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Deep learning (DL) reconstruction is increasingly applied in clinical magnetic resonance imaging 
(MRI) to improve image quality and reduce scan time, but its impact on dental metal artifacts 
remains unclear. This pilot phantom study evaluated DL reconstruction compared with conventional 
reconstruction for various implant crowns. Acrylic phantoms containing titanium implants with four 
crown types—zirconia, PMMA, gold, and Ni–Cr metal—were scanned on a 3.0-T MRI system. Axial 
T1- and T2-weighted sequences were acquired using identical imaging parameters. Image quality 
(noise and signal-to-noise ratio [SNR]) and metal artifacts (visual scores and artifact ratio) were 
evaluated in the slice showing the largest crown area. DL reconstruction consistently reduced noise 
and improved SNR across all crown types and sequences. Metal artifact severity followed the material-
dependent order: zirconia < PMMA < gold < Ni–Cr metal, in both sequences. Visual assessment showed 
no difference in artifact severity between DL and conventional images. DL reduced artifacts only in 
zirconia crowns on T2-weighted sequence (10.38% vs. 9.31%). These findings indicate that although 
DL reconstruction enhances overall image quality, its effectiveness in reducing dental metal artifacts 
remains limited. As this is a pilot study using phantoms, further in vivo validation is necessary.
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Magnetic resonance imaging (MRI) is a technique for acquiring images of the body using a strong magnetic 
field and radiofrequency energy. Unlike other imaging modalities, it does not use ionizing radiation and offers 
significant advantages in the evaluation of soft tissues.1 In the dental field, MRI is used for the evaluation of oral 
cancers, salivary gland diseases, and temporomandibular joint disorders, with ongoing research expanding its 
applications to complex periapical lesions, periodontal disease, and nerve damage.2

As the population ages, the prevalence of intraoral prostheses—including dental implants—continues to rise. 
Various prosthetic materials produce metal artifacts due to differences in magnetic susceptibility between the 
prosthetic material and the surrounding tissues.3,4 Magnetic susceptibility refers to the property of a material 
to become magnetized when exposed to a magnetic field. While human tissues exhibit weak diamagnetic 
properties, metals typically have paramagnetic or ferromagnetic characteristics.3,4 When metal is placed within 
the main magnetic field of MRI, it generates an additional magnetic field in its vicinity, making the main field 
inhomogeneous and leading to the occurrence of metal artifacts. Metal artifacts are defined as signal intensity 
distortions and signal loss surrounding a prosthesis and differ in appearance from the metal artifacts observed in 
computed tomography (CT) or cone-beam computed tomography (CBCT) (Fig. 1).1 These artifacts hinder the 
accurate assessment of lesion signal intensity and, in severe cases, obscure critical anatomical regions, making 
diagnosis difficult (Fig.  2). Previous studies have investigated MRI artifacts associated with various types of 
metallic dental prostheses and materials.5,6 Metal crowns and orthodontic stainless steel wires have been shown 
to produce more pronounced artifacts, while zirconia and resin materials are associated with less severe artifacts.

Unlike CT, where a single exposure can yield multiple reconstructions, MRI requires separate acquisitions 
for each sequence (e.g., T1-weighted, T2-weighted) in most cases, and artifact severity can vary between 
sequences. Several sequences have been developed to reduce these artifacts, including slice-encoding for metal 
artifact correction (SEMAC) and multi-acquisition with variable resonance image combination (MAVRIC).7–10 
However, these techniques involve longer acquisition times and may not be widely available in routine MRI.

Recently, artificial intelligence (AI), particularly deep learning (DL) reconstruction, has been introduced 
to improve MRI efficiency and image quality. Commercially available and vendor-supplied DL reconstruction 
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algorithms are increasingly being used routinely in clinical settings. DL reconstruction algorithms have 
demonstrated significant reductions in noise and scan time, and have been validated for clinical use in multiple 
anatomical regions.11–17 Despite these advancements, no studies to date have evaluated the image quality and 
metal artifacts of DL reconstructed images for various implant prostheses.

This pilot phantom study aimed to evaluate the image quality and metal artifacts in DL reconstructed MR 
images of four types of dental implant crowns and compare them with conventional images.

Fig. 2.  A patient with lymphoma involving the right mandibular ramus. (A) Panoramic radiograph. (B) Axial 
CT image demonstrating a soft tissue mass with mandibular bone destruction. (C) Axial MR image. The lesion 
is obscured by severe metal artifacts, making diagnosis impossible.

