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Current detection methods of Demodex mite density in facial erythema are semi-invasive or operator-
dependent. We developed and evaluated a deep learning model (DemodexNet) for predicting Demodex 
mite density and assessed its impact on the diagnostic performance of dermatologists. This study 
included 1,124 patients with facial erythema who underwent Demodex mite density measurement 
at two referral hospitals between January 2016 and August 2023. DemodexNet achieved area under 
the receiver operating characteristic curve values of 0.823–0.865 in internal testing, with lower 
values observed in the external testing set. AI-assisted evaluation was associated with an increase 
in diagnostic accuracy among dermatologists from 63.7% to 70.6% (P < .001). Less experienced 
dermatologists and those with higher trust in AI showed greater performance gains. The model 
recognized central facial regions and individual lesions characteristic of demodicosis. DemodexNet 
demonstrates promising performance in predicting Demodex mite density and significantly improves 
dermatologists’ diagnostic accuracy. As this proof-of-concept study was limited to Korean patients 
with Fitzpatrick skin types III-IV, validation in diverse populations is required before broader clinical 
application.
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Facial erythema, often referred to as “red face,” is a readily identifiable clinical manifestation in dermatology1. 
However, its presentation can result from diverse dermatological diseases and other medical conditions2. 
Rosacea is one of the most common chronic inflammatory conditions that present with frequent flushing 
and facial erythema. This condition can greatly affect the quality of life of patients and is associated with an 
increased risk of cardiovascular, gastrointestinal, mental, and neurological problems3. Although rosacea is the 
most emblematic disease associated with “red face,” the differential diagnosis encompasses a broad spectrum 
of conditions, including contact dermatitis, atopic dermatitis, seborrheic dermatitis, acne vulgaris, lupus 
erythematosus, and dermatomyositis4,5.

Various genetic, environmental, and microbial determinants have been implicated in the etiology of facial 
erythema. Among these, Demodex mites, which reside within the pilosebaceous units of human facial skin as 
commensals, are significant contributors6. Demodex mites are commonly found in the skin of healthy adults, 
with a prevalence rate of 100% and a density of ≤ 5 mites/cm27. However, overproliferation of these mites can 
lead to pathogenic processes referred to as demodicosis, which result in various symptoms, including facial 
redness, irritation, itching, and inflammation8,9. The diagnosis of demodicosis is based on the evaluation of the 
number of Demodex mites present on the skin surface. This can involve a standardized skin surface biopsy or 
direct microscopic examination of fresh secretions from sebaceous glands (DME)10,11. However, the utility of 
these methodologies in routine clinical practice is limited owing to their painful, semi-invasive nature and the 
significant impact of operator proficiency on the results10,12.

This study aimed to develop a deep learning model called DemodexNet, which can predict the density of 
Demodex mites by analyzing clinical data and photographs of patients with facial erythema. Furthermore, 
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the study assessed the effectiveness of the model in enhancing the ability of dermatologists to identify 
overproliferation of Demodex mites.

Methods
Study design and participant selection
This diagnostic study was approved by the Institutional Review Board of Yonsei University Severance Hospital 
and Yongin Severance Hospital (approval numbers 4–2023-1008 and 2023-0382-001, respectively). The study 
adheres to the Checklist for Evaluation of Image-Based Artificial Intelligence Reports in Dermatology34 and the 
Standards for Reporting of Diagnostic Accuracy Studies reporting guidelines. The requirement for informed 
consent was waived because retrospective and deidentified data were used.

This study included all patients diagnosed with facial erythema between January 2016 and August 2023 who 
underwent Demodex mite density measurement at two referral hospitals in South Korea: Severance Hospital 
and Yongin Severance Hospital. The Demodex mite density was quantified using the DME method, as previously 
described9,35. A density of > 5 mites/cm2 was classified as high (positive) Demodex infestation10. Patients were 
excluded if frontal facial photographs were not obtained during their clinic visit on the day of the Demodex 
examination.

Data preparation and preprocessing
The study included digital images of the face, which underwent an automated face detection and deidentification 
process to protect personally identifiable information. Using the Mediapipe library, facial landmark coordinates 
were extracted, and polygonal masks were drawn over the eyes and mouth to protect anonymity. To address 
class imbalance and prevent overfitting, data augmentation was applied, including geometric transformations 
and color-based enhancements. Full procedures are detailed in Supplementary Methods S1. Several approaches 
for handling class imbalance were compared, with data augmentation chosen as the preferred method (see 
Supplementary Table S5).

