records identifying participants are kept confidential and managed under the applicable laws and regulations. Study results will be shared in peer-reviewed articles, press releases, and at scientific congresses or meetings.

Funding

This manuscript was funded by Olema Oncology. The funder was involved in the study design and collaborated with the authors on the preparation of this manuscript.

ORCID

Barbara Pistilli <http://orcid.org/0000-0002-9184-7199>
 Meritxell Bellet Ezquerre <http://orcid.org/0000-0001-8859-8307>
 Lucia Del Mastro <http://orcid.org/0000-0002-9546-5841>
 Joohyuk Sohn <http://orcid.org/0000-0002-2303-2764>
 Peter Schmid <http://orcid.org/0000-0001-9817-5228>
 Jane Meisel <http://orcid.org/0000-0002-2642-865X>
 Arlene Chan <http://orcid.org/0000-0003-2135-2286>
 Heather McArthur <http://orcid.org/0000-0002-0201-3871>

References

Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

- Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin.* 2024;74(3):229–263. doi: [10.3322/caac.21834](https://doi.org/10.3322/caac.21834)
- American Cancer Society. Breast cancer facts and figures 2022–2024. Atlanta: American Cancer Society, Inc; 2022.
- Hefti MM, Hu R, Knoblauch NW, et al. Estrogen receptor negative/progesterone receptor positive breast cancer is not a reproducible subtype. *Breast Cancer Res.* 2013;15(4):R68. doi: [10.1186/bcr3462](https://doi.org/10.1186/bcr3462)
- Li Y, Yang D, Yin X, et al. Clinicopathological characteristics and breast cancer-specific survival of patients with single hormone receptor-positive breast cancer. *JAMA Netw Open.* 2020;3(1):E1918160. doi: [10.1001/jamanetworkopen.2019.18160](https://doi.org/10.1001/jamanetworkopen.2019.18160)
- Giannakeas V. Single hormone receptor-positive breast cancer—signal or noise? *JAMA Netw Open.* 2020;3(1):e1918176–e1918176. doi: [10.1001/jamanetworkopen.2019.18176](https://doi.org/10.1001/jamanetworkopen.2019.18176)
- Li NYH, Li CI. Incidence rate trends of breast cancer overall and by molecular subtype by race and ethnicity and age. *JAMA Netw Open.* 2025;8(1):e2456142. doi: [10.1001/jamanetworkopen.2024.56142](https://doi.org/10.1001/jamanetworkopen.2024.56142)
- Ferreira Almeida C, Oliveira A, João Ramos M, et al. Estrogen receptor-positive (ER+) breast cancer treatment: are multi-target compounds the next promising approach? *Biochem Pharmacol.* 2020;177:113989. doi: [10.1016/j.bcp.2020.113989](https://doi.org/10.1016/j.bcp.2020.113989)
- Rasha F, Sharma M, Pruitt K. Mechanisms of endocrine therapy resistance in breast cancer. *Mol Cell Endocrinol.* 2021;532:111322. doi: [10.1016/j.mce.2021.111322](https://doi.org/10.1016/j.mce.2021.111322)
- Ma CX, Reinert T, Chmielewska I, et al. Mechanisms of aromatase inhibitor resistance. *Nat Rev Cancer.* 2015;15(5):261–275. doi: [10.1038/nrc3920](https://doi.org/10.1038/nrc3920)
- FASLODEX® (fulvestrant). Prescribing information. AstraZeneca; 2019. Available from: <https://medic.alinformation.astrazeneca-us.com/home/prescribing-information/faslodex.html>
- Nathan MR, Schmid P. A review of fulvestrant in breast cancer. *Oncol Ther.* 2017;515(1):17–29. doi: [10.1007/s40487-017-0046-2](https://doi.org/10.1007/s40487-017-0046-2)
- Robertson JFR, Lindemann J, Garnett S, et al. A good drug made better: the fulvestrant dose-response story. *Clin Breast Cancer.* 2014;14(6):381–389. doi: [10.1016/j.clbc.2014.06.005](https://doi.org/10.1016/j.clbc.2014.06.005)
- Surveillance, epidemiology, and end results program [Internet]. (WA) (DC): National Cancer Institute; [cited 2025 May 22]. Available from: https://seer.cancer.gov/statistics-network/explorer/application.html?site=622&data_type=1&graph_type=2&compareBy=stage&chk_stage_104=104&chk_stage_105=105&chk_stage_106=106&chk_stage_107=107&hdn_rate_type=1&hdn_sex=3&race=1&age_range=1&advopt_precision=1&advopt_show_ci=on&hdn_view=0&advopt_show_apc=on&advopt_display=1#resultsRegion0
