Journal of

%

Clinical Medicine

Protocol

Identifying Neurobehavioral Biomarkers of Anxiety and
Treatment Response Using Virtual Reality,
Electroencephalography, Magnetic Resonance Imaging,
and Related Multimodal Assessments: A Longitudinal

Study Protocol

Hyemin Oh 1, Jiook Cha %345, Byung-Hoon Kim %7, Kang-Seob Oh !, Young Chul Shin 1-4{, Sang-Won Jeon /8,

Sung Joon Cho 18

W) Check for updates

Academic Editor: Lucie Bartova

Received: 22 November 2025
Revised: 16 December 2025
Accepted: 16 December 2025
Published: 19 December 2025
Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license.

and Junhyung Kim

1,8,%

Department of Psychiatry, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine,
29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea

Department of Brain and Cognitive Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 08826, Republic of Korea

Interdisciplinary Program in Artificial Intelligence, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 08826, Republic of Korea

Department of Psychology, Seoul National University, 1 Gwanak-ro, Gwanak-gu,

Seoul 08826, Republic of Korea

Institute of Psychological Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu,

Seoul 08826, Republic of Korea

Department of Psychiatry, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu,

Seoul 03722, Republic of Korea

Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro,
Seodaemun-gu, Seoul 03722, Republic of Korea

Workplace Mental Health Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of
Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea

*  Correspondence: jihndy kim@samsung.com; Tel.: +82-2-2001-2431; Fax: +82-2-2001-2123

Abstract

Background/Objectives: Anxiety disorders are highly prevalent and impairing psychi-
atric conditions. Conventional diagnostic approaches based on symptom checklists lack
biological specificity and often fail to guide treatment decisions effectively. This study
protocol outlines a multidimensional, prospective investigation designed to identify be-
havioral and neurobiological biomarkers predictive of treatment response in individuals
with anxiety-related symptoms, grounded in the Research Domain Criteria framework.
Methods: This observational, longitudinal study (NCT06773585) will include a transdiag-
nostic sample of clinical anxiety group alongside a healthy control group (185 participants,
including 145 patients with anxiety disorders and 40 healthy controls). Participants will
undergo comprehensive baseline assessments, including clinical interviews, self-report
questionnaires, a virtual reality (VR)-based behavioral task, electroencephalography (EEG),
electrocardiography (ECG), and structural and functional brain magnetic resonance imag-
ing. Follow-up assessments will be conducted at 2, 6, and 12 months, with recruitment and
data collection planned from 2024 to 2029. These complementary modalities are integrated
to capture behavioral, physiological, and neural indicators of anxiety and its treatment
response. Multimodal baseline features will be used to construct machine-learning mod-
els predicting treatment response, defined as >40% reduction in anxiety severity scores.
Longitudinal analyses will examine symptom trajectories and neural mechanisms asso-
ciated with response. Neurobiological comparisons will be made across timepoints and
between responders, non-responders, and healthy controls. Conclusions: By identifying

J. Clin. Med. 2026, 15,7

https:/ /doi.org/10.3390/jcm15010007


https://crossmark.crossref.org/dialog?doi=10.3390/jcm15010007&domain=pdf&date_stamp=2025-12-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-1884-4231
https://orcid.org/0000-0001-6981-0931
https://orcid.org/0000-0001-7123-9535
https://doi.org/10.3390/jcm15010007

J. Clin. Med. 2026, 15,7

2 of 20

objective, biologically grounded markers of anxiety and treatment response, our findings
will contribute to the development of personalized assessment tools and scalable digital
interventions for psychiatric care.

Keywords: anxiety disorders; virtual reality; electroencephalography; magnetic resonance
imaging; biomarker

1. Introduction

Anxiety disorders are among the most prevalent and disabling psychiatric conditions,
affecting psychological functioning, interpersonal relationships, and overall life satisfaction
worldwide [1]. Recent epidemiological trends indicate a global rise in the incidence of
anxiety disorders, paralleled by increasing healthcare costs and socioeconomic burdens [2].
Despite their high prevalence, anxiety disorders remain biologically elusive.

Recent large-scale genome-wide association studies have revealed a highly polygenic
architecture underlying anxiety and related affective traits, identifying numerous genome-
wide significant loci across international biobank and consortium datasets [3-5]. However,
the proportion of variance explained by individual variants remains small, and mechanisti-
cally interpretable or pharmacologically actionable targets are still scarce. These findings
highlight the need to integrate genomic insights with multimodal neurobehavioral data to
elucidate how genetic risk translates into clinical expression and therapeutic responsive-
ness [3]. Furthermore, treatment outcomes remain difficult to predict, as current diagnostic
systems provide limited guidance in identifying individuals likely to benefit from specific
interventions [6,7]. These challenges underscore the need for a more biologically grounded,
individualized approach to the assessment and management of anxiety.

Traditional psychiatric classification systems, such as the Diagnostic and Statistical
Manual of Mental Disorders (DSM), rely primarily on symptom-based categories and
clinical interviews. These approaches, while valuable for diagnostic consensus, are in-
herently limited by subjectivity, poor inter-rater reliability, and a lack of neurobiological
specificity [8,9]. The categorical nature of DSM-based diagnoses obscures underlying
heterogeneity and contributes to substantial overlap across disorders, thereby hindering
biomarker discovery and the development of precision-guided treatments [10].

In response to these limitations, the US National Institute of Mental Health proposed
the Research Domain Criteria (RDoC) framework as an alternative dimensional model
of psychopathology. RDoC promotes the integration of data across multiple units of
analysis—including genetics, circuits, behavior, and self-report—within transdiagnostic
constructs. Within this framework, anxiety is conceptualized primarily under the Negative
Valence Systems domain, particularly the “Potential Threat” construct [11].

