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Abstract
Background  Liver metastasis at the time of pancreatic cancer diagnosis plays a critical role in treatment planning 
owing to its strong association with poor prognosis. However, they often remain undetected because of the limited 
sensitivity of conventional imaging and biomarkers. Previous studies have primarily focused on postoperative liver 
metastasis or relied on complex nonroutine variables (e.g., liquid biopsy and radiomics), which limit scalability and 
real-world applicability. To address this unmet need, we applied an machine learning (ML) approach chosen for 
its interpretability, developing a simple, real-time prediction model that uses only routine clinical data available at 
diagnosis.

Methods  We retrospectively enrolled 2,657 patients with pancreatic cancer from a tertiary centre to develop the 
Liver Metastasis in Pancreatic Cancer (LiMPC) model. The model was trained using 21 routinely available clinical 
variables and compared across four ML algorithms. The best performing model (extreme gradient boosting) 
was calibrated using isotonic regression and externally validated in five independent hospitals (n = 272). Model 
performance was evaluated using AUROC, sensitivity, specificity, negative predictive value, positive predictive 
value, and calibration plots. Clinical utility was assessed with decision curve analysis, and feature contributions were 
interpreted using SHapley Additive exPlanations (SHAP).

Results  The fine-tuned LiMPC model achieved strong external validation performance (AUROC = 0.78, 
sensitivity = 0.81, specificity = 0.55) with robust calibration and consistent clinical net benefit. SHAP interpretation 
identified CA19-9, CEA, GGT, and age as key predictors, consistent with established biomarkers of advanced disease. 
In the subgroup analysis, the model achieved particularly strong discrimination in older (AUROC = 0.82) and male 
(AUROC = 0.82) patients, suggesting demographic influences on metastatic risk. In supplementary analyses, baseline 
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Background
Pancreatic cancer continues to have a poor prognosis, 
with less than 10% of patients surviving beyond five years 
[1, 2]. Globally, its incidence increased by approximately 
144.6% between 1990 and 2021 [1]. Approximately 80% 
of patients have distant metastases at diagnosis, with the 
liver being the most common metastatic site (37%–50%) 
[3–6]. Although the early detection of liver metasta-
ses in pancreatic cancer is crucial for improving patient 
outcomes [7], accurate identification at initial diagnosis 
remains challenging, with radiologically occult metasta-
ses frequently missed (6.0%–9.7%) [8, 9]. Even advanced 
imaging modalities demonstrate suboptimal sensitivity, 
with magnetic resonance imaging (MRI) detecting only 
60–91% and computed tomography (CT) around 50% of 
subcentimetre (< 1 cm) liver metastases [10–12]. These 
diagnostic limitations frequently lead to unnecessary sur-
geries, delayed systemic chemotherapy, and inaccurate 
prognostic assessment [13].

Historically, major advances in cancer therapy were 
driven by progress in early detection and improved bio-
logical understanding [14]. The evolution of precision 
oncology began with the discovery that tamoxifen effi-
cacy depended on hormone receptor status [15] and pro-
gressed with therapies targeting HER2 and BCR-ABL, 
establishing the principle that biomarker-driven patient 
selection is essential for optimized outcomes [14, 16]. 
Today, the expanding use of circulating tumor-derived 
DNA (ctDNA) and sophisticated imaging enables ear-
lier, more personalized therapeutic strategies—yet these 
advances underscore the persistent need for robust, clini-
cally practical biomarkers [17].

Despite major advancements in biomarker research, 
early detection of pancreatic cancer remains challeng-
ing, and predicting liver metastasis at initial diagnosis is 
equally difficult. Among existing markers, carbohydrate 
antigen 19-9 (CA19-9) has historically been the most 
widely used biomarker for diagnosis, prognosis, and dis-
ease monitoring. However, its diagnostic performance is 
limited by poor specificity across benign and malignant 
conditions and by its unreliability in Lewis antigen-neg-
ative patients [18, 19]. More recently, novel candidates 
such as serum exosomal hsa-let-7f-50 and SATB2 have 
been proposed, offering insights into the biological 

mechanisms of metastasis and the tumor immune micro-
environment [20, 21]. Nevertheless, these approaches are 
constrained by small cohorts, high costs, and the need for 
specialized molecular platforms, which limit their scal-
ability in daily clinical practice. In routine practice, pan-
creatic cancer metastasis is still assessed primarily by CT 
or MRI, which often miss small or early lesions.

