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Artificial intelligence (AI) shows promise in improving the accuracy and efficiency of lung cancer 
screening, but its economic value remains uncertain. We developed a decision-analytic model 
combining a decision tree and Markov model to evaluate five screening strategies in South Korea: 
no screening, chest X-ray (CXR), AI-assisted CXR, low-dose computed tomography (LDCT), and AI-
assisted LDCT. We simulated hypothetical cohorts of 10,000 individuals, stratified by age group and 
smoking status to reflect the Korean population distribution, and projected their lifetime costs and 
quality-adjusted life years (QALYs). Analyses applied a 4.5% discount rate and a willingness-to-pay 
(WTP) threshold of $32,409.9 per QALY. AI-assisted CXR produced incremental cost-effectiveness 
ratio (ICER) of $8679–$10,030 per QALY, demonstrating cost-effectiveness across all age groups. CXR 
alone was less favorable, and LDCT-based strategies exceeded the willingness-to-pay (WTP) threshold. 
These findings suggest AI-assisted CXR offers a scalable, economically viable strategy for lung cancer 
screening, supporting its integration into national programs.

Lung cancer remains a significant challenge for patients and healthcare systems worldwide. It is the leading cause 
of cancer-related deaths and ranks as the third most common cancer globally, accounting for around 1.8 million 
deaths1. Most lung cancer cases are detected at advanced stages, where treatment is mainly palliative, resulting in 
poor survival outcomes2. In South Korea, lung cancer screening is conducted through the National Lung Cancer 
Screening Program (NLCSP), which targets individuals aged 54 to 74 years with a smoking history of at least 30 
pack-years, providing biennial low-dose computed tomography (LDCT) scans.

The integration of artificial intelligence (AI) has greatly enhanced the capabilities of computer-aided detection 
(CAD) systems, broadening their application across various medical imaging exams, including mammography, 
brain CT scans, and chest radiography or CT scans. These systems are now employed for multiple purposes, 
such as detecting lesions, providing differential diagnoses, prioritizing urgent images, and extracting imaging 
biomarkers3,4. The incorporation of deep learning technology into CAD systems has significantly improved the 
performance of CAD algorithms in analyzing chest radiography5,6. Multiple AI-driven CAD systems have been 
shown to markedly enhance the performance of radiologists as secondary readers6,7.

Chest radiography, the most frequently performed radiologic examination in clinical practice, is the primary 
method for ruling out chest diseases assessing the effectiveness of treatments (e.g., for pneumonia, tuberculosis, 
or lung cancer), and monitoring patients with chest abnormalities. Additionally, it provides an early opportunity 
to detect both symptomatic and asymptomatic cases of lung cancer8. Despite multiple large, randomized trials 
demonstrating the lack of efficacy of chest radiography in reducing lung cancer mortality9, it remains widely 
utilized for screening various lung diseases, including pulmonary tuberculosis, other chest infections, and 
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lung cancer10,11. Specifically, chest radiography is frequently employed for health checkups among the general 
population in certain countries12,13. Furthermore, retrospective studies have suggested the potential of AI-based 
CAD systems to enhance the role of chest radiography in lung cancer screening12,14,15.

Despite the potential benefits of AI algorithms in evaluating lung cancer risk, there remains uncertainty 
regarding the extent to which integrating AI software for detecting lung cancer can improve diagnostic accuracy 
and subsequently impact healthcare outcomes and overall costs. Therefore, the objective of this study was to 
assess the cost-effectiveness of implementing a commercial AI-based computer-aided detection (CAD)–
integrated picture archiving and communication system (PACS) for identifying actionable lung nodules on 
chest radiographs among participants undergoing health checkups. The study aimed to compare this approach 
with five mutually exclusive screening strategies: no screening, chest X-ray (CXR), AI-assisted CXR, low-dose 
computed tomography (LDCT), and AI-assisted LDCT. Each strategy was modeled separately, meaning that 
individuals in the simulation received only one screening modality (not both CXR and LDCT simultaneously). 
This design allowed us to evaluate and compare the incremental costs and benefits of each option.

