

OPEN

Efficacy and safety of pioglitazone versus dapagliflozin as an add-on to metformin and alogliptin combination therapy: the EPIDOTE study

Kyuho Kim¹, Seung-Hyun Ko¹, Jae-Seung Yun¹, Kwan-Woo Lee², Eun Sook Kim³, In-Kyung Jeong⁴, Jae Hyeon Kim⁵, Sang Yong Kim⁶, Kyu Chang Won⁷, Mikyung Kim⁸, Bong-Soo Cha⁹, Sungrae Kim¹⁰, Sung Hee Choi¹¹, Eun-Jung Rhee¹², Sin Gon Kim¹³, Bo Hyun Kim¹⁴, Kang Seo Park¹⁵, Young-Cheol Ju¹⁶, Tae-Won Heo¹⁶ & Yu-Bae Ahn¹✉

We investigated the efficacy and safety of pioglitazone compared to dapagliflozin when added to metformin plus alogliptin for patients with type 2 diabetes. The patients (n = 133) were randomized to receive pioglitazone (n = 65) or dapagliflozin (n = 68) in addition to metformin and alogliptin therapy for 26 weeks. The primary endpoint was a change in HbA1c. The non-inferiority margin for HbA1c reduction was 0.4%. The adjusted mean change of HbA1c at week 26 was -0.75% with pioglitazone and -0.88% with dapagliflozin (mean difference: 0.12% [95% CI -0.09 to 0.34]). The adjusted mean change of HOMA-IR at week 26 was -1.55 with pioglitazone and -1.96 with dapagliflozin (mean difference: 0.41 [95% CI -0.01 to 0.83]). Lipid profiles were similar between the groups. The proportion of patients achieving HbA1c < 6.5% was similar between groups. Pioglitazone added to metformin and alogliptin significantly improved glycemic control in patients with type 2 diabetes, and was non-inferior to dapagliflozin. This study suggests that pioglitazone could be an effective and safe option for patients with inadequate glycemic control on metformin and DPP4i.

Keywords Dipeptidyl-peptidase IV inhibitors, Drug therapy, Combination, Sodium-glucose transporter 2 inhibitors, Thiazolidinediones

¹Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul 06591, Republic of Korea. ²Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea. ³Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea. ⁴Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Republic of Korea. ⁵Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. ⁶Department of Endocrinology and Metabolism, Chosun University Hospital, Chosun University School of Medicine, Gwangju, Republic of Korea. ⁷Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea. ⁸Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea. ⁹Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea. ¹⁰Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea. ¹¹Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea. ¹²Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. ¹³Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea. ¹⁴Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University College of Medicine, Busan, Republic of Korea. ¹⁵Division of Endocrinology and Metabolism, Department of Internal Medicine, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, Republic of Korea. ¹⁶Medical Department, Celltrion Pharm, Inc., Cheongju, Chungcheongbuk-Do, Republic of Korea. ✉email: endocmc@gmail.com

Type 2 diabetes is a chronic and progressive metabolic disorder which affects more than 530 million people worldwide¹. Type 2 diabetes is associated with risks of multiple vascular complications, including cardiovascular disease, nephropathy, and retinopathy². Achieving glycemic target can reduce the risk of these complications³. Clinical practice guidelines recommend glycemic target with HbA1c levels at < 7% or < 6.5%^{4,5}. However, only one third to one half of subjects with type 2 diabetes achieve their glycemic targets⁶.

To achievement and maintain glycemic target, combination therapy including metformin can be considered in subjects with type 2 diabetes⁷. If the glycemic target is not reached with two-drug combination therapy, a third-line agent can be added. Considering that the most common second-line combination therapy with metformin is dipeptidyl peptidase-4 inhibitor (DPP4i)⁸, it is of interest to determine which third-line antidiabetic agent would be most suitable for subjects already treated with metformin and a DPP4i.

Sodium-glucose cotransporter-2 inhibitor (SGLT2i) lowers glucose levels by promoting urinary glucose excretion. In addition, these drugs have cardioprotective and renoprotective effects, as well as weight loss effects⁹. Therefore, current guidelines recommend SGLT2i as the preferred therapeutic option for subjects with type 2 diabetes who have established or are at high risk of atherosclerotic cardiovascular disease, heart failure, and/or chronic kidney disease^{5,10}.

Thiazolidinediones (TZDs), which are peroxisome proliferator-activated receptor- γ (PPAR γ) agonists, improve insulin sensitivity in adipose tissue, muscle, and liver, thereby demonstrating strong glucose-lowering efficacy¹¹. Due to cardiovascular safety concerns with rosiglitazone, the use of TZDs has decreased¹². In addition, concerns about the side effects of TZDs' such as fluid retention, heart failure, weight gain, and fractures have reduced the use of these agents^{13,14}. However, the TOSCA.IT study demonstrated that pioglitazone treatment did not increase the risk of composite outcomes (first occurrence of all-cause death, non-fatal myocardial infarction, non-fatal stroke, or urgent coronary revascularization)¹⁵. Previously, the Insulin Resistance Intervention after Stroke (IRIS) trial demonstrated that pioglitazone treatment reduced the risk of stroke or myocardial infarction¹⁶. Therefore, the therapeutic value of TZDs appears to be underrated.

The aim of this clinical trial was to assess the efficacy and safety of pioglitazone in comparison with dapagliflozin as an add-on in subjects with type 2 diabetes who did not have adequate blood glucose control with metformin and alogliptin dual therapy.