The RDoC approach has demonstrated substantial empirical progress. Large-scale
initiatives and meta-analytic efforts have established reproducible neural and behavioral
constructs across affective and anxiety spectra [12,13]. For instance, recent RDoC-aligned
neuroimaging and electrophysiological studies showed a shared threat-anticipation circuit
involving the central extended amygdala, periaqueductal gray, and prefrontal cortex that
is dynamically engaged during certain and uncertain threat [14]. Building on this foun-
dational understanding of threat processing circuitry, subsequent studies have mapped
dysregulation within this frontal-limbic network to heightened threat processing and im-
paired emotion regulation across generalized anxiety disorder (GAD) and post-traumatic
stress disorder [15]. These advances illustrate how integrating neural-circuit, behavioral,
and self-report measures under transdiagnostic constructs can reveal common mechanisms
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underlying anxiety-related phenomena [16-18]. These findings suggest that brain circuits
involved in threat detection and regulation may serve as transdiagnostic, mechanistic
biomarkers of anxiety. Nevertheless, although some longitudinal and multimodal studies
have examined neurobiological correlations of anxiety, relatively few have focused on
prospective prediction of treatment response using integrated VR-based behavioral and
neurobiological assessments within an RDoC-aligned framework. To address this gap,
we proposed a longitudinal, multimodal approach—combining virtual reality (VR), elec-
troencephalography (EEG), and magnetic resonance imaging (MRI)—to address the gap by
offering a more comprehensive, predictive model of anxiety.

Empirical evidence from individual modalities has also advanced our understanding
of anxiety-related processes. EEG studies have identified abnormal theta and beta band
activity and altered error-related negativity during anticipatory and conflict processing
in anxiety [19,20]. Electrocardiography (ECG) has consistently shown reduced heart-rate
variability and increased sympathetic tone, reflecting heightened physiological arousal and
impaired stress regulation [21,22]. Neuroimaging studies further demonstrate hyperacti-
vation of the amygdala, insula, and prefrontal regions, along with disrupted connectivity
within the default mode and salience networks in anxiety disorders [23,24].

VR offers a promising platform for implementing RDoC-informed assessments by
enabling standardized, ecologically valid exposure to anxiety-provoking stimuli [25]. VR
environments can be integrated with real-time biosignal monitoring—including EEG, ECG,
and 3D skeletal tracking—to capture multimodal, task-evoked responses [26]. This capacity
allows for the measurement of behavioral, physiological, and neural responses within a
controlled but naturalistic context. Conceptually, this multimodal assessment approach
maps directly onto RDoC domains such as Negative Valence and Arousal/Regulatory
Systems and offers scalability, reproducibility, and objectivity that are difficult to achieve
with traditional self-report methods.

Considering these opportunities, we developed a prospective observational study
aimed at identifying neurobehavioral biomarkers of anxiety and predicting treatment
response. Although participants are recruited based on DSM-5 diagnoses of anxiety
disorders—including panic disorder, social anxiety disorder (SAD), GAD, agoraphobia,
and specific phobia—the analytic focus is on dimensional variations in anxiety symptoms
that cut across diagnostic boundaries. This transdiagnostic strategy acknowledges that
current categorical systems provide limited information about therapeutic responsiveness
and seeks to characterize symptom-level mechanisms that underlie anxiety across dis-
orders. The study integrates VR-based behavioral tasks, physiological monitoring, and
multimodal neuroimaging within an RDoC-aligned conceptual framework. By combining
these multimodal data with conventional clinical assessments, it aims to contribute to the
development of biologically informed, scalable tools for personalized psychiatric care.

The primary objective of this study is to delineate neurobehavioral biomarkers as-
sociated with treatment response in individuals with anxiety-related disorders using a
transdiagnostic approach. Specifically, the present study aims to delineate patterns of neu-
ral and behavioral markers that cut across diagnostic boundaries—including panic disorder,
SAD, GAD, agoraphobia, and specific phobia—thereby capturing shared pathophysiologi-
cal processes relevant to therapeutic responsiveness. Healthy controls are included as a
reference group to distinguish disorder-related changes from normative variability. We
hypothesized that multimodal integration of VR, EEG, 3D skeletal tracking, and neuroimag-
ing data will enable a more mechanistic and predictive understanding of anxiety and its
treatment response beyond categorical diagnoses.
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2. Materials and Methods
2.1. Design

This is a prospective, observational investigation designed to identify factors asso-
ciated with treatment response and prognosis in a clinical anxiety group. The study
population comprises two groups: individuals with anxiety disorders and a healthy control
group. The anxiety group will complete assessments at baseline, 4 months, and 12 months,
whereas the control group will undergo a single baseline assessment. The overall follow-up
period is 12 months, with participant enrollment and data collection planned from 2024
through 2029.

Although no structured therapeutic intervention is administered as part of the research
protocol, participants in the clinical anxiety group may receive naturalistic treatment-as-
usual, including pharmacological or psychotherapeutic interventions, as determined by
their treating clinicians. Accordingly, the study does not involve randomization, allocation
concealment, or blinding procedures. The overall design and temporal structure of the
study assessments are illustrated in Figure 1.

| Assessed for eligibility (n=) I

Excluded (n=)
Enrollment l— S|+ Notmeeting inclusion criteria (n=)
Declined to participate (n=)

| Enrolled (n=) I

Baseline | Clinical anxiety group (n=) I | Healthy control group (n=)

Discontinued (n=)

Dropout (n=)

Discontinued (n=)

2-month follow-up | Clinical anxiety group(n=) . Qﬂ;’;{ﬁ;ﬁ:]&;ﬁcg;;ﬂ"(‘;’:‘) worsening (o)
+  New serious medical or psychiatric conditions

(n=)

PI decision for safety (n=)

Discontinued (n=)

Dropout (n=)
Missed visits (n=)

Dropout (n=)

[ 6-month follow-up ] I Clinical anxiety group(n=)

Discontinued (n=)

Dropout (n=)

12-month follow-up Analyzed (n=) Analyzed (n=)
Excluded from analysis (n=) Excluded from analysis (n=)

Figure 1. Study flowchart showing enrollment, allocation, follow-up, and analysis for both the clinical

anxiety group and healthy control group. Participants in the clinical anxiety group received treatment-
as-usual (e.g., pharmacotherapy or psychotherapy) as prescribed by their clinicians. Treatment
response was defined as a >40% reduction in Panic Score Severity Scale (PDSS) scores at follow-up.
No intervention was administered by the study team.