Methods
Study overview
In this study, we constructed a mixed model of a decision tree and a Markov model to evaluate the cost-
effectiveness of AI-based diagnostic software for lung cancer patients. We created four scenarios, each comprising 
10,000 individuals in South Korea aged 54–74, 40–80, 50–80, and 60–80 years old, respectively. The population 
distributions used for each scenario are summarized in Supplementary Table 3. Scenario 1 was based on the 
current Korean lung cancer screening guideline16, targeting individuals aged 54–74 years old, while Scenario 
2 to 4 were expanded to a wider range based on the United States Preventive Services Task Force (USPSTF) 
recommendation statement for lung cancer screening17. Each scenario includes demographic distributions of 
non-smokers (0 pack-years), light-smokers (more than 0 but fewer than 30 pack-years), and heavy-smokers (30 
or more pack-years) in Korea. The screening age range refers to the age group eligible for lung cancer screening, 
while the time horizon represents the total period over which costs and health outcomes are tracked. Beyond 
the screening age, the modeled time horizons extend to capture full lifetime effects, corresponding to 20, 40, 
30, and 20 years for each scenario, respectively. Quality-adjusted life years (QALYs), which encompass both 
quantity (life-years gained) and quality (health-related quality of life HRQOL in utility value) value, were used 
as effectiveness variables. A healthcare system perspective was adopted in this study according to the economic 
evaluation guidelines in Korea18, excluding non-medical (transportation and nursing care) and indirect costs 
(time costs) but only medical costs. The average cost-effectiveness ratio (ACER) and the incremental cost-
effectiveness ratio (ICER) were calculated for the outcome measures to evaluate cost-effectiveness. A discount 
rate of 4.5% for both QALYs and costs was applied according to Korean guideline18. A willingness-to-pay (WTP) 
threshold of $32,409.9 per QALY gained was used, reflecting 1-time the gross domestic product per capita in 
2022 South Korea19. Overall, this study followed the Consolidated Health Economic Evaluation Reporting 
Standards (CHEERS) guideline (Supplementary Table 1)20. The study procedures were reviewed and approved 
by the Institutional Review Board of the National Health Insurance Service Ilsan Hospital (IRB number: 2023-
04-021). As this study was based solely on previously published, de-identified data, it did not involve direct 
human participants or any identifiable personal information. Therefore, informed consent was not required. All 
methods were carried out in accordance with relevant guidelines and regulations. The input parameters used in 
the model were extracted from published literature, as detailed in Table 1.

Model structure
The analytic software program TreeAge Pro 2022 (TreeAge Software, Williamstown, MA, USA) was used to 
compare the lifetime cost-effectiveness of diagnosing lung cancer with and without AI. Specifically, we compared 
five comparators in all scenarios: (1) no screening, (2) CXR, (3) CXR + AI, (4) LDCT, and (5) LDCT + AI. Step 
(A) in Fig. 1 represents these five comparators. For each alternative option, we distributed the population into 
non-smokers, light-smokers, and heavy-smokers based on the Korean smoking status, as illustrated in step (B) 
(population distributions) of Fig. 1. Since lung cancer incidence varies by smoking status, we incorporated the 
hazard ratio for lung cancer incidence into the transition probabilities from step (B) (population distributions) 
to step (C) (detection & diagnosis sensitivity) in Fig.  1. Then we divided the simulation into detected and 
undetected cases based on sensitivity and specificity data, which correspond to step (C) (detection & diagnosis 
sensitivity). Besides the no-screening strategy, all other options followed the Korean national screening 
guidelines, which recommend biennial screening (every two years). Finally, step (D) (Markov model) in Fig. 1 
represents the lifetime disease progression component with a one-year cycle length. The model includes the 
smoking characteristics of individuals, all-cause mortality, and disease-specific mortality, but it is unable to 
track patients’ previous health states due to the memoryless property inherent in the Markov assumption21. The 
selection of comparators, diagnostic accuracy parameters, and clinical prognosis assumptions were derived from 
previous studies22–25.

Intervention and comparators
We compared the five strategies to identify the potential effects of AI-based detection. In the no screening 
group, the population is not exposed to regular lung cancer screening but is detected based on the current 
national probabilities once cancer has occurred. In the other four strategies, we hypothesized that regular cancer 
screening is conducted using CXR, CXR + AI, LDCT, and LDCT + AI options. The major differences between 
these comparators are the sensitivity and specificity of detecting lung cancer and its stages.
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Mean SD Distribution Source

