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Endoscopic ultrasound (EUS) is accurate for diagnosing gallbladder (GB) polyps but is limited by 
subjective interpretation and operator expertise. Although artificial intelligence (AI) has been applied 
to still EUS images of GB polyps, its application to EUS videos, which provide richer diagnostic data, 
remains unexplored. This study evaluated the diagnostic performance of AI models in analyzing EUS 
videos for GB polyp assessment. EUS videos of patients with histologically confirmed GB polyps were 
divided into training and validation cohorts. Segmentation models (Attention U-Net, Residual U-Net, 
and deep understanding convolutional kernel [DUCK] net) identified polyp regions, followed by 
classification into neoplastic and non-neoplastic polyps using classification models (EfficientNet-B2, 
ResNet101, and vision transformer). The training cohort included 17 (11 patients) and 79 (39 patients) 
videos with neoplastic and non-neoplastic polyps, respectively, and the validation cohort included 11 
(6 patients) and 25 (11 patients) videos, respectively. Attention U-Net (0.998) and DUCK Net (0.995) 
achieved the highest training cohort segmentation accuracy. EfficientNet-B2 showed the highest 
classification performance (accuracy 0.957, recall 0.954, F1-score 0.939, AUC 0.991) and maintained 
strong performance on the validation dataset (accuracy 0.879, recall 0.968, F1-score 0.917, AUC 0.861). 
AI demonstrated high accuracy in EUS video-based GB polyp analysis, warranting further prospective 
validation.
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Gallbladder (GB) polyps, lesions protruding from the gallbladder wall into the lumen, are common and affect 
approximately 5% of the general population1. They can be categorized into non-neoplastic and neoplastic polyps, 
such as adenomas and adenocarcinomas, which is crucial in determining the need for surgical treatment2,3. 
As biopsy of GB polyps is not feasible, imaging modalities, primarily abdominal ultrasonography, are used to 
differentiate neoplastic polyps, with sensitivity and specificity around 68% and 79%, respectively4.

Compared with abdominal sonography, endoscopic ultrasonography (EUS) is considered superior in 
differentiating neoplastic polyps, producing high-resolution images resulting from the proximity of GB 
visualization and utilization of high ultrasound frequencies5,6. Several EUS features have been suggested for 
distinguishing neoplastic GB polyps, such as sessile shape and hypoechoic foci, and some studies have proposed 
scoring systems based on these features7–9. However, the interpretation of these EUS features tends to be 

1Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 
Republic of Korea. 2Department of Translational-Clinical Medicine, Gachon University, Incheon, Republic of Korea. 
3Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 
Republic of Korea. 4Gachon Biomedical & Convergence Institute, Gachon University Gil Medical Center, Incheon, 
Republic of Korea. 5Medical Devices R&D Center, Gachon University Gil Medical Center, Incheon, Republic of Korea. 
6Department of Biomedical Engineering, Pre-medical Course, College of Medicine, Gachon University, Incheon, 
Republic of Korea. 7Young Hoon Choi and Jun Young Park contributed equally to this study and are co-first authors. 
8Kwang Gi Kim and Sung Ill Jang contributed equally to this study and are co-corresponding authors. email: 
kimkg@gachon.ac.kr; aerojsi@yuhs.ac

OPEN

Scientific Reports |          (2026) 16:189 1| https://doi.org/10.1038/s41598-025-29179-9

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-29179-9&domain=pdf&date_stamp=2025-12-8


somewhat subjective, and a significant drawback is that diagnostic accuracy is influenced by the proficiency 
level of the EUS endoscopist. To address these limitations, our previous study utilized deep learning analysis on 
EUS images of GB polyps, achieving diagnostic accuracy levels comparable to those of expert endoscopists10.

In that study, only one or a few still images per GB polyp were provided for artificial intelligence (AI) analysis, 
which was also the case in other studies using abdominal ultrasound data for AI analysis of GB polyps10–12. Still 
images per polyp provide substantially less diagnostic information than the dynamic evaluation performed in 
clinical practice, in which EUS endoscopists diagnose GB polyps by observing real-time ultrasonography videos. 
In this regard, we sought to determine whether employing EUS video data for AI analysis of GB polyps would 
provide improved diagnostic accuracy. To our knowledge, no studies have utilized EUS video data for AI analysis 
of GB polyps or employed abdominal ultrasound video data. Therefore, this study aimed to evaluate the accuracy 
of detecting GB polyps and differentiating neoplastic GB polyps using deep learning analysis of EUS videos in 
patients with GB polyps.

