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ABSTRACT

Background: The skin microbiome plays a crucial role in defending against pathogens and 
modulating immunity, and its dysregulation is linked to various skin conditions, including acne.
Methods: In this study, four previously identified strains—Staphylococcus epidermidis B424F-5, 
S. epidermidis BS47C-1, Dermacoccus profundi BS35F-3, and Streptococcus salivarius BS320F-4— were 
selected from a skin microbiome database of healthy individuals. The efficacy and safety 
of these strains against acne-related inflammation were evaluated using in vitro and in vivo 
animal model experiments.
Results: Cutibacterium acnes exposure increased the expression of acne-associated 
inflammatory mediators—such as IL-1β, IL-6, IL-8, COX-2, iNOS, and TNF-α—particularly 
in keratinocytes, without inducing cytotoxicity. Treatment with heat-killed S. epidermidis 
BS47C-1 (SE2), D. profundi BS35F-3 (DP), and S. salivarius BS320F-4 (SS) significantly reduced 
these markers in vitro. In vivo, topical application of the strains alleviated inflammation 
in a C. acnes-induced mouse model, with histological evidence of reduced erythema and 
immune cell infiltration. Bulk RNA sequencing of keratinocytes showed that SE2 and 
DP downregulated cytokine and interferon signaling while enhancing skin barrier and 
antimicrobial gene expression, suggesting a dual anti-inflammatory and barrier-supporting 
mechanism.
Conclusion: These results provide compelling evidence of the efficacy and safety of human 
skin microbiome-derived strains as potential topical treatments for acne. By targeting both 
microbial colonization and inflammatory pathways, these strains offer a promising avenue 
for the development of novel acne therapeutics.
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INTRODUCTION

Acne vulgaris is a chronic inflammatory disorder of the pilosebaceous unit that affects up 
to 90% of adolescents and young adults.1 The etiopathogenesis of acne is multifactorial, 
involving increased sebum production, follicular hyperkeratinization, and the complex 
interplay between inflammatory mediators and microbial factors.2 Bacterial colonization 
exacerbates the pathology as a secondary factor, aggravating disease severity.3 Dysbiosis of 
the microbiome (an imbalance in beneficial commensal microorganisms and pathogens) 
is associated with a variety of skin diseases.4 Notably, in acne, specific subgroups, namely 
Cutibacterium acnes phylotypes IA-2, IB-1, and IC, are detected more frequently in individuals 
with severe acne than in those with normal skin.3

Recent advances in microbiome research have underscored the importance of the skin 
microbial ecosystem in maintaining cutaneous homeostasis.5 Emerging evidence indicates 
that changes in the relative abundance and virulence of skin microbes (including not only 
C. acnes but also organisms such as Enterococcus faecalis) can significantly influence acne 
pathogenesis.4 Skin microorganisms act in a manner similar to their counterparts in the 
gut; they exhibit protective functions against pathogenic infections, participate in immune 
modulation, and contribute to the breakdown of various biomolecules, including lipids, 
proteins, and complex carbohydrates. Conventional treatments, such as topical and systemic 
antibiotics, primarily target bacterial colonization and inflammation but are associated with 
treatment risks such as antibiotic resistance and adverse effects. In contrast, microbiome-
based therapies have shown promise in clinical studies by achieving comparable efficacy to 
conventional methods while potentially offering improved safety profiles.6

In a previous study, we successfully collected skin swab samples from 51 healthy individuals 
and constructed a comprehensive database of skin microbiome data.7 Over 1,630 strains of 
skin-derived microorganisms were isolated. Furthermore, antimicrobial activities against skin 
and opportunistic pathogens, such as Staphylococcal aureus, Bacillus subtilis, and C. acnes were 
assessed based on these strains and their derived antimicrobial substances (bacteriocins). 
These experiments identified four skin microbiome-derived strains Staphylococcus epidermidis 
B424F-5 (SE1), Staphylococcus epidermidis BS47C-1 (SE2), Dermacoccus profoundi BS35F-3 (DP), 
Streptococcus salivarius BS320F-4 (SS) exhibiting antimicrobial activity against C. acnes.

