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ABSTRACT

Background: The skin microbiome plays a crucial role in defending against pathogens and
modulating immunity, and its dysregulation is linked to various skin conditions, including acne.
Methods: In this study, four previously identified strains—Staphylococcus epidermidis B424F-5,
S. epidermidis BS47C-1, Dermacoccus profundi BS35F-3, and Streptococcus salivarius BS320F-4— were
selected from a skin microbiome database of healthy individuals. The efficacy and safety

of these strains against acne-related inflammation were evaluated using in vitro and in vivo
animal model experiments.

Results: Cutibacterium acnes exposure increased the expression of acne-associated
inflammatory mediators—such as IL-1f3, IL-6, IL-8, COX-2, iNOS, and TNF-o—particularly
in keratinocytes, without inducing cytotoxicity. Treatment with heat-killed S. epidermidis
BS47C-1 (SE2), D. profundi BS35F-3 (DP), and S. salivarius BS320F-4 (SS) significantly reduced
these markers in vitro. In vivo, topical application of the strains alleviated inflammation

in a C. acnes-induced mouse model, with histological evidence of reduced erythema and
immune cell infiltration. Bulk RNA sequencing of keratinocytes showed that SE2 and

DP downregulated cytokine and interferon signaling while enhancing skin barrier and
antimicrobial gene expression, suggesting a dual anti-inflammatory and barrier-supporting
mechanism.

Conclusion: These results provide compelling evidence of the efficacy and safety of human
skin microbiome-derived strains as potential topical treatments for acne. By targeting both
microbial colonization and inflammatory pathways, these strains offer a promising avenue
for the development of novel acne therapeutics.
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INTRODUCTION

Acne vulgaris is a chronic inflammatory disorder of the pilosebaceous unit that affects up
to 90% of adolescents and young adults.! The etiopathogenesis of acne is multifactorial,
involving increased sebum production, follicular hyperkeratinization, and the complex
interplay between inflammatory mediators and microbial factors.2 Bacterial colonization
exacerbates the pathology as a secondary factor, aggravating disease severity.3 Dysbiosis of
the microbiome (an imbalance in beneficial commensal microorganisms and pathogens)
is associated with a variety of skin diseases.4 Notably, in acne, specific subgroups, namely
Cutibacterium acnes phylotypes IA-2, IB-1, and IC, are detected more frequently in individuals
with severe acne than in those with normal skin.3

Recent advances in microbiome research have underscored the importance of the skin
microbial ecosystem in maintaining cutaneous homeostasis.5 Emerging evidence indicates
that changes in the relative abundance and virulence of skin microbes (including not only

C. acnes but also organisms such as Enterococcus faecalis) can significantly influence acne
pathogenesis. Skin microorganisms act in a manner similar to their counterparts in the
gut; they exhibit protective functions against pathogenic infections, participate in immune
modulation, and contribute to the breakdown of various biomolecules, including lipids,
proteins, and complex carbohydrates. Conventional treatments, such as topical and systemic
antibiotics, primarily target bacterial colonization and inflammation but are associated with
treatment risks such as antibiotic resistance and adverse effects. In contrast, microbiome-
based therapies have shown promise in clinical studies by achieving comparable efficacy to
conventional methods while potentially offering improved safety profiles.®

In a previous study, we successfully collected skin swab samples from 51 healthy individuals
and constructed a comprehensive database of skin microbiome data.” Over 1,630 strains of
skin-derived microorganisms were isolated. Furthermore, antimicrobial activities against skin
and opportunistic pathogens, such as Staphylococcal aureus, Bacillus subtilis, and C. acnes were
assessed based on these strains and their derived antimicrobial substances (bacteriocins).
These experiments identified four skin microbiome-derived strains Staphylococcus epidermidis
B424F-5 (SE1), Staphylococcus epidermidis BS47C-1 (SE2), Dermacoccus profoundi BS35E-3 (DP),
Streptococcus salivarius BS320F-4 (SS) exhibiting antimicrobial activity against C. acnes.