Materials and methods
Data collection
Preoperative EUS videos of patients with histologically confirmed GB polyps were collected from Yonsei 
University College of Medicine, Gangnam Severance Hospital, between April 2020 and December 2023. All 
EUS examinations were performed by two experienced endoscopists using echoendoscopes (GF-UCT260 or 
GF-UE260-AL5; Olympus, EG3870UTK; Pentax, Tokyo, Japan). Multiple EUS videos could be generated per 
patient due to the recording time limit of the EUS system and procedural factors. All frames from the EUS videos 
were used for the analysis. The videos had a width of 800, height of 600, and frame rate of 30 frames per second. 
Cases in which polyps appeared relatively blurred or were difficult to detect with the naked eye were excluded 
when constructing the training and testing datasets. In total, 15 patients in the training cohort and six patients 
in the validation cohort were excluded due to unclear lesion visibility. Supplementary Figure S1 shows examples 
of the collected EUS videos and polyp-labeling data used to train the deep learning model. The polyp-labeling 
data were obtained using a custom labeling tool, the Korean-Medical Imaging System. The study protocol 
was approved by the Institutional Review Board of Gangnam Severance Hospital (IRB No. 3-2020-0089). The 
Institutional Review Board of Gangnam Severance Hospital also waived the requirement for informed consent 
due to the retrospective nature of the study. The study was conducted in accordance with the principles of the 
Declaration of Helsinki.

Research environment
The analysis in this study was conducted on a system equipped with an NVIDIA Tesla P100-SXM2 GPU 
(NVIDIA, Santa Clara, CA, USA), an Intel® Xeon® CPU E5-2698 (Intel, Santa Clara, CA, USA), and 32GB of 
RAM, running on the Ubuntu 20.04.6 LTS operating system. The libraries used in the experiment included 
TensorFlow (version 2.10.0), an open-source library that supports various features for designing and training 
deep learning models; Compute Unified Device Architecture (CUDA, version 11.8.89), developed by NVIDIA 
for the parallel processing of large-scale computations on GPUs; OpenCV (version 4.6.0.66), a library providing 
diverse image-processing capabilities; and Matplotlib (version 3.5.2), which enables the visualization of analyzed 
data in various forms, such as graphs and charts.

Data preprocessing
The ground truth for segmentation was manually annotated by four EUS experts who had performed more 
than 500 EUS procedures in pancreatobiliary imaging, using Aview software (Coreline Soft, Seoul, Republic of 
Korea). Each annotator was assigned a distinct subset of videos for labeling, focusing on delineating the visible 
margins of GB polyps while excluding surrounding mucosal reflections, artifacts, and acoustic shadows. To 
improve consistency, representative cases were jointly reviewed and discussed among annotators.

A video preprocessing algorithm was applied to adapt the collected EUS videos to train the deep learning 
model. The data preprocessing procedure for segmenting the polyp regions was as follows. First, all frames 
from the EUS videos were extracted. Histogram equalization was performed to enhance the contrast of the 
EUS frames, making the polyp regions more distinct. This technique improves contrast by equalizing the 
brightness values of the image, effectively restoring lost contrast in the process13. After histogram equalization, 
cropping was performed by specifying fixed coordinates to exclude unnecessary areas of the video, retaining 
only the endoscopic video region. By removing unnecessary areas, the model was guided to ignore irrelevant 
video information and focus on learning significant details. To prevent the videos from becoming elongated or 
distorted, zero padding was applied to the top and bottom of the frames, which were filled with pixel values of 0. 
The frames were then resized to 512 × 512.

For segmentation, frames were resized to 512 × 512; for classification, inputs were 256 × 256. We used the 
same sizes at inference.