Additionally, clinical data were collected for each patient, including age, sex, clinical symptoms (itching, 
burning or stinging, edema, dryness, and flushing), serum allergy marker levels (eosinophil cationic protein, 
total immunoglobulin E (IgE), and eosinophil counts), patch test results, and the presence of extra-facial skin 
lesions32. Missing values in serum allergy markers (19.0% of the dataset) were imputed using the MissForest 
algorithm with optimized hyperparameters as detailed in Supplementary Methods S4.

Model development
To develop an AI model that learns the distribution of facial demodicosis and individual localized lesions 
situated around complex anatomical landmarks while integrating clinical information, we implemented a two-
fold strategy in our model development process. First, a stacking ensemble (SE) model was developed, layering 
networks focusing on the comprehensive facial image and localized patches indicative of Demodex infestation 
(Fig. 1a)20,21. Second, we applied the Globally-aware Multiple Instance Classifier (GMIC), a weakly supervised 
model designed for end-to-end training to independently identify patches associated with Demodex infestation 
from the full image (Fig. 1b)23,36. While the architectures of these models are independent and differ, both 
include global and local modules for capturing the nuanced features of Demodex infestation. Moreover, each 
model incorporates 12 clinical variables related to the image data in a distinct module, leading to a combined 
prediction model that merges insights from both image and clinical data (Supplementary Figure S1). The data 
collected from Severance Hospital constituted the primary dataset, with an allocation of 80% for model training, 
10% for validation, and 10% for internal testing. The entire dataset from Yongin Severance Hospital (100%) was 
designated as the external testing set (Table 1). Additionally, we employed 10-fold stratified cross-validation to 
maintain model performance robustness.

Fig. 1.  Overview of the DemodexNet model architecture. (a) Stacking ensemble (SE) model, (b) Globally-
aware Multiple Instance Classifier (GMIC) model.
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SE architecture
The SE framework comprises global, local, and clinical modules, which take as input a whole facial image 
G ∈ RH× W × 3, seven localized patches Pk ∈ RH× W × 3 with k = 1, . . . , 7, and clinical data C ∈ R12. We 

extracted patches, including the forehead, nose, cheeks, and chin, based on facial landmark coordinates obtained 
during the deidentification process. Each module employed an independent feature extractor, referred to as 
a base learner: fg  and fl (DenseNet121 for image modules) and fc (XGBoost for clinical data). The global 
module processes the whole face image G using a DenseNet121 and outputs a probability as

	 yg = fg (G)

Similarly, the local module processes each patch Pk  to output yl,k = fl (Pk), and the outputs from the local 
module are then summed to obtain the integrated local score:

	
yl =

∑
7
k=1yl,k

The clinical module produces yc = fc (C). These outputs are concatenated into a feature vector z = [yg, yl, yc], 
which is subsequently passed to a meta learner fm to obtain the final prediction:

	 ŷse = fm (z)

Each base learner is trained using the binary cross‑entropy loss:

	
Lb = BCE = − 1

N

∑
N
i=1 [yilogŷi + (1 − yi)log(1 − ŷi)]

Additional implementation details are provided in Supplementary Methods S2.

GMIC architecture
The GMIC also consists of global, local, and clinical modules. It takes as input the original high-resolution image 
x ∈ RH× W × 3 along with clinical data C. A global network fg  first extracts a feature map as follows:

	 hg = fg (x)

Characteristics

Dataset

Main External

Data collection period 2016. 1–2022. 12 2020. 3–2023. 8

Location (hospital) Department of dermatology, Severance Hospital Department of dermatology, Yongin Severance Hospital

Dataset allocation

Training (80%) External testing (100%)

Validation (10%)

(Internal) Testing (10%)

Camera type Digital camera (Canon EOS RP 24–105 mm; 26.2 megapixels) Digital camera (Canon EOS 800D, 24.2 megapixels)

Lighting condition Standardized indoor clinical lighting with a uniform blue background and white overhead illumination

Patient demographics

 Unique individuals, n 1024 100

 Female sex 697 (68.1) 70 (70.0)

 Age at diagnosis 32.5 (24.0–47.0) 37.5 (28.0–53.0)

High Demodex density 255 (24.9) 45 (45.0)

Associated symptomsa

 Flushing 434 (42.4) 49 (49.0)

 Itching 828 (80.9) 78 (78.0)

 Burning/stinging 223 (21.8) 30 (30.0)

 Edema 127 (12.4) 21 (21.0)

 Dry sense 154 (15.0) 19 (19.0)

Positive patch test 316 (30.9) 41 (41.0)

Extrafacial skin involvement 490 (47.9) 26 (26.0)