 

Fig. 1.  A patient with multiple dental prostheses and implants. (A) Panoramic radiograph. (B) Axial CBCT 
image showing metal artifacts: cupping artifacts (distortion of metallic structure), beam hardening (dark 
bands), and scatter (white streaks). (C) Axial MR image. Metal artifacts (dashed circle) appear as a dark and 
bright area adjacent to the prosthesis.
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Methods
Phantom preparation for dental implant crowns
Four types of crowns were used in the fabrication of the phantom: zirconia, polymethyl methacrylate (PMMA), 
gold, and nickel-chrome (Ni–Cr) metal, which are widely used in implant prostheses (Table 1, Fig. 3A). Because 
metal artifacts vary depending on the size and shape of the metal, crowns of identical dimensions and shapes 
were fabricated using a CAD-CAM system on titanium implant fixtures (diameter × length: 4.5 × 12 mm) and 
abutments (diameter × length: 4.5 × 5.5 mm) (Dentium, Seoul, Korea).

After each crown was attached to its corresponding implant using temporary cement, the crown was 
positioned so that its margin was centered within a cube-shaped acrylic container measuring 10 × 10 × 10 cm. 
A 1.5% agar solution was prepared by mixing Select Agar powder (ThermoFisher Scientific, Waltham, MA, 
USA) with distilled water, autoclaved at 121 °C for 15 min, poured into the container, and left to harden at room 
temperature (Fig. 3B).

Fig. 3.  Schematic representation of the study. (A) Fabrication of the four crown types using a CAD-CAM 
system. (B) Phantom preparation containing the implant and crown embedded in a 1.5% agar solution. The 
crown margin is positioned at the center ( +). (C) Post-MRI acquisition image analysis on the axial slice 
showing the largest crown area. Image quality (noise and SNR) and visual score of metal artifact were assessed 
using across the entire image, and metal artifacts were analyzed within the central 5 × 5 cm square ROI (red 
box). Signal intensity for binarization was measured in four 1 × 1 cm ROIs (blue boxes) placed immediately 
outside the four corners of the central ROI. After binarization, metal artifacts appeared as black areas, and their 
area was automatically calculated as a percentage of the total ROI. PMMA, polymethyl methacrylate; Ni–Cr, 
nickel-chrome; SNR, signal-to-noise ratio; ROI, region of interest.

 

Type of crown Product name Manufacturer

Zirconia KATANA Zirconia STML A3 Kuraray Noritake Dental Inc (Japan)

PMMA VIPIblock monocolor VIPI industria (Brazil)

Gold Myeso A˚ YESBIO Co. (Korea)

Ni–Cr metal Heraenium NA–for C&B Heraeus Kulzer GmbH (Germany)

Table 1.  The four implant crown types used in this study. PMMA polymethyl methacrylate, Ni–Cr nickel-
chrome.
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MRI acquisition
Axial MRI scans of the four phantoms were obtained using a 3.0-T scanner (Pioneer; GE Healthcare, Waukesha, 
WI, USA) with a 16-channel large flex coil. All phantoms were placed in the same marked position on the 
imaging table and conventional and DL images of T1- and T2-weighted sequences were acquired using 
the same imaging parameters (Table 2). DL images were generated with AIR Recon DL (GE Healthcare), a 
vendor-provided algorithm. Instead of relying solely on Fourier transform-based reconstruction, conventional 
reconstruction, AIR Recon DL uses DL to fill in missing data points in under sampled k-space data. Leveraging 
DL models trained on high-resolution images, the software is able to reconstruct fine details that may be lost 
with traditional under sampling imaging techniques, meaning higher resolution images can be generated using 
less data. It also removes noise and ringing from raw images, ensuring clear scans at all times. This can reduce 
scan times by up to 50%, streamlining workflow and improving patient experience.18 It is increasingly being used 
in clinical practice.

Image analysis
Axial slices displaying the largest crown area in each sequence were exported as Digital Imaging and 
Communications in Medicine (DICOM) files to a personal computer. Image quality and metal artifacts were 
analyzed on the corresponding slices (Fig. 3C). The analysis results were compared between DL and conventional 
images for the T1- and T2-weighted sequences, respectively.

Image quality was quantitatively evaluated using measurements of noise and signal-to-noise ratio (SNR). In 
MRI, signals are generated from the target of interest, but unwanted noise is also produced. The ratio of signal 
to noise is referred to as the SNR. A high SNR indicates that the signal is clear and readily detectable, whereas a 
low SNR suggests that the signal is obscured by noise and difficult to distinguish. Lower noise levels and higher 
SNR values correspond to better image quality.