Building on these findings, the present study aims to evaluate the therapeutic potential
and safety of heat-killed candidate strains (SE1, SE2, DP, and SS) and their antimicrobial
metabolites through comprehensive preclinical in vitro and in vivo studies. We hypothesize
that these strains exert their therapeutic effects by modulating acne-related skin
inflammation. Using both cellular models and an acne-induced animal model, this study
seeks to demonstrate their anti-inflammatory efficacy in the context of acne pathogenesis
and to lay the groundwork for the development of a novel, safe, microbiome-based
therapeutic approach for acne management.

METHODS

Bacterial culture
C. acnes ATCC 6919 (ATCC, Manassas, VA, USA) was cultured in Reinforced Clostridial
Medium (Oxoid, Hampshire, UK) under anaerobic conditions at 37°C for 72 hours. Four
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candidate strains —SE1, SE2, DP, and SS — were cultured aerobically at 37°C for 24 hours
using Tryptic Soy Broth (SE1, SE2), Brain Heart Infusion Medium (SS), or Trypticase Soy
Yeast Extract Medium (DP). The antimicrobial activity of these strains was previously
characterized, with details provided in our prior publication.> Following culture, bacterial
suspensions were centrifuged (14,000 rpm, 20 minutes, 4°C), washed twice with PBS, and
adjusted to an optical density of 1.0 at 600 nm. Final concentrations were standardized to
1x 107 CFU in 50 pL. Strains used for experiments were freshly prepared weekly and stored at
4°C, with daily administration during the study period.

Cell culture

Human dermal fibroblasts (HDF; C0135C, Thermo Fisher Scientific, Waltham, MA, USA)

and human epidermal keratinocytes (KC; PCS-200-011, ATCC) were cultured in Dulbecco’s
Modified Eagle Medium (DMEM; Lonza, Walkersville, MD, USA) with 10% fetal bovine serum
(Gibco, Waltham, MA, USA) and 1% penicillin-streptomycin (Gibco) or KBM Gold Basal
Medium (Lonza) supplemented with KGM Gold SingleQuot (Lonza), respectively. Cells were
maintained at 37°C in a humidified incubator with 5% CO, and subcultured every three days
using Trypsin-EDTA.

Cell viability assay

Cell viability was assessed using the CCK-8 assay (Dojindo Molecular Technologies,
Kumamoto, Japan). KC and HDF cells (5 x 10* cells/well) were seeded in 96-well plates and
incubated for 24 hours. C. acnes were added at varying concentrations (0.25, 0.5, 1, 2, or 4 x
10® CFU), and absorbance was measured at 450 nm using a microplate reader (VersaMax;
Molecular Devices, San Jose, CA, USA).

In vivo C. acnes-induced ache model and treatment

Six-week-old female CD-1 mice (OrientBio, Seongnam, Korea) were acclimated for one week
and randomized into five groups (n =5 per group). Mice were maintained under standard
conditions (24°C £ 0.5°C; 55-65% humidity; 12-hour light/dark cycle) with ad libitum access
to food and water. The acne model was established by daily intradermal injections of C. acnes
(1x10” CFU in 20 pL) on both sides of the shaved dorsal skin for two weeks.8, Subsequently,
heat-killed bacterial suspensions (50 pL per strain) were topically applied once daily for

7 consecutive days. The bacterial preparations were suspended in the same culture medium
used during strain cultivation, without any additional vehicle or carrier. To enhance
absorption and ensure even distribution, the treated area was gently tapped at least 40 times
using a sterile plastic spatula immediately after application, while mice were under brief
inhalational anesthesia. Skin inflammation was documented at baseline, week 2, and week 3.
Mice were sacrificed on day 22 via CO, inhalation.

Histopathology

Skin samples were collected, fixed in 10% neutral-buffered formalin, embedded in paraffin,
and sectioned at 4 um thickness. Hematoxylin-stained sections were analyzed for epidermal
and dermal thickness, measured as described previously.10,11

Immunohistochemistry

Paraffin-embedded sections (4 pm) underwent heat-induced epitope retrieval in

EnV FLEX TRS High pH buffer (S2367, Dako, Glostrup, Denmark) for 30 minutes.
Endogenous peroxidase was quenched with 3% hydrogen peroxide on ice. After blocking
with 5% bovine serum albumin, sections were incubated overnight at 4°C with primary
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antibodies against nuclear factor kappa-light-chain-enhancer of activated B cells (NF-«B)
(1:200), IL-1B (1:500), and Caspase-1 (1:200) (Cell Signaling). Detection was performed
using a DAKO peroxidase/DAB kit, followed by counterstaining with Mayer’s hematoxylin.
Detailed information on the immunohistochemical studies and materials are presented in
the supplementary materials and methods (Supplementary Data 1).