In this context of persistent diagnostic challenges and 
practical limitations of current biomarker strategies, 
we developed an machine learning (ML) model—Liver 
Metastasis in Pancreatic Cancer (LiMPC), to predict liver 
metastasis at the time of pancreatic cancer diagnosis, 
using routinely available clinical variables. By leveraging 
accessible data from electronic medical records, LiMPC 
offers a cost-effective, interpretable, and generalizable 
solution to complement conventional imaging and enable 
early risk stratification in real-world settings.

Methods
We followed the Transparent Reporting of a Multivari-
able Prediction Model for Individual Prognosis or Diag-
nosis (TRIPOD) checklist for reporting (Additional file 2) 
[22].

Study population
We retrospectively analysed 2,657 patients with pancre-
atic cancer as the derivation cohort: “No liver metasta-
sis at diagnosis (No meta)” group (N = 1,976) and “Liver 
metastasis at diagnosis (Meta)” group (N = 681), using 
data from the Severance Hospital in South Korea (Fig. 1, 
Additional file 1: Supplementary Table S1). All partici-
pants were adult patients aged ≥ 19 years who were first 
diagnosed between 2006 and 2021 at the Severance Hos-
pital. The data collection was completed in 2021.

For external validation, data were collected from five 
additional hospitals: Ewha Womans University Seoul 
Hospital, Konkuk University Medical Center, Keimy-
ung University Dongsan Hospital, Gangnam Severance 
Hospital, and Yongin Severance Hospital, totalling 272 
patients. In the external validation group, 190 patients 
were categorised as “No meta,” whereas 82 patients were 
categorised as “Meta”. All were adult patients aged ≥ 19 
years who were first diagnosed with pancreatic cancer 
between 1 January 2008 and 31 December 2024. For both 

predictors remained consistent among patients who later developed liver metastasis, reinforcing the model’s 
biological plausibility and clinical relevance.

Conclusions  LiMPC is an externally validated, interpretable tool for liver metastasis risk stratification using routinely 
collected clinical data. As a hypothesis-generating tool, it demonstrates how simple clinical variables can provide 
decision support when imaging results are inconclusive, offering a practical framework for future prospective 
validation and clinical implementation.

Keywords  Pancreatic cancer, Liver metastasis, Machine learning, Clinical decision support
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derivation and external validation cohorts, follow-up 
was completed at the observation period or upon patient 
death, loss to follow-up, or diagnosis of liver metastasis.

Data collection and outcome
Data were collected from the electronic medical records 
and de-identified. We used ICD-10 codes to identify 
patients and extracted 21 parameters available at the time 
of diagnosis, including patient information (age, sex, and 
body mass index [BMI]), medical history (diabetes mel-
litus [DM] and hypertension [HTN]), laboratory results 
(haemoglobin [Hb], platelets [PLT], blood urea nitrogen 
[BUN], creatinine [Cr], Na, potassium [K], aspartate ami-
notransferase [AST], alanine aminotransferase [ALT], 
total bilirubin, albumin [Alb], international normalized 
ratio [INR], gamma-glutamyl transferase [GGT], total 
cholesterol, and alkaline phosphatase [ALP]), and bio-
markers (carcinoembryonic antigen [CEA] and CA19-9).

Liver metastasis at diagnosis was defined as the metas-
tasis detected on baseline staging CT or MRI, or reported 

within 30 days of diagnosis to account for subtle lesions 
that may appear shortly after initial imaging in routine 
clinical workflows.

Model strategy
ML-based prediction and interpretation of liver metastasis at 
diagnosis
To predict liver metastasis at diagnosis, we applied tree-
based ML algorithms, including the decision tree (DT), 
random forest (RF), Light Gradient Boost Machine 
(LightGBM), and Extreme Gradient Boosting (XGBoost) 
[23]. We performed five-fold cross-validation on the 
derivation cohort by splitting it into five subsets. In each 
iteration, four subsets were used for training, and the 
remaining one served as the internal validation. Out-of-
fold (OOF) predictions from all folds were aggregated 
to calculate the area under the receiver operating char-
acteristic curve (AUROC) and area under the precision-
recall curve (AUPRC), minimizing data bias, enhancing 
generalisability, and allowing fair model comparison. 