Building on these findings, the present study aims to evaluate the therapeutic potential 
and safety of heat-killed candidate strains (SE1, SE2, DP, and SS) and their antimicrobial 
metabolites through comprehensive preclinical in vitro and in vivo studies. We hypothesize 
that these strains exert their therapeutic effects by modulating acne-related skin 
inflammation. Using both cellular models and an acne-induced animal model, this study 
seeks to demonstrate their anti-inflammatory efficacy in the context of acne pathogenesis 
and to lay the groundwork for the development of a novel, safe, microbiome-based 
therapeutic approach for acne management.

METHODS

Bacterial culture
C. acnes ATCC 6919 (ATCC, Manassas, VA, USA) was cultured in Reinforced Clostridial 
Medium (Oxoid, Hampshire, UK) under anaerobic conditions at 37°C for 72 hours. Four 
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candidate strains —SE1, SE2, DP, and SS — were cultured aerobically at 37°C for 24 hours 
using Tryptic Soy Broth (SE1, SE2), Brain Heart Infusion Medium (SS), or Trypticase Soy 
Yeast Extract Medium (DP). The antimicrobial activity of these strains was previously 
characterized, with details provided in our prior publication.5 Following culture, bacterial 
suspensions were centrifuged (14,000 rpm, 20 minutes, 4°C), washed twice with PBS, and 
adjusted to an optical density of 1.0 at 600 nm. Final concentrations were standardized to 
1 × 107 CFU in 50 μL. Strains used for experiments were freshly prepared weekly and stored at 
4°C, with daily administration during the study period.

Cell culture
Human dermal fibroblasts (HDF; C0135C, Thermo Fisher Scientific, Waltham, MA, USA) 
and human epidermal keratinocytes (KC; PCS-200-011, ATCC) were cultured in Dulbecco’s 
Modified Eagle Medium (DMEM; Lonza, Walkersville, MD, USA) with 10% fetal bovine serum 
(Gibco, Waltham, MA, USA) and 1% penicillin-streptomycin (Gibco) or KBM Gold Basal 
Medium (Lonza) supplemented with KGM Gold SingleQuot (Lonza), respectively. Cells were 
maintained at 37°C in a humidified incubator with 5% CO2 and subcultured every three days 
using Trypsin-EDTA.

Cell viability assay
Cell viability was assessed using the CCK-8 assay (Dojindo Molecular Technologies, 
Kumamoto, Japan). KC and HDF cells (5 × 104 cells/well) were seeded in 96-well plates and 
incubated for 24 hours. C. acnes were added at varying concentrations (0.25, 0.5, 1, 2, or 4 × 
108 CFU), and absorbance was measured at 450 nm using a microplate reader (VersaMax; 
Molecular Devices, San Jose, CA, USA).

In vivo C. acnes-induced acne model and treatment
Six-week-old female CD-1 mice (OrientBio, Seongnam, Korea) were acclimated for one week 
and randomized into five groups (n = 5 per group). Mice were maintained under standard 
conditions (24°C ± 0.5°C; 55–65% humidity; 12-hour light/dark cycle) with ad libitum access 
to food and water. The acne model was established by daily intradermal injections of C. acnes 
(1 × 107 CFU in 20 μL) on both sides of the shaved dorsal skin for two weeks.8,9 Subsequently, 
heat-killed bacterial suspensions (50 μL per strain) were topically applied once daily for 
7 consecutive days. The bacterial preparations were suspended in the same culture medium 
used during strain cultivation, without any additional vehicle or carrier. To enhance 
absorption and ensure even distribution, the treated area was gently tapped at least 40 times 
using a sterile plastic spatula immediately after application, while mice were under brief 
inhalational anesthesia. Skin inflammation was documented at baseline, week 2, and week 3. 
Mice were sacrificed on day 22 via CO2 inhalation.