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)

To assess anti-inflammatory effects, keratinocytes were stimulated with C. acnes (1 x 10’ CFU),
followed by co-treatment with heat-killed SE1, SE2, SS, or DP strains (1 x 10’ CFU each) for
24 hours. Total RNA from keratinocytes and tissue samples was extracted using RNAiso Plus
(Takara Bio, Shiga, Japan), with homogenization of tissue biopsies in 0.9% saline (1 mL per
3 x 3 mm). cDNA was synthesized using the RNA to cDNA EcoDry™ premix kit (Takara

Bio). Gene expression was quantified by qRT-PCR using SYBR Green Master Mix (Promega)
on a QuantStudio 3 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA).
Expression levels were normalized to GAPDH and calculated using the 244 method. Primer
sequences are provided in Table 1.

RNA sequencing (RNA-seq)

RNA sequencing was performed following total RNA extraction with RNAiso Plus (Takara
Bio) and library preparation using a TruSeq RNA Library Prep Kit (Illumina). Paired-end
sequencing (100 bp) was conducted on the NextSeq 550 platform (Macrogen, Seoul, Korea).

Table 1. Sequence of primers for qRT-PCR for mouse and human genes

Variables Primer sequences (5'>3')
Mouse
Tnfa. Forward: 5'-GGTGCCTATGTCTCAGCCTCTT-3’
Reverse: 5'-GCCATAGAACTGATGAGAGGGAG-3’
nip Forward: 5'-TGGACCTTCCAGGATGAGGACA-3’
Reverse: 5'-GTTCATCTCGGAGCCTGTAGTG-3’
e Forward: 5'-TACCACTTCACAAGTCGGAGGC-3’
Reverse: 5'-CTGCAAGTGCATCATCGTTGTTC-3’
18 Forward: 5'-GGTGATATTCGAGACCATTTACTG-3’
Reverse: 5'-GCCAACAGTAGCCTTCACCCAT-3’
Cox2 Forward: 5'-GCGACATACTCAAGCAGGAGCA-3’
Reverse: 5'-AGTGGTAACCGCTCAGGTGTTG-3’
inos Forward: 5'-GAGACAGGGAAGTCTGAAGCAC-3'
Reverse: 5'-CCAGCAGTAGTTGCTCCTCTTC-3'
Gapdh Forward: 5'-AGGTCGGTGTGAACGGATTTG-3’
Reverse: 5'-TGTAGACCATGTAGTTGAGGTCA-3’
Human
TNFao, Forward: 5'-CTCTTCTGCCTGCTGCACTTTG-3’
Reverse: 5'-ATGGGCTACAGGCTTGTCACTC-3'
IL1f Forward: 5'-CCACAGACCTTCCAGGAGAATG-3’
Reverse: 5'-GTGCAGTTCAGTGATCGTACAGG-3'
IL6 Forward: 5'-AGACAGCCACTCACCTCTTCAG-3’
Reverse: 5'-TTCTGCCAGTGCCTCTTTGCTG-3’
IL8 Forward: 5'-GACCACACTGCGCCAACAC-3’
Reverse: 5'-CTTCTCCACAACCCTCTGCAC-3’
COox2 Forward: 5'-CGGTGAAACTCTGGCTAGACAG-3’
Reverse: 5'-GCAAACCGTAGATGCTCAGGGA-3'
iINOS Forward: 5'-GCTCTACACCTCCAATGTGACC-3’
Reverse: 5'-CTGCCGAGATTTGAGCCTCATG-3’
GAPDH Forward: 5'-TGTTGCCATCAATGACCCCTT-3'

Reverse: 5'-CTCCACGACGTACTCAGCG-3'

gRT-PCR = quantitative reverse transcription-polymerase chain reaction, TNFa = tumor necrosis factor-alpha,
IL = interleukin, COX2 = cyclooxygenase2, iNOS = inducible nitric oxide synthase.
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Reads were trimmed and mapped to the reference genome using HISAT2. Transcript
assembly and quantification were performed using StringTie, generating read counts, FPKM,
and TPM values. Differentially expressed genes were identified using DESeq?2 with thresholds
of |fold change| > 2 and P < 0.05.

