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screening in South Korea
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Artificial intelligence (Al) shows promise in improving the accuracy and efficiency of lung cancer
screening, but its economic value remains uncertain. We developed a decision-analytic model
combining a decision tree and Markov model to evaluate five screening strategies in South Korea:

no screening, chest X-ray (CXR), Al-assisted CXR, low-dose computed tomography (LDCT), and Al-
assisted LDCT. We simulated hypothetical cohorts of 10,000 individuals, stratified by age group and
smoking status to reflect the Korean population distribution, and projected their lifetime costs and
quality-adjusted life years (QALYs). Analyses applied a 4.5% discount rate and a willingness-to-pay
(WTP) threshold of $32,409.9 per QALY. Al-assisted CXR produced incremental cost-effectiveness
ratio (ICER) of $8679-$10,030 per QALY, demonstrating cost-effectiveness across all age groups. CXR
alone was less favorable, and LDCT-based strategies exceeded the willingness-to-pay (WTP) threshold.
These findings suggest Al-assisted CXR offers a scalable, economically viable strategy for lung cancer
screening, supporting its integration into national programs.

Lung cancer remains a significant challenge for patients and healthcare systems worldwide. It is the leading cause
of cancer-related deaths and ranks as the third most common cancer globally, accounting for around 1.8 million
deaths!. Most lung cancer cases are detected at advanced stages, where treatment is mainly palliative, resulting in
poor survival outcomes?. In South Korea, lung cancer screening is conducted through the National Lung Cancer
Screening Program (NLCSP), which targets individuals aged 54 to 74 years with a smoking history of at least 30
pack-years, providing biennial low-dose computed tomography (LDCT) scans.

The integration of artificial intelligence (AI) has greatly enhanced the capabilities of computer-aided detection
(CAD) systems, broadening their application across various medical imaging exams, including mammography;,
brain CT scans, and chest radiography or CT scans. These systems are now employed for multiple purposes,
such as detecting lesions, providing differential diagnoses, prioritizing urgent images, and extracting imaging
biomarkers®*. The incorporation of deep learning technology into CAD systems has significantly improved the
performance of CAD algorithms in analyzing chest radiography™®. Multiple AI-driven CAD systems have been
shown to markedly enhance the performance of radiologists as secondary readers®”.

Chest radiography, the most frequently performed radiologic examination in clinical practice, is the primary
method for ruling out chest diseases assessing the effectiveness of treatments (e.g., for pneumonia, tuberculosis,
or lung cancer), and monitoring patients with chest abnormalities. Additionally, it provides an early opportunity
to detect both symptomatic and asymptomatic cases of lung cancer®. Despite multiple large, randomized trials
demonstrating the lack of efficacy of chest radiography in reducing lung cancer mortality®, it remains widely
utilized for screening various lung diseases, including pulmonary tuberculosis, other chest infections, and
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lung cancer!®!. Specifically, chest radiography is frequently employed for health checkups among the general
population in certain countries'>!3. Furthermore, retrospective studies have suggested the potential of Al-based
CAD systems to enhance the role of chest radiography in lung cancer screening!>!%15,

Despite the potential benefits of Al algorithms in evaluating lung cancer risk, there remains uncertainty
regarding the extent to which integrating Al software for detecting lung cancer can improve diagnostic accuracy
and subsequently impact healthcare outcomes and overall costs. Therefore, the objective of this study was to
assess the cost-effectiveness of implementing a commercial Al-based computer-aided detection (CAD)-
integrated picture archiving and communication system (PACS) for identifying actionable lung nodules on
chest radiographs among participants undergoing health checkups. The study aimed to compare this approach
with five mutually exclusive screening strategies: no screening, chest X-ray (CXR), Al-assisted CXR, low-dose
computed tomography (LDCT), and Al-assisted LDCT. Each strategy was modeled separately, meaning that
individuals in the simulation received only one screening modality (not both CXR and LDCT simultaneously).
This design allowed us to evaluate and compare the incremental costs and benefits of each option.