- Reinert T, Barrios CH. Optimal management of hormone receptor positive metastatic breast cancer in 2016. *Ther Adv Med Oncol.* 2015;7(6):304. doi: [10.1177/1758834015608993](https://doi.org/10.1177/1758834015608993)
- Zundelevich A, Dadiani M, Kahana-Edwin S, et al. ESR1 mutations are frequent in newly diagnosed metastatic and loco-regional recurrence of endocrine-treated breast cancer and carry worse prognosis. *Breast Cancer Res.* 2020;22(1):1–11. doi: [10.1186/s13058-020-1246-5](https://doi.org/10.1186/s13058-020-1246-5)
- National comprehensive cancer network. Breast cancer guidelines (Version 4). 2025 [cited 2025 May 22]. Available from: https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf
- Burstein HJ, Somerfield MR, Barton DL, et al. Endocrine treatment and targeted therapy for hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer: ASCO guideline update. *J Clin Oncol.* 2021;39(35):3959–3977. doi: [10.1200/JCO.21.01392](https://doi.org/10.1200/JCO.21.01392)
- Gennari A, André F, Barrios CH, et al. ESMO clinical practice guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer 5 behalf of the ESMO guidelines committee. S. Loibl. *Ann Oncol* 2021;27. doi: [10.1016/j.annonc.2021.09.019](https://doi.org/10.1016/j.annonc.2021.09.019)
- Park M, Yu S-Y, Jeon H-L, et al. Factors affecting health-related quality of life in patients with metastatic breast cancer. *J Breast Cancer.* 2023;26(5):436–445. doi: [10.4048/jbc.2023.26.e29](https://doi.org/10.4048/jbc.2023.26.e29)
- Perachino M, Blondeaux E, Molinelli C, et al. Adverse events and impact on quality of life of antibody-drug conjugates in the treatment of metastatic breast cancer: a systematic review and meta-analysis. *Eur J Clin Invest.* 2025;55(6):e70001. doi: [10.1111/eci.70001](https://doi.org/10.1111/eci.70001)
- Pedersini R, Buffoni M, Petrelli F, et al. Gastrointestinal toxicity of antibody drug conjugates (ADCs) in metastatic breast cancer: a pooled analysis. *Clin Breast Cancer.* 2024;24(5):411–420. doi: [10.1016/j.clbc.2024.04.003](https://doi.org/10.1016/j.clbc.2024.04.003)
- Brett JO, Spring LM, Bardia A, et al. ESR1 mutation as an emerging clinical biomarker in metastatic hormone receptor-positive breast cancer. *Breast Cancer Res.* 2021;23(1):85. doi: [10.1186/s13058-021-01462-3](https://doi.org/10.1186/s13058-021-01462-3)
- Patel R, Klein P, Tiersten A, et al. An emerging generation of endocrine therapies in breast cancer: a clinical perspective. *NPJ Breast Cancer.* 2023;9(1):20. doi: [10.1038/s41523-023-00523-4](https://doi.org/10.1038/s41523-023-00523-4)
- D’Souza A, Spicer D, Lu J. Overcoming endocrine resistance in metastatic hormone receptor-positive breast cancer. *J Hematol Oncol.* 2018;11(1):80. doi: [10.1186/s13045-018-0620-6](https://doi.org/10.1186/s13045-018-0620-6)
- Jeselsohn R, Buchwalter G, De Angelis C, et al. ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer. *Nat Rev Clin Oncol.* 2015;12(10):573–583. doi: [10.1038/nrclinonc.2015.117](https://doi.org/10.1038/nrclinonc.2015.117)
- Hamilton E, Oliveira M, Turner N, et al. A phase I dose escalation and expansion trial of the next-generation oral SERD camizestrant in women with ER-positive, HER2-negative advanced breast cancer: SERENA-1 monotherapy results. *Ann Oncol.* 2024;35(8):707–717. doi: [10.1016/j.annonc.2024.04.012](https://doi.org/10.1016/j.annonc.2024.04.012)
- Hamilton EP, Patel MR, Borges VF, et al. Palazestrant, a novel oral complete estrogen receptor antagonist (CERAN) and selective estrogen receptor degrader (SERD), in patients with ER+/HER2-

advanced or metastatic breast cancer: phase 1/2 study results. *Breast Cancer Res.* **2025**;27(1):119. doi: [10.1186/s13058-025-02049-y](https://doi.org/10.1186/s13058-025-02049-y)