Histopathology
Skin samples were collected, fixed in 10% neutral-buffered formalin, embedded in paraffin, 
and sectioned at 4 μm thickness. Hematoxylin-stained sections were analyzed for epidermal 
and dermal thickness, measured as described previously.10,11

Immunohistochemistry
Paraffin-embedded sections (4 μm) underwent heat-induced epitope retrieval in 
EnV FLEX TRS High pH buffer (S2367, Dako, Glostrup, Denmark) for 30 minutes. 
Endogenous peroxidase was quenched with 3% hydrogen peroxide on ice. After blocking 
with 5% bovine serum albumin, sections were incubated overnight at 4°C with primary 
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antibodies against nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 
(1:200), IL-1β (1:500), and Caspase-1 (1:200) (Cell Signaling). Detection was performed 
using a DAKO peroxidase/DAB kit, followed by counterstaining with Mayer’s hematoxylin. 
Detailed information on the immunohistochemical studies and materials are presented in 
the supplementary materials and methods (Supplementary Data 1).

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)
To assess anti-inflammatory effects, keratinocytes were stimulated with C. acnes (1 × 107 CFU), 
followed by co-treatment with heat-killed SE1, SE2, SS, or DP strains (1 × 107 CFU each) for 
24 hours. Total RNA from keratinocytes and tissue samples was extracted using RNAiso Plus 
(Takara Bio, Shiga, Japan), with homogenization of tissue biopsies in 0.9% saline (1 mL per 
3 × 3 mm). cDNA was synthesized using the RNA to cDNA EcoDry™ premix kit (Takara 
Bio). Gene expression was quantified by qRT-PCR using SYBR Green Master Mix (Promega) 
on a QuantStudio 3 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). 
Expression levels were normalized to GAPDH and calculated using the 2-ΔΔCt method. Primer 
sequences are provided in Table 1.

RNA sequencing (RNA-seq)
RNA sequencing was performed following total RNA extraction with RNAiso Plus (Takara 
Bio) and library preparation using a TruSeq RNA Library Prep Kit (Illumina). Paired-end 
sequencing (100 bp) was conducted on the NextSeq 550 platform (Macrogen, Seoul, Korea). 
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Table 1. Sequence of primers for qRT-PCR for mouse and human genes
Variables Primer sequences (5′→3′)
Mouse

Tnfα Forward: 5′-GGTGCCTATGTCTCAGCCTCTT-3′
Reverse: 5′-GCCATAGAACTGATGAGAGGGAG-3′

Il1β Forward: 5′-TGGACCTTCCAGGATGAGGACA-3′
Reverse: 5′-GTTCATCTCGGAGCCTGTAGTG-3′

Il6 Forward: 5′-TACCACTTCACAAGTCGGAGGC-3′
Reverse: 5′-CTGCAAGTGCATCATCGTTGTTC-3′

Il8 Forward: 5′-GGTGATATTCGAGACCATTTACTG-3′
Reverse: 5′-GCCAACAGTAGCCTTCACCCAT-3′

Cox2 Forward: 5′-GCGACATACTCAAGCAGGAGCA-3′
Reverse: 5′-AGTGGTAACCGCTCAGGTGTTG-3′

inos Forward: 5′-GAGACAGGGAAGTCTGAAGCAC-3′
Reverse: 5′-CCAGCAGTAGTTGCTCCTCTTC-3′

Gapdh Forward: 5′-AGGTCGGTGTGAACGGATTTG-3′
Reverse: 5′-TGTAGACCATGTAGTTGAGGTCA-3′