Methods

Population

Patients with type 2 diabetes (HbA1c 7.0–11.0%) after 12 weeks of DPP4i and metformin (≥ 1000 mg/day) were screened. The inclusion criteria were: aged 19–75 years with metabolic syndrome as defined previously¹⁷. The exclusion criteria were: a history of bladder cancer, taking systemic steroids, drugs for weight loss, insulin, or other diabetes medications except DPP4i and metformin within 3 months, a history of genetic diseases (such as galactose intolerance) and alcohol abuse.

Design

This was a multicenter, randomized, phase 4 study at 15 sites from 14 February 2020–16 January 2024. After the screening, eligible patients underwent a run-in period for 4 weeks (patients took stable-dose 25 mg alogliptin and metformin [≥ 1000 mg/day]). If the compliance was 80–120%, they were randomly assigned in 1:1 to pioglitazone or dapagliflozin group. The pioglitazone group received a fixed dose combination tablet (alogliptin/pioglitazone [25 mg/15 mg]) once daily, along with metformin twice daily. If HbA1c was $\geq 7.5\%$ at week 12, a dose of pioglitazone can be up-titrated to 30 mg. The dapagliflozin group received a dapagliflozin tablet (10 mg) once daily, an alogliptin tablet (25 mg) once daily, and metformin tablets (≥ 500 mg) twice daily for 26 weeks. Metformin dose down-titration to 500 mg/day can be considered if patients developed hypoglycemia or gastrointestinal symptoms. At 12 and 26 weeks, efficacy and safety were assessed. At 28 weeks, the final safety was assessed via a phone call.

The study followed the principles of the Declaration of Helsinki and standards of good clinical practice¹⁸. The institutional review board (IRB) of each study site (Supplementary Table S1) approved the study. Informed consent was taken from all participants. We registered this study on ClinicalTrials.gov (identifier: NCT03499704) as the EPIDOTE Study.

Endpoints

HbA1c change from baseline to week 26 was set as the primary endpoint. The secondary endpoints were: (1) change in HOMA-IR from baseline to week 26, (2) change in lipid profiles from baseline to week 26, and (3) HbA1c $< 6.5\%$ achievement rate at week 26. The exploratory endpoints were changes in fasting plasma glucose (FPG) and HOMA- β from baseline to week 26, HbA1c $< 6.5\%$ achievement rate without hypoglycemia or treatment discontinuation at week 26, and proportion (%) of participants without receiving rescue therapy or treatment discontinuation at week 26. Rescue therapy was considered when FPG ≥ 240 mg/dL or HbA1c $\geq 8.0\%$ at week 12. Sulphonylurea or insulin was used as a rescue medication according to the investigator's discretion. Incidences of treatment-emergent adverse events (TEAEs) were analyzed for safety assessment. Bladder cancer, pancreatitis, hypersensitivity reactions, and increased liver enzymes were collected as adverse events (AEs) of special interest. Routine laboratory tests, physical examinations, 12-lead electrocardiograms, and the incidence of hypoglycemia were also included as part of the safety assessment.

Statistical analysis

For the non-inferiority test on the primary endpoint, we calculated a sample size with 80% of power (two-sided 5.0%), a non-inferiority margin of 0.4%, true mean difference of 0.19%, and standard deviation of 1.2%. We

planned a minimum 156 patients (78 per group), accounting for 15% dropout rate. The non-inferiority margin was set in accordance with a regulatory guidelin¹⁹. The true mean difference was determined based on the adjusted mean changes in HbA1c from baseline observed with dapagliflozin versus placebo (-0.81%)²⁰ and pioglitazone versus placebo (-1.0%)²¹.

For the analysis of HbA1c change, we used mixed models for repeated measurements (MMRM) which included groups, visits, baseline values, and interaction between the group and visit as fixed effects. If the upper limit of the 95% CI for the least square mean difference (pioglitazone-dapagliflozin) was less than 0.4%, non-inferiority of pioglitazone to dapagliflozin was confirmed. If the upper limit of the 95% CI for least square mean difference (pioglitazone-dapagliflozin) was less than 0%, superiority of pioglitazone to dapagliflozin was confirmed. In addition to a full analysis set (FAS) for the main efficacy analyses, the per-protocol set (PPS) were repeated as well. Because the efficacy analyses using the FAS and PPS showed similar results, we only present data from the FAS in this paper. To test the robustness of the major efficacy results (changes in HbA1c), sensitivity analyses were conducted on the FAS using the worst observation carried forward analysis method. We compared HbA1c change between the groups using analysis of covariance (ANCOVA). We performed subgroup analyses according to baseline HbA1c, sex, and age. To adjust for multiple outcome assessment, Bonferroni correction was used for subgroup analyses. We compared the changes in HOMA-IR and lipid profiles between the groups using MMRM. Because triglyceride values in lipid profiles often deviate from a normal distribution, a logarithmic transformation was applied only to the triglyceride endpoint before conducting the analysis using MMRM. We compared the changes in FPG and HOMA- β between the groups using a two sample t-test or Wilcoxon's signed rank test. Supplementary Table S2 showed the definitions of the analyses. Statistical significance was defined as a two-sided P value of 0.05, except for the non-inferiority and superiority analyses of the primary endpoint, which followed predefined thresholds. We used SAS software version 9.4 (SAS Institute Inc., Cary, NC, USA) for all analyses.