Transition probabilities

 Sensitivity

  CXR 0.470 0.047 Beta 14

  CXR + AI 0.696 0.070 Beta 14

  LDCT 0.810 0.081 Beta 26

  LDCT + AI 0.820 0.082 Beta 26

 Specificity

  CXR 0.780 0.039 Beta 14

  CXR + AI 0.940 0.047 Beta 14

  LDCT 0.690 0.069 Beta 26

  LDCT + AI 0.750 0.075 Beta 26

 Incidence by stage

  Local 0.228 0.023 Beta 27

  Regional 0.445 0.044 Beta 27

  Distant 0.327 0.033 Beta 27

 Survival rate

  Local 0.153 0.015 Beta 27

  Regional 0.094 0.009 Beta 27

  Distant 0.023 0.002 Beta 27

 Hazard ratio for lung cancer incidence

  Non-smokers Ref

  Light smokers 17.80 1.78 Beta 28

  Heavy smokers 29.90 2.99 Beta 28

 Hazard ratio for all-cause mortality

  Non-smokers Ref

  Light smokers 3.00 0.30 Beta 29

  Heavy smokers 4.45 0.45 Beta 29

Utility

  Healthy 0.900 0.090 Beta Assumed

  Local 0.660 0.066 Beta 30

  Regional 0.463 0.046 Beta 30

  Distant 0.310 0.031 Beta 30

  Undetected (local) 0.660 0.066 Beta 30

  Undetected (regional) 0.463 0.046 Beta 30

  Undetected (distant) 0.310 0.031 Beta 30

  Disease-free 0.720 0.072 Beta Assumed

  Death 0.000 – Constant –

Costs

 Initial costs (40 s)

  1 (Local) 10,002 6148 Gamma 31

  2 (Regional) 15,774 10,890 Gamma 31

  7 (Distant) 20,049 13,150 Gamma 31

 Initial costs (50 s)

  1 (Local) 10,792 7141 Gamma 31

  2 (Regional) 16,039 10,667 Gamma 31

  7 (Distant) 18,530 13,080 Gamma 31

 Initial costs (60 s +)

  1 (Local) 10,302 7961 Gamma 31

  2 (Regional) 13,705 10,436 Gamma 31

  7 (Distant) 12,926 10,948 Gamma 31

 Incremental costs (40 s)

  1 (Local) 2034 6689 Gamma 31

  2 (Regional) 7764 13,323 Gamma 31

  7 (Distant) 12,956 13,726 Gamma 31

 Incremental costs (50 s)

  1 (Local) 1898 5818 Gamma 31

Continued
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Input variables
The sensitivity and specificity values for CXR and LDCT were primarily obtained from large randomized trials 
and meta-analyses14,26. Performance values for AI-assisted CXR were derived from recent clinical validation 
studies of deep learning–based algorithms in chest radiography22,26. Hazard ratios for lung cancer incidence and 
mortality among light- and heavy-smokers were modeled relative to non-smokers, which served as the reference 
group. Utility weights for lung cancer stages were drawn from previously published study30. Utility was defined 
as a health-related quality-of-life (HRQOL) weight ranging from 0 (death) to 1 (perfect health). In the absence 
of prior data, the utility for the disease-free (health) state was assumed to be 0.9, while the utility for death was 
set to 0. A full list of data sources is provided in Table 1. For the AI-assisted strategies, diagnostic performance 
estimates were derived from published studies specific to each modality. The CXR + AI strategy was modeled 
as AI acting independently, based on the study by Nam et al.14, which evaluated a deep learning algorithm for 
lung cancer detection without radiologist input, reflecting initiatives to implement AI-based CXR as a scalable 
first-line screening tool. In contrast, the LDCT + AI strategy assumed that radiologists interpreted CT scans 
with AI assistance as a confirmatory step, consistent with current clinical practice, regulatory frameworks in 
Korea, and evidence from a systematic review by Wang et al.26. The sensitivity parameter was highest for the 
LDCT + AI option, followed by the LDCT strategy, while the specificity parameter was highest for the CXR + AI 
option. Based on these sensitivity and specificity parameters, individuals with lung cancer were divided into 
detected (true-positive) and undetected (false-negative) groups in the simulation model. False-negative cases 
were explicitly incorporated and assumed to remain undiagnosed, progressing naturally through the Markov 

Fig. 1.  Markov model.