Statistical analysis

Data are presented as mean + standard deviation. Statistical analyses were performed

using SPSS (version 25.0; IBM Corp., Armonk, NY, USA). For two-group comparisons,
unpaired t-tests were used when normality and homogeneity of variance were confirmed.
Comparisons between each treatment and the C. acnes-only group were performed using
unpaired t-tests. For multiple comparisons, one-way analysis of the variance followed by
Bonferroni post-hoc tests was conducted. A Pvalue < 0.05 was considered statistically
significant. Principal component analysis (PCA) and hierarchical clustering analysis (HCA)
of transcriptomic data were performed using rlog-transformed values, with results visualized
through heatmaps and PCA plots.

Ethics statement

All animal experiments were conducted in accordance with the ARRIVE guidelines and
approved by the Institutional Animal Care and Use Committee of Yonsei University
(IACUC approval No. 2023-0111).

RESULTS

In vitro anti-inflammatory effects of candidate strains

The cytotoxic effects of C. acnes on KCs and HDFs were evaluated using a CCK-8 assay.

As shown in Fig. 1, both KCs and HDFs demonstrated increased cell viability with rising
concentrations of C. acnes (10° to 10® CFU), indicating no cytotoxicity in either cell type.

To assess changes in inflammatory mediators associated with acne pathogenesis (interleukin
1 beta [IL14], interleukin 6 [IL6], interleukin 8 [IL8], tumor necrosis factor alpha [TNFa],
inducible nitric oxide synthase [{NOS], and cyclooxygenase-2 [COX-2]), qRT-PCR was
performed after exposing KCs and HDFs to C. acnes (1 x 107 or 5 x 107 CFU). In KCs, C. acnes
exposure led to significant upregulation of IL14, IL6, IL8, and COX-2 expression compared to
controls (Supplementary Fig. 1A). In HDFs, while there was some increase in inflammatory
mediator expression, these changes were inconsistent and not correlated with C. acnes dose
(Supplementary Fig. 1B). These findings suggest that keratinocytes may play a key role in
mediating acne-related inflammatory responses under these experimental conditions.

Subsequently, qRT-PCR analysis was conducted to determine whether the four candidate
strains could attenuate C. acnes-induced inflammatory responses. Treatment with

SE2, SS, and DP significantly reduced the expression of IL1f, IL6, IL8, COX-2, iNOS, and
TNFo compared to C. acnes-only exposure in KCs (Fig. 2). In contrast, SE1 showed relatively
inconsistent effects and was therefore excluded from subsequent RNA-seq and in vivo
experiments.

Transcriptomic analysis by RNA sequencing

RNA sequencing was performed on keratinocytes exposed to C. acnes (Acne group) and
treated with each candidate strain (SE2, SS, and DP groups). PCA revealed distinct clustering
of samples based on treatment conditions, indicating clear transcriptional differences
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Fig. 1. Reverse transcription-polymerase chain reaction analysis of inflammatory markers in vitro following
Cutibacterium acnes exposure. C. acnes was applied to KCs (A) and HDFs (B) to assess mRNA expression of
acne-associated inflammatory mediators. A dose-dependent increase in IL1S, IL6, IL8, and COX-2 expression was
observed in KCs but not in HDFs. Gene expression was normalized to glyceraldehyde 3-phosphate dehydrogenase
and calculated using the 244 method.

IL = interleukin, CON = control, COX-2 = cyclooxygenase-2, iNOS = inducible nitric oxide synthase, TNFa = tumor
necrosis factor-a, KC = keratinocyte, HDF = human dermal fibroblast.

“P<0.05, ""P < 0.001, independent samples t-test vs. control.

(Fig. 3A). HCA of the 1,831 most significantly altered genes further visualized these
differences in a heatmap (Fig. 3B). Among the three strains, gene set enrichment analysis
(GSEA) demonstrated that SE2 treatment efficiently upregulated genes involved in skin
barrier function and antimicrobial responses, while downregulating genes associated with
cytokine signaling and interferon pathways compared to the Acne group (Fig. 3C). The

DP group exhibited similar transcriptional changes (Fig. 3D). These results emphasize
condition-specific transcriptional shifts induced by SE2 and DP, underscoring their biological
relevance and potential anti-inflammatory effects.