Human
TNFα Forward: 5′-CTCTTCTGCCTGCTGCACTTTG-3′

Reverse: 5′-ATGGGCTACAGGCTTGTCACTC-3′
IL1β Forward: 5′-CCACAGACCTTCCAGGAGAATG-3′

Reverse: 5′-GTGCAGTTCAGTGATCGTACAGG-3′
IL6 Forward: 5′-AGACAGCCACTCACCTCTTCAG-3′

Reverse: 5′-TTCTGCCAGTGCCTCTTTGCTG-3′
IL8 Forward: 5′-GACCACACTGCGCCAACAC-3′

Reverse: 5′-CTTCTCCACAACCCTCTGCAC-3′
COX2 Forward: 5′-CGGTGAAACTCTGGCTAGACAG-3′

Reverse: 5′-GCAAACCGTAGATGCTCAGGGA-3′
iNOS Forward: 5′-GCTCTACACCTCCAATGTGACC-3′

Reverse: 5′-CTGCCGAGATTTGAGCCTCATG-3′
GAPDH Forward: 5′-TGTTGCCATCAATGACCCCTT-3′

Reverse: 5′-CTCCACGACGTACTCAGCG-3′
qRT-PCR = quantitative reverse transcription-polymerase chain reaction, TNFα = tumor necrosis factor-alpha, 
IL = interleukin, COX2 = cyclooxygenase2, iNOS = inducible nitric oxide synthase.



Reads were trimmed and mapped to the reference genome using HISAT2. Transcript 
assembly and quantification were performed using StringTie, generating read counts, FPKM, 
and TPM values. Differentially expressed genes were identified using DESeq2 with thresholds 
of |fold change| ≥ 2 and P < 0.05.

Statistical analysis
Data are presented as mean ± standard deviation. Statistical analyses were performed 
using SPSS (version 25.0; IBM Corp., Armonk, NY, USA). For two-group comparisons, 
unpaired t-tests were used when normality and homogeneity of variance were confirmed. 
Comparisons between each treatment and the C. acnes-only group were performed using 
unpaired t-tests. For multiple comparisons, one-way analysis of the variance followed by 
Bonferroni post-hoc tests was conducted. A P value < 0.05 was considered statistically 
significant. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) 
of transcriptomic data were performed using rlog-transformed values, with results visualized 
through heatmaps and PCA plots.

Ethics statement
All animal experiments were conducted in accordance with the ARRIVE guidelines and 
approved by the Institutional Animal Care and Use Committee of Yonsei University 
(IACUC approval No. 2023-0111).

RESULTS

In vitro anti-inflammatory effects of candidate strains
The cytotoxic effects of C. acnes on KCs and HDFs were evaluated using a CCK-8 assay. 
As shown in Fig. 1, both KCs and HDFs demonstrated increased cell viability with rising 
concentrations of C. acnes (106 to 108 CFU), indicating no cytotoxicity in either cell type. 
To assess changes in inflammatory mediators associated with acne pathogenesis (interleukin 
1 beta [IL1β], interleukin 6 [IL6], interleukin 8 [IL8], tumor necrosis factor alpha [TNFα], 
inducible nitric oxide synthase [iNOS], and cyclooxygenase-2 [COX-2]), qRT-PCR was 
performed after exposing KCs and HDFs to C. acnes (1 × 107 or 5 × 107 CFU). In KCs, C. acnes 
exposure led to significant upregulation of IL1β, IL6, IL8, and COX-2 expression compared to 
controls (Supplementary Fig. 1A). In HDFs, while there was some increase in inflammatory 
mediator expression, these changes were inconsistent and not correlated with C. acnes dose 
(Supplementary Fig. 1B). These findings suggest that keratinocytes may play a key role in 
mediating acne-related inflammatory responses under these experimental conditions.

Subsequently, qRT-PCR analysis was conducted to determine whether the four candidate 
strains could attenuate C. acnes-induced inflammatory responses. Treatment with 
SE2, SS, and DP significantly reduced the expression of IL1β, IL6, IL8, COX-2, iNOS, and 
TNFα compared to C. acnes-only exposure in KCs (Fig. 2). In contrast, SE1 showed relatively 
inconsistent effects and was therefore excluded from subsequent RNA-seq and in vivo 
experiments.