 

Mean SD Distribution Source

  2 (Regional) 6080 10,801 Gamma 31

  7 (Distant) 14,128 15,637 Gamma 31

 Incremental costs (60 s +)

  1 (Local) 2101 5393 Gamma 31

  2 (Regional) 4212 7930 Gamma 31

  7 (Distant) 10,704 13,766 Gamma 31

 Additional costs

  LDCT 118.6 11.9 Gamma Internal data

  X-ray 7.3 0.7 Gamma Internal data

  AI software 0.8 0.1 Gamma Internal data

Table 1.  Model input parameters.
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process without the benefit of early detection. The proportions of detected and undetected cases were determined 
from the diagnostic performance values summarized in Table 1. Detailed cost data for lung cancer patients 
in Gyeonggi province were obtained from the National Cancer Center. Age-specific annual medical cost data, 
including the initial year (first year after diagnosis) and incremental (annual follow-up) costs, were used for 
local, regional, and distant stages. All costs were converted to 2022 USD using an exchange rate of 1 USD = 1265 
KRW. “Additional costs” refer to non-medical expenditures, including LDCT, CXR, and AI utilization and 
maintenance fees. Background mortality was incorporated into the Markov model based on age-specific life 
tables. Detailed mortality rates applied to each cycle are provided in Supplementary Table 2.

Statistical analyses
In the base-case analysis, we evaluated the cost-effectiveness of each alternative using the ACER and ICER, 
applying an annual discount rate of 4.5%. ACER is calculated by dividing the total cost of a given strategy 
by its effectiveness, while ICER is determined by dividing the difference in costs between two strategies by 
the difference in their effectiveness (QALY). If the ICER is lower than the WTP threshold, the alternative is 
considered cost-effective. To address potential inaccuracies at the beginning or end of each cycle, a half-cycle 
correction was applied to both QALYs and costs. Sensitivity analysis is essential to reduce uncertainty inherent 
in economic evaluations. We conducted a deterministic sensitivity analysis (DSA) using a range of 90% to 110% 
for each parameter and a probabilistic sensitivity analysis (PSA) using distributions detailed in Table 1. The DSA 
results highlighted the ICER variations based on single parameter changes, allowing us to pinpoint the most 
sensitive input variable. Additionally, we performed a Monte Carlo simulation with 10,000 iterations for the 
PSA, which randomly sampled values to determine the percentage of scenarios in which different strategies were 
optimal. The results were presented using incremental cost-effectiveness (ICE) scatterplots and cost-effectiveness 
acceptability curves (CEAC), which visually represent the findings.

Results
Base-case analysis
Table 2 describes the overall results of simulating Scenarios 1 to 4, and Fig. 2 displays the cost and effectiveness 
of each strategy. Although Table 2 presents ICER-based comparisons, we also report ACER values to describe 
overall cost-effectiveness relative to no screening. Compared to the no screening option, using CXR + AI in 
diagnosing lung cancer showed ACERs of $12,927 per QALY gained in Scenario 1, $15,601 per QALY gained in 
Scenario 2, $13,190 per QALY gained in Scenario 3, and $9950 per QALY gained in Scenario 4. When comparing 
incremental changes between strategies, the ICER for CXR + AI compared to the CXR strategy were $9491, 
$10,030, $9552, $8679 per QALY gained in each respective scenario. Using LDCT + AI instead of CXR + AI 

Strategy Cost (USD) Effectiveness (QALY) Incremental cost (USD) Incremental effectiveness (QALY) ICER (USD/QALY)

Scenario 1: 54–74 years old

 (1) No screening 51,242 11.317

 (2) CXR 51,384 11.326 142 0.010 14,658

 (3) CXR + AI 51,431 11.331 46 0.005 9491

 (5) LDCT + AI 51,751 11.332 321 0.001 599,724

 (4) LDCT 51,762 11.334 11 0.002 5739

Scenario 2: 40–80 years old

 (1) No screening 48,165 12.962

 (2) CXR 48,321 12.971 157 0.008 19,420

 (3) CXR + AI 48,377 12.976 55 0.006 10,030

 (5) LDCT + AI 48,796 12.977 420 0.001 653,887

 (4) LDCT 48,812 12.979 15 0.002 7177

Scenario 3: 50–80 years old

 (1) No screening 51,050 11.460

 (2) CXR 51,195 11.470 144 0.010 15,088

 (3) CXR + AI 51,243 11.475 48 0.003 9552

 (5) LDCT + AI 51,573 11.476 331 0.000 600,172

 (4) LDCT 51,585 11.477 11 0.001 5823

Scenario 4: 60–80 years old

 (1) No screening 50,927 9.482

 (2) CXR 51,028 9.492 101 0.010 10,335

 (3) CXR + AI 51,054 9.495 26 0.003 8679

 (5) LDCT + AI 51,242 9.495 188 0.000 671,780

 (4) LDCT 51,248 9.496 6 0.001 5233

Table 2.  Results of the base case analysis: Scenario 1 to 4.
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resulted in an ICER of $599,724 per QALY in Scenario 1, far exceeding the commonly accepted WTP threshold 
of $32,410 per QALY gained in Korea.