Results

Participant disposition and characteristics

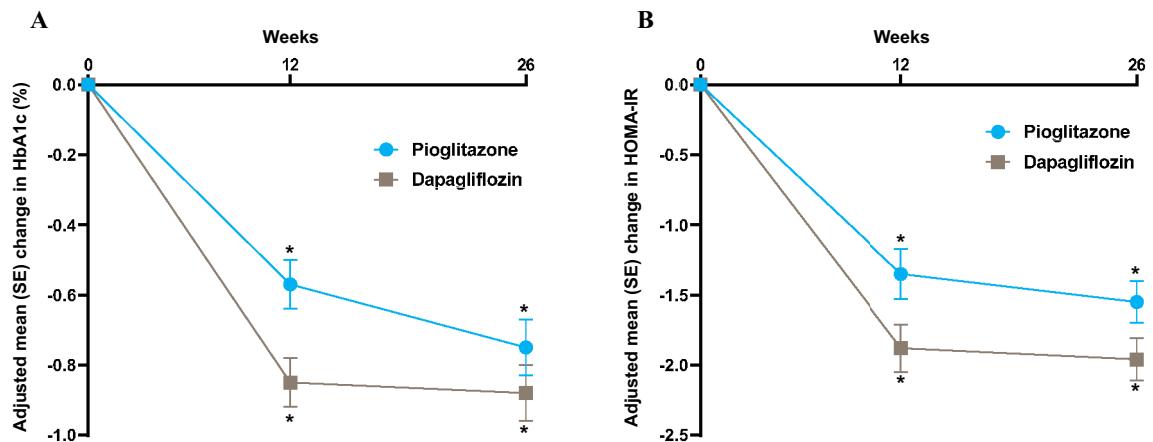
Among the 164 participants screened for the study, 133 were randomized (pioglitazone group = 65, dapagliflozin group = 68) and 121 completed the study (pioglitazone group = 58, dapagliflozin group = 63). The numbers and reasons for screening failures and withdrawals from the study are presented in Supplementary Fig. S1. The mean age (59.2 ± 9.0 years vs. 57.8 ± 9.5 years), BMI (26.0 ± 3.9 kg/m 2 vs. 25.5 ± 2.7 kg/m 2), and HbA1c level ($7.9\% \pm 0.9\%$ vs. $7.7\% \pm 0.7\%$) were similar between the two groups (Table 1). The LDL-C level was significantly lower in the pioglitazone group than in the dapagliflozin group ($p=0.047$).

Primary and secondary endpoints

HbA1c significantly decreased in both groups at week 12 and the level was maintained till week 26 (Fig. 1A). The level of HbA1c reduction at week 26 was similar between the groups (-0.75% in pioglitazone vs. -0.88% in dapagliflozin) and the 95% CI of the between-group difference (-0.09 to 0.34%) did not cross the prespecified non-inferiority margin (0.4%), demonstrating the non-inferiority of pioglitazone to dapagliflozin. Sensitivity analyses also showed no significant between-group difference in HbA1c changes at week 26 in full-analysis set (Supplementary Table S3). No significant between-group difference was found in the HbA1c change for the preplanned subgroups. Among patients aged ≥ 65 years, pioglitazone showed a trend toward greater, although not statistically significant, HbA1c reduction compared with dapagliflozin at week 26 (-1.04% vs. -0.72% , $p=0.0477$) (Supplementary Table S4).

HOMA-IR (Mean \pm SE) significantly decreased from baseline to week 26 in both groups (-1.55 ± 0.15 for pioglitazone, -1.96 ± 0.15 for dapagliflozin) without a significant between-group difference ($p=0.0569$) (Fig. 1B). No significant changes were observed for the total cholesterol and LDL cholesterol levels within groups. The levels of HDL-C increased significantly in both groups, but the between-group difference was not significant ($p=0.8528$). The levels of triglyceride decreased significantly in both groups, but the between-group difference was not significant ($p=0.8328$). The proportion of participants achieving HbA1c $< 6.5\%$ at week 26 was 24.6% (15/61) in the pioglitazone group and 21.5% (14/65) in the dapagliflozin group, showing a statistically not significant difference between the groups ($p=0.6842$) (Fig. 2). The detailed results of primary and secondary endpoints are summarized in Table 2.

Exploratory endpoints

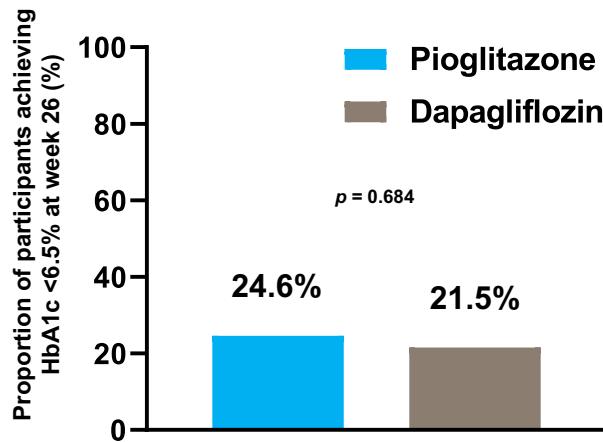

FPG significantly decreased at week 26 in both groups ($p < 0.0001$). There was a numerical between-group difference, but it was not statistically significant ($p=0.7051$). There was no significant change in HOMA- β in both groups. Two patients in the pioglitazone group required rescue therapy. The proportion of participants achieving HbA1c $< 6.5\%$ without hypoglycemia or treatment discontinuation due to adverse events at week 26 was not significantly different between the two groups (24.6% vs. 21.5%, $p=0.6842$). In addition, the proportion of participants without receiving rescue therapy or treatment discontinuation due to adverse events at week 26 was not significantly different between the two groups (27.7% vs. 25.0%, $p=0.7736$). The detailed results of the exploratory endpoints are summarized in Table 2.