Transcriptomic analysis by RNA sequencing
RNA sequencing was performed on keratinocytes exposed to C. acnes (Acne group) and 
treated with each candidate strain (SE2, SS, and DP groups). PCA revealed distinct clustering 
of samples based on treatment conditions, indicating clear transcriptional differences 
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(Fig. 3A). HCA of the 1,831 most significantly altered genes further visualized these 
differences in a heatmap (Fig. 3B). Among the three strains, gene set enrichment analysis 
(GSEA) demonstrated that SE2 treatment efficiently upregulated genes involved in skin 
barrier function and antimicrobial responses, while downregulating genes associated with 
cytokine signaling and interferon pathways compared to the Acne group (Fig. 3C). The 
DP group exhibited similar transcriptional changes (Fig. 3D). These results emphasize 
condition-specific transcriptional shifts induced by SE2 and DP, underscoring their biological 
relevance and potential anti-inflammatory effects.

In vivo effects of candidate strains on C. acnes-induced inflammation
In vivo evaluation and histopathology
A mouse acne model was established by intradermal injection of C. acnes (1 × 107 CFU in 
20 μL) for two weeks (Fig. 4A). The Acne group exhibited persistent swelling and erythema at 
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Fig. 1. Reverse transcription-polymerase chain reaction analysis of inflammatory markers in vitro following 
Cutibacterium acnes exposure. C. acnes was applied to KCs (A) and HDFs (B) to assess mRNA expression of 
acne-associated inflammatory mediators. A dose-dependent increase in IL1β, IL6, IL8, and COX-2 expression was 
observed in KCs but not in HDFs. Gene expression was normalized to glyceraldehyde 3-phosphate dehydrogenase 
and calculated using the 2-ΔΔCt method. 
IL = interleukin, CON = control, COX-2 = cyclooxygenase-2, iNOS = inducible nitric oxide synthase, TNFα = tumor 
necrosis factor-α, KC = keratinocyte, HDF = human dermal fibroblast. 
*P < 0.05, ***P < 0.001, independent samples t-test vs. control.



day 21, whereas mice treated with SE2, SS, and DP showed visible reductions in these clinical 
signs (Fig. 4B). Histological analysis revealed that the Acne group had dense infiltration 
of lymphocytes, histiocytes, and neutrophils extending into the dermis and subcutaneous 
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Fig. 2. Reverse transcription-polymerase chain reaction analysis of inflammatory markers in KCs treated with Cutibacterium acnes and four candidate strains. 
KCs were exposed to C. acnes alone (Acne group) or co-treated with SE1, SE2, DP, or SS. SE2, SS, and DP significantly reduced the expression of IL1β, IL6, IL8, 
TNFα, iNOS, and COX-2 compared to the Acne group, while SE1 showed no such effect. Data are mean ± SD. Different lowercase letters (a, b, c, etc.) indicate 
statistically significant differences between groups (P < 0.05) as determined by one-way analysis of the variance with Bonferroni post-hoc test. 
IL = interleukin, CON = control, - = Acne group, SE1 = S. epidermidis B424F-5, SE2 = S. epidermidis BS47C-1, SS = S. salivarius BS320F-4, DP = D. profundi BS35F-3, 
COX-2 = cyclooxygenase-2, KC = keratinocyte, iNOS = inducible nitric oxide synthase, TNFα = tumor necrosis factor-α.
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Fig. 3. RNA sequencing analysis of KCs in vitro. (A) PCA plot showing distinct clustering by treatment group. (B) Heatmap of the top 1,831 differentially expressed 
genes. (C) GSEA results comparing SE2 vs. Acne group. (D) GSEA results comparing DP vs. Acne group. 
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fat (Fig. 5A). In contrast, SE2, SS, and DP treatments notably reduced inflammatory cell 
infiltration and dermal thickening (Fig. 5F).