• Presents data from the first-in-human study showing that oral palazestrant monotherapy was well tolerated, with antitumor activity in patients regardless of *ESR1* mutation status. Biomarker analysis shows decrease in clinically relevant *ESR1* mutations following treatment that correlate with clinical benefit rate.

28. Jhaveri KL, Neven P, Casalnuovo ML, et al. Imlunestrant with or without abemaciclib in advanced breast cancer. *N Engl J Med.* **2024**;392(12):1189–1202. doi: [10.1056/NEJMoa2410858](https://doi.org/10.1056/NEJMoa2410858)

• The study shows that imlunestrant, a complete estrogen receptor antagonist (CERAN) and selective estrogen receptor degrader (SERD), significantly improves PFS in patients with cancers harboring *ESR1* mutations, but not in the overall population.

29. Pfizer Inc. Arvinas and Pfizer announce positive topline results from phase 3 VERITAC-2 clinical trial [Press release]. **2025** Mar 11. Available from: <https://www.pfizer.com/news/press-release/press-release-detail/arvinas-and-pfizer-announce-positive-topline-results-phase>

• The study shows that the proteolysis targeting chimera estrogen receptor degrader, vepdegestrant, significantly improves PFS compared to fulvestrant in patients with *ESR1*-mutated cancers, but not in the overall population.

30. Bidard FC, Kaklamani VG, Neven P, et al. Elacestrant (oral selective estrogen receptor degrader) versus standard endocrine therapy for estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: results from the randomized phase III emerald trial. *J Clin Oncol.* **2022**;40(28):3246–3256. doi: [10.1200/JCO.22.00338](https://doi.org/10.1200/JCO.22.00338)

• The study concludes that elacestrant showed improved PFS compared to standard-of-care endocrine therapy in the overall population and in patients *ESR1* mutations; risk-benefit ratio was more favorable in patients with *ESR1* mutations.

31. US Food and Drug Administration. FDA approves elacestrant for ER-positive, HER2-negative, *ESR1*-mutated advanced or metastatic breast cancer [Press release]. **2023** Jan 27. Available from: <https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-elacestrant-er-positive-her2-negative-esr1-mutated-advanced-or-metastatic-breast-cancer>

32. Slamon DJ, Neven P, Chia S, et al. Overall survival with ribociclib plus fulvestrant in advanced breast cancer. *N Engl J Med.* **2020**;382(6):514–524. doi: [10.1056/NEJMoa1911149](https://doi.org/10.1056/NEJMoa1911149)

33. Sledge GW, Toi M, Neven P, et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. *J Clin Oncol.* **2017**;35(25):2875–2884. doi: [10.1200/JCO.2017.73.7585](https://doi.org/10.1200/JCO.2017.73.7585)

34. Cristofanilli M, Turner NC, Bondarenko I, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. *Lancet Oncol.* **2016**;17(4):425–439. doi: [10.1016/S1470-2045\(15\)00613-0](https://doi.org/10.1016/S1470-2045(15)00613-0)

35. Al-Qasem AJ, Alves CL, Ditzel HJ. Resistance mechanisms to combined CDK4/6 inhibitors and endocrine therapy in ER+/HER2- advanced breast cancer: biomarkers and potential novel treatment strategies. *Cancers (Basel).* **2021**;13(21):5397. doi: [10.3390/cancers13215397](https://doi.org/10.3390/cancers13215397)

36. Parisian AD, Barratt SA, Hodges-Gallagher L, et al. Palazestrant (OP-1250), a complete estrogen receptor antagonist, inhibits wild-type and mutant ER-positive breast cancer models as monotherapy and in combination. *Mol Cancer Ther.* **2024**;23(3):285–300. doi: [10.1158/1535-7163.MCT-23-0351](https://doi.org/10.1158/1535-7163.MCT-23-0351)

• Results demonstrate that palazestrant acts as both a complete estrogen receptor antagonist (CERAN) and selective estrogen receptor degrader (SERD) that blocks both transcriptional activation domains, resulting in complete inhibition of ER-driven transcription regardless of *ESR1* mutation status in preclinical models.