In vivo effects of candidate strains on C. acnes-induced inflammation

In vivo evaluation and histopathology

A mouse acne model was established by intradermal injection of C. acnes (1 x 107 CFU in

20 pL) for two weeks (Fig. 4A). The Acne group exhibited persistent swelling and erythema at
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KCs were exposed to C. acnes alone (Acne group) or co-treated with SE1, SE2, DP, or SS. SE2, SS, and DP significantly reduced the expression of IL1, IL6, IL8,
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IL = interleukin, CON = control, - = Acne group, SE1 = S. epidermidis B424F-5, SE2 = S. epidermidis BS47C-1, SS = S. salivarius BS320F-4, DP = D. profundi BS35F-3,
COX-2 = cyclooxygenase-2, KC = keratinocyte, iNOS = inducible nitric oxide synthase, TNFa = tumor necrosis factor-o.

day 21, whereas mice treated with SE2, SS, and DP showed visible reductions in these clinical
signs (Fig. 4B). Histological analysis revealed that the Acne group had dense infiltration
of lymphocytes, histiocytes, and neutrophils extending into the dermis and subcutaneous
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Fig. 3. RNA sequencing analysis of KCs in vitro. (A) PCA plot showing distinct clustering by treatment group. (B) Heatmap of the top 1,831 differentially expressed
genes. (C) GSEA results comparing SE2 vs. Acne group. (D) GSEA results comparing DP vs. Acne group.

PCA = principal component analysis, SS = S. salivarius BS320F-4, DP = D. profundi BS35F-3, SE2 = S. epidermidis BS47C-1, Acne = only acne treatment group, GSEA
= gene set enrichment analysis, KC = keratinocyte. (continued to the next page)
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Fig. 3. (Continued) RNA sequencing analysis of KCs in vitro. (A) PCA plot showing distinct clustering by treatment group. (B) Heatmap of the top 1,831
differentially expressed genes. (C) GSEA results comparing SE2 vs. Acne group. (D) GSEA results comparing DP vs. Acne group.
PCA = principal component analysis, SS = S. salivarius BS320F-4, DP = D. profundi BS35F-3, SE2 = S. epidermidis BS47C-1, Acne = only acne treatment group, GSEA

= gene set enrichment analysis, KC = keratinocyte.

fat (Fig. 5A). In contrast, SE2, SS, and DP treatments notably reduced inflammatory cell
infiltration and dermal thickening (Fig. 5F).

In vivo inflammatory marker expression

gRT-PCR analysis of skin tissue demonstrated significant upregulation of /15, 118, Tnf-c,
inos, and Cox2 in the Acne group relative to controls. Topical application of SE2, SS, and
DP significantly reduced the expression of these acne-induced inflammatory markers,
confirming their anti-inflammatory effects (Fig. 5G).

Immunohistochemical analysis

Immunohistochemistry for Caspase-1, IL-1B, and NF-«B further confirmed the inflammatory
state induced by C. acnes (Fig. 6A). Caspase-1 expression was significantly elevated in the
Acne group but attenuated following SE2, SS, and DP treatment, with DP showing the
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Fig. 4. Schematic of in vivo study design and representative images of Cutibacterium acnes-induced lesions. (A) Mice received intradermal C. acnes injections
(1x107 CFU/20 pL) daily for 14 days. From Day 14, heat-treated SE2, SS, and DP (1 x 107 CFU/50 pL) were topically applied for 7 days. (B) Representative images
show persistent erythema in the Acne group on Day 21 vs. Day 14, while SE2, SS, and DP groups displayed reduced swelling and erythema. Dotted circles indicate

the treatment area.

- = Acne group, SE2 = S. epidermidis BS47C-1, SS = S. salivarius BS320F-4, DP = D. profundi BS35F-3.
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strongest effect (Fig. 6B). IL-1p levels were similarly reduced in all treatment groups, although
differences between strains were not statistically significant (Fig. 6C). NF-kB expression was
markedly increased in the Acne group and significantly decreased by SE2 and SS treatments,
with DP showing a moderate reduction (Fig. 6D).