2.2. Eligibility Criteria
Participants will be assigned to either the clinical anxiety group or the healthy control
group according to the following inclusion and exclusion criteria:
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2.2.1. Inclusion Criteria

The inclusion criteria for the clinical anxiety group are (1) adults aged between 19 and
60 years; (2) currently diagnosed with an anxiety disorder based on DSM-5 criteria, specifi-
cally including panic disorder, SAD, GAD, agoraphobia, or specific phobia, confirmed by
a board-certified psychiatrist (individuals who have been previously treated for anxiety
are not included); (3) ability to understand the purpose and procedures of the study and
provide written informed consent, and (4) no history of major neurological disorders or
psychotic illness.

The inclusion criteria for the healthy control group are (1) adults aged between
19 and 60 years; (2) no current or past psychiatric diagnoses and not currently using any
psychotropic medication; and (3) ability to fully understand the purpose and procedures of
the study and provide written informed consent.

2.2.2. Exclusion Criteria

The exclusion criteria for the clinical anxiety group are (1) inability to read or under-
stand the consent form; (2) significant difficulty using VR equipment (e.g., due to visual or
vestibular impairment); (3) history of epilepsy, brain injury, or other neurological disorders;
(4) severe physical illnesses (e.g., cancer, active tuberculosis, cardiovascular disease); (5) cur-
rently diagnosed with substance use disorder or alcohol use disorder (nicotine use will not
be excluded); (6) presence of pacemakers or implanted metallic devices; (7) pregnancy or
belonging to a legally or socially vulnerable population (e.g., institutionalized individuals
or employees of the research facility); and (8) individuals who had previously completed a
structured treatment protocol for anxiety within the past six months.

All exclusion criteria listed above apply to the healthy control group as well, with the
addition of any previous or current psychiatric disorder.

2.3. Recruitment Process and Screening for Enrollment

The clinical anxiety group will be recruited through outpatient psychiatric clinics
at Samsung Kangbuk Hospital, where attending psychiatrists will identify individuals
who meet the inclusion criteria. The healthy control group will be recruited via public
announcements on institutional bulletin boards.

To confirm eligibility and psychiatric status, all participants will be evaluated by a
board-certified psychiatrist using structured diagnostic interviews. The Structured Clinical
Interview for DSM-5 Disorders will be used to verify diagnoses in the clinical anxiety
group [27], while the Mini International Neuropsychiatric Interview (MINI) 5.0.0 will be
administered to screen for comorbid conditions or to confirm the absence of psychiatric
history in healthy controls [28].

All eligible participants will receive a detailed explanation of the study’s purpose,
procedures, potential risks, and their rights. Written informed consent will be obtained
before any assessments are conducted. Participation is entirely voluntary, and individuals
may withdraw at any time without affecting their clinical care.

2.4. Discontinuation and Dropout Criteria

Participants may be discontinued from the study under the following circumstances:
emergence of adverse events or significant exacerbation of symptoms, voluntary with-
drawal of consent, development of serious medical or psychiatric conditions that preclude
continued participation, or the principal investigator’s judgment that termination is neces-
sary for the participant’s well-being.
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Dropout is defined as non-compliance with the study protocol, including missing
scheduled assessments or failing to attend follow-up visits within the designated visit
window (415 days from the scheduled date).

In cases of either discontinuation or dropout, the principal investigator will inform
the participant of the rationale and any necessary actions to be taken. The research team
will take all reasonable steps to ensure participant safety, including offering follow-up care
or appropriate referrals. With the participant’s consent, data collected prior to withdrawal
may be retained and used for analysis.

2.5. Observational Parameters and Clinical and Laboratory Assessments

Participants in the clinical anxiety group will complete assessments at four timepoints:
baseline and 2, 6, and 12 months. The healthy control group will be assessed at baseline
and 12 months. The timepoints were chosen to efficiently assess symptom improvement at
2 months, check for relapse at 12 months for the clinical anxiety group, and confirm contin-
ued health for the healthy control group. These intervals also minimize participant burden
while ensuring comprehensive data collection over the course of a year. Assessments
will include clinical interviews, standardized self-report questionnaires, computerized
neurocognitive testing, VR-based behavioral evaluations, physiological recordings (EEG
and ECG), and multimodal brain imaging (structural, functional, and diffusion MRI).

Given the 12-month follow-up period and the multimodal nature of the assessments,
challenges related to participant burden and attrition are anticipated. To mitigate these
risks, the study incorporates flexible scheduling, abbreviated interim assessments at se-
lected follow-up visits, and the option for remote administration of questionnaires where
appropriate. These strategies are intended to support participant retention and ensure data
completeness while maintaining methodological rigor.

Figure 2 summarizes the timing and scope of these assessments across both groups.
At each timepoint, specific instruments have been selected to capture transdiagnos-
tic symptom dimensions and neurobehavioral mechanisms aligned with the RDoC
framework—particularly domains related to Negative Valence Systems, Cognitive Sys-
tems, and Arousal/Regulatory Systems.

2.5.1. Clinical Assessments

Clinical assessments will be conducted at the baseline and 12-month follow-up for
all participants. Each session will be administered by a board-certified psychiatrist or
trained research personnel. The assessment will include the collection of sociodemographic
variables such as age, sex, education level, marital status, occupation, alcohol use, smoking
status, height, and weight. Additionally, a structured evaluation of psychiatric history will
be performed, including the onset and duration of anxiety symptoms, previous psychi-
atric diagnoses and treatments (treatment type, dosage, duration), and family history of
psychiatric disorders.