Serum allergy marker

 ECP (µg/L) 26.2 (17.0–41.0) 22.7 (16.2–31.7)

 Eosinophil count (cells/µL) 160.0 (80.0–310.0.0.0) 111.2 (67.5–205.0)

 Total IgE (IU/mL) 111.2 (35.0–461.9.0.9) 66.7 (27.7–205.0)

Table 1.  Summary of the main and external datasets. ECP, eosinophil cationic protein; IgE, immunoglobulin 
E. Data are presented as n (%) or median (interquartile range)aPatients might be listed in >1 category
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Then, a 1 × 1 convolution followed by a sigmoid activation produces a saliency map A, which highlights 
regions potentially relevant to Demodex infestation. Based on the saliency map, K regions of interest (ROIs), 
representing the most informative patches, are selected from the input x according to the following procedure:

	

{
∼
xk

}
= retrieve_roi (A)

We employed a greedy algorithm to retrieve K patches, denoted as 
∼
xk ∈ Rhc,wc , where we set wc = hc = 256. 

We heuristically set K =6 (see Supplementary Table S6), and each patch was then processed by a local network 
fl to obtain feature vectors:

	
∼
hk = fl

(
∼
xk

)

Attention weights α k  are computed using a gated mechanism, as the selected ROI patches do not contribute 
equally to the final prediction. This mechanism enables the model to assign higher weights to more informative 
patches, thereby enabling effective aggregation of local features:

	
α k =

exp
{

wT
(
tanh

(
V h̃⊤

k

)
⊙ sigm

(
Uh̃⊤

k

))}
∑

K
j=1 exp

{
wT

(
tanh

(
V h̃⊤

j

)
⊙ sigm

(
Uh̃⊤

j

))}

with learnable parameters w ∈ RL, V ∈ RL× M , and U ∈ RL× M  with L = 512 and M = 128. The 
weight sum via attention-weighted aggregation,

	
z =

∑ K

k=1
α k

∼
hk

is used to represent the locally aggregated feature.
Clinical data are separately encoded by a multi‑layer perceptron to produce the feature vector hc = fc (C). 

To integrate the global and local feature, we applied global max pooling on hg  and concatenated it with z and 
hc. The fused representation is subsequently passed through a fully connected layer with a softmax activation 
to yield the final prediction:

	 ŷgmic = ŷfusion = soft max(wf [GMP (hg) , z]⊤

where wf  values are learnable parameters. The GMIC is trained with the following loss function:

	
Lgmic =

∑
BCElocal + BCEglobal + BCEfusion + β Lreg (A)

where β  is a weighting coefficient. To encourage the saliency map to focus only on highly informative regions, 
we applied the L1 regularization on A:

	
Lreg (A) =

∑
(i,j)

|Ai,j |

Further implementation details are provided in Supplementary Methods S3.

Human evaluators and decision study
Twenty-one participants, comprising 10 dermatology residents and 11 board-certified dermatologists, were 
recruited to evaluate the ability of human evaluators to classify Demodex infestation cases using facial images 
and clinical data. The study also aimed to assess potential performance improvement with the assistance of 
DemodexNet. An anonymous online questionnaire was administered in two parts over a two-week interval 
using Google Survey (Supplementary Figure S2).

We used all 100 cases from the internal testing dataset in Part I. Participants were presented with original-
resolution photographs and associated clinical data (age, sex, clinical symptoms, and the presence of extra-facial 
skin lesions). They were asked to classify each case as positive or negative for Demodex infestation. In Part II, 
participants were given DemodexNet’s confidence scores (ranging from 0 to 1) for each case, with scores ≥ 0.5 
indicating a model prediction of Demodex positivity. Participant performance was assessed by comparing 
their predictions with the gold standard label. Case sequences were shuffled between parts to ensure unbiased 
responses. Reference diagnoses and participant scores were not disclosed until the conclusion of the study.

Evaluation of algorithm performance and statistics
Model performance was evaluated using top-1 accuracy, sensitivity, specificity, and the F1 score. Receiver 
operating characteristic (ROC) curves were plotted using sensitivity and specificity for each threshold, and 
areas under the curve (AUCs) were calculated. Additionally, 95% confidence intervals (CIs) were obtained via 
nonparametric bootstrap of predictions with replacement (N = 1000), using the same sample size as the internal 
test set and external set for each resample37.

For a visual explanation of Demodex mite distribution predictions, we implemented gradient-weighted class 
activation mapping (Grad-CAM)38 on each base learner for the SE model. For the GMIC model, we visualized 
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saliency maps based on the algorithm’s inherent attention scores. To identify significant variables in predicting 
algorithm outcomes for the clinical-data-based model, we employed SHapley Additive exPlanations (SHAP) to 
visualize feature importance rankings39. Additionally, we conducted multivariate logistic regression analyses to 
identify predictive factors associated with high Demodex mite density.