The data preprocessing procedure for classifying the segmented polyp regions as neoplastic or non-neoplastic 
was as follows. The segmented regions were cropped and resized to 256 × 256. To more accurately evaluate 
the generalized performance of the deep learning model and prevent overfitting, fivefold cross-validation was 
performed14. The cross-validation was conducted on a video-wise basis, ensuring that frames from the same 
video were not mixed across the training, validation, and test sets within any fold. The videos of non-neoplastic 
and neoplastic polyps were appropriately distributed across each fold, ensuring balance. All collected data were 
split at the video level into training/validation/testing to avoid cross‑video leakage; no frames from a given video 
appeared in more than one split.
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Convolutional neural network model for deep learning
Attention U-Net, Residual U-Net, and Deep Understanding Convolutional Kernel (DUCK) Net architectures 
were used for polyp segmentation. Attention U-Net enhances the standard U-Net structure by incorporating 
attention gates, which emphasize the features necessary for segmentation while suppressing irrelevant 
information15. Residual U-Net combines the advantages of the U-Net structure with residual units, facilitating 
easier model training.

The skip connections transmit the information and features necessary for segmentation without degrading 
model performance, enabling the design of a neural network with significantly fewer parameters16. DUCK Net 
employs six convolutional blocks in parallel, allowing the model to train on the block deemed most suitable. 
It is designed with kernel sizes configured in three different ways to identify common regions while also 
capturing regions at the edges17. Using the segmentation model, the polyp area was predicted, cropped, and 
classified into neoplastic and non-neoplastic polyps using a classification model. EfficientNet-B2, ResNet101, 
and Vision Transformer (ViT) were employed for polyp classification in this study. EfficientNet-B2 enhances 
model performance efficiently by systematically scaling the width, depth, and resolution of convolutional neural 
network operations18. ResNet101 is a model designed with residual blocks to address the gradient vanishing 
problem that occurs as network depth increases. This design achieves a lower error rate and maximizes 
classification performance19.

The ViT model incorporated Shifted Patch Tokenization (SPT) and Locality Self-Attention (LSA) to enhance 
locality inductive bias20. SPT spatially shifts the input image in multiple directions and connects it with the 
original input image. LSA primarily sharpens the attention score distribution by learning the temperature 
parameters of the softmax function. The training hyperparameters for all deep learning models were as follows: 
300 epochs, a batch size of eight, a learning rate of 0.0001 with the Adam optimizer, an input size of 256 × 
256, and the use of pretrained ImageNet weights. To prevent overfitting during training, the EarlyStopping 
mechanism was implemented21,22. The ReduceLROnPlateau function was added to dynamically adjust the 
learning rate based on continuous monitoring of the validation loss23,24. During the training of the classification 
model, EfficientNet-B2 and ResNet101 were enhanced with a global average pooling layer added to the final 
layer to visualize which areas of the image the model focused on when making predictions25,26.

Unlike the other two classification models, the ViT model belongs to the Transformer family and, unlike 
convolutional neural network models, directly calculates gradients using self-attention27. Fig. 1 illustrates the 
workflow for polyp segmentation and classification in this study. The preprocessed data were segmented into 
polyp regions using Attention U-Net, Residual U-Net, and DUCK Net. The segmented regions were then 
cropped and classified into neoplastic and non-neoplastic polyps.

Fig. 1.  Flowchart for segmenting and classifying polyp regions using a segmentation and classification model.
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The final prediction for the video was determined by counting the number of non-neoplastic and neoplastic 
frames in the still images and selecting the class with the highest count as the final predicted class. The confidence 
level of the predicted class was assessed by examining the average probability of the classified predictions.

Statistical analysis
The performance of polyp segmentation and classification was evaluated by comparing the deep learning model 
predictions with the visual analysis results from medical professionals and histologically confirmed outcomes. 
True positive (TP), false negative (FN), true negative (TN), and false positive (FP) values were obtained based 
on the comparison. Based on the obtained TP, FN, TN, and FP, the segmentation performance metrics included 
accuracy, precision, recall, and dice similarity coefficient (DSC), as well as intersection over union (IoU), 
which compares the actual polyp regions with the predicted polyp regions. The classification metrics included 
accuracy, precision, recall, F1-score, and area under the curve (AUC). The performance of the segmentation and 
classification was evaluated using these five metrics. For the ROC and AUC analyses, the decision thresholds were 
not arbitrarily assigned but were systematically optimized at the video level to achieve optimal discrimination 
performance. The 95% confidence intervals (CIs) were estimated using a bootstrap resampling approach at the 
video level. The final performance was obtained by conducting fivefold cross-validation and calculating the 
average across all folds. All statistical analyses were performed using IBM SPSS Statistics software (version 29.0; 
IBM Corporation, Armonk, New York, USA).