These data will provide essential contextual information for interpreting behavioral,
physiological, and neuroimaging findings, and for exploring clinical predictors of treatment
response and prognosis. Some of these data will also be used as independent variables in
the analysis.
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A ¢ variables - variables
ssessmen ¢ psychiatric history + psychiatric history
* PDSS, LSAS, GAD, « PDSS, LSAS, GAD,
N DASS DASS
l;syclh““tt,“c + 1US, ASL BIS/BAS, :;assss’ LSAS, GAD, « 1US, ASL BIS/BAS, PD?‘?S% LSAS, GAD,
NELLELEIN PANAS, CNS Vital PANAS, CNS Vital
signs, SSQ, STRAIN signs, SSQ, STRAIN
* VR * VR
VR-based
Behavioral * EEG * EEG -
- ECG « ECG
Assessment * Real-time body tracking * Real-time body tracking
: « T13D/1s-fMRI/DWI * T13D/rs-fMRI/ DWI
Brain MRI (.0T) (3.0T) -

Figure 2. Schedule of assessments across study timepoints for the anxiety behavior and healthy
control groups. Assessments include clinician-rated instruments, self-report questionnaires, neu-
rocognitive testing, virtual reality (VR)-based behavioral tasks, physiological monitoring (EEG and
ECG), and multimodal neuroimaging (structural MRI, resting-state functional MRI, and diffusion-
weighted imaging). Assessments were selected based on their alignment with the Research Domain
Criteria (RDoC) framework, targeting domains such as Negative Valence Systems, Cognitive Systems,
and Arousal/Regulatory Systems. Interim visits (2 and 12 months) include abbreviated assessments
to reduce participant burden. Remote administration may be used when appropriate. EEG, elec-
troencephalography; ECG, electrocardiography; MRI, magnetic resonance imaging; PDSS, Panic
Disorder Severity Scale; LSAS, Liebowitz Social Anxiety Scale; GAD-7, 7-item Generalized Anxiety
Disorder Scale; DASS-21, Depression Anxiety Stress Scales-21; IUS, Intolerance of Uncertainty Scale;
ASI-R, Anxiety Sensitivity Index-Revised; BIS/BAS, Behavioral Inhibition/Activation System Scales;
PANAS, Positive and Negative Affect Schedule; SSQ, Simulator Sickness Questionnaire; STRAIN,
Stress and Adversity Inventory; CNSVS, CNS Vital Signs Battery.

2.5.2. Evaluation of Anxiety Symptoms and Associated Psychiatric Conditions

To comprehensively assess anxiety and related cognitive-affective constructs, multiple
validated self-report measures will be administered. Each instrument serves a distinct role
within the analytic framework. Key clinician-rated and self-report instruments include the
Panic Disorder Severity Scale (PDSS), the Depression Anxiety Stress Scales-21 (DASS-21),
the Generalized Anxiety Disorder-7 (GAD-7), the Intolerance of Uncertainty Scale (IUS),
and the Anxiety Sensitivity Index-Revised (ASI-R). Each instrument serves a distinct an-
alytic role within the study framework. The PDSS functions as the primary measure of
panic-related symptom severity and behavioral avoidance and is used to define treatment
response. The DASS-21 Anxiety subscale serves as a secondary outcome reflecting gener-
alized physiological and cognitive anxiety, while the GAD-7 provides a complementary
index of generalized worry and assists in screening for comorbid anxiety presentations.
The IUS and ASI-R act as mechanistic predictors, capturing cognitive and interoceptive
vulnerability dimensions that contribute to anxiety maintenance.

Neurocognitive functioning will be evaluated using the CNS Vital Signs battery, while
stress exposure will be assessed using the Stress and Adversity Inventory. Affective states
will be measured using the Positive and Negative Affect Schedule (PANAS), which assesses
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momentary affective experiences across two dimensions: positive and negative affect. The
Behavioral Inhibition and Activation Systems (BIS/BAS) scales will be included to evaluate
motivational and affect-regulatory tendencies. These measures contribute to the RDoC
Arousal and Regulatory Systems domain, capturing interindividual variability in emotional
and motivational responsiveness.

To reduce participant burden and ensure longitudinal feasibility, shortened versions
of selected questionnaires will be administered at interim visits (2 and 12 months). Remote
administration via telephone or a secure institutional online platform may be employed as
appropriate. All remote procedures will use validated formats and standardized instruc-
tions to maintain reliability and data comparability across timepoints. Detailed descriptions
of each instrument—including theoretical constructs, administration procedures, psycho-
metric properties, and language validation—are provided in the Supplementary Material
(Table S1).

2.5.3. VR-Based Behavioral Assessment

A VR environment will be used to assess anxiety-related behavioral responses in an
ecologically valid and controlled setting. The system integrates physiological, behavioral,
and neural data streams during exposure to anxiety-inducing scenarios.

The VR assessment will span approximately 30 min, including a 20-min task conducted
within a fully immersive environment. The platform is built on the previously validated
Virtual Reality Assessment for Panic Disorder (VRA-PD), which originally comprised three
modules: daily environment exposure (M1), relaxation (M2), and interoceptive exposure
(M3) [25]. In the validation study by Kim et al., the VRA-PD successfully distinguished
patients with panic disorder from healthy controls across multiple physiological and
subjective indices [25]. In this protocol, the interoceptive exposure module (M3) was
excluded to reduce participant burden and improve data quality. In the original VRA-PD
feasibility study [25], M3-related data were partially excluded due to user discomfort and
motion-related physiological artifacts. Consistent with these findings, recent VR-based
predictive modeling studies also excluded M3 to minimize movement- and respiration-
related noise. Accordingly, the structure and content of M1 and M2 have been retained.