We determined the accuracy, sensitivity, and specificity of human participants for each part, comparing 
their performances before and after algorithm assistance using the McNemar test. This test was specifically 
chosen for paired nominal data, where each evaluator assessed the same 100 images twice. We constructed 2 × 2 
contingency tables for each evaluator comparing their diagnostic decisions (correct/incorrect) between Part I 
(image only) and Part II (image with AI assistance) to evaluate whether AI assistance significantly improved 
diagnostic performance.

Fleiss’ kappa (κ) values were calculated to evaluate agreement among participants’ responses, and we 
generated a heatmap using hierarchical agglomerative clustering to visualize interparticipant agreement rates24,40. 
Statistical analyses were performed using Python version 3.9.7 and R version 4.1.3. Statistical significance was set 
at a two-tailed P-value < 0.05.

Results
Study dataset
The study included 1,024 and 100 patients in the main and external datasets, respectively. The main dataset was 
collected at Severance Hospital from January 2016 to December 2022, while the external dataset was obtained 
at Yongin Severance Hospital from March 2020 to August 2023. Both sites used standardized indoor clinical 
lighting with a consistent blue background and white overhead illumination, along with similar digital cameras. 
The datasets showed comparable gender distributions (68.1% and 70.0% female, respectively) but differed in 
median age at diagnosis (32.5 vs. 37.5 years) and notably in Demodex positivity rates (24.9% vs. 45.0%). Detailed 
participant characteristics are summarized in Table 1, and baseline comparisons of clinical features by Demodex 
mite density are shown in Supplementary Table S1.

The study included 1,024 and 100 patients in the main and external datasets, respectively. Both datasets 
predominantly comprised female participants (68.1% and 70.0%, respectively), with median ages at diagnosis of 
32.5 and 37.5 years, respectively.

Participant characteristics are summarized in Table  1, and baseline comparisons of clinical features by 
Demodex mite density are shown in Supplementary Table S1.

Model performance
Table  2 summarizes the performance metrics of the DemodexNet models—sensitivity, specificity, F1 score, 
ROC–AUC, and accuracy—reported from the fold with the smallest absolute validation–test ROC–AUC gap. 
For the SE model, the image-based model on the internal testing set achieved an ROC–AUC of 0.825 (95% CI: 
0.734–0.903), with relatively high specificity (0.980 [95% CI: 0.937–1.000]) and low sensitivity (0.260 [95% CI: 
0.143–0.380]). The clinical data-based model achieved an ROC–AUC of 0.842 (95% CI: 0.751–0.915), while the 
combination of these two models yielded an ROC–AUC of 0.823 (95% CI: 0.728–0.896). For the GMIC model, 
the image-based model achieved an ROC-AUC of 0.833 (95% CI: 0.753–0.908) on the internal testing set, with 
balanced specificity (0.760 [95% CI: 0.633–0.872]) and sensitivity (0.640 [95% CI: 0.500–0.767]). The clinical 
data-based model achieved an ROC–AUC of 0.790 (95% CI: 0.680–0.873), while the combined model yielded an 
improved ROC–AUC of 0.865 (95% CI: 0.785–0.934). Both models exhibited similar trends in the external test 
dataset, although with lower ROC–AUC and accuracy values than the internal test set results (Supplementary 
Figure S3).

Augmented decision-making with artificial intelligence
We invited 21 dermatologists to participate in a two-step reader study to validate the decision support provided 
by DemodexNet. Without AI assistance, participants demonstrated an accuracy of 0.637 (95% CI: 0.615–0.656), 
representing an absolute improvement of 6.9% (95% CI: 4.1–9.7%, P <.001). The effect was most pronounced 
for sensitivity, with an absolute increase of 13.6% (95% CI: −16.6–16.6%, P <.001), while specificity remained 
relatively stable with a 0.2% change (95% CI: −2.6–2.6%, P =.95).

When analyzing human raters divided into three subgroups based on clinical experience, the magnitude of 
improvement varied notably. The low-experience group (> 2 years) showed the most significant benefit, with 
an 11.6% absolute accuracy improvement, while the high-experience group (> 8 years) demonstrated a 5.8% 
improvement; both achieved statistical significance (P <.001 and P =.01, respectively). The low-experience group 
initially underperformed compared with the AI model in Part I. However, in Part II, this group showed more 
pronounced improvements in accuracy, sensitivity, and specificity than more experienced groups (Fig. 2a and 
Supplementary Table S2). Comparing responses between Parts I and II to assess changes in rater response based 
on AI predictions, we observed that less experienced raters were more likely to modify their responses to correct 
answers when assisted by AI. Notably, this increased correction rate was not accompanied by a higher tendency 
to follow incorrect AI predictions (Fig. 2b).