Safety

The overall summary of TEAEs is presented in Table 3. In total, 26.6% of the pioglitazone group experienced 17 TEAEs (mild 15, moderate 2, severe 1) and 29.9% of the dapagliflozin group experienced 20 TEAEs (mild 15, moderate 6, severe 3). Among those TEAEs, 6 and 3 cases were identified as adverse drug reactions (ADRs) in the pioglitazone and dapagliflozin groups, respectively. There were no AEs of special interest in both groups. Two and three cases of AEs led to drug discontinuation in the groups, respectively. Three patients up-titrated

Characteristic	Pioglitazone (n = 64)	Dapagliflozin (n = 67)	p value
Age, yr	59.2 ± 9.0	57.8 ± 9.5	0.446
Male, n (%)	36 (56.3)	29 (43.3)	0.138
Body weight, kg	69.8 ± 12.4	67.0 ± 10.6	0.190
BMI, kg/m ²	26.0 ± 3.9	25.5 ± 2.7	0.858
HbA1c, %	7.9 ± 0.9	7.7 ± 0.7	0.528
FPG, mg/dL	156.6 ± 33.9	151.3 ± 34.3	0.201
HOMA-IR	4.2 ± 3.7	3.7 ± 3.3	0.315
HOMA- β	42.6 ± 29.4	41.4 ± 27.8	0.718
Total cholesterol, mg/dL	145.9 ± 25.9	150.9 ± 27.9	0.290
LDL-C, mg/dL	77.5 ± 23.2	86.2 ± 26.2	0.047
HDL-C, mg/dL	48.6 ± 13.8	46.9 ± 10.3	0.881
Triglyceride, mg/dL	166.0 ± 122.8	144.3 ± 59.6	0.767
eGFR, mL/min/1.73m ²	103.5 ± 25.1	101.9 ± 21.8	0.723

Table 1. Demographics and baseline characteristics. Data are expressed as mean ± standard deviation, or number (%). *BMI* body mass index; *eGFR* estimated glomerular filtration rate; *FPG* fasting plasma glucose; *HbA1c* glycated hemoglobin; *HDL-C* high-density lipoprotein cholesterol; *HOMA-IR* homeostasis model assessment of insulin resistance; *HOMA- β* homeostasis model assessment of β -cell function; *LDL-C* low-density lipoprotein cholesterol.


Fig. 1. Changes in efficacy parameters over time. **A** Adjusted mean changes from baseline in HbA1c. **B** Adjusted mean changes from baseline in HOMA-IR. HOMA-IR, homeostasis model assessment of insulin resistance; SE, standard error. * $p < 0.05$, statistically significant change within a group.

pioglitazone. There were no patients who down-titrated metformin in either group. No medically significant changes were found in the laboratory results, physical examinations, and electrocardiograms. There was no incidence of hypoglycemia in both groups.

Discussion

In this 26-week, open-label, randomized trial, pioglitazone demonstrated non-inferiority to dapagliflozin in terms of efficacy and safety in patients with type 2 diabetes inadequately controlled with metformin and alogliptin dual therapy, based on a non-inferiority margin of 0.4%. No significant differences were found between the pioglitazone group and dapagliflozin group in terms of HOMA-IR, lipid profiles, and the proportion of participants achieving HbA1c < 6.5%. Pioglitazone led to similar changes in FPG, HOMA- β . In addition, a similar proportion of participants achieved HbA1c < 6.5% without hypoglycemia or treatment discontinuation due to adverse events or proportion of participants without receiving rescue therapy or treatment discontinuation due to adverse events compared with dapagliflozin. No significant difference in treatment-related AEs was observed between the groups.

In the present study, pioglitazone was shown to be non-inferior to dapagliflozin in terms of mean reductions in HbA1c at week 26, with mean reductions of -0.75% and -0.88% for the pioglitazone and dapagliflozin groups, respectively. The robustness of the HbA1c reduction effect of pioglitazone was verified by a sensitivity analysis. The mean reduction in HbA1c in the pioglitazone group was similar to that reported in a previous trial

Fig. 2. Percentage of patients reaching target HbA1c.

of pioglitazone. In a randomized, open-label, active-controlled trial study involving Korean patients, the mean reduction in HbA1c at week 26 in patients treated with pioglitazone as an add-on to metformin and alogliptin was -0.81% ²².

Pioglitazone was non-inferior to dapagliflozin in terms of mean reductions in HbA1c regardless of baseline HbA1c and sex. Interestingly, among patients aged ≥ 65 years, we observed a trend toward greater HbA1c reduction in the pioglitazone group compared with the dapagliflozin group. This may be attributed to the beneficial effects of pioglitazone on sarcopenia²³. A previous study supported this possibility by demonstrating synergistic effects of pioglitazone and resistance training on muscle power in older women²⁴. Considering these findings and the fact that the use of SGLT2i in frail older patients may require caution²⁵, pioglitazone could be a suitable alternative for this population.

Pioglitazone, a well-known insulin sensitizer, improves insulin resistance in skeletal muscle, liver, and adipose tissue by activating PPAR γ ²⁶. Dapagliflozin improves insulin resistance in skeletal muscle^{27,28}. These effects of each drug may contribute a similar degree of decrease in HOMA-IR between the pioglitazone and dapagliflozin groups.

Because insulin resistance is closely associated with pathogenesis of dyslipidemia²⁹, we expected that pioglitazone improved dyslipidemia by increasing insulin sensitivity. We found increased levels of total cholesterol, LDL-C, and HDL-C along with a decreased level of triglyceride in the pioglitazone group, which is consistent with a previous study³⁰. There were no significant differences of changes of total cholesterol, LDL-C, HDL-C, and triglyceride levels between pioglitazone and dapagliflozin in this study. This can be explained by improved insulin sensitivity in both groups.