Fig. 1  Overview of patient information, model structure, and clinical implications. Patients newly diagnosed with pancreatic cancer from 2006 to 2021 
were included, comprising a derivation cohort (n = 2,657) and an external validation cohort (n = 272). Four machine learning models were compared 
using area under the receiver operating characteristic curve, positive predictive value, and negative predictive value and three survival models were used 
to identify prognostic thresholds. The Clinical Application panel illustrates how the web-based Liver Metastasis in Pancreatic Cancer (LiMPC) calculator 
can support real-world decision-making using routine input values. For instance, a 65-year-old male patient with routine lab results (e.g., CA19-9: 25, CEA: 
2.4, albumin: 3.9) yields a predicted risk of 14.75%, exceeding the high-risk threshold (≥ 0.146) and prompting further evaluation. Top contributing features 
are visualized using SHapley Additive exPlanations (SHAP) to enhance interpretability. Created with BioRender.com
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Model discrimination was further assessed by calculating 
AUROC and AUPRC in an independent external valida-
tion cohort.

The best-performing models were further tuned using 
grid search within a five-fold cross-validation framework 
to optimize hyperparameters and prevent overfitting. A 
fixed risk threshold derived from cross-validation was 
applied unchanged to the external cohort to prevent data 
leakage. Predicted probabilities were then calibrated in 
the derivation cohort using isotonic regression, and cali-
bration was assessed in the external validation cohort 
using calibration plots. Finally, to evaluate clinical utility, 
decision curve analysis (DCA) was performed, to calcu-
late the net benefit by balancing true positives against 
false positives across a range of threshold probabilities, 
comparing the model with default strategies such as 
treating all or treating none [24]. For model interpret-
ability, SHapley Additive exPlanations (SHAP) analysis 
was conducted to quantify each feature’s contribution to 
the prediction [25]. Heatmaps of SHAP effects and inter-
action values were generated, focusing on the three fea-
ture pairs with the strongest interactions to explore their 
influence on clinical decision thresholds.

To assess generalisability and clinical relevance, sub-
group analyses were performed based on age and sex. An 
age cutoff of 60 years was applied, based on prior studies 
reporting that pancreatic cancer risk factors and associ-
ated biological and clinical characteristics differ before 
and after age 60 [26]. We hypothesized that a similar 
distinction might also exist in the development of liver 
metastasis.

As a supplementary analysis, we further examined 
whether key variables identified by the ML classification 
models in the initially “No meta” group were associated 
with subsequent metastatic events. ML-based survival 
analyses using Cox proportional hazards (CPH), ran-
dom survival forest (RSF), and gradient boosting survival 
analysis (GBSA) were applied. This approach validated 
that baseline predictors of metastatic risk were consis-
tently linked to long-term outcomes, thereby reinforcing 
the clinical validity of the model. Model performance was 
assessed with concordance index and Brier score, and key 
variables from RSF were further interpreted using SHAP. 
Kaplan–Meier survival curves were generated to visual-
ize risk stratification with optimal thresholds defined as 
the cut-points yielding the lowest log-rank test P values 
while ensuring at least 50 patients per group.

Development of web-based risk calculator
To enhance clinical usability, we developed a publicly 
accessible, web-based calculator that implements the 
final LiMPC model and provides SHAP-based feature 
interpretation for each prediction. The tool is intended 
to support decision-making in routine clinical settings 

and is available at: ​h​t​t​p​​s​:​/​​/​c​h​o​​i​k​​o​9​1​​2​0​-​​8​t​f​g​​w​r​​h​3​m​​r​c​y​​p​k​
w​p​​2​e​​p​8​s​9​.​s​t​r​e​a​m​l​i​t​.​a​p​p​/. The application was developed 
using Streamlit (https://streamlit.io/), an open-source 
Python framework for building interactive data-driven 
applications.