In vivo inflammatory marker expression
qRT-PCR analysis of skin tissue demonstrated significant upregulation of Il1β, Il8, Tnf-α, 
inos, and Cox2 in the Acne group relative to controls. Topical application of SE2, SS, and 
DP significantly reduced the expression of these acne-induced inflammatory markers, 
confirming their anti-inflammatory effects (Fig. 5G).

Immunohistochemical analysis
Immunohistochemistry for Caspase-1, IL-1β, and NF-κB further confirmed the inflammatory 
state induced by C. acnes (Fig. 6A). Caspase-1 expression was significantly elevated in the 
Acne group but attenuated following SE2, SS, and DP treatment, with DP showing the 
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strongest effect (Fig. 6B). IL-1β levels were similarly reduced in all treatment groups, although 
differences between strains were not statistically significant (Fig. 6C). NF-κB expression was 
markedly increased in the Acne group and significantly decreased by SE2 and SS treatments, 
with DP showing a moderate reduction (Fig. 6D).

DISCUSSION

Acne vulgaris treatment primarily aims to mitigate the inflammatory response induced 
by C. acnes overgrowth, a key factor in acne pathogenesis.9 Conventional therapies include 
antibiotics such as clindamycin for their antimicrobial effects,12 as well as oral isotretinoin 
and topical retinoids, which reduce sebum production, prevent follicular occlusion, and 
exert anti-inflammatory actions. Although these treatments are generally effective, they 
are associated with various side effects such as erythema, scaling, dryness, burning, and 
pruritus. More importantly, the long-term use of oral or topical antibiotics raises significant 
concerns regarding the development of antibiotic resistance.13,14

In our previous work, we identified four skin microbiome-derived strains—SE1, SE2, SS, 
and DP—that primarily demonstrated antimicrobial activity against C. acnes.7 In the present 

9/14

Skin Microbiome Strains for Acne Treatment

https://doi.org/10.3346/jkms.2025.40.e327https://jkms.org

- SE2

Acne

SS DP

B

Da
y 

14
Da

y 
21

CD-1,♀
6-week old

Day 0 Day 7 Day 14 Day 21

Tissue
sample

Application of the three strains (SE2, DP, SS)
50 µL daily, both sides of the back

C. acnes injection
1 × 107 CFU, 20 µL daily, both sides of the back

A

Fig. 4. Schematic of in vivo study design and representative images of Cutibacterium acnes-induced lesions. (A) Mice received intradermal C. acnes injections 
(1 × 107 CFU/20 μL) daily for 14 days. From Day 14, heat-treated SE2, SS, and DP (1 × 107 CFU/50 μL) were topically applied for 7 days. (B) Representative images 
show persistent erythema in the Acne group on Day 21 vs. Day 14, while SE2, SS, and DP groups displayed reduced swelling and erythema. Dotted circles indicate 
the treatment area. 
- = Acne group, SE2 = S. epidermidis BS47C-1, SS = S. salivarius BS320F-4, DP = D. profundi BS35F-3.



study, we evaluated the therapeutic potential of these strains in attenuating C. acnes-induced 
inflammatory responses in both in vitro and in vivo models. To explore their feasibility as 
safe and stable candidates for topical application, heat-killed preparations of SE2, SS, and 
DP were used. As a result, these heat-inactivated strains significantly reduced inflammatory 
responses in keratinocytes and mouse models, highlighting their potential for development 
as novel topical therapeutics.
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In vitro assays revealed that SE2, SS, and DP treatment markedly downregulated acne-
related inflammatory mediators, including IL-1β, IL-6, IL-8, COX-2, iNOS, and TNF-α. 
In vivo, topical application of these strains in a C. acnes-induced acne mouse model resulted 
in visible reductions in swelling and erythema. Histological analysis showed decreased 
inflammatory cell infiltration and reduced dermal and epidermal thickness in treated 
groups. These histological improvements were supported by immunohistochemical staining, 
which demonstrated lower expression of caspase-1, IL-1β, and NF-κB—key markers in 
acne-associated inflammation.15-18 RNA sequencing offered further mechanistic insight. 
Keratinocytes treated with SE2 and DP exhibited upregulation of genes associated with 
skin barrier function and antimicrobial responses, along with downregulation of cytokine 
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signaling and interferon pathways, as revealed by GSEA. These transcriptional shifts 
emphasize the anti-inflammatory and homeostasis-restoring effects of the strains.