DISCUSSION

Acne vulgaris treatment primarily aims to mitigate the inflammatory response induced

by C. acnes overgrowth, a key factor in acne pathogenesis.? Conventional therapies include
antibiotics such as clindamycin for their antimicrobial effects,12 as well as oral isotretinoin
and topical retinoids, which reduce sebum production, prevent follicular occlusion, and
exert anti-inflammatory actions. Although these treatments are generally effective, they

are associated with various side effects such as erythema, scaling, dryness, burning, and
pruritus. More importantly, the long-term use of oral or topical antibiotics raises significant
concerns regarding the development of antibiotic resistance.13,14

In our previous work, we identified four skin microbiome-derived strains—SE1, SE2, SS,
and DP—that primarily demonstrated antimicrobial activity against C. acnes.” In the present
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Fig. 5. Histopathology and qRT-PCR of inflammatory markers in vivo. (A-E) Representative hematoxylin and eosin-stained skin sections. The Acne group
showed marked infiltration of lymphocytes, histiocytes, and neutrophils, which was reduced in SE2, SS, and DP groups. (F) Epidermal and dermal thickness
were significantly decreased in treated groups. (G) qRT-PCR showed elevated /15, I8, Tnf-a, iINOS, and Cox-2 in the Acne group, which were reduced following
treatment. Data are mean = SD. Different lowercase letters (a, b, c, etc.) indicate statistically significant differences between groups (P < 0.05) as determined by
one-way analysis of the variance with Bonferroni post-hoc test (scale bar =100 um).

CON = control, - = Acne group, SE2 = S. epidermidis BS47C-1, SS = S. salivarius BS320F-4, DP = D. profundi BS35F-3, IL = interleukin, COX-2 = cyclooxygenase-2,
iNOS = inducible nitric oxide synthase, TNFa = tumor necrosis factor-o, qRT-PCR = quantitative reverse transcription-polymerase chain reaction.

study, we evaluated the therapeutic potential of these strains in attenuating C. acnes-induced
inflammatory responses in both in vitro and in vivo models. To explore their feasibility as
safe and stable candidates for topical application, heat-killed preparations of SE2, SS, and
DP were used. As a result, these heat-inactivated strains significantly reduced inflammatory
responses in keratinocytes and mouse models, highlighting their potential for development
as novel topical therapeutics.

https://jkms.org https://doi.org/10.3346/jkms.2025.40.e327 10/14



JKMS

Skin Microbiome Strains for Acne Treatment

A Acne

CON - SE2 SS DP

Caspase-1

200pm . n" 200ym 200 i - 200pm | 3 . 2W0um

==
=
5
L 200um - o 2000, AT 200 ym 3 Foojm T
o \ "
- - \
¥ 2 ¥
[~} &7 . N o
¥ e "RARNLER ©
L. , \ s O
& 0
a 4 9‘ Poe 5 = - =
2 I s
Q K ' oo
00 im ) 100 yom 100 i 1904 il -Kl)u".*
Caspase-1
NF-kB
2 2 = 100
> 2 22 22
7 9 G 9 % o 80
S £ c e c £
Q -= @ = o S
2= R g5 60
=3 = D =
w8 w 2 22 40
c @2 c 2 c 2
J i i Se 2
w O w O w O
> > g 0
CON - SE2 ss DP CON - SE2 SS DP CON - SE2 SS DP
Acne Acne Acne

Fig. 6. Immunohistochemical analysis of inflammatory markers in acne-affected skin. (A) Representative images showing Caspase-1, NF-kB, and IL-1B staining in
skin sections. Brown signals indicate positive expression (scale bar = 200 um). (B-D) Quantification of staining intensity for Caspase-1, NF-kB, and IL-1B. SE2, SS,
and DP treatments significantly reduced expression levels compared to the Acne group. Data are mean + SD. Different lowercase letters (a, b, c, etc.) indicate
statistically significant differences between groups (P < 0.05) as determined by one-way analysis of the variance with Bonferroni post-hoc test.

CON = control, - = Acne group, SE2 = S. epidermidis BS47C-1, SS = S. salivarius BS320F-4, DP = D. profundi BS35F-3, IL = interleukin, NF-kB = nuclear factor
kappa-light-chain-enhancer of activated B cells.