Statistical analysis
Data are expressed as medians with the first and third 
quartiles and n (%) (Additional file 1: Supplementary 
Table S1). Missing data were handled by replacing them 
with the median values of the derivation cohort (Addi-
tional file 1: Supplementary Table S2). Diagnostic accu-
racy was evaluated in terms of sensitivity, specificity, 
positive predictive value (PPV), and negative predictive 
value (NPV), AUROC, AUPRC. 95% confidence inter-
vals (CIs) were calculated for AUROC and AUPRC. All 
ML and statistical analyses were conducted using Python 
(version 3.12.7), and statistical significance was set at 
P < 0.05.

Results
A total of 2,657 patients were included in the derivation 
cohort, comprising 1,976 patients in the “No meta” group 
and 681 in the “Meta” group. The external validation 
cohort consisted of 272 patients, comprising 190 in the 
“No meta” group and 82 in the “Meta” group. The base-
line patient characteristics are summarised in Additional 
file 1: Supplementary Table S1. The median age was 66.0 
(58.0, 73.0) years in the derivation cohort and 67.0 (59.0, 
74.0) years in the external validation cohort (P = 0.191). 
Regarding the cancer biomarkers CEA and CA19-9, 
no significant differences were observed between the 
groups. For CA19-9, the derivation group had a median 
value of 268.0 (35.0, 1720.0), whereas the external valida-
tion group had a median value of 159.0 (28.3, 1370.0). For 
CEA, the median value in the derivation group was 4.1 
(2.2, 11.4) compared to 3.6 (2.1, 10.2) in the external vali-
dation group.

We compared four ML algorithms (XGBoost, RF, 
LightGBM, and DT) to predict liver metastasis at diagno-
sis. In the derivation cohort, based on OOF predictions, 
XGBoost, RF and LightGBM achieved similar AUROC 
values of 0.75, followed by DT with 0.70 (Additional file 1: 
Supplementary Table S3). Given the diagnostic purpose 
of the model, we prioritised the sensitivity, predefined 
at ≥ 0.85. After isotonic calibration, a threshold prob-
ability of 0.146 was selected to achieve the target sensi-
tivity. Model performance across derivation and external 
cohorts at fixed sensitivity cutoffs is summarised in Addi-
tional file 1: Supplementary Table S3. In the derivation 
cohort, fine-tuned XGBoost demonstrated the most bal-
anced performance, with a sensitivity of 0.85, specific-
ity of 0.45, PPV of 0.35, and NPV of 0.90. Although RF 
achieved the same AUROC, its specificity was lower. 

https://choiko9120-8tfgwrh3mrcypkwp2ep8s9.streamlit.app/
https://choiko9120-8tfgwrh3mrcypkwp2ep8s9.streamlit.app/
https://streamlit.io/
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Based on these results, XGBoost was selected as the final 
model for subsequent analyses. In the external validation 
cohort, fine-tuned XGBoost achieved an AUROC of 0.78 
(95% CI: 0.72–0.83), with a sensitivity of 0.81, specificity 
of 0.55, PPV of 0.43, and NPV of 0.87 (Fig. 2, Additional 
file 1: Supplementary Table S3). As shown in Fig. 3A, the 
calibration curve indicated good agreement between 
predicted and observed risks. The DCA curve (Fig.  3B) 
further highlighted the clear clinical benefits of LiMPC 
across threshold probabilities ranging from 1 to 63%.

In the SHAP analysis, CA19-9, CEA, GGT, and age lev-
els showed the highest impact on predicting liver metas-
tasis (Fig. 4A, 4B). Higher CA19-9 and CEA levels were 
associated with an increased predicted risk whereas older 
age demonstrated a protective effect. In the SHAP heat-
map (Fig.  4C), the strongest interaction was observed 
between CA19-9 and CEA (0.065), followed by Na and 
CA19-9 (0.029), and age and GGT (0.019). When CA19-9 
exceeded 1,144 U/mL and CEA exceeded 7.95 ng/
mL, the predicted probability markedly shifted toward 
liver metastasis, and lower Na levels (< 138 mmol/L) 
similarly increased the predicted risk (Additional file 
3: Supplementary Fig. S1). In contrast, age > 70 years 

was associated with a reduced likelihood of metastasis 
(Fig. 4A, Additional file 4: Supplementary Fig. S2).