Following Part II, we conducted a 5-point questionnaire-based assessment of DemodexNet among human 
evaluators13. On the basis of the survey results, we divided participants into two subgroups: those with a positive 
impression of DemodexNet (Trust group) and those without (Untrust group). We then performed a subgroup 
analysis (Supplementary Figure S4). Results showed that the Trust group demonstrated significantly higher 
positive benefits when modifying their responses according to AI predictions. Notably, the two groups had no 
significant difference in responses to incorrect AI predictions (Fig. 2c).
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Effect of AI predictions on human responses
Figure 3a and b illustrate the interrater agreement rates among participant responses, AI model predictions, 
and gold standard labels. In Part I, significant disagreements were observed among participants (Fig. 3a, Fleiss’ 
κ = 0.388 [95% CI, 0.374–0.401]). In contrast, Part II showed a significant improvement in interrater agreement 
(Fig. 3b, Fleiss’ κ = 0.453 [95% CI, 0.439–0.466]). Interestingly, while the interrater agreement rate between the 
low-experience and expert groups was notably lower than that in other group pairs in Part I, this disparity 
showed substantial improvement after AI assistance in Part II.

We sought to examine the selection tendencies of human evaluators and AI in successfully predicting high 
Demodex mite density cases, based on their actual clinical diagnoses. Two dermatologists reviewed and labeled 
the final clinical diagnoses of 100 cases from the internal test set. We then analyzed the distribution of clinical 
diagnoses among correct answers given by humans, humans with AI assistance, and the AI model alone.

Overall, the AI model showed higher accuracy for high Demodex cases (44.0% vs. 23.8%), whereas 
dermatologists performed slightly better in low Demodex cases (34.7% vs.31.5%). Human evaluators tended 
to select papulopustular rosacea more frequently than the AI model in high Demodex cases (58.4% vs. 41.1%), 
whereas the AI model showed a higher tendency to choose erythematotelangiectatic rosacea than humans 
(27.5% vs. 16.0%).

In low Demodex cases, humans favored erythematotelangiectatic rosacea selections compared with the AI 
model (10.1% vs. 2.9%), whereas the AI model showed a higher tendency to select atopic dermatitis or acne/
folliculitis. Notably, human evaluators assisted by AI demonstrated intermediate values in both overall accuracy 
and relative distribution of clinical diagnoses, falling between unassisted humans and the AI model alone (Fig. 3c 
and d and Supplementary Table S3).

Explainable AI models
Feature importance rankings based on absolute SHAP values revealed that the presence of extra-facial skin lesions 
had the most decisive influence on the model’s output. This was followed by age, eosinophil cationic protein, 
total IgE, eosinophil count, flushing, and positive patch test results (Supplementary Figure S5). Subsequent 

Model (class)

Classification performance (95% CI)a

Sensitivity Specificity F1-Score ROC-AUC Accuracy P-valueb

SE model

 Internal testing set

 Image-based model 0.260
(0.143–0.380)

0.980
(0.937–1.000)

0.406
(0.255–0.543)

0.825
(0.734–0.903)

0.620
(0.520–0.720) 0.97

 Clinical-data-based model 0.840
(0.731–0.935)

0.780
(0.660–0.894)

0.816
(0.725–0.889)

0.842
(0.751–0.915)

0.810
(0.720–0.880) 0.74

 Combined model 0.300
(0.226–0.371)

0.960
(0.927–0.987)

0.448
(0.362–0.529)

0.823
(0.728–0.896)

0.630
(0.573–0.683) Ref

 External testing set

 Image-based model 0.378
(0.243–0.531)

0.800
(0.696–0.896)

0.466
(0.324–0.600)

0.657
(0.550–0.754)

0.610
(0.520–0.710) 0.59

 Clinical-data-based model 0.733
(0.585–0.860)

0.618
(0.491–0.741)

0.667
(0.543–0.769)

0.707
(0.609–0.806)

0.670
(0.580–0.760) 0.89

 Combined model 0.356
(0.227–0.500)

0.782
(0.667–0.879)

0.438
(0.281–0.572)

0.697
(0.589–0.790)

0.590
(0.490–0.690) Ref

GMIC model

 Internal testing set

 Image-based model 0.640
(0.500–0.767)