Sensitivity analysis
Deterministic sensitivity analysis (DSA) was conducted to examine the most sensitive input parameters by 
changing each parameter value from the base-case analysis. Figure 3 presents a tornado diagram comparing 
CXR + AI to the no screening option for Scenario 1, while Supplementary Figs. 1 to 3 display the results for 
Scenarios 2 to 4. In most scenarios, the start age of lung cancer screening was determined to be the most sensitive 
parameter affecting the outcome of ICER; the ICER values tend to be better, especially for older populations 
in all scenarios. The initial incidence of lung cancer by stages (regional, distant) was the following variable 
that is sensitive to the outcome. From the Monte Carlo simulation, we identified the integrated effects of the 
input parameters by randomly choosing the values. Figure 4 presents the incremental cost-effectiveness (ICE) 
scatter plot of 10,000 Monte Carlo iterations comparing all five strategies simultaneously. The CXR + AI strategy 
demonstrated the highest probability of being the most cost-effective option among all alternatives, with a 91.8% 
probability of being optimal in Scenario 1. The CXR + AI alternative was the optimal cost-effective strategy 
with probabilities of 83.9%, 81.8%, and 76.2% in Scenarios 2 to 4, respectively (Supplementary Figs. 4 to 6). In 
Scenario 1, the probability of CXR + AI being cost-effective was over 50% until the WTP threshold fell below 
$140,000 as shown in the CEAC graph (Fig. 5).

Discussion
While AI has been applied in diagnosis and therapeutic decision-making for lung cancer screening, there is 
limited evidence regarding its cost-effectiveness. To our best knowledge, this is the first economic evaluation 
that considers the cost-effectiveness of AI-based CAD–integrated PACS diagnostic aid as a medical device 
compared with standard care from a healthcare system perspective. Our model distinguished between AI 
acting independently and AI assisting radiologists. This distinction is important, as standalone AI may enhance 
scalability and reduce workforce demand, whereas collaborative human–AI interpretation has been shown 
to achieve higher diagnostic accuracy, particularly for complex modalities such as LDCT. These differences 
in integration approach may influence not only clinical outcomes but also the cost-effectiveness of screening 
programs. The results demonstrated that AI-based CAD–PACS aid will give incremental health gain per patient 
of 0.015 QALY with an incremental cost-effectiveness ratio of $9491 per QALY. A Markov microsimulation 
model was developed to optimize the utilization of data from important randomized controlled trials and 
observational studies, while also accounting for the diversity and variability among health checkup population. 
The findings indicated that lung cancer screening using an AI-based digital device led to a modest increase 
in healthcare costs while providing improved health benefits in CXR option. As a result, the AI-based digital 
device was deemed highly cost-effective for lung cancer screening, based on a willingness-to-pay threshold of 
$32,409.9 per QALY gained. In contrast, LDCT showed higher costs but limited incremental benefits, which 
may explain why the LDCT strategy appeared more expensive yet slightly more effective than LDCT + AI. This 

Fig. 2.  Results of the cost-effectiveness analysis for Scenario 1: 54–74 years old.
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difference is primarily attributed to random variation within the Markov simulation rather than a true clinical 
advantage. Furthermore, CXR-based screening demonstrated greater cost-effectiveness than LDCT, largely 
due to the lower screening cost and the relatively low lung cancer incidence in the Korean population, which 
reduces the marginal QALY gain achievable by more intensive LDCT screening. The benefit of AI addition 
was also minimal for LDCT, since LDCT already has very high baseline sensitivity, leaving limited room for 
measurable improvement. Consequently, the incremental cost of AI-assisted LDCT outweighed its marginal 
clinical gain. Notably, although the baseline sensitivity of CXR alone (0.470) was nearly half that of LDCT 
(0.810), AI integration improved the sensitivity of CXR to 0.696, substantially narrowing the diagnostic gap. This 
improvement, combined with the lower screening and follow-up costs of chest radiography, resulted in favorable 
cost-effectiveness for the CXR + AI strategy, even with lower absolute sensitivity. While subgroup differences 
may exist depending on age or smoking history, this finding highlights that moderate diagnostic enhancement 
through AI can lead to substantial economic benefits when applied to a general population. The specificity of the 
CXT + AI model, however, was derived from a single study and may have been slightly overestimated, which we 
acknowledge as a limitation.