Results
Dataset composition and patient characteristics
Seventeen EUS videos of 11 patients with neoplastic GB polyps and 79 videos of 39 patients with non-neoplastic 
GB polyps were included in the training cohort. For the validation cohort, 11 EUS videos from six patients with 
neoplastic GB polyps and 25 videos from 11 patients with non-neoplastic GB polyps were analyzed. Across both 
cohorts, patients with neoplastic polyps had a higher mean age and larger mean polyp size than those in patients 
with non-neoplastic polyps (Table 1).

Performance of GB polyp segmentation models on training and validation data
Table  2 shows the fivefold cross-validation results of Attention U-Net, Residual U-Net, and DUCK Net for 
polyp segmentation. Figure  2 shows the mean confusion matrix of the training cohort, calculated based on 
proportional values. Attention U-Net achieved an accuracy of 0.998, Residual U-Net 0.992, and DUCK Net 
0.995. The corresponding DSC values were 0.894, 0.729, and 0.822, and IoU values were 0.818, 0.614, and 0.706, 
respectively.

Figure 3 shows the preprocessed EUS frames, ground truth obtained from specialists, and the segmentation 
prediction results of Attention U-Net, Residual U-Net, and DUCK Net. The green areas represent the actual 
polyp regions, whereas the red areas indicate the predicted results of the segmentation models. Attention U-Net 
produced relatively accurate segmentation results compared to the other two models. In contrast, Residual 
U-Net and DUCK Net occasionally segmented non-polyp regions but failed to correctly segment the actual 
polyp regions.

Table  3 presents the performance results of the segmentation models using the final validation dataset, 
excluding the training and testing datasets that were initially used. Figure 4 shows the mean confusion matrix 

Variables All Neoplastic polyp Non-neoplastic polyp

Training cohort

Number of patients 50 11 39

Number of videos 96 17 79

Number of video frames 2953 1059 1894

Age, years, mean ± SD 51.3 ± 15.5 63.5 ± 18.6 47.9 ± 12.8

Sex

Male 22 (44%) 7 (63.6%) 15 (38.5%)

Female 28 (56%) 4 (36.4%) 24 (61.5%)

Polyp size, mm, mean ± SD 12.9 ± 10.1 21.3 ± 19.1 10.6 ± 3.1

Validation cohort

Number of patients 17 6 11

Number of videos 36 11 25

Number of video frames 1375 899 476

Age, years, mean ± SD 50.8 ± 15.2 72.7 ± 7.5 44.8 ± 10.2

Sex

Male 5 (35.7%) 2 (66.7%) 3 (27.3%)

Female 9 (64.3%) 1 (33.3%) 8 (72.7%)

Polyp size, mm, mean ± SD 14.0 ± 7.7 26.7 ± 2.9 10.6 ± 3.7

Table 1.  Baseline characteristics of the training and validation cohort patients. SD, standard deviation.
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of the final validation cohort, calculated based on proportional values. Accuracy values were 0.941 for both 
Attention U-Net and Residual U-Net, and 0.943 for DUCK Net. DSC values were 0.612, 0.675, and 0.683 for 
Attention U-Net, Residual U-Net, and DUCK Net, respectively.

Performance of GB polyp classification models on training and validation data
Table  4 presents the fivefold cross-validation results of EfficientNet-B2, ResNet101, and ViT for polyp 
classification. Figure 5 shows the mean confusion matrix of the training cohort, calculated based on proportional 
values. EfficientNet-B2 achieved an accuracy of 0.957, F1-score of 0.939, and AUC of 0.991. Accuracy for 
ResNet101 and ViT was 0.907 and 0.853, respectively, with corresponding F1-scores of 0.873 and 0.774. Among 
all the performance metrics, EfficientNet-B2 demonstrated the best performance.