0.760
(0.633–0.872)

0.681
(0.571–0.784)

0.833
(0.753–0.908)

0.700
(0.610–0.790) 0.57

 Clinical-data-based model 0.860
(0.759–0.952)

0.660
(0.522–0.791)

0.782
(0.690–0.862)

0.790
(0.680–0.873)

0.760
(0.670–0.840) 0.22

 Combined model 0.776
(0.681–0.860)

0.800
(0.692–0.907)

0.776
(0.681–0.860)

0.865
(0.785–0.934)

0.780
(0.700–0.850) Ref

 External testing set

 Image-based model 0.644
(0.512–0.780)

0.600
(0.468–0.736)

0.604
(0.483–0.720)

0.674
(0.568–0.777)

0.620
(0.530–0.710) 0.32

 Clinical-data-based model 0.800
(0.685–0.913)

0.564
(0.439–0.696)

0.686
(0.571–0.777)

0.705
(0.604–0.804)

0.670
(0.570–0.770) 0.58

 Combined model 0.756
(0.625–0.878)

0.618
(0.480–0.746)

0.680
(0.562–0.781)

0.746
(0.650–0.840)

0.680
(0.590–0.770) Ref

Table 2.  Performance of the demodexnet models. CI, confidence interval; GMIC, Globally-aware Multiple 
Instance Classifier; Ref, reference model; ROC-AUC, area under the receiver operating characteristic curve; 
SE, stacking ensembleaCalculated using the micro-averaged value of each severity class for the given model, 
using bootstrap resampling (N = 1000) of the test datasetbThe P-value from the binomial test measures the 
difference in performance between the combined model and image- or clinical data-based model in terms of 
ROC-AUC.
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Fig. 3.  Impact of DemodexNet assistance on interrater agreement and diagnostic patterns. (a) Interrater 
agreement heatmap for Part I (image only). (b) Interrater agreement heatmap for Part II (image + DemodexNet 
assist). (c) Distribution of diagnoses for low Demodex cases. (d) Distribution of diagnoses for high Demodex 
cases. PPR, papulopustular rosacea; ETR, erythematotelangiectatic rosacea; ACD, allergic contact dermatitis; 
AD, atopic dermatitis; SD/POD, seborrheic dermatitis/perioral dermatitis.

 

Fig. 2.  Performance of DemodexNet and its impact on human evaluators. (a) Area under the receiver 
operating characteristic curve for the DemodexNet models and human evaluators before and after AI 
assistance. (b) Benefit of AI assistance stratified by evaluator experience level. (c) Benefit of AI assistance based 
on evaluators’ trust in AI. GMIC, Globally-aware Multiple Instance Classifier; SE, stacking ensemble; TPR, true 
positive rate; FPR, false positive rate; AI, artificial intelligence. “Benefit” is defined as the change in response 
from Part 1 to Part 2 that aligns with the response generated by AI, scored as positive when the changed 
response matches the gold label and negative when it does not. *P <.05, **P <.001 for Mann–Whitney U test.
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multivariate logistic regression analysis was performed using two models: a stepwise variable selection model 
(Model 1) and a model using the Top-7 features from SHAP analysis (Model 2). Both models consistently showed 
that age (odds ratio [OR]: 1.32, 95% CI: 1.19–1.46 for Model 1; OR: 1.25, 95% CI: 1.12–1.38 for Model 2) and 
positive patch test results (OR: 1.60, 95% CI: 1.13–2.25 for Model 1; OR: 1.43, 95% CI: 1.01–2.04 for Model 2) 
were positively correlated with Demodex mite density. Conversely, extra-facial skin involvement was negatively 
correlated with Demodex mite density in both models (OR: 0.16, 95% CI: 0.11–0.24 for Model 1; OR: 0.20, 95% 
CI: 0.13–0.31 for Model 2, Table 3).

Analysis of saliency maps from the GMIC model and Grad-CAM from the SE model revealed that the 
AI models primarily recognized the central facial region, the leading proliferation site for Demodex mites. 
Furthermore, the models demonstrated the ability to detect individual skin lesions characteristic of demodicosis, 
such as fine-scaled papules or tiny pustules (Fig. 4; see also Supplementary Figure S6 for additional examples).

Discussion
Various AI models have been developed for inflammatory dermatoses causing facial erythema. Most of these 
are based on single convolutional neural network models for classification or severity grading of conditions 
such as acne or rosacea14–18. Particularly in individuals with skin of color, diagnosing facial erythema diseases, 
such as rosacea, based solely on photographs or clinical findings can be challenging19. Although Demodex mite 
density testing aids in differential diagnosis, its limited availability prompted us to propose DemodexNet as a 
complementary diagnostic tool.