Current understanding of acne pathogenesis emphasizes that virulent C. acne strains, rather 
than overall bacterial burden, plays a central role in triggering chronic inflammation, 
particularly under conditions of skin microbiome dysbiosis.19 These strains produce a range 
of virulence factors—including lipases, proteases, hyaluronate lyase, endoglycoceramidases, 
neuraminidases, and Christie–Atkins–Munch–Petersen factors—that contribute to tissue 
degradation and promote inflammatory responses.20-23 These mechanisms facilitate immune 
cell infiltration into the follicular wall and dermis, aggravating acne lesions.24 Recent findings 
further demonstrate that C. acnes activates not only classical inflammatory pathways such 
as NF-κB and the inflammasome but also the type I interferon (IFN-I) signaling axis via 
the cGAS-STING pathway in human macrophages.25 Our transcriptomic data showed that 
treatment with SE2 and DP significantly downregulated interferon-related gene expression. 
These findings suggest that heat-inactivated commensal strains may attenuate C. acnes-induced 
inflammation not only by counteracting virulence factor-mediated responses but also by 
suppressing the IFN-I signaling cascade—offering a dual mechanism of therapeutic action.

The potential of probiotic and postbiotic strategies in acne treatment has gained increasing 
attention. Probiotics exert beneficial effects by inhibiting C. acnes through antimicrobial 
substances, enhancing skin barrier function, and modulating immune responses. For 
example, S. salivarius secretes bacteriocin-like inhibitory substances that suppress C. acnes 
growth,26 while Lactococcus sp. HY449 produces bacteriocins with similar effects.27 Topical 
application of probiotics such as Streptococcus thermophilus has been shown to enhance 
ceramide production, thereby reinforcing the skin barrier and contributing to antimicrobial 
and anti-inflammatory effects.28-30 Moreover, S. salivarius K12 inhibits IL-8 release from 
keratinocytes,31 and Lactobacillus paracasei NCC2461 reduces substance-induced skin 
inflammation.32,33 Our transcriptomic findings align with these reports, as SE2 and 
DP treatments led to the upregulation of genes related to barrier integrity and innate 
antimicrobial responses, alongside downregulation of cytokine and interferon-mediated 
inflammatory pathways. Together, these results support the growing body of evidence 
that microbiome-derived therapies can modulate acne pathophysiology through both 
antimicrobial and immunoregulatory mechanisms.

In conclusion, our study demonstrates the efficacy and safety of human skin microbiome-
derived, heat-killed strains as potential topical treatments for acne. By modulating both 
microbial colonization and inflammatory pathways, these strains offer a promising 
foundation for the development of novel, microbiome-based acne therapeutics. Future 
clinical studies are needed to confirm their therapeutic potential and safety in human 
subjects, along with further investigation into their mechanisms of action and optimal 
formulation strategies. Such efforts will not only validate our findings but also advance the 
understanding of the skin microbiome’s role in acne pathogenesis, paving the way for more 
targeted and effective treatments.

SUPPLEMENTARY MATERIALS

Supplementary Data 1
Supplementary materials and methods
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Supplementary Fig. 1
Cell viability after treatment of Cutibacterium acnes on the KCs (A) and HDFs (B). C. acnes was 
added at five different concentrations (0.25, 0.5, 1, 2, 4 × 108 CFU) on KCs (A) and HDFs (B). 
Cell viability increased with the increase in CFU of C. acnes, which means there was no 
cytotoxicity of C. acnes on both KCs and HDFs.
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