ICERs exhibited extreme sensitivity to the assumptions made regarding the lung cancer mortality benefit 
associated with screening, both during and after the active screening phase, as observed in trials. Variations in 
this parameter led to the widest range of ICER values in one-way sensitivity analyses, indicating that the cost-
effectiveness of lung cancer screening in Korea heavily relies on achieving a mortality benefit that is at least 
equivalent to that observed in the trials. At an indicative ‘willingness-to-pay’ threshold in Korea approximately 
$30,000, 76.2–91.8% of simulations in a probabilistic sensitivity analysis resulted in ICERs that could be 
considered cost-effective using parameters.

This evaluation is the first to integrate Korean trends in lung cancer screening rates, applying them to a 
general population and screening prevalence model. This model was used to estimate both the number of 
Koreans currently undergoing screening and those who are not, while also accounting for the competing risks of 

Fig. 3.  Tornado diagram for Scenario 1: 54–74 years old Abbreviations: pI_initial_2regional_all, initial 
population of lung cancer (regional); pI_initial_3distant_all, initial population of lung cancer (distant); 
u_0healthy, utility for healthy state; u_1local, utility for lung cancer (local); pA_TP_3CXR_AI, sensitivity 
of CXR + AI; u_4diseasefree, utility after treated; pI_initial_1local_all, initial population of lung cancer 
(local); u_3distant, utility for lung cancer (distant); cAdditional_CXR, cost for CXR; u_2regional, utility for 
lung cancer (regional); pM_recurrence, probability of lung cancer recurrence; p_detection, probability of 
detecting lung cancer naturally (assumed); pA_TN_3CXR_AI, specificity of CXR + AI; pS_cure_2regional_all, 
probability of being treated from lung cancer (regional); pS_cure_1local_all, probability of being treated 
from lung cancer (local); pS_cure_3distant_all, probability of being treated from lung cancer (distant); 
cAdditional_AI, cost for AI software; cAdditional_LDCT, cost for LDCT; pA_TP_4LDCT, sensitivity of LDCT; 
pA_TP_2CXR, sensitivity of CXR; pA_TP_5LDCT_AI, sensitivity of LDCT + AI; pA_TN_4LDCT, specificity 
of LDCT; pA_TN_2CXR, specificity of CXR; pA_TN_5LDCT_AI, specificity of LDCT + AI; u_5undetected, 
utility for undetected lung cancer.
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lung cancer-related and all-cause mortality. We also incorporated updated, comprehensive health-system costs 
associated with lung cancer, estimated in a large population-based cohort study linked to routinely collected, 
administrative health databases. Preliminary cost estimates31 and ours indicate that the overall healthcare costs 
for treating distant lung cancer have nearly doubled. It’s noteworthy that systemic therapy costs, only contribute 
to a portion of the overall expenses. Screening can potentially mitigate the higher costs and lower survival rates 

Fig. 5.  Cost-effectiveness acceptability curve (CEAC) for Scenario 1.

 

Fig. 4.  Incremental cost-effectiveness (ICE) scatterplot for Scenario 1: 54–74 years old.
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associated with later-stage disease, thereby potentially enhancing cost-effectiveness. Our findings also suggest 
that variations in the cost of LDCT scanning substantially influence the ICER, highlighting the importance of 
cost management in large-scale screening probrams. The cost of an LDCT scan could potentially be reduced 
in a large-scale screening program. Our threshold analysis demonstrated that lung cancer screening would 
be deemed cost-effective in our base case if the scan price was set at $128, considering a willingness-to-pay 
threshold of $32,409.9 per QALY gained.