In the subgroup analysis, among patients aged ≥ 60 
(n = 199), the model achieved an AUROC of 0.82, sensi-
tivity of 0.84, and specificity of 0.57. In contrast, among 
those aged < 60 years (n = 73), performance was lower 
(AUROC = 0.67, sensitivity = 0.71, specificity = 0.48). For 
sex-based subgroups, the model achieved an AUROC of 
0.82, sensitivity of 0.85, and specificity of 0.48 in males 
(n = 137), and an AUROC of 0.76, sensitivity of 0.74, and 
specificity of 0.61 in females (n = 135). These results indi-
cate that the model performs better in older patients and 
in males (Table 1).

As part of the supplementary survival analy-
sis, RSF (C-index = 0.602, Brier score = 0.202), CPH 
(C-index = 0.615, Brier score = 0.165), and GBS 
(C-index = 0.602, Brier score = 0.202) were evaluated, with 
RSF showing the highest overall performance. Within the 
RSF model of the “No meta” group, we identified the top 
four predictive variables and their optimal thresholds. 
The thresholds, determined via log-rank testing with a 
minimum of 50 patients per group, were: CEA > 130.0 
ng/mL (P < 0.001), GGT > 82.0 IU/L (P < 0.001), 

Fig. 2  AUROC of external validation cohort across four models. The performance of four models was evaluated using external datasets from five inde-
pendent hospitals. Random forest demonstrated the highest area under the receiver operating characteristic curve (AUROC), at 0.79 (95% CI: 0.72–0.84), 
followed by extreme gradient boosting (XGBoost), at 0.78 (95% CI: 0.72–0.83)
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CA19-9 > 16,600.0 U/mL (P < 0.001), and age > 73 years 
(P < 0.001) (Fig.  5A–5E). For each variable, the selected 
threshold significantly stratified patients in terms of time 
to metastasis, based on the log-rank test (P < 0.05). In the 
surgical subgroup within the “No meta” cohort (n = 263), 
GGT, age, platelet count, and total bilirubin were identi-
fied as relevant predictors (Fig.  6A). The corresponding 
thresholds were: GGT > 68.0 IU/L (P = 0.001), total biliru-
bin > 2.5 mg/dL (P = 0.002), CEA > 5.0 ng/mL (P = 0.992), 
and CA19-9 > 50.0 U/mL (P = 0.069) (Fig. 6B–6E).

Table 1  Model performance in demographic subgroups
AUROC AUPRC Sensitivity Specificity

Old pa-
tients (≥ 60 years, 
n = 199)

0.82 (0.76–
0.88)

0.67 (0.55–
0.80)

0.84 0.57

Young pa-
tients (< 60 years, 
n = 73)

0.67 (0.52–
0.80)

0.48 (0.31–
0.71)

0.71 0.48

Male (n = 137) 0.82 (0.74–
0.89)

0.72 (0.60–
0.86)

0.85 0.48

Female (n = 135) 0.76 (0.66–
0.84)

0.54 (0.38–
0.71)

0.74 0.61

Fig. 4  SHAP analysis for external validation using the fine-tuned XGBoost model. Fine-tuned Extreme Gradient Boosting (XGBoost) was used for SHapley 
Additive exPlanations (SHAP) evaluation. In plots (A) (Beeswarm summary plot) and (B) (bar plot), carbohydrate antigen 19-9 (CA19-9), carcinoembryonic 
antigen (CEA), gamma-glutamyl transferase (GGT), and age showed the key predictive contributions. Plot (C), a SHAP interaction heatmap, illustrates 
pairwise interactions between features, where cooler transitions from deep blue to yellow indicate strong to weak interactions, respectively

 

Fig. 3  Calibration and decision curve analysis of the LiMPC model. A Calibration plot of the Liver Metastasis in Pancreatic Cancer (LiMPC) model after 
isotonic regression in the external validation cohort. The green line represents the agreement between predicted probabilities and observed outcomes. 
The dashed diagonal line indicates perfect calibration. The LiMPC model demonstrated good agreement between predicted and actual risk across the 
probability spectrum. B Decision curve of the LiMPC model (blue line). The blue line exceeds both the “treat-all” (green dashed line) and “treat-none” 
(red dashed line) strategies across a threshold probability range up to 63%, indicating improved clinical decision-making across a wide spectrum of risk 
tolerance. The vertical dotted line represents the selected cutoff probability of 0.146, which was chosen to prioritize sensitivity (≥ 85%) in clinical triage

 



Page 7 of 11Ko et al. BMC Cancer           (2026) 26:61 

Discussion
In the present study, we developed and externally vali-
dated an ML-based tool, termed LiMPC, to predict liver 
metastasis in patients with pancreatic cancer, using only 
routine clinical and laboratory variables. Our model 
achieved robust external performance (AUROC of 0.78, 
a sensitivity of 0.81, a specificity of 0.55, and an NPV of 
0.87) and may serve as a complementary diagnostic aid in 
clinical practice.