Although initially designed for panic disorder, the paradigm targets fundamental
threat-related processes—anticipatory anxiety, avoidance, and physiological arousal—that
are shared across anxiety disorders. The M1 (daily environment exposure) module induces
claustrophobic and social-evaluative anxiety by requiring participants to enter and remain
in an elevator occupied by several virtual avatars, while the M2 (relaxation) module trains
diaphragmatic breathing and progressive muscle relaxation to assess recovery dynamics.
This structure enables examination of both anxiety induction and regulation within eco-
logically valid environments. Stimuli are presented through an immersive head-mounted
display (Oculus Quest Pro; Meta Platforms, Menlo Park, CA) with a native resolution of
1800 x 1920 pixels per eye, 90 Hz refresh rate, and a 106° field of view. Built-in off-ear
speakers deliver synchronized auditory cues to enhance realism and immersion. The sys-
tem supports 6-degree-of-freedom (6DoF) tracking and built-in eye and facial-expression
tracking, which enable the recording of gaze fixation and subtle behavioral responses. Each
module lasts approximately 10 min, and the total VR session duration is about 25 min.

All stimuli are implemented in Unity 3D 2022, with standardized lighting, ambient
sound, avatar animation, and environmental layout to ensure reproducibility across partici-
pants and sessions. Task scripts automatically control scenario timing, transitions, and data
logging, allowing identical exposure parameters for all participants.
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Behavioral metrics such as task completion time, in-environment decisions, and subjec-
tive responses will be collected throughout the task. These data, alongside physiological sig-
nals, allow for high-resolution multimodal characterization of individual anxiety responses.

This refined VR system enables repeated and scalable deployment in both clinical
and research settings. It is conceptually aligned with the Potential Threat construct in the
Negative Valence Systems domain of the RDoC framework.

Task delivery scripts, environmental parameters, and timing are fully automated to
ensure identical exposure across participants and sessions. All raw and event-timed data
are timestamp-synchronized and stored for reproducibility. Prior testing confirmed high
within-session reliability of anxiety ratings and heart rate variability (HRV) measures [25].
Through this adaptation, the VR paradigm provides a standardized yet ecologically rich
framework for probing shared mechanisms of anxiety beyond diagnostic boundaries.

2.5.4. EEG and ECG Acquisition

Continuous electrophysiological activity will be acquired using a 20-channel wireless
EEG system (Enobio; Neuroelectrics, Barcelona, Spain), which allows simultaneous EEG
and ECG acquisition within the VR environment. Nineteen scalp electrodes will be posi-
tioned according to the international 10-20 system, and one additional channel will record
a single-lead ECG from the chest. All sensors use Ag/AgCl electrodes with an impedance
kept below 10 k). Data will be sampled at 500 Hz (24-bit resolution) with a 0.1-100 Hz
online band-pass filter and referenced to the common-average reference.

EEG/ECG streams are hardware-synchronized with VR event triggers and behavioral
data through a shared digital timestamp system, allowing precise temporal alignment
across modalities. This configuration supports combined analyses linking neural oscillatory
dynamics and autonomic responses to VR-elicited anxiety behavior.

2.5.5. Behavioral and Postural Tracking

Upper-body posture and movement during the VR tasks will be continuously captured
using the AVATAR Studio system [29]. The original AVATAR platform reconstructs 3D
body motion in real time using a multi-camera, markerless tracking architecture and deep-
learning-based body-part detection (AVATARnet), enabling high-resolution behavioral
quantification in mice.

In the present study, the system will be configured for human participants using four in-
frared cameras positioned to ensure full-angle visibility and minimal occlusion. The result-
ing three-dimensional skeletal joint trajectories (60 Hz) will be treated as four-dimensional
spatiotemporal data (X, y, z X time) and analyzed using unsupervised learning approaches
to derive latent movement representations. These data-driven behavioral representations
will be used to characterize patterns such as postural freezing, avoidance behavior, and
upper-body displacement during VR tasks. Derived motion features will be synchronized
with EEG, ECG, and VR event data for multimodal integration. Depending on the an-
alytic aims, both kinematic and temporal-dynamical models (e.g., movement entropy,
transition-state clustering) may be applied to characterize behavioral responses.

2.5.6. Brain MRI Acquisition

Brain MRI will be acquired using clinical-grade MRI equipment (A 3 T Philips Ingenia
scanner, Philips Healthcare, Best, The Netherlands) at the Yonsei Convergence Medical
Technology Center (Seoul, Republic of Korea). The proposed MRI machine is a 3.0-T Philips
Ingenia CX (Philips Healthcare, Best, The Netherlands). The scan will take approximately
40 min, capturing T1 3D coronal structural brain images, resting-state functional brain
images (fMRI), and diffusion-weighted images (DWI). MRI acquisition will follow a stan-
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dardized protocol designed to assess cortical structure, intrinsic functional connectivity,
and white matter integrity.

Structural imaging will be acquired using a 3D T1-weighted magnetization-prepared
rapid gradient echo sequence to assess cortical thickness and gray matter volume. Resting-
state fMRI will be collected with participants instructed to remain still with eyes closed
and to avoid focused thinking, enabling assessment of intrinsic functional connectivity.
DWI will be used to evaluate white matter integrity through metrics such as fractional
anisotropy and mean diffusivity.

Participants will wear earplugs and headphones for acoustic protection and will be
stabilized using foam pads to minimize motion artifacts. MRI contraindications (e.g.,
metallic implants, pregnancy) will be screened prior to scanning. A trained research
assistant will be present throughout to monitor for distress or discomfort.

2.6. Outcomes and Operational Definitions

The primary outcome of this study is treatment response, operationally defined as
a clinically meaningful reduction in panic symptom severity. Responders are defined as
participants who achieve a >40% decrease in the total score of the PDSS from baseline
to each follow-up assessment (2, 6, and 12 months), while participants not meeting this
criterion are classified as non-responders.