Aside from the reduction in HbA1c, the proportion of patients achieving HbA1c $< 6.5\%$ at week 26 was similar in both groups (24.6% in the pioglitazone group and 21.5% in the dapagliflozin group). In addition, the mean change from baseline in FPG at week 26 was -24.74 mg/dL in the pioglitazone group and -28.00 mg/dL in the dapagliflozin group, with no significant between-group difference. Considering these findings, the efficacy of pioglitazone in terms of glycemic control seems to be at least similar to that of dapagliflozin.

A previous study demonstrated that pioglitazone improved β -cell function³¹. However, the present study failed to detect significant increases in HOMA- β after the addition of pioglitazone. This result was similar to that reported in previous trials of this agent. In a randomized, open-label parallel-controlled study involving Korean patients, pioglitazone did not increase HOMA- β ²². Also, similar studies involving Korean patients demonstrated no significant change in HOMA- β in the pioglitazone-treated group^{32,33}. Considering that insulin secretory function decreases as the duration of diabetes increases³⁴, differences in the duration of diabetes of study population may contribute to different results in HOMA- β . Otherwise, reduced β -cell function in east Asian type 2 diabetes patients, relative to Caucasian type 2 diabetes patients, may contribute to different results in HOMA- β ³⁵.

Several randomized clinical trials including the PROactive³⁶ and ADOPT³⁷ trials demonstrated that pioglitazone or rosiglitazone treatment was associated with increased risk of heart failure. However, in the IRIS trial³⁸ and a population-based cohort study³⁹, pioglitazone did not increase the risk of heart failure among patients with low risk of heart failure. In addition, a meta-analysis confirmed that pioglitazone increased the risk of heart failure only in patients with established cardiovascular disease⁴⁰. In this study, we found no cases of heart failure in the pioglitazone group. Weight gain and edema are known side effects of pioglitazone, and these effects may be mediated by increased renal sodium and water reabsorption in the renal collecting duct⁴¹. However, we found only one case of generalized edema, one case of peripheral edema, and one case of weight gain in the pioglitazone group in this study. There was no case of AEs of special interest such as bladder cancer, pancreatitis, hypersensitivity reactions, and increased liver enzymes.

To the best of our knowledge, this is the first study to examine the efficacy and safety of pioglitazone in comparison with dapagliflozin as an add-on therapy to metformin and alogliptin combination therapy. In addition, the retention rate was high and various secondary outcomes were assessed. However, the study has several limitations. First, the open-label design may introduce potential bias. Second, the study included only

Variable	Pioglitazone (n = 64)	Dapagliflozin (n = 67)
Primary endpoint		
<i>HbA1c, %</i>		
Baseline	7.90 ± 0.85	7.74 ± 0.69
Week 12	7.31 ± 0.88	6.93 ± 0.45
<i>p</i> value for the change from baseline to week 12	< 0.0001	< 0.0001
LS mean change ± SE	-0.57 ± 0.07	-0.85 ± 0.07
LS mean difference (95% CI), <i>p</i> value†	0.29 (0.09 to 0.49), <i>p</i> value = 0.0054	
Week 26	7.10 ± 0.80	6.92 ± 0.51
<i>p</i> value for the change from baseline to week 26	< 0.0001	< 0.0001
LS mean change ± SE	-0.75 ± 0.08	-0.88 ± 0.08
LS mean difference (95% CI), <i>p</i> value†	0.12 (-0.09 to 0.34), <i>p</i> value = 0.2629	
Secondary endpoints		
<i>HOMA-IR</i>		
Baseline	4.23 ± 3.72	3.67 ± 3.27
Week 26	2.41 ± 1.42	1.93 ± 1.11
<i>p</i> value for the change from baseline to week 26	< 0.0001	< 0.0001
LS mean change ± SE	-1.55 ± 0.15	-1.96 ± 0.15
LS mean difference (95% CI), <i>p</i> value†	0.41 (-0.01 to 0.83), <i>p</i> value = 0.0569	
<i>Total cholesterol, mg/dL</i>		
Baseline	145.91 ± 25.87	150.91 ± 27.92
Week 26	155.28 ± 31.84	152.89 ± 32.52
<i>p</i> value for the change from baseline to week 26	0.0685	0.3621
LS mean change ± SE	7.54 ± 3.02	2.98 ± 2.93
LS mean difference (95% CI), <i>p</i> value†	4.56 (-3.78 to 12.90), <i>p</i> value = 0.2810	
<i>LDL-C, mg/dL</i>		
Baseline	77.52 ± 23.20	86.19 ± 26.22
Week 26	84.57 ± 27.76	85.62 ± 29.04
<i>p</i> value for the change from baseline to week 26	0.1230	0.9406
LS mean change ± SE	5.11 ± 2.68	0.98 ± 2.59
LS mean difference (95% CI), <i>p</i> value†	4.14 (-3.26 to 11.53), <i>p</i> value = 0.2705	
<i>HDL-C, mg/dL</i>		
Baseline	48.56 ± 13.82	46.87 ± 10.27
Week 26	52.64 ± 14.08	51.46 ± 11.01
<i>p</i> value for the change from baseline to week 26	0.0001	< 0.0001
LS mean change ± SE	4.00 ± 0.85	4.22 ± 0.82
LS mean difference (95% CI), <i>p</i> value†	-0.22 (-2.56 to 2.12), <i>p</i> value = 0.8528	
<i>Triglyceride, mg/dL</i>		
Baseline	166.02 ± 122.80	144.28 ± 59.61
Week 26	139.64 ± 72.12	127.42 ± 58.76
<i>p</i> value for the change from baseline to week 26	0.0319	0.0318
Log-transformed LS mean change ± SE‡	-0.12 ± 0.05	-0.14 ± 0.05
Log-transformed LS mean difference (95% CI), <i>p</i> value†‡	0.02 (-0.11 to 0.16), <i>p</i> value = 0.7334	
<i>Participants achieving HbA1c < 6.5% at week 26</i>		
<i>n</i> (%)	15 (24.59)	14 (21.54)
<i>p</i> value for the difference between two groups	<i>p</i> value = 0.6842	
Exploratory endpoints		
<i>FPG, mg/dL</i>		
Baseline	156.55 ± 33.85	151.31 ± 34.29
Week 26	131.36 ± 27.23	123.51 ± 20.76
Change from baseline to week 26	-24.74 ± 31.16	-28.00 ± 34.44
<i>p</i> value	< 0.0001	< 0.0001
<i>p</i> value* for the difference between two groups	<i>p</i> value = 0.7051	
<i>HOMA-β</i>		
Baseline	42.62 ± 29.44	41.44 ± 27.82
Week 26	41.89 ± 26.74	40.13 ± 23.95
Change from baseline to week 26	-0.47 ± 17.84	-1.01 ± 23.25
Continued		