Although prior studies have investigated liver metasta-
sis in pancreatic cancer, most have focused on postopera-
tive recurrence rather than metastasis present at the time 
of diagnosis. As summarised in Additional file 1: Supple-
mentary Table S4, many of these studies rely on complex 
inputs such as histopathologic data, transcriptomics, 
or liquid biopsy biomarkers, which require specialized 
infrastructure and incur high costs, thereby limiting 
their real-world clinical applicability [27–29]. In contrast, 
LiMPC was specifically developed to address these limi-
tations, focusing on scalability, accessibility, and ease of 
integration, making it well suited for early stratification 
or use in resource-constrained settings. To the best of 
our knowledge, LiMPC is the first externally validated 
model for this purpose.

SHAP analysis highlighted CEA, CA19-9, GGT and 
age as important contributors. Among these, CEA and 

CA19-9 were the most influential predictors, consistent 
with previous studies linking elevated levels of these 
markers to advanced pancreatic cancer [30–34]. Unlike 
prior studies that defined cutoffs based solely on statisti-
cal associations (e.g., CEA > 7.0 ng/mL and CA19-9 > 305 
U/mL) [35], our ML-based thresholds (CEA > 7.95 ng/mL 
and CA19-9 > 1,144 U/mL) represent data-driven deci-
sion boundaries shaped by nonlinear interactions among 
variables and meaningful shifts in metastatic risk. Age 
also appeared as a protective factor, with reduced meta-
static risk beyond approximately 70 years, aligning with 
findings in elderly patients (≥ 80 years) [36]. Together, 
these results reinforce the biological plausibility and clin-
ical relevance of the LiMPC model.

Subgroup analyses revealed performance heteroge-
neity. The model performed better in older patients 
(AUROC 0.82 for ≥ 60 vs 0.67 for < 60) and in males 
(AUROC 0.82 vs 0.76 in females). These findings sug-
gest that the relative contribution of risk factors to liver 
metastasis differs according to age and sex, rather than 
being uniform across populations. Therefore, liver metas-
tasis in pancreatic cancer may arise through partially 
distinct risk pathways depending on demographic back-
ground, underscoring the need for tailored risk stratifica-
tion in clinical practice. Supplementary analyses further 
demonstrated that predictors of future metastasis were 

Fig. 5  SHAP analysis and Kaplan–Meier curves for key clinical predictors. A SHapley Additive exPlanations (SHAP) analysis using the random survival 
forest model. Carcinoembryonic antigen (CEA), gamma-glutamyl transferase (GGT), carbohydrate antigen 19–9 (CA19-9), and age were identified as the 
most important predictive features. Subsequently, clinically relevant features were selected. For each selected feature, a log-rank test was performed to 
divide patients into two groups using the optimal threshold, which minimized the log-rank P value while ensuring that each group included at least 50 
patients. B Kaplan–Meier survival curves stratified by CEA levels using a threshold of 130.0 ng/mL (P < 0.001). C Kaplan–Meier survival curves stratified 
by GGT levels using a threshold of 82.0 IU/L (P < 0.001). D Kaplan–Meier survival curves stratified by CA 19–9 levels using a threshold of 16,600.0 U/mL 
(P < 0.001). E Kaplan–Meier survival curves stratified by age with a threshold of 73 years (P < 0.001)
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generally consistent with baseline predictors; however, 
in the surgical subgroup, liver function markers such 
as GGT and total bilirubin were more predictive than 
tumor markers. This observation supports emerging evi-
dence that the liver microenvironment (including fibrosis 
or steatosis) plays a role in metastatic seeding [37]. Simi-
lar associations have been reported in colorectal, breast, 
and melanoma cancers [38, 39].