In vitro assays revealed that SE2, SS, and DP treatment markedly downregulated acne-
related inflammatory mediators, including IL-1, IL-6, IL-8, COX-2, iNOS, and TNF-a.

In vivo, topical application of these strains in a C. acnes-induced acne mouse model resulted
in visible reductions in swelling and erythema. Histological analysis showed decreased
inflammatory cell infiltration and reduced dermal and epidermal thickness in treated
groups. These histological improvements were supported by immunohistochemical staining,
which demonstrated lower expression of caspase-1, IL-1p, and NF-kB—Xkey markers in
acne-associated inflammation.1518 RNA sequencing offered further mechanistic insight.
Keratinocytes treated with SE2 and DP exhibited upregulation of genes associated with

skin barrier function and antimicrobial responses, along with downregulation of cytokine
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signaling and interferon pathways, as revealed by GSEA. These transcriptional shifts
emphasize the anti-inflammatory and homeostasis-restoring effects of the strains.

Current understanding of acne pathogenesis emphasizes that virulent C. acne strains, rather
than overall bacterial burden, plays a central role in triggering chronic inflammation,
particularly under conditions of skin microbiome dysbiosis.1? These strains produce a range
of virulence factors—including lipases, proteases, hyaluronate lyase, endoglycoceramidases,
neuraminidases, and Christie-Atkins—Munch-Petersen factors—that contribute to tissue
degradation and promote inflammatory responses.20-23 These mechanisms facilitate immune
cell infiltration into the follicular wall and dermis, aggravating acne lesions.24 Recent findings
further demonstrate that C. acnes activates not only classical inflammatory pathways such

as NF-«B and the inflammasome but also the type I interferon (IFN-I) signaling axis via

the cGAS-STING pathway in human macrophages.25 Our transcriptomic data showed that
treatment with SE2 and DP significantly downregulated interferon-related gene expression.
These findings suggest that heat-inactivated commensal strains may attenuate C. acnes-induced
inflammation not only by counteracting virulence factor-mediated responses but also by
suppressing the IFN-I signaling cascade—offering a dual mechanism of therapeutic action.

The potential of probiotic and postbiotic strategies in acne treatment has gained increasing
attention. Probiotics exert beneficial effects by inhibiting C. acnes through antimicrobial
substances, enhancing skin barrier function, and modulating immune responses. For
example, S. salivarius secretes bacteriocin-like inhibitory substances that suppress C. acnes
growth,26 while Lactococcus sp. HY449 produces bacteriocins with similar effects.2” Topical
application of probiotics such as Streptococcus thermophilus has been shown to enhance
ceramide production, thereby reinforcing the skin barrier and contributing to antimicrobial
and anti-inflammatory effects.28-30 Moreover, S. salivarius K12 inhibits IL-8 release from
keratinocytes,31 and Lactobacillus paracasei NCC2461 reduces substance-induced skin
inflammation.32,33 Our transcriptomic findings align with these reports, as SE2 and

DP treatments led to the upregulation of genes related to barrier integrity and innate
antimicrobial responses, alongside downregulation of cytokine and interferon-mediated
inflammatory pathways. Together, these results support the growing body of evidence

that microbiome-derived therapies can modulate acne pathophysiology through both
antimicrobial and immunoregulatory mechanisms.

In conclusion, our study demonstrates the efficacy and safety of human skin microbiome-
derived, heat-killed strains as potential topical treatments for acne. By modulating both
microbial colonization and inflammatory pathways, these strains offer a promising
foundation for the development of novel, microbiome-based acne therapeutics. Future
clinical studies are needed to confirm their therapeutic potential and safety in human
subjects, along with further investigation into their mechanisms of action and optimal
formulation strategies. Such efforts will not only validate our findings but also advance the
understanding of the skin microbiome’s role in acne pathogenesis, paving the way for more
targeted and effective treatments.

SUPPLEMENTARY MATERIALS

Supplementary Data 1
Supplementary materials and methods
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Supplementary Fig. 1

Cell viability after treatment of Cutibacterium acnes on the KCs (A) and HDFs (B). C. acnes was
added at five different concentrations (0.25, 0.5, 1, 2, 4 x 10 CFU) on KCs (A) and HDFs (B).
Cell viability increased with the increase in CFU of C. acnes, which means there was no
cytotoxicity of C. acnes on both KCs and HDFs.
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