Since noise and SNR may vary depending on the region of interest (ROI) settings, we analyzed the entire 
image using the NumPy, pydicom, cv2, and pywt packages in Python (version 3.7.9) used in previous studies.19 
Noise estimation was performed using a method based on hybrid discrete wavelet transform combined with 
edge information removal-based algorithm. This approach assumes that noise energy is evenly distributed across 
all wavelet sub-bands, whereas image signal energy is primarily concentrated in the low-low, low–high, and 
high-low sub-bands.20 SNR was then calculated by dividing the mean signal of the slice by the estimated noise 
levels given in the standard deviation (SD).

Metal artifacts were evaluated both qualitatively and quantitatively. For visual assessment, two radiologists 
with 15 and 25 years of experience, respectively, independently rated artifact severity using a 5-point ordinal 
scale (1 = severe artifacts, 5 = minimal artifacts). To assess inter-observer agreement for the 5-point ordinal 
visual scores, Cohen’s kappa was used. The average score from the two readers was used for subsequent analysis. 
Quantitative evaluation was performed using binarization methods described in previous studies21–23 and 
was performed by an oral radiologist with 25 years of experience using ImageJ software (version 1.54 g; NIH, 
Bethesda, MD, USA; available at https://imagej.net/ij/download.html). A 5 × 5 cm square ROI encompassing 
the crown was placed at the center of each image, and four 1 × 1 cm square ROIs were positioned immediately 
outside the corners of the central ROI. The mean and SD of the signal intensity within the four small ROIs 
were calculated. The maximum (max) threshold and minimum (min) threshold were defined as the mean plus 
three SD and the mean minus three SD, respectively. Binarization was then performed using these calculated 
thresholds. Following binarization, the black areas including the crown were defined as metal artifacts, and 
these black regions were automatically calculated as a percentage of the total ROI (Supplementary Fig. 1). All 
images were independently analyzed twice with a washout interval of one month, and the average of the two 
measurements was used for all reported results. The intraclass correlation coefficient (ICC) with 95% confidence 
intervals (CI) was used to evaluate the intraobserver agreement.

Parameter T1 -weighted T2 -weighted

Scan time (min:sec) 03:25 04:49

FOV (mm x mm) 240 × 240 200 × 240

Matrix size 480 × 320 384 × 288

NEX 1 1

TR (msec) 927 3000

TE (msec) 16 86

Slice thickness (mm) 1 1

Voxel size (mm3) 0.5 × 0.8 × 1.0 0.6 × 0.8 × 1.0

Echo train length 3 10

Flip angle 100 142

Bandwidth (kHz) 62.50 50

Table 2.  Identical MRI parameters for each sequence in conventional and deep learning images. FOV field of 
view, NEX number of excitations, TR repetition time, TE echo time.
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Results
Conventional and DL axial T1- and T2-weighted images of the four crowns are presented in Fig. 4. For image 
quality, DL images demonstrated reduced noise and increased SNR compared to conventional images for all four 
crowns in both the T1- and T2-weighted sequences (Fig. 5).

For metal artifacts, visual assessment revealed no difference in artifact severity between conventional and 
DL images across all crown types and sequences. The average visual scores were identical for both methods 
(e.g., zirconia: 4.5/4.5; PMMA: 4.5/4.5; gold: 4.0/4.0; Ni–Cr: 1.0/1.0). The Cohen’s kappa value of the qualitative 

Fig. 5.  (A) Noise and (B) SNR of conventional and deep learning images according to implant crown type. 
PMMA, polymethyl methacrylate; Ni–Cr, nickel-chrome; SNR, signal-to-noise ratio.

 

Fig. 4.  Conventional and deep learning images of axial T1-, T2-weighted sequences according to implant 
crown type. PMMA, polymethyl methacrylate; Ni–Cr, nickel-chrome.
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evaluation by two people was 0.429 (moderate). These findings suggest that DL reconstruction does not increase 
the visual extent of metal artifacts compared to conventional reconstruction (Table 3).

Figure 6 shows the binarized images, in which the black areas represent metal artifacts. Quantitative results 
are summarized in Table 3. Intra-observer reproducibility was excellent, with an ICC of 1.0 (95% CI 0.999–1.000; 
p < 0.001).