37. Lloyd MR, Wander SA, Hamilton E, et al. Next-generation selective estrogen receptor degraders and other novel endocrine therapies for management of metastatic hormone receptor-positive breast cancer: current and emerging role. *Ther Adv Med Oncol.* **2002**;14:17588359221113694. doi: [10.1177/17588359221113694](https://doi.org/10.1177/17588359221113694)

38. Webb P, Nguyen P, Kushner PJ. Differential SERM effects on co-repressor binding dictate ERalpha activity in vivo. *J Biol Chem.* **2003**;278(9):6912–6920. doi: [10.1074/jbc.M208501200](https://doi.org/10.1074/jbc.M208501200)

39. Shang Y, Brown M. Molecular determinants for the tissue specificity of SERMs. *Science.* **2002**;295(5564):2465–2468. doi: [10.1126/science.1068537](https://doi.org/10.1126/science.1068537)

40. Olema Pharmaceuticals, Inc. A dose escalation/expansion study of oral OP-1250 in subjects with advanced and/or metastatic hr+, HER2- breast cancer. Clinicaltrials.gov Identifier: nCT04505826. [Updated 2023 August 22; cited 2025 May 22]. Available from: <https://clinicaltrials.gov/study/NCT04505826>

41. Hamilton EP, Oliveira M, Banerji U, et al. A phase I dose escalation and expansion study of the next generation oral SERD AZD9833 in women with ER-positive, HER2-negative advanced breast cancer. *J Clin Oncol.* **2020**;38(15_suppl):1024. doi: [10.1200/JCO.2020.38.15_suppl](https://doi.org/10.1200/JCO.2020.38.15_suppl)

42. Jhaveri KL, Boni V, Sohn J, et al. Safety and activity of single-agent giredestrant (GDC-9545) from a phase Ia/b study in patients (pts) with estrogen receptor-positive (ER+), HER2-negative locally advanced/metastatic breast cancer (LA/mBC). *J Clin Oncol.* **2021**;39(15_suppl):1017. doi: [10.1200/JCO.2021.39.15_suppl.1017](https://doi.org/10.1200/JCO.2021.39.15_suppl.1017)

43. Lin NU, Borges V, Patel M, et al. Oral presentation 382MO: results from the phase 1/2 study of OP-1250, an oral complete estrogen receptor (ER) antagonist (CERAN) and selective er degrader (SERD) in patients (pts) with advanced or metastatic ER-positive, HER2-negative breast cancer. ESMO Congress; Madrid, Spain; 2023 Oct 20–24.

• Results demonstrate promising clinical activity of palazestrant as second-or-third line therapy in heavily pretreated patients who have tumors with or without *ESR1* mutations; PFS benefit compares favorably to available treatment options.

44. Olema Pharmaceuticals, Inc. OP-1250 (palazestrant) vs. standard of care for the treatment of ER+/HER2- advanced breast cancer (OPERA-01). ClinicalTrials.gov identifier: NCT06016738. [Updated 2025 March 11; cited 2025 May 22]. Available from: <https://clinicaltrials.gov/study/NCT06016738>

45. Nabholz JM, Buzdar A, Pollak M, et al. Anastrozole is superior to tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: results of a North American multicenter randomized trial. Arimidex study group. *J Clin Oncol.* **2000**;18(22):3758–3767. doi: [10.1200/JCO.2000.18.22.3758](https://doi.org/10.1200/JCO.2000.18.22.3758)

46. Mouridsen H, Gershonovitch M, Sun Y, et al. Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: analysis of survival and update of efficacy from the international letrozole breast cancer group. *J Clin Oncol.* **2003**;21(11):2101–2109. doi: [10.1200/JCO.2003.04.194](https://doi.org/10.1200/JCO.2003.04.194)