Supplementary Figure S2 shows the results of the gradient-weighted class activation map (Grad-CAM) 
for the classification of neoplastic and non-neoplastic cases using EfficientNet-B2, ResNet101, and ViT. Grad-
CAM is a visualization algorithm that highlights regions that contribute to the classification of a specific class. 
Regions with higher importance are displayed in red, whereas those with lower importance are displayed in 
blue. As shown in Supplementary Figure S2, (a) and (b) are images of histologically confirmed non-neoplastic 
polyps, whereas (c) and (d) are images of histologically confirmed neoplastic polyps. EfficientNet-B2 accurately 
highlighted the polyp regions in red and yellow, demonstrating the precise classification of neoplastic and non-
neoplastic polyps compared to the other two models. In contrast, ResNet101 displayed red regions in empty 
spaces or black backgrounds rather than in the polyp regions. This indicates that ResNet101 failed to capture 
features in the EUS images, leading to a significantly lower performance in classifying neoplastic and non-
neoplastic polyps. Unlike the other two classification models, the ViT model, as a transformer-based model, 
processes the image by dividing it into patches for training. As shown in the Grad-CAM visualization of the 
ViT model, small red patches were observed across the image. The ViT model highlighted the polyp regions 
in red and demonstrated decent classification performance for distinguishing between neoplastic and non-
neoplastic polyps. Figure 6 shows the polyp contours and probability markings of non-neoplastic and neoplastic 
polyps displayed in the EUS video (Supplementary Videos 1 and 2). The attached video link of Fig. 6 shows 
the classification of non-neoplastic (yellow) and neoplastic (blue) polyps using colors. The number displayed 
alongside the color represents the probability of the predicted class.

Table  5 presents the performance results of the classification models using the final validatiosn dataset, 
excluding the initially used training and testing datasets. Figure 7 shows the mean confusion matrix of the final 
validation cohort, calculated based on proportional values. Accuracy was 0.879 for EfficientNet-B2, 0.871 for 
ResNet101, and 0.755 for ViT. The corresponding F1-scores were 0.917, 0.825, and 0.823, and the AUC values 
were 0.861, 0.893, and 0.794, respectively.

Discussion
This study evaluated the performance of AI in analyzing EUS videos for GB polyp assessment using a training 
cohort of 96 videos from 50 patients and a validation cohort of 30 videos from 14 patients. The analysis was 

Fig. 2.  Mean confusion matrix of fivefold cross-validation in the training cohort.

 

Model
Accuracy
(95% CI)

Precision
(95% CI)

Recall
(95% CI)

DSC
(95% CI)

IoU
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Attention U-Net 0.998
(0.997–0.999)

0.934
(0.904–0.964)

0.859
(0.766–0.952)

0.894
(0.813–0.975)

0.818
(0.697–0.939)

0.938
(0.717–0.989)

0.975
(0.913–0.993)

Residual U-Net 0.992
(0.981–0.999)

0.855
(0.687–0.999)

0.653
(0.415–0.890)

0.729
(0.523–0.934)

0.614
(0.370–0.858)

0.846
(0.578–0.957)

0.928
(0.851–0.966)

DUCK Net 0.995
(0.991–0.999)

0.900
(0.834–0.967)

0.773
(0.630–0.915)

0.822
(0.738–0.905)

0.706
(0.592–0.821)

0.867
(0.621–0.963)

0.951
(0.880–0.981)

Table 2.  Attention U-Net, residual U-Net and DUCK net fivefold cross-validation results for polyp 
segmentation. DUCK, deep understanding convolutional kernel; CI, confidence interval; DSC, dice similarity 
coefficient; IoU, intersection over union.
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Model
Accuracy
(95% CI)

Precision
(95% CI)

Recall
(95% CI)

DSC
(95% CI)

IoU
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Attention U-Net 0.941
(0.940–0.942)

0.809
(0.798–0.822)

0.537
(0.522–0.552)

0.612
(0.598–0.626)

0.490
(0.476–0.505)

0.808
(0.487–0.974)

0.822
(0.655–0.924)

Residual U-Net 0.941
(0.940–0.942)

0.810
(0.799–0.822)

0.607
(0.595–0.620)

0.675
(0.664–0.686)

0.555
(0.543–0.567)

0.807
(0.453–0.937)

0.845
(0.675–0.941)

DUCK Net 0.943
(0.942–0.944)

0.715
(0.700–0.729)

0.692
(0.675–0.709)

0.683
(0.668–0.698)

0.574
(0.560–0.588)

0.717
(0.434–0.903)

0.866
(0.700–0.958)

Table 3.  Attention U-Net, residual U-Net, and DUCK net final validation results for polyp segmentation. 
DUCK, deep understanding convolutional kernel; CI, confidence interval; DSC, dice similarity coefficient; IoU, 
intersection over union.

 

Fig. 3.  Segmentation models predict polyp regions. The red line is the prediction of the segmentation model, 
and the green line is the ground truth.