In DL images, metal artifacts increased in the following order: zirconia, PMMA, gold, and Ni–Cr metal 
across all T1- and T2-weighted sequences. In both the conventional and DL images, Ni–Cr metal exhibited the 
most extensive metal artifacts, accounting for 47.36% and 59.41% in the T1-weighted sequence and 69.16% and 
78.89% in the T2-weighted sequence, respectively. Only in the T2-weighted sequence of the zirconia crown did 
the DL images reduce metal artifacts compared to the conventional images, decreasing from 10.38% to 9.31%.

Discussion
In this phantom pilot study, DL reconstruction in MRI of various implant crowns improved overall image 
quality but did not consistently reduce metal artifacts. Across all crown types, DL images demonstrated higher 
SNR compared to conventional images. Both conventional and DL reconstructions showed a similar material-
dependent pattern, with zirconia and PMMA exhibiting fewer artifacts and Ni–Cr metal crowns producing the 
most pronounced artifacts. However, no consistent reduction in metal artifacts was observed in the DL images.

MRI is increasingly used in the head and neck region and is expanding its applications in dentistry. Recently, 
the concept of a dedicated dental MRI system utilizing a 0.55 T MRI scanner has been introduced.2 Studies have 
reported the use of MRI to detect inflammation in the periodontal tissues,24 as well as attempts to quantitatively 
assess temporomandibular joint disorders using the IDEAL-IQ sequence.25,26 MRI has been shown to have 
similar or higher accuracy compared to CBCT for evaluating tooth and root canal anatomy, pulp vitality, and 
periapical lesions, suggesting its potential utility in endodontics.27 However, as the average human lifespan 
increases and the population ages, the number and types of prostheses, including implants, present in the oral 

Fig. 6.  Metal artifacts in conventional and deep learning images according to implant crown type. PMMA, 
polymethyl methacrylate; Ni–Cr, nickel-chrome.

 

Type of crown

T1- weighted T2-weighted

Visual score (conventional/DL) Artifact ratio (%) (conventional/DL) Visual score (conventional/DL) Artifact ratio(%) (conventional/DL)

Zirconia 4.5/4.5 15.21/27.64 4.5/4.5 10.38/9.31

PMMA 4.5/4.5 22.60/39.93 4.5/4.5 9.86/9.94

Gold 4.0/4.0 28.96/48.23 4.0/4.0 20.28/21.36

Ni–Cr metal 1.0/1.0 47.36/59.41 1.0/1.0 69.16/78.89

Table 3.  Metal artifacts in conventional and deep learning images by crown type. PMMA polymethyl 
methacrylate, Ni–Cr nickel-chrome, DL deep learning. Visual scores were assessed by two radiologists using 
a 5-point ordinal scale (1 = severe artifacts, 5 = minimal artifacts), and the average of the two scores was used 
for analysis. Inter-observer agreement was moderate (Cohen’s κ = 0.429). Artifact ratios were measured by one 
radiologist who repeated the analysis twice; the average of the two measurements was used. Intra-observer 
reproducibility was excellent (ICC = 1.0, 95% CI 0.999–1.000).
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cavity are also rising. This trend contributes to increased metal artifacts and decreased image quality on MRI, 
and ultimately reduced diagnostic capabilities.

To reduce metal artifacts in MRI, several imaging parameters can be optimized, such as increasing the matrix 
size and decreasing the slice thickness.28 Additionally, positioning the long axis of the metal object parallel to the 
main magnetic field can help minimize distortion. Because metal artifacts typically appear along the frequency-
encoding direction, swapping the frequency- and phase-encoding direction may also reduce artifact severity.28 
Specialized sequences, such as SEMAC and MAVRIC, have been developed to further address this issue. SEMAC 
reduces artifacts by adding additional phase-encoding steps along the Z-axis to a conventional 2D spin-echo 
sequence, and incorporates view angle tilting (VAT) to correct in-plane distortions. MAVRIC, which is based on 
3D imaging, divides the frequency spectrum into multiple narrow bands, acquires separate images at different 
frequency offsets, and combines them into a single composite image.7–10 However, these techniques have the 
disadvantages of prolonging acquisition time and potentially degrading overall image quality.