This threshold was selected based on prior evidence indicating that a 35-45% decrease
on disorder-specific anxiety scales corresponds to clinically meaningful improvement and
early treatment benefit [30,31]. The 40% criterion also provides adequate sensitivity for
detecting within-subject improvement across multiple timepoints in longitudinal designs.

To ensure conceptual coherence with the study’s transdiagnostic framework, addi-
tional analyses will examine changes in the GAD-7, DASS-21 Anxiety subscale, and LSAS as
secondary outcomes, and the consistency of responder classification across these measures
will be evaluated. This multi-metric approach retains sensitivity to panic-specific reactivity
while enabling comparability with broader anxiety-disorder literature.

These operational definitions allow for both categorical classification (responder
vs. non-responder) and continuous modeling of symptom change, facilitating the in-
tegration of clinical, behavioral, physiological, and neuroimaging predictors across the
12-month follow-up.

2.7. Sample Size and Power Considerations

This study is designed to identify predictive biomarkers of treatment response through
multimodal data modeling in a prospective, observational framework. Since the primary
goal is to develop prediction models rather than to test predefined hypotheses, traditional
power calculations based on inferential statistics are not directly applicable.

For the cross-sectional comparison between the clinical anxiety group and the healthy
control group, a medium effect size (Cohen’s d = 0.5) was assumed based on prior
neuroimaging meta-analyses [32]. This yielded a minimum required sample size of
36 participants per group to achieve 80% power at a two-sided « = 0.05. Accounting
for a 10% attrition rate, the control group target was set at 40 participants.

Sample size planning for predictive modeling was based on guidelines by Riley
et al. [33], which recommend ensuring a sufficient number of events per predictor pa-
rameter to reduce the risk of model overfitting. Although the dataset includes numerous
raw variables across clinical, behavioral, physiological, and neuroimaging domains, only
a subset (~20 variables) will be used in each model following feature selection proce-
dures. Assuming a non-response rate of 25% (the reported remission rate of 38-75% at
6 months) [34,35], at least 80 non-responders would be required to ensure four events per
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predictor. Accordingly, the clinical anxiety group was targeted at 145 participants to allow
for a 20% dropout rate and ensure sufficient statistical power for model development.

3. Data Analysis and Statistical Methods
3.1. EEG and ECG Preprocessing and Feature Extraction

EEG preprocessing will follow the principles proposed by Delorme [36], emphasizing
minimal and transparent signal manipulation to preserve neural signal integrity. A single
0.5-Hz high-pass filter will be applied at data loading to prevent distortion of independent
component analysis (ICA) outcomes. Automated artifact cleaning (clean_rawdata [37]) will
identify and interpolate flat or low-correlation channels, and ICA (runica, maxsteps = 500,
double precision) will be performed for source separation. Independent components
will be classified using ICLabel [38], and non-brain components with >0.90 confidence
will be removed. This preprocessing strategy—derived primarily from Delorme [36]—is
expected to enhance reproducibility, minimize preprocessing bias, and maintain the natural
covariance structure of the EEG. Additional spectral or connectivity analyses (e.g., Welch
power spectra, coherence, or source-level metrics) may be applied depending on the
analytic objectives.

For ECG, R-peaks will be detected using established algorithms such as the Pan-
Tompkins algorithm [39] or more recent approaches including adaptive methods for
wearable sensors [40] and deep learning-based techniques utilizing U-Net and LSTM
architectures [41-43], depending on signal quality and computational requirements. Physi-
ologically implausible beats will be excluded through automated quality assessment prior
to computing HRV indices.

For spectral analysis of HRV, multiple approaches will be considered, including the
traditional Welch’s method [44]; the multitaper method, which offers superior variance-
bias trade-offs [45,46]; and adaptive multitaper techniques optimized for biological sig-
nals [47,48]. Standard HRV parameters (standard deviation of NN interval, root mean
square of successive differences, low frequency, high frequency, low-to-high frequency
ratio) will be computed, and may be complemented by non-linear dynamics measures (e.g.,
sample entropy, detrended fluctuation analysis), time—frequency analyses (e.g., wavelet
transform, Hilbert-Huang transform), and complexity metrics in exploratory analyses to
comprehensively characterize autonomic nervous system dynamics.

All EEG/ECG features will be time-locked to VR events and behavioral indices(three-
dimensional positional information of skeletal-points extracted from AVATAR Studio) to
enable multimodal integration with clinical and neuroimaging data.

3.2. Brain MRI Analysis

Preprocessing for MRI data will use standardized pipelines: fMRIPrep v24.0 for T1 and
resting-state fMRI (anatomical segmentation, motion correction, spatial normalization, and
smoothing at 6 mm full-width half maximum), and QSIPrep v0.21 for DWI (eddy-current
correction, bias-field correction, and tensor fitting).

Structural MRI, diffusion-weighted imaging (DWI), and resting-state fMRI will be
analyzed to comprehensively characterize brain structure, white matter integrity, and
intrinsic functional organization associated with anxiety and treatment response. Structural
MRI will yield cortical thickness and gray matter volume measures; DWI will provide
white matter microstructural indices, including fractional anisotropy and mean diffusivity;
and resting-state fMRI will be used to derive functional connectivity, amplitude of low-
frequency fluctuations, and regional homogeneity as candidate neurobiological features for
group comparisons and predictive modeling.
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Group-level comparisons will be performed between (i) healthy controls and anxiety
participants and (ii) responders and non-responders using general linear models with age
and sex as covariates. Multiple comparisons will be adjusted using the false discovery
rate. Significant neural indices will be further examined as candidate predictive features in
multimodal modeling.