 

Scientific Reports |          (2026) 16:189 6| https://doi.org/10.1038/s41598-025-29179-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


conducted in two stages: first, GB polyps were identified in the entire EUS video, and second, neoplastic and 
non-neoplastic polyps were differentiated.

For GB polyp segmentation, three models were tested, with the Attention U-Net model demonstrating the 
best overall performance, achieving an accuracy of 99.8% in the training cohort and 94.1% in the validation 
cohort. In the second stage of polyp classification, EfficientNet-B2 outperformed the other models, achieving 
95.7% accuracy and an F1-score of 93.9% in the training cohort and 87.9% accuracy and an F1-score of 91.7% 
in the validation cohort. To the best of our knowledge, this is the first study to utilize AI to analyze EUS videos 
of GB polyps.

Few studies have applied AI to analyze gallbladder polyps, with most using still abdominal ultrasound images 
and only one utilizing still EUS images10–12,28. In these studies, the region-of-interest selection process, which 
corresponds to GB polyp segmentation in our study, was mostly performed manually rather than using AI10–12,28. 
One previous study using still abdominal ultrasound images attempted computer-aided segmentation, but rather 
than isolating only GB polyps, it segmented the entire gallbladder, distinguishing it from the background29. 
However, in this study, we successfully implemented AI-based GB polyp segmentation with high accuracy, 
enabling real-time EUS video analysis.

Although the DSC and IoU values for GB polyp segmentation were relatively low owing to the inherent 
subjectivity in manually annotated ground truth, Fig.  2 illustrates that the polyp contours generated by the 
Attention U-Net model closely matched the actual polyp boundaries. These minor discrepancies may have a 
minimal impact on polyp assessment. Nevertheless, refinement of the ground truth annotation, such as multi-
expert consensus labeling, may further enhance the segmentation metrics in future studies. This automated 
approach demonstrates the feasibility of real-time AI-assisted EUS video analysis.

Furthermore, the accuracy of differentiating neoplastic and non-neoplastic polyps in this study exceeded 
that of previous studies that used still abdominal ultrasound images for AI analysis. The polyp classification 

Fig. 5.  Mean confusion matrix of fivefold cross-validation in the training cohort.

 

Model
Accuracy
(95% CI)

Precision
(95% CI)

Recall
(95% CI)

F1-score
(95% CI)

AUC
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

EfficientNet-B2 0.957
(0.950–0.964)

0.925
(0.902–0.949)

0.954
(0.937–0.970)

0.939
(0.929–0.949)

0.991
(0.988–0.993)

0.926
(0.730–0.990)

0.990
(0.932–0.998)

ResNet101 0.907
(0.864–0.951)

0.857
(0.766–0.947)

0.900
(0.843–0.957)

0.873
(0.821–0.925)

0.965
(0.945–0.986)

0.855
(0.608–0.942)

0.978
(0.911–0.993)

ViT 0.853
(0.834–0.873)

0.829
(0.788–0.870)

0.730
(0.670–0.790)

0.774
(0.739–0.808)

0.895
(0.872–0.917)

0.827
(0.548–0.930)

0.943
(0.864–0.973)

Table 4.  EfficientNet-B2, ResNet101, and ViT fivefold cross-validation results for polyp classification. ViT, 
Vision Transformer; CI, confidence interval; AUC, area under the curve.

 

Fig. 4.  Mean confusion matrix of fivefold cross-validation in the final validation cohort.
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accuracy of the EfficientNet-B2 model in our study reached 95.7% in the training cohort and 87.9% in the 
validation cohort, which is higher than the reported accuracy range of 83.63–87.54% in three prior studies11,12,28. 
Additionally, our F1-score was 0.939 in the training cohort and 0.917 in the validation cohort, both higher than 
the 0.788 reported in a previous study12, confirming the robust performance of our model. We excluded cases 
with unclear GB polyp visibility to ensure reliable annotation and data consistency. This process was not intended 
to select cases that were easier to differentiate but rather to maintain the overall quality and interpretability of the 
dataset. Such careful dataset management may have contributed to improved model accuracy.

Although previous studies using still abdominal ultrasound images included 224–535 patients, a larger sample 
size than that in our study, the superior accuracy in our results can be attributed to the use of the EUS modality, 
which has been reported to provide higher accuracy in differentiating gallbladder polyps5,6. Moreover, the use of 

Fig. 7.  Mean confusion matrix of fivefold cross-validation in the final validation cohort.