In this study, we developed DemodexNet, a deep learning model that predicts Demodex mite density in 
patients with facial erythema using clinical data and photographs. The model demonstrated considerable 
performance, with ROC-AUC values of 0.823–0.865 in internal testing. When used as a decision-support tool, 
DemodexNet was associated with an improvement in diagnostic accuracy from 63.7% to 70.6% (P <.001) among 
participating dermatologists. Notably, less experienced dermatologists and those who trusted DemodexNet 
more benefited the most from AI assistance without increasing errors. The model primarily recognized facial 
areas and individual lesions characteristic of demodicosis. Additionally, we identified unique clinical features 
associated with increased Demodex mite density.

Accurate prediction of Demodex mite density necessitates a model that incorporates both the distribution 
of erythema throughout the face and the detailed aspects of individual lesions, while also considering clinical 
features associated with facial erythema5,8. Given the complex anatomical landmarks of the face, deriving 
Demodex mite density directly from a whole face image using a single model is challenging20. Therefore, we 
constructed a deep ensemble model based on SE and GMIC, capable of capturing global and local features from 
multiple facial subregions while incorporating clinical factors. The SE model uses a parallel arrangement of base 
models for the whole face and local patches, training global and local features in a complementary manner20,21. 
The GMIC model employs flexible localized patches that vary for each face, thus providing an individualized, 
patient-tailored approach22,23.

Several studies have investigated the effect of AI assistance on the diagnostic accuracy of clinicians for 
various skin conditions, including skin cancers, pressure ulcers, and lupus erythematosus24–28. Although the 
present study focused on a different disease with a distinct dataset, the effect of AI assistance on decision-making 
among survey participants shared similar aspects with previous research. Specifically, raters with less experience 
or those with higher trust in AI demonstrated greater performance gains from AI-based support25–27. Moreover, 

Independent variable

Univariate analysis
Multivariate analysis
Model 1: stepwise

Multivariate analysis
Model 2: SHAP

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Female sex 2.99 (2.08–4.29) < 0.001 - - - -

Age at the diagnosis, yearsa 1.52 (1.38–1.67) < 0.001 1.32 (1.19–1.46) < 0.001 1.25 (1.12–1.38) < 0.001

Associated symptoms

 Flushing 2.55 (1.91–3.41) < 0.001 1.38 (0.99–1.92) 0.058 1.33 (0.96–1.86) 0.09

 Itching 0.33 (0.24–0.46) < 0.001 - - - -

 Burning/stinging 2.29 (1.66–3.15) < 0.001 1.34 (0.94–1.91) 0.11 - -

 Edema 2.11 (1.43–3.11) < 0.001 - - - -

 Dry sense 2.79 (1.95–3.99) < 0.001 - - - -

Positive patch test result 1.28 (0.95–1.73) 0.11 1.60 (1.13–2.25) 0.008 1.43 (1.01–2.04) 0.045

Extra-facial skin involvement 0.12 (0.08–0.18) < 0.001 0.16 (0.11–0.24) < 0.001 0.20 (0.13–0.31) < 0.001

Serum allergy marker value

 ECP (µg/L)a 0.71 (0.64–0.80) < 0.001 - - 0.87 (0.76–0.98) 0.025

 Eosinophil count (cells/µL)b 0.60 (0.52–0.68) < 0.001 - - 0.88 (0.74–1.04) 0.14

 Total IgE (IU/mL)b 0.91 (0.88–0.94) < 0.001 - - 0.98 (0.95–1.01) 0.11

Table 3.  Univariate and multivariate logistic regression analyses of predictive factors associated with high 
Demodex mite density. CI, confidence interval; ECP, eosinophil cationic protein; IgE, immunoglobulin E; OR, 
odds ratio; SHAP, SHapley Additive exPlanations aThe original age and serum levels of ECP are divided by 
10bThe original eosinophil count and total serum IgE level are divided by 100

 

Scientific Reports |          (2026) 16:456 8| https://doi.org/10.1038/s41598-025-29791-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


concordance in clinical decisions between diverse groups of experts increased with augmented decision-
making24,27. Additionally, considering the differences in clinical diagnosis labels between AI and humans, they 
appear to use distinct diagnostic clues to determine high or low Demodex cases. Notably, these differences were 
mitigated in humans receiving decision support, proving that AI and clinician expertise can complement each 
other29.