3.3. Predictive Modeling of Treatment Response

The primary objective is to develop machine-learning models that predict treatment
response (>40% PDSS reduction at 2, 6, and 12 months). Binary (responder vs. non-
responder) and three-group models (healthy control, responder, non-responder) will be
evaluated. Predictor features will include sociodemographic and psychiatric-history vari-
ables, clinical and psychometric scores, VR-derived behavioral indices, EEG/ECG features,
3D skeletal tracing, and neuroimaging markers. In most models, age and sex will be
treated as basic covariates given their known influence on neural and behavioral measures.
Lifestyle variables (e.g., education, smoking, alcohol use) and treatment-related clinical
variables (medication use and psychotherapy) will be systematically recorded and incorpo-
rated either as covariates to adjust for treatment effects or as candidate predictive features,
depending on the specific modeling objective and analytic context.

Predictor inclusion and feature reduction will be guided by a combination of theoreti-
cal relevance and empirical criteria. Candidate variables will undergo an initial screening
based on prior literature and clinical interpretability. Dimensionality will then be reduced
using data-driven feature-selection procedures, such as penalized regression methods
(e.g., LASSO) or feature-importance-based ranking, with the number of retained features
determined by model performance and stability rather than a predefined target. Variables
exhibiting substantial multicollinearity (e.g., variance inflation factor > 5), redundancy,
or consistently low contribution across cross-validation folds may be excluded prior to
model fitting.

All features will be standardized, and missing values handled using multiple imputa-
tions by chained equations or similar robust approaches. Depending on data characteristics,
dimensionality-reduction techniques (e.g., principal component analysis) may be applied
before model fitting.

The full multimodal analytic workflow supporting these predictive models is summa-
rized in Figure 3. This figure outlines the end-to-end structure of the pipeline, beginning
with modality-specific preprocessing (sociodemographic/clinical variables, VR behav-
ioral data, EEG/ECG signals, 3D-skeletal tracking, and MRI), followed by a multimodal
feature-integration stage, and culminating in supervised-learning models and validation
procedures. This framework visually captures how heterogeneous data streams are harmo-
nized into a unified dataset for treatment-response prediction and how complementary
neurobiological profiling analyses interface with the main machine-learning pipeline.

Various supervised-learning algorithms—such as logistic regression, support-vector
machines, random forests, or gradient-boosting methods (e.g., XGBoost, CatBoost)—may
be compared. Model performance will typically be evaluated through k-fold or nested
cross-validation, using metrics such as area under the curve, F1 score, and balanced
accuracy. Model interpretability will be explored through feature-importance or SHapley
Additive exPlanations-value analyses. All analytic pipelines will be version-controlled to
ensure reproducibility.
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Figure 3. Analytical framework for multimodal treatment response prediction in patients with anxiety
disorder. The six-stage pipeline progresses from multimodal data acquisition (sociodemographic,
clinical, psychometric, VR-behavioral, neurophysiological, and neuroimaging) through standardized
preprocessing, feature integration via dimensionality reduction, machine learning-based prediction
(>40% PDSS reduction), parallel neurobiological profiling, and validation to identify neurobehavioral
biomarkers. EEG and MRI data undergo both integrated analysis and direct profiling (dashed arrows).

3.4. Statistical Considerations

All analyses will be exploratory and hypothesis-generating. Normality of data distri-
butions will be verified using the Shapiro-Wilk test and residual diagnostics. If assumptions
for parametric tests are violated, appropriate transformations or non-parametric alterna-
tives will be employed. Potential covariates (age, sex, medication status, treatment type)
will be included as needed. Missing data will be handled using multiple imputation or
complete-case analysis, depending on the extent and mechanism of missingness.

To ensure generalizability, model interpretability, and prevention of overfitting, we will
report confidence intervals, cross-validation performance variability, and model calibration
statistics where applicable. Robustness checks (e.g., bootstrapping with 1000 iterations) will
be performed to confirm model stability. All analyses will be implemented in R (version
4.3.1 or later) and Python (version 3.10 or later). The analysis code will be managed using a
version-controlled repository (Git), and the final software environment, including package
versions, will be documented to ensure reproducibility.

4. Benefits and Risks to Participants

This study involves minimal risk, as it is based on non-invasive and observational pro-
cedures. However, certain assessments may cause temporary discomfort or psychological
distress. Participants may experience mild anxiety during clinical interviews or VR-based
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behavioral tasks that simulate stress-inducing situations. Additional discomfort may arise
from the application of EEG/ECG sensors, potential motion sickness during VR exposure,
or feelings of claustrophobia during MRI scanning.

To mitigate these risks, participants will be fully informed in advance about all proce-
dures and potential discomforts. They will be allowed to take breaks or discontinue specific
assessments at any point. A trained clinician or research staff member will be present
throughout all study procedures to monitor participant well-being and respond promptly
if distress arises.

Participation in this study may provide benefits such as access to a comprehensive
psychiatric evaluation and enhanced insight into one’s psychological health. Participants
in the clinical anxiety group will also receive longitudinal follow-up, which may contribute
to self-monitoring and inform future clinical care. While no therapeutic intervention is
provided within the research protocol, information gathered during the study may support
personalized treatment planning.

Participation is entirely voluntary. Individuals may withdraw at any time without
consequence to their current or future medical care. If needed, participants will be referred
for appropriate clinical services.

5. Ethical Approval

This study protocol has been reviewed and approved by the Institutional Review Board
(IRB) of Samsung Kangbuk Hospital (IRB number: 2024-10-018-002) in accordance with
the Declaration of Helsinki (2013 revision) and International Council for Harmonization
Good Clinical Practice guidelines. The IRB reviewed the study protocol, informed consent
forms, recruitment materials, and all associated documentation to ensure the protection of
participant rights, safety, and well-being.

Written informed consent will be obtained from all participants before study enroll-
ment. The consent process will include comprehensive information about the study’s
aims, procedures, potential risks and benefits, confidentiality protections, and the right to
withdraw without penalty.