Variable	Pioglitazone (n = 64)	Dapagliflozin (n = 67)
p value	0.8390	0.9923
p value* for the difference between two groups	p value = 0.9685	
<i>Participants achieving HbA1c < 6.5% without hypoglycemia or treatment discontinuation due to adverse events at week 26</i>		
n (%)	15 (24.59)	14 (21.54)
p value	p value = 0.6842	
<i>Participants without receiving rescue therapy or treatment discontinuation due to adverse events at week 26</i>		
n (%)	13 (27.66)	11 (25.00)
p value	p value = 0.7736	

Table 2. Primary, secondary, and exploratory endpoints. Data are expressed as mean \pm standard deviation, or number (%) unless otherwise specified with SE. p values were calculated using paired t-test or Wilcoxon's signed rank test for changes from baseline to week 26 within a group. CI confidence interval; FPG fasting plasma glucose; HbA1c glycated hemoglobin; HDL-C high-density lipoprotein cholesterol; HOMA-IR homeostasis model assessment of insulin resistance; HOMA- β homeostasis model assessment of β -cell function; LDL-C low-density lipoprotein cholesterol; LS least-squares; SE standard error. *p values were calculated using two sample t-test or Wilcoxon's signed rank test for changes between the groups. † p values were calculated using mixed model for repeated measure. ‡ A logarithmic transformation was applied to the TG values prior to analysis using MMRM, as TG values often deviate from a normal distribution.

	Pioglitazone (n = 64)	Dapagliflozin (n = 67)	p value
TEAEs	17 (26.6) [27]	20 (29.9) [31]	0.6760 †
Mild	15 (23.4) [24]	15 (22.4) [19]	
Moderate	2 (3.1) [2]	6 (9.0) [8]	
Severe	1 (1.6) [1]	3 (4.5) [4]	
SAEs	1 (1.6) [1]	4 (6.0) [6]	0.3659 ‡
Diverticulum	0	1 (1.5) [2]	
Hemorrhoids	1 (1.6) [1]	0	
Pneumonia	0	2 (3.0) [2]	
Trigger finger	0	1 (1.5) [1]	
Esophageal carcinoma	0	1 (1.5) [1]	
AEs of special interest*	0	0	NA
ADRs	5 (7.8) [6]	3 (4.5) [3]	0.4859 ‡
Cystitis	0	1 (1.5) [1]	
Genital infection	0	1 (1.5) [1]	
Vaginal infection	0	1 (1.5) [1]	
Generalized edema	1 (1.6) [1]	0	
Peripheral edema	1 (1.6) [1]	0	
Weight gain	1 (1.6) [1]	0	
Worsening of diabetes	1 (1.6) [1]	0	
Headache	1 (1.6) [1]	0	
Pruritus	1 (1.6) [1]	0	

Table 3. Summary of adverse events. Data are expressed as number of patients (%) [number of events]. ADR adverse drug reaction; AE adverse event; NA not available; TEAE treatment-emergent adverse event. *AEs of special interest included bladder cancer, pancreatitis, hypersensitivity reactions, and increased liver enzymes. † Pearson's chi-square test, ‡ Fisher's exact test.

a short treatment period; however, long-term studies of pioglitazone have shown that its beneficial effects on glycemic control can persist for more than two years^{42,43}. Third, although the prespecified primary endpoint was achieved, under-enrollment (small sample size) may have contributed to the lack of significant differences in secondary, exploratory, or safety endpoints.

In conclusion, pioglitazone add-on therapy for 26 weeks decreased HbA1c levels in type 2 diabetes patients with insufficient glycemic control on metformin and alogliptin combination therapy. The effects of pioglitazone were non-inferior to those of dapagliflozin. In the safety parameters, there was no statistically significant difference in the incidence of adverse reactions between the pioglitazone group and dapagliflozin group. Taken

together, our study findings suggest that pioglitazone could be an effective and safe option for patients with inadequate glycemic control on metformin and DPP4i.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: 5 June 2025; Accepted: 27 November 2025