High false-positive rates caused by benign intrapulmonary lymph nodes or non-calcified granulomas, 
overdiagnosis, and the potential risk of radiation-induced cancer from prolonged exposure are notable concerns 
associated with LDCT in lung cancer screening32. These challenges persist as the most critical obstacles in the 
application of LDCT for this purpose33. Although CAD techniques demonstrate high sensitivity in detecting 
lung cancer nodules, they often come with comparatively low specificity34. Implementation of CAD systems 
in clinics for lung cancer screening is recommended. Studies have indicated that false-positive results in lung 
cancer screening decrease with each millimeter increase in the threshold nodule size35. Trial data from NLST, 
PLCO, and others have shown that annual lung cancer screening reduces lung cancer mortality by 11–21%, 
while biennial screening reduces it by only 6.5–9.6%. Triennial screening has limited effectiveness in reducing 
lung cancer mortality. Furthermore, more frequent LDCT screening leads to increased false-positive results36.

Conventional screening chest radiography has failed to yield positive results in several studies37. However, the 
integration of digital chest radiography along with computer-aided diagnostic techniques and highly quantum-
efficient detectors38,39, as well as AI-based detection algorithms shows promise in improving the visualization 
of pulmonary structures and enhancing detection accuracy. Our study demonstrated that an AI-based lung 
cancer screening approach proved to be more cost-effective and sensitive compared to traditional methods. 
While lung cancer screening with chest radiography presents challenges such as the occasional oversight of lung 
cancer lesions by radiologists40, specialized training for interpreting chest radiographs in lung cancer screening 
settings can be advantageous41. Additionally, relying solely on AI readings can be beneficial, especially in areas 
where there is a lack of radiologists. This approach is not only cost-effective but may also contribute to reducing 
mortality. Digitalized chest radiography is readily accessible and cost-effective, offering minimal radiation 
exposure to participants. While LDCT boasts higher sensitivity in lung cancer screening for detecting small 
nodules, the lack of financial resources presents obstacles to implementing lung cancer screening using LDCT.

Our study has several limitations. Firstly, the current Korean national lung cancer screening program targets 
individuals aged 54–74 years with a smoking history of 30 pack-years or more, whereas our model simulated 
a broader population including non-smokers, light-smokers, and heavy-smokers to evaluate population-wide 
cost-effectiveness. This difference in the target population may limit the direct comparability of our results with 
the existing national program, although it provides meaningful insights into potential outcomes if eligibility 
criteria were expanded in the future. Secondly, we did not account for the effects of smoking cessation among 
patients detected in the screening program due to a lack of available information. It is noteworthy that mortality 
rates double when patients fail to quit smoking after the early detection of lung cancer. Considering that 
additional benefits of smoking cessation have been documented in various cost-effectiveness studies of lung 
cancer screening42, the inclusion of smoking cessation effects should be considered in future research. Thirdly, 
the uncertainty regarding these parameters introduces ambiguity into the study’s conclusions. However, by 
employing sensitivity analyses, particularly probabilistic sensitivity analysis, we demonstrated that the outcomes 
remained largely consistent with our primary findings. Specifically, we confirmed that increasing screening 
rates across various age ranges is cost-effective, even when parameter values were adjusted within reasonable 
bounds. Furthermore, uncertainties are compounded by the possibility of negotiations influencing unit prices, 
which contribute to the overall expenses of the digital AI-based platform, particularly if the intervention were 
to be introduced. Fourthly, our analysis was conducted from a healthcare provider perspective; however, it’s 
crucial to recognize that lung cancer imposes substantial health-related and economic burdens not only on 
individual patients but also on society as a whole. Anticipated increases in broader societal costs in the coming 
years are largely attributed to shifts in the demographic composition of the population, leading to an aging 
society. In addition, the performance of AI models may vary depending on the dataset and training process, 
which could limit generalizability across populations. Our model incorporated estimates from peer-reviewed 
studies to reflect realistic performance levels in clinical settings. Importantly, the economic value of AI-assisted 
screening is highly sensitive to diagnostic accuracy: greater sensitivity enhances early detection benefits, whereas 
reduced specificity could increase downstream costs from false positives. Therefore, robust external validation 
of AI models is critical to ensure both clinical and economic applicability. Moreover, the specificity value for the 
CXR + AI strategy was derived from a single validation study, which may overestimate its diagnostic performance 
compared to results reported in broader multicenter analyses. This limitation highlights the need for additional 
large-scale evidence to confirm the reproducibility of CXR-based AI performance across diverse populations.

Conclusion
The study’s findings suggest that AI-based computer-aided detection for lung cancer screening shows significant 
potential for improving outcomes and achieving substantial cost-effectiveness on a large scale. This highlights 
the importance of integrating such identification into routine medical practice to improve the lung cancer 
screening process.

Data availability
Data is provided within the manuscript or supplementary information files.
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