Strengths and future implementation
The strengths of this study include its large cohort, exter-
nal validation, and use of an interpretable model built 
entirely from routine clinical data, highlighting timeliness 
and cost-effectiveness. Clinically, LiMPC may be particu-
larly useful for patients with inconclusive imaging, where 
predictions above the optimal threshold (≥ 0.146) could 
guide deferral of surgery in favour of additional imaging 
or closer follow-up. By stratifying patients into low- and 
high-risk groups, LiMPC demonstrates the potential to 
provide practical decision support beyond simple risk 
estimation.

This exploratory study shows that simple, routinely 
available clinical variables can effectively stratify patients 
and identify subgroups at different metastatic risk. As a 

readily implementable framework, LiMPC may serve as 
a foundation for future integration with multi-omics data 
or emerging biomarkers to advance personalised medi-
cine [40]. Notably, the key predictors identified in this 
study— such as CA 19-9, CEA— together with demo-
graphic differences including sex and age, and risk fac-
tors identified from ML-based survival analyses in the 
initially non-metastatic and surgically treated groups, 
could inform future research on patient stratification, 
additional molecular testing, and clinical trial enrol-
ment. These findings highlight LiMPC’s potential to 
bridge diagnostic prediction with precision medicine-
oriented trial design [41]. In line with recent integrative 
and multidisciplinary strategies emphasized by Chen Z 
et al., LiMPC illustrates how accessible clinical data can 
be translated into a practical predictive framework that 
bridges real-world practice with translational innovation 
[42].

Limitations
Despite its strengths, this study has some limitations. 
First, as this was a retrospective analysis of an exist-
ing pancreatic cancer cohort, the possibility of selection 
bias cannot be excluded. Therefore, we used a five-fold 

Fig. 6  SHAP analysis and Kaplan–Meier curves for key clinical predictors in the surgical group. A SHapley Additive exPlanations (SHAP) analysis using the 
random survival forest model was conducted in the surgical group. Gamma-glutamyl transferase (GGT), age, platelet count, and total bilirubin were iden-
tified as the top predictors. Based on these results and clinical relevance, GGT, total bilirubin, carcinoembryonic antigen (CEA), and carbohydrate antigen 
19–9 (CA 19–9) were selected for further survival analysis. For each feature, a log-rank test was performed to stratify patients into two groups using the 
optimal threshold, which minimized the log-rank P value while ensuring that each group included at least 50 patients. B Kaplan–Meier survival curves 
stratified by GGT using a threshold of 68.0 IU/L (P = 0.001). C Kaplan–Meier curve stratified by total bilirubin using a threshold of 2.5 mg/dL (P = 0.002). D 
Kaplan–Meier curve stratified by CEA using a threshold of 5.0 ng/mL (P = 0.992). E Kaplan–Meier curve stratified by CA 19–9 using a threshold of 50.0 U/
mL (P = 0.069)
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cross-validation and external validation to enhance the 
robustness. Second, Lewis antigen, ctDNA, and imag-
ing features were not included, as we aimed to develop a 
broadly applicable model using only routine parameters 
to emphasize simplicity and generalizability. Additional 
data are being collected to assess their impact. Third, 
liver metastasis was defined by CT or MRI, which have 
limited sensitivity for small lesions. To reduce potential 
misclassification, we included cases detected within 30 
days of diagnosis, reflecting real-world practice; how-
ever, the possibility of new metastases cannot be fully 
excluded. Nevertheless, the model maintained stable per-
formance across validation cohorts, suggesting a degree 
of robustness to label noise. Finally, the model was spe-
cialised for liver metastasis in pancreatic cancer and did 
not account for non-hepatic metastasis. Future work will 
aim to extend the framework to other metastatic sites to 
enhance clinical utility.

Conclusion
Overall, LiMPC addresses an unmet need for an inter-
pretable and cost-effective approach to predicting liver 
metastasis in pancreatic cancer. It enables early risk 
stratification using only routinely collected clinical data, 
demonstrating potential to reduce diagnostic delays 
and support treatment planning. In particular, it may 
help identify patients at higher risk who could benefit 
from additional evaluation or closer surveillance in con-
junction with imaging findings. LiMPC functions as an 
exploratory framework showcasing the transformation of 
routinely collected clinical data into a decision-support 
tool that may enhance personalized risk stratification and 
therapeutic planning in oncology.
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