Published online: 11 December 2025

References

1. Sun, H. et al. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. *Diabetes Res. Clin. Pract.* **183**, 109119. <https://doi.org/10.1016/j.diabres.2021.109119> (2022).
2. Fowler, M. J. Microvascular and macrovascular complications of diabetes. *Clin. Diabetes* **26**, 77–82. <https://doi.org/10.2337/diaci.26.2.77> (2008).
3. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. *Lancet* **352**, 837–853 (1998).
4. Committee, A. D. A. P. 6. Glycemic goals and hypoglycemia: Standards of care in diabetes—2025. *Diabetes Care* **48**, S128–S145, <https://doi.org/10.2337/dc25-S006> (2024).
5. Moon, J. S. et al. 2023 Clinical practice guidelines for diabetes management in Korea: Full version recommendation of the Korean diabetes association. *Diabetes Metab. J.* **48**, 546–708. <https://doi.org/10.4093/dmj.2024.0249> (2024).
6. Edelman, S. V. & Polonsky, W. H. Type 2 diabetes in the real world: The elusive nature of glycemic control. *Diabetes Care* **40**, 1425–1432. <https://doi.org/10.2337/dc16-1974> (2017).
7. American Diabetes Association Professional Practice, C. 9. Pharmacologic approaches to glycemic treatment: Standards of care in diabetes—2025. *Diabetes Care* **48**, S181–S206, <https://doi.org/10.2337/dc25-S009> (2025).
8. Khunti, K. et al. Associations between second-line glucose-lowering combination therapies with metformin and HbA1c, body weight, quality of life, hypoglycaemic events and glucose-lowering treatment intensification: The DISCOVER study. *Diabetes Obes. Metab.* **23**, 1823–1833. <https://doi.org/10.1111/dom.14400> (2021).
9. Zelniker, T. A. & Braunwald, E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC state-of-the-art review. *J. Am. Coll. Cardiol.* **75**, 422–434. <https://doi.org/10.1016/j.jacc.2019.11.031> (2020).
10. Committee, A. D. A. P. 9. Pharmacologic approaches to glycemic treatment: Standards of care in diabetes—2025. *Diabetes Care* **48**, S181–S206, <https://doi.org/10.2337/dc25-S009> (2024).
11. Yki-Jarvinen, H. Thiazolidinediones. *N. Engl. J. Med.* **351**, 1106–1118. <https://doi.org/10.1056/NEJMra041001> (2004).
12. Fang, M., Wang, D., Coresh, J. & Selvin, E. Trends in diabetes treatment and control in U.S. adults, 1999–2018. *N. Engl. J. Med.* **384**, 2219–2228. <https://doi.org/10.1056/NEJMsa2032271> (2021).
13. Nesto, R. W. et al. Thiazolidinedione use, fluid retention, and congestive heart failure: A consensus statement from the American Heart Association and American Diabetes Association. *Circulation* **108**, 2941–2948. <https://doi.org/10.1161/01.CIR.0000103683.99399.7E> (2003).
14. Kahn, S. E. et al. Rosiglitazone-associated fractures in type 2 diabetes: An analysis from a diabetes outcome progression trial (ADOPT). *Diabetes Care* **31**, 845–851. <https://doi.org/10.2337/dc07-2270> (2008).
15. Vaccaro, O. et al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): A randomised, multicentre trial. *Lancet Diabetes Endocrinol.* **5**, 887–897. [https://doi.org/10.1016/S2213-8587\(17\)30317-0](https://doi.org/10.1016/S2213-8587(17)30317-0) (2017).
16. Kernan, W. N. et al. Pioglitazone after ischemic stroke or transient ischemic attack. *N. Engl. J. Med.* **374**, 1321–1331. <https://doi.org/10.1056/NEJMoa1506930> (2016).
17. Alberti, K. G. et al. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American Heart Association; world heart federation; international atherosclerosis society; and international association for the study of obesity. *Circulation* **120**, 1640–1645. <https://doi.org/10.1161/CIRCULATIONAHA.109.192644> (2009).
18. World Medical, A. World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. *JAMA* **310**, 2191–2194. <https://doi.org/10.1001/jama.2013.281053> (2013).
19. Food and Drug Administration: Draft guidance for industry on diabetes mellitus. Developing drugs and therapeutic biologics for treatment and prevention: guidance document. Available from: <https://www.regulations.gov/document/FDA-2008-D-0118-0003>.
20. Mathieu, C. et al. Efficacy and safety of triple therapy with dapagliflozin add-on to saxagliptin plus metformin over 52 weeks in patients with type 2 diabetes. *Diabetes Obes. Metab.* **18**, 1134–1137. <https://doi.org/10.1111/dom.12737> (2016).
21. Matthews, D. R., Charbonnel, B. H., Hanefeld, M., Brunetti, P. & Scherthenthaler, G. Long-term therapy with addition of pioglitazone to metformin compared with the addition of gliclazide to metformin in patients with type 2 diabetes: A randomized, comparative study. *Diabetes Metab. Res. Rev.* **21**, 167–174. <https://doi.org/10.1002/dmrr.478> (2005).
22. Kim, J. M. et al. Efficacy and safety of pioglitazone versus glimepiride after metformin and alogliptin combination therapy: A randomized, open-label, multicenter, parallel-control. *Study Diabetes Metab.* **44**, 67–77. <https://doi.org/10.4093/dmj.2018.0274> (2020).
23. Zhang, X., Zhao, Y., Chen, S. & Shao, H. Anti-diabetic drugs and sarcopenia: Emerging links, mechanistic insights, and clinical implications. *J. Cachexia Sarcopenia Muscle* **12**, 1368–1379. <https://doi.org/10.1002/jcsm.12838> (2021).
24. Marsh, A. P. et al. Resistance training and pioglitazone lead to improvements in muscle power during voluntary weight loss in older adults. *J. Gerontol. A. Biol. Sci. Med. Sci.* **68**, 828–836. <https://doi.org/10.1093/gerona/gls258> (2013).
25. Scheen, A. J. & Bonnet, F. Efficacy and safety profile of SGLT2 inhibitors in the elderly: How is the benefit/risk balance?. *Diabetes Metab.* **49**, 101419. <https://doi.org/10.1016/j.diabet.2023.101419> (2023).
26. Lee, S. H., Park, S. Y. & Choi, C. S. Insulin resistance: From mechanisms to therapeutic strategies. *Diabetes Metab. J.* **46**, 15–37. <https://doi.org/10.4093/dmj.2021.0280> (2022).
27. Merovci, A. et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. *J. Clin. Invest.* **124**, 509–514. <https://doi.org/10.1172/JCI70704> (2014).
28. Op den Kamp, Y. J. M. et al. Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism. *Mol. Metab.* **66**, 101620. <https://doi.org/10.1016/j.molmet.2022.101620> (2022).
29. Howard, B. V. Insulin resistance and lipid metabolism. *Am. J. Cardiol.* **84**, 28J–32J. [https://doi.org/10.1016/s0002-9149\(99\)00355-0](https://doi.org/10.1016/s0002-9149(99)00355-0) (1999).
30. Goldberg, R. B. et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. *Diabetes Care* **28**, 1547–1554. <https://doi.org/10.2337/diacare.28.7.1547> (2005).
31. Gastaldelli, A. et al. Thiazolidinediones improve beta-cell function in type 2 diabetic patients. *Am. J. Physiol. Endocrinol. Metab.* **292**, E871–883. <https://doi.org/10.1152/ajpendo.00551.2006> (2007).