Participants will be provided with the contact information of the principal investigator
and designated research personnel, enabling them to report concerns, adverse events, or
protocol-related inquiries. In the event of serious adverse reactions, appropriate clinical
support will be provided, and the IRB will be notified as required.

6. Management and Protection of Personal Information

All data collected in this study—including clinical information, questionnaire re-
sponses, physiological signals (e.g., EEG, ECG), behavioral performance data from the VR
task, and brain imaging data—will be managed according to institutional, national, and
international guidelines for research data protection.

Each participant will be assigned a unique study-specific identification code at the time
of enrollment. This code will be used to label all datasets and files. Personally identifiable
information (e.g., name, date of birth, contact information) will be stored separately from
research data in a secure, access-restricted location and will be linked to study data only
via the assigned code.

All electronic data will be stored on encrypted and password-protected systems,
with access limited to only authorized research personnel. Hardcopy documents (e.g.,
signed consent forms and screening logs) will be stored in locked cabinets in secured
research offices.

According to the Bioethics and Safety Act and institutional policies, research data will
be retained for at least 3 years following the completion of the study. After this retention
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period, data will be disposed of securely using digital deletion and physical document
shredding protocols. Regular internal audits will be conducted to ensure compliance with
data protection standards, including review of informed consent forms, data files, and
access logs.

7. Discussion

This protocol outlines a multidimensional, prospective investigation designed to
improve the assessment and prediction of anxiety-related psychopathology through the
integration of behavioral, physiological, and neuroimaging data. Grounded in the RDoC
framework, the study aims to move beyond symptom-based diagnostic systems by identi-
fying neurobiologically informed and transdiagnostic markers of treatment response.

Methodologically, the study introduces several innovations. These include a VR-
based behavioral assessment platform that enables standardized induction of anxiety
responses in immersive scenarios, concurrent recording of EEG and ECG signals, and
real-time 3D skeletal tracking. By incorporating these multimodal data streams, the study
allows for high-resolution behavioral and physiological characterization of individual
anxiety responses.

The combination of VR-derived features with structural and functional neuroimaging
facilitates the development of predictive models using machine learning techniques. This
approach supports early identification of treatment response trajectories and the possibility
of stratifying individuals based on underlying neurobiological patterns—core goals of
precision psychiatry.

This study provides a feasible and scalable alternative to traditional RDoC research de-
signs, which have often faced implementation barriers such as a lack of standardized recruit-
ment criteria and reliance on resource-intensive, expert-administered assessments [13,49].
Recent trends indicate a shift toward transdiagnostic, symptom-based recruitment and the
incorporation of cost-efficient digital tools to operationalize RDoC constructs in real-world
settings [50]. In line with this evolution, our study embeds RDoC principles within a
clinically grounded, transdiagnostic framework using widely accessible assessments. By
integrating VR-based behavioral tasks, physiological monitoring, and neuroimaging, this
design enables dimensional characterization of anxiety in a manner that is both mechanisti-
cally rich and practically scalable. As such, it bridges the gap between theoretical innovation
and clinical applicability, advancing the translational potential of RDoC-informed research.

This study has several methodological and practical limitations. First, the longitudi-
nal design is asymmetric: healthy controls are assessed twice (baseline and 12 months),
whereas the anxiety group is followed three times (2, 6, and 12 months), limiting short-term
trajectory comparisons. Second, ongoing medication and psychotherapy may confound
treatment-response estimates, although these variables will be recorded and statistically
adjusted. Third, combining multimodal data (VR, EEG, ECG, MRI) entails potential syn-
chronization errors, variable signal quality, and data-loss risks. Standardized preprocessing
and quality-control pipelines have been implemented, but residual heterogeneity may
remain. Finally, practical issues such as participant burden, VR sensitivity, and attrition
could affect data completeness and generalizability. Despite these constraints, the pro-
tocol emphasizes reproducibility and transparent analytic procedures to support robust,
hypothesis-generating findings on neurobehavioral predictors of treatment response. In
summary, this protocol outlines a longitudinal, multimodal investigation designed to iden-
tify neurobehavioral predictors of treatment response in individuals with anxiety disorders.
By aligning clearly defined outcomes with standardized acquisition and analysis pipelines
across behavioral, physiological, and neuroimaging domains, the study aims to generate
reproducible, mechanistic insights into the processes underlying anxiety improvement.
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The inclusion of harmonized procedures, cross-modal synchronization, and transparent
analytic workflow diagrams ensures methodological rigor and clarity, thereby facilitating
future replication and data sharing within the field.

Supplementary Materials: The following supporting information can be downloaded at: https:/ /www.
mdpi.com/article/10.3390/jcm15010007 /s1, Table S1: ASSESSMENT TOOLS AND THEORETICAL
CONSTRUCTS. References [51-78] are cited in the Supplementary Materials.
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Abbreviations

The following abbreviations are used in this manuscript:
ASI-R Anxiety Sensitivity Index-Revised

BIS/BAS  Behavioral Inhibition/Activation System Scales

CNSVS CNS Vital Signs Battery
DASS-21  Depression Anxiety Stress Scales-21

DSM Diagnostic and Statistical Manual of Mental Disorders
DWI Diffusion-weighted imaging

ECG Electrocardiography

EEG Electroencephalography

fMRI Functional magnetic resonance imaging

GAD Generalized anxiety disorder

GAD-7 7-item Generalized Anxiety Disorder Scale
HRV Heart rate variability

ICA Independent component analysis

1US Intolerance of Uncertainty Scale

LSAS Liebowitz Social Anxiety Scale

MINI Mini International Neuropsychiatric Interview
MRI Magnetic resonance imaging

PANAS  Positive and Negative Affect Schedule

PDSS Panic Disorder Severity Scale

RDoC Research Domain Criteria

SAD Social anxiety disorder

SSQ Simulator Sickness Questionnaire

STRAIN  Stress and Adversity Inventory

VR Virtual reality
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