Our findings suggest that visualization techniques derived from two different model architectures consistently 
highlight the distribution of Demodex mites across the whole face and individual lesions. This attention was 
particularly pronounced in individuals with typical papulopustular rosacea, known for high Demodex mite 
density (Fig. 3)30,31. Interestingly, compared with humans, the AI model more often classified cases as high 
Demodex mites in conditions with atypical facial erythema distribution, such as erythematotelangiectatic 

Fig. 4.  Visualization of DemodexNet’s attention mechanisms. (a) GMIC model saliency maps and attention 
scores for three representative cases. For each case: input image (left), patch map showing regions of 
interest (center), and saliency map highlighting areas of model focus (right). Attention scores (α) indicate 
the importance of each patch. (b) Class activation mapping of the SE model, showing heat maps of regions 
contributing to the model decisions. (1) to (4) represent different facial local patches with their corresponding 
close-up views and activation maps. GMIC, Globally-aware Multiple Instance Classifier; SE, stacking ensemble.
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rosacea or contact dermatitis (Fig. 3d)12,32. This suggests that the decision-making of AI may rely more heavily 
on recognizing microscopic textures than human assessments33.

The performance gap between internal and external validation warrants careful consideration. Our 
analysis revealed two primary factors contributing to this difference. Clinically, the external dataset exhibited 
substantially different population characteristics, including nearly double the rate of high Demodex density 
(45.0% vs. 24.9%) and varying extrafacial involvement patterns, suggesting distinct clinical phenotypes between 
institutions. Additionally, inter-examiner variability in the operator-dependent DME method likely introduced 
differences in ground-truth labeling, despite standardized protocols. From a technical perspective, both our 
multi-modal architectures (SE and GMIC) may be inherently sensitive to distributional shifts. The SE model’s 
reliance on fixed patches may capture non-discriminative features, whereas GMIC’s joint optimization of global, 
local, and clinical modules with shared gradients could lead to feature misalignment under distribution shift. 
Although multi-modal fusion effectively captures comprehensive information, it also increases vulnerability to 
dataset heterogeneity. These findings highlight that the observed performance degradation reflects both real-
world clinical variation and architectural limitations, emphasizing the need for domain adaptation strategies in 
future iterations of the model.

This study has some limitations. First, this work represents a proof-of-concept study with limited 
generalizability. The data were sourced from two referral hospitals in South Korea, including only a single ethnic 
group with Fitzpatrick skin types III and IV. This homogeneous population restricts the model’s applicability 
to diverse ethnic backgrounds and other skin phototypes. Future multi-center, multi-ethnic validation studies 
are essential before clinical deployment in broader populations. Second, our dataset exhibited significant 
class imbalance, with only 24.9% positive cases in the training set, which may affect model sensitivity and 
generalization. Third, the external validation cohort was relatively small (n = 100), which limited our ability 
to comprehensively assess model generalizability. Fourth, the DME method used for Demodexmite detection 
is operator dependent10, which may lead to variations in sensitivity among different examiners. While each 
institution employed a single experienced examiner (> 5 years) using standardized protocols to minimize 
within-site variability, we lack inter-rater reliability data between institutions, which limits our ability to assess 
the consistency of our ground truth labels across datasets.

Lastly, the performance of human participants may have been underestimated in our experimental setting, 
which differed from real-world clinical practice. Participants were provided only frontal facial photographs and 
limited clinical information, without access to diagnostic tools, such as dermoscopy.

In conclusion, this diagnostic study used clinical data and photographs to develop and evaluate DemodexNet, 
a deep learning model for predicting Demodex mite density in patients with facial erythema. The model showed 
promising results in predicting Demodex mite density and significantly improved the diagnostic accuracy of 
dermatologists when used as a decision-support tool. The ability of the model to recognize both global facial 
features and individual lesions characteristic of demodicosis highlights its potential as a valuable aid in clinical 
practice. Although future studies are needed to validate these results across diverse populations and clinical 
settings, DemodexNet could potentially aid in clinical evaluation and the management of Demodex-related 
facial erythema, particularly in resource-limited settings or for less experienced clinicians.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to ethical and 
privacy restrictions. The data contain potentially identifiable facial photographs of patients with dermatological 
conditions, and public sharing of these images is prohibited by the institutional ethics committees and data 
protection policies of Yonsei University Health System. Even with deidentification procedures applied, facial 
features remain inherently identifiable, and patients did not provide consent for public data sharing. However, 
deidentified clinical data and aggregated statistical results are available from the corresponding author upon 
reasonable request. The code supporting the findings of this study is openly available at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​L​-​Y​
U​N​N​A​/​d​e​m​o​d​e​x​_​G​M​I​C​_​p​y​t​o​r​c​h​.​​
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