32. Heo, J. H. et al. Pioglitazone as add-on therapy in patients with type 2 diabetes mellitus inadequately controlled with dapagliflozin and metformin: Double-blind, randomized, placebo-controlled trial. *Diabetes Metab. J.* **48**, 937–948. <https://doi.org/10.4093/dmj.2023.0314> (2024).
33. Cho, Y. K. et al. Efficacy and safety of pioglitazone add-on in patients with type 2 diabetes mellitus inadequately controlled with metformin and dapagliflozin: A multicenter, randomized, double-blind, and placebo-controlled study. *Clin. Ther.* **46**, 662–669. <https://doi.org/10.1016/j.clinthera.2024.06.023> (2024).
34. Zangeneh, F. et al. Effects of duration of type 2 diabetes mellitus on insulin secretion. *Endocr. Pract.* **12**, 388–393. <https://doi.org/10.4158/EP12.4.388> (2006).
35. Yabe, D. & Seino, Y. Type 2 diabetes via beta-cell dysfunction in East Asian people. *Lancet Diabetes Endocrinol.* **4**, 2–3. [https://doi.org/10.1016/S2213-8587\(15\)00389-7](https://doi.org/10.1016/S2213-8587(15)00389-7) (2016).
36. Dormandy, J. A. et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (PROspective pioglitAzone clinical trial in macroVascular events): A randomised controlled trial. *Lancet* **366**, 1279–1289. [https://doi.org/10.1016/S0140-6736\(05\)67528-9](https://doi.org/10.1016/S0140-6736(05)67528-9) (2005).
37. Kahn, S. E. et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. *N. Engl. J. Med.* **355**, 2427–2443. <https://doi.org/10.1056/NEJMoa066224> (2006).
38. Young, L. H. et al. Heart failure after ischemic stroke or transient ischemic attack in insulin-resistant patients without diabetes mellitus treated with pioglitazone. *Circulation* **138**, 1210–1220. <https://doi.org/10.1161/CIRCULATIONAHA.118.034763> (2018).
39. Lu, C. J. et al. Risk of stroke with thiazolidinediones: A ten-year nationwide population-based cohort study. *Cerebrovasc. Dis.* **36**, 145–151. <https://doi.org/10.1159/000353679> (2013).
40. Zhou, Y. et al. Pioglitazone for the primary and secondary prevention of cardiovascular and renal outcomes in patients with or at high risk of type 2 diabetes mellitus: A meta-analysis. *J. Clin. Endocrinol. Metab.* **105**, 1670. <https://doi.org/10.1210/clinem/dgz252> (2020).
41. Guan, Y. et al. Thiazolidinediones expand body fluid volume through PPARgamma stimulation of ENaC-mediated renal salt absorption. *Nat. Med.* **11**, 861–866. <https://doi.org/10.1038/nm1278> (2005).
42. Charbonnel, B. et al. Long-term efficacy and tolerability of add-on pioglitazone therapy to failing monotherapy compared with addition of gliclazide or metformin in patients with type 2 diabetes. *Diabetologia* **48**, 1093–1104. <https://doi.org/10.1007/s00125-005-1751-1> (2005).
43. Ito, D. et al. Long-term effects of ipragliflozin and pioglitazone on metabolic dysfunction-associated steatotic liver disease in patients with type 2 diabetes: 5 year observational follow-up of a randomized, 24 week, active-controlled trial: Effect of ipragliflozin in MASLD. *J. Diabetes Investig.* **15**, 1220–1230. <https://doi.org/10.1111/jdi.14246> (2024).

Acknowledgements

The authors sincerely thank all the participants for their cooperation.

Author contributions

K.K., S.H.K., J.S.Y., and Y.B.A. conceptualized and designed the study. K.K., S.H.K., J.S.Y., K.W.L., E.S.K., I.K.J., J.H.K., S.Y.K., K.C.W., M.K., B.S.C., S.K., S.H.C., E.J.R., S.G.K., B.H.K., K.S.P., Y.C.J., T.W.H., and Y.B.A. collected the data. K.K. contributed to data interpretation, the statistical analysis, and drafted the manuscript. Y.B.A. is the guarantor of this work. All authors significantly contributed to the manuscript and approved the final version for publication.

Funding

Celltrion Pharm, Inc.

Declarations

Conflict of interest

Y.C.J. and T.W.H are employees of Celltrion Pharm, Inc. They were involved in data collection only. Otherwise, there was no conflict of interest.

Additional information

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1038/s41598-025-30882-w>.

Correspondence and requests for materials should be addressed to Y.-B.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025