Recently, DL techniques that enhance image quality by denoising and reconstructing undersampled k-space 
data using neural networks trained on high-resolution images have been increasingly adopted in clinical 
practice.11–17 These methods effectively improve overall image sharpness and reduce scan time. However, as they 
are not specifically designed for metal artifact correction, their effectiveness in reducing such artifacts remains 
unclear. DL reconstruction is now being extended beyond conventional T1- and T2-weighted sequences to 
a broader range of MRI protocols. Nonetheless, it is not yet applicable to dedicated metal artifact reduction 
techniques such as SEMAC and MAVRIC.

To our knowledge, this pilot phantom study is the first to quantitatively evaluate not only image quality but 
also metal artifacts in DL-reconstructed MRI of dental implant crowns using conventional T1- and T2-weighted 
sequences.

Regarding image quality, DL images demonstrated improvements irrespective of crown type in both T1- and 
T2-weighted sequences. As expected based on the principles of DL reconstruction, DL techniques have been 
shown to reduce noise and increase SNR compared to conventional methods. Among the four crown types, Ni–
Cr metal crowns exhibited the highest noise and the lowest SNR. As noise increases, the image becomes more 
inhomogeneous, the SNR decreases, and overall image quality deteriorates, making it more difficult to assess 
the true signal intensity of lesions. Shimamoto et al.29 evaluated image uniformity in T1-weighted sequences by 
embedding six metallic materials (Au, Ag, Al, Au–Ag–Pd alloy, titanium, and Co–Cr alloy) in phantoms. They 
reported that Co–Cr alloy and titanium produced image inhomogeneity. Although this inhomogeneity had 
little impact on assessing the presence of tumors in the oral and maxillofacial region, it did affect the evaluation 
of inflammatory disease progression, such as osteomyelitis, in which signal intensity plays a critical role as a 
diagnostic indicator. Therefore, we believe that the improved image quality achieved through noise reduction 
and increased SNR in DL images, regardless of crown type, will be valuable for signal assessment of lesions, 
including inflammatory diseases.

Regarding metal artifacts, visual assessment appeared to be no difference in the extent of metal artifacts 
between conventional and DL images. In DL images, metal artifacts increased in the order of zirconia, PMMA, 
gold, and Ni–Cr metals in both T1- and T2-weighted sequences, showing the same trend reported in previous 
studies using conventional images.23 Quantitatively, DL images showed a slight reduction only for zirconia 
crowns in the T2-weighted sequence (conventional: 10.38% vs. DL: 9.31%), whereas all other crown types 
exhibited higher values. DL reconstruction methods are post-processing denoising techniques developed 
primarily to improve image quality and reduce scan time, unlike SEMAC and MAVRIC, which are sequence-
based techniques specifically designed to reduce metal artifacts,. Therefore, DL reconstruction is not expected 
to produce significant improvements in metal artifact reduction. Also, increases of most artifact ratio may 
reflect bias inherent to the binarization method employed for artifact measurement. Because DL reconstruction 
reduces image noise through denoising, the SD of signal intensity decreases, resulting in narrower threshold 
ranges for binarization compared with conventional images. This methodological limitation may have affected 
the measured artifact values. Although the quantitative approach may introduce a bias that disadvantages DL 
images, visual assessment indicates that DL reconstruction does not increase metal artifacts. Direct comparisons 
of metal artifacts between DL and conventional reconstructions using this approach should be interpreted 
with caution, underscoring the need to develop new quantification methods specifically optimized for DL 
reconstructed images. Although limited in scope, this study is the first to quantitatively assess metal artifacts in 
DL reconstructed dental MRI. It serves as a pilot investigation that lays a methodological foundation for future 
studies incorporating more advanced analytical techniques and clinical validation.

This study has several limitations. First, crown-related artifacts may vary depending on MRI equipment and 
magnetic field strength (e.g., 1.5 T vs. 3 T), so evaluation under different configurations is warranted. Second, only 
axial images were analyzed, and further assessment of coronal and sagittal images is needed. Third, as the current 
analysis was performed using phantoms, validation in clinical settings is essential. In vivo conditions—such as 
complex anatomical structures, tissue–air interfaces, patient motion, and magnetic field inhomogeneity—may 
further influence artifact behavior and DL reconstruction performance. These factors highlight the need for 
future clinical studies.

Conclusions
This pilot phantom study evaluated DL reconstruction applied to MRI of dental implant crowns. DL 
reconstruction improved image quality across crown types but did not consistently reduce metal artifacts. These 
findings highlight both the potential and the current limitations of DL reconstruction in dental MRI. Moving 
forward, DL techniques should be further developed not only to enhance image quality but also to effectively 
reduce metal artifacts.
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Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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