 

Model
Accuracy
(95% CI)

Precision
(95% CI)

Recall
(95% CI)

F1-score
(95% CI)

AUC
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

EfficientNet-B2 0.879
(0.842–0.916)

0.872
(0.828–0.916)

0.968
(0.945–0.991)

0.917
(0.889–0.943)

0.861
(0.796–0.919)

0.869
(0.578–0.957)

0.983
(0.857–0.999)

ResNet101 0.871
(0.844–0.898)

0.795
(0.742–0.847)

0.854
(0.807–0.901)

0.825
(0.784–0.863)

0.893
(0.864–0.921)

0.797
(0.523–0.949)

0.934
(0.750–0.978)

ViT 0.755
(0.706–0.803)

0.804
(0.751–0.856)

0.842
(0.793–0.891)

0.823
(0.784–0.859)

0.794
(0.744–0.841)

0.802
(0.523–0.949)

0.930
(0.750–0.978)

Table 5.  EfficientNet-B2, ResNet101, and ViT final validation results for polyp classification. ViT, Vision 
Transformer; CI, confidence interval; AUC, area under the curve.

 

Fig. 6.  Images captured from the EUS analysis video. (a,b) GB polyps with a higher likelihood of being non-
neoplastic are outlined in yellow, with their probability displayed as a numerical value. Images were captured 
from a video of a single patient with a histologically confirmed non-neoplastic polyp. (c,d) GB polyps that were 
more likely to be neoplastic are outlined in sky blue, with their probability also displayed numerically in sky 
blue. Images were captured from the video of another patient with a histologically confirmed neoplastic polyp. 
See Supplementary Videos 1 and 2.
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video-based AI analysis, rather than still images, likely contributed to the improved classification performance 
despite the relatively small sample size. In our study, although the total number of patients was relatively small (n 
= 67), the dataset comprised 4,328 video frames, which exceeded those used in prior studies based on still images 
(501 images11 and 3,118 images28 and was only slightly fewer than in another study using 6,056 still images12. 
Thus, despite the small sample size, the relatively large amount of video-derived data available for analysis may 
have been one factor contributing to the favorable performance observed in our study. Our previous study 
utilizing still EUS images reported a polyp classification accuracy of 89.8%, which was also higher than that 
of prior studies using abdominal ultrasound10. This further supports the notion that EUS modality enhances 
classification accuracy. However, considering that the classification accuracy in our validation cohort was lower 
than that reported in a study using still EUS images from 753 patients10, future large-scale prospective studies 
utilizing EUS video data are necessary to further improve accuracy.

This study had some limitations. First, it was a retrospective study with a relatively small sample size. 
However, despite the limited number of patients, the use of video data comprising approximately 4,000 video 
frames allowed for a more comprehensive analysis, leading to a diagnostic performance that surpasses that of 
previous AI-based studies on GB polyps. In a prior study10, an EUS-AI system with ResNet50 architecture was 
trained using 1,039 still-cut images, whereas our video-based dataset provided about 3,000 frames for training, 
offering a richer resource for training and validation. To mitigate potential overfitting risks from the limited 
sample size, we implemented fivefold cross-validation at the video level, ensuring that frames from the same 
video were not simultaneously included in both training and validation sets. This design minimized data leakage 
and allowed us to confirm consistent performance across folds, suggesting that the model achieved a reasonable 
degree of generalizability despite the sample size limitation. Second, selection bias was inevitable because the 
study population was limited to patients whose diagnoses were pathologically confirmed, and consequently all 
subjects had undergone cholecystectomy. Currently, there is no gold standard diagnostic method that can replace 
pathological confirmation for GB polyps. Therefore, future prospective studies including non-surgical follow-up 
cohorts with long-term observation are needed to overcome this limitation and to ensure the generalizability of 
AI-based GB polyp diagnosis.

Conclusions
In conclusion, this is the first study to analyze EUS videos using AI for GB polyp assessment. Our AI model 
for EUS video-based GB polyp segmentation and classification demonstrated strong diagnostic performance. 
Further large-scale prospective studies are essential to validate its clinical utility as a real-time diagnostic tool for 
EUS-based GB polyp evaluation.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author on reason-
able request. We have uploaded the inference code and trained model weights to GitHub ​(​​​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​u​
s​e​r​-​d​y​n​a​m​i​t​e​/​E​U​S​-​G​B​-​p​o​y​l​p​​​​​)​.​​
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