47. Paridaens RJ, Dirix LY, Beex LV, et al. Phase III study comparing exemestane with tamoxifen as first-line hormonal treatment of metastatic breast cancer in postmenopausal women: the European organisation for research and treatment of cancer breast cancer cooperative group. *J Clin Oncol.* **2008**;26(30):4883–4890. doi: [10.1200/JCO.2007.14.4659](https://doi.org/10.1200/JCO.2007.14.4659)

48. Mauri D, Pavlidis N, Polyzos NP, et al. Survival with aromatase inhibitors and inactivators versus standard hormonal therapy in advanced breast cancer: meta-analysis. *J Natl Cancer Inst.* **2006**;98(18):1285–1291. doi: [10.1093/jnci/djj357](https://doi.org/10.1093/jnci/djj357)

49. Al Sukhun S, Temin S, Barrios CH, et al. Systemic treatment of patients with metastatic breast cancer: ASCO resource-stratified guideline. *JCO Glob Oncol.* **2024**;10(10):e2300285. doi: [10.1200/GO.23.00285](https://doi.org/10.1200/GO.23.00285)

50. Bertelli G, Garrone O, Merlano M, et al. Sequential treatment with exemestane and non-steroidal aromatase inhibitors in advanced

breast cancer. *Oncology*. 2005;69(6):471–477. doi: [10.1159/000090985](https://doi.org/10.1159/000090985)

51. Vergote I, Robertson JFR, Kleeberg U, et al. Postmenopausal women who progress on fulvestrant ('Faslodex') remain sensitive to further endocrine therapy. *Breast Cancer Res Treat*. 2003;79(2):207–211. doi: [10.1023/a:1023983032625](https://doi.org/10.1023/a:1023983032625)

52. Olema Pharmaceuticals, Inc. Phase 1b combo w/ribociclib, alpelisib, or everolimus. ClinicalTrials.Gov identifier: NCT05508906. [Updated 2024 October; cited 2025 May 22]. <https://clinicaltrials.gov/study/NCT05508906>

53. Pharmaceuticals O. Inc. A phase 1 study of oral OP-1250 in combination with palbociclib in HR+/HER2- breast cancer patients. ClinicalTrials.Gov Identifier: NCT05266105. [Updated 2024 June 6; cited 2025 May 22]. Available from: <https://clinicaltrials.gov/study/NCT05266105>

54. Borges VF, Chien J, Nunnery S, et al. Poster 212P: a phase Ib/II study of palazestrant (OP-1250) in combination with ribociclib in patients with estrogen receptor-positive human epidermal growth factor receptor 2-negative (ER+, HER2-) metastatic breast cancer. ESMO Breast Cancer Congress; Berlin, Germany; 2024 May 15–17.

• Demonstrates the combination of palezstrant with the full dose of ribociclib is well tolerated with no new safety signals. Promising efficacy was observed, including in patients who received prior CDK4/6 inhibitor.

55. Chan A, Day D, Dinh P, et al. Poster PS15-04: a phase 1b/2 study of palazestrant (OP-1250), an oral complete estrogen receptor antagonist (CERAN) and selective er degrader (SERD), with palbociclib in ER-positive, HER2-negative, advanced or metastatic breast cancer patients. San Antonio Breast Cancer Symposium. Cancer Research; Vol. 84; San Antonio, TX; 2023 Dec 5–9. 2024. p. PS15-04. doi: [10.1158/1538-7445.SABCS23-PS15-04](https://doi.org/10.1158/1538-7445.SABCS23-PS15-04)

• Palazestrant in combination with palbociclib was well tolerated with no new safety signals. Tumor response and prolonged disease stabilization was observed, including those previously exposed to CDK4/6 inhibitor therapy.

56. Lin NU, Chien J, Ma C, et al. Poster P502: palazestrant (OP-1250) plus ribociclib in patients with estrogen receptor-positive, human epidermal growth factor receptor 2-negative (ER+, HER2-) advanced breast cancer (ABC). European Society for Medical Oncology Congress. Annals of Oncology. Vol. 36; Berlin, Germany; 2025 Oct 17–21. p. S411.

57. Kisqali® (ribociclib). Prescribing information. Novartis; 2017. Available from: https://www.novartis.com/us-en/sites/novartis_us/files/kisqali.pdf