Methods

Study overview

In this study, we constructed a mixed model of a decision tree and a Markov model to evaluate the cost-
effectiveness of AI-based diagnostic software for lung cancer patients. We created four scenarios, each comprising
10,000 individuals in South Korea aged 54-74, 40-80, 50-80, and 60-80 years old, respectively. The population
distributions used for each scenario are summarized in Supplementary Table 3. Scenario 1 was based on the
current Korean lung cancer screening guideline'é, targeting individuals aged 54-74 years old, while Scenario
2 to 4 were expanded to a wider range based on the United States Preventive Services Task Force (USPSTF)
recommendation statement for lung cancer screening!’”. Each scenario includes demographic distributions of
non-smokers (0 pack-years), light-smokers (more than 0 but fewer than 30 pack-years), and heavy-smokers (30
or more pack-years) in Korea. The screening age range refers to the age group eligible for lung cancer screening,
while the time horizon represents the total period over which costs and health outcomes are tracked. Beyond
the screening age, the modeled time horizons extend to capture full lifetime effects, corresponding to 20, 40,
30, and 20 years for each scenario, respectively. Quality-adjusted life years (QALYs), which encompass both
quantity (life-years gained) and quality (health-related quality of life HRQOL in utility value) value, were used
as effectiveness variables. A healthcare system perspective was adopted in this study according to the economic
evaluation guidelines in Korea!®, excluding non-medical (transportation and nursing care) and indirect costs
(time costs) but only medical costs. The average cost-effectiveness ratio (ACER) and the incremental cost-
effectiveness ratio (ICER) were calculated for the outcome measures to evaluate cost-effectiveness. A discount
rate of 4.5% for both QALY and costs was applied according to Korean guideline!®. A willingness-to-pay (WTP)
threshold of $32,409.9 per QALY gained was used, reflecting 1-time the gross domestic product per capita in
2022 South Korea!®. Overall, this study followed the Consolidated Health Economic Evaluation Reporting
Standards (CHEERS) guideline (Supplementary Table 1)°. The study procedures were reviewed and approved
by the Institutional Review Board of the National Health Insurance Service Ilsan Hospital (IRB number: 2023-
04-021). As this study was based solely on previously published, de-identified data, it did not involve direct
human participants or any identifiable personal information. Therefore, informed consent was not required. All
methods were carried out in accordance with relevant guidelines and regulations. The input parameters used in
the model were extracted from published literature, as detailed in Table 1.

Model structure

The analytic software program TreeAge Pro 2022 (TreeAge Software, Williamstown, MA, USA) was used to
compare the lifetime cost-effectiveness of diagnosing lung cancer with and without Al Specifically, we compared
five comparators in all scenarios: (1) no screening, (2) CXR, (3) CXR+ Al (4) LDCT, and (5) LDCT + Al Step
(A) in Fig. 1 represents these five comparators. For each alternative option, we distributed the population into
non-smokers, light-smokers, and heavy-smokers based on the Korean smoking status, as illustrated in step (B)
(population distributions) of Fig. 1. Since lung cancer incidence varies by smoking status, we incorporated the
hazard ratio for lung cancer incidence into the transition probabilities from step (B) (population distributions)
to step (C) (detection & diagnosis sensitivity) in Fig. 1. Then we divided the simulation into detected and
undetected cases based on sensitivity and specificity data, which correspond to step (C) (detection & diagnosis
sensitivity). Besides the no-screening strategy, all other options followed the Korean national screening
guidelines, which recommend biennial screening (every two years). Finally, step (D) (Markov model) in Fig. 1
represents the lifetime disease progression component with a one-year cycle length. The model includes the
smoking characteristics of individuals, all-cause mortality, and disease-specific mortality, but it is unable to
track patients’ previous health states due to the memoryless property inherent in the Markov assumption?. The
selection of comparators, diagnostic accuracy parameters, and clinical prognosis assumptions were derived from
previous studies??2>,

Intervention and comparators

We compared the five strategies to identify the potential effects of Al-based detection. In the no screening
group, the population is not exposed to regular lung cancer screening but is detected based on the current
national probabilities once cancer has occurred. In the other four strategies, we hypothesized that regular cancer
screening is conducted using CXR, CXR+ A, LDCT, and LDCT + AI options. The major differences between
these comparators are the sensitivity and specificity of detecting lung cancer and its stages.
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‘ Mean ‘ SD ‘ Distribution | Source

Transition probabilities

Sensitivity

CXR 0.470 | 0.047 | Beta "
CXR+Al 0.696 |0.070 | Beta 14
LDCT 0.810 |0.081 | Beta 2
LDCT + Al 0.820 |0.082 | Beta 2
Specificity

CXR 0.780 | 0.039 | Beta 1
CXR+AI 0.940 |0.047 | Beta 1
LDCT 0.690 |0.069 | Beta 2
LDCT + Al 0.750 | 0.075 | Beta 2
Incidence by stage

Local 0.228 |0.023 | Beta 2
Regional 0.445 |0.044 | Beta z
Distant 0.327 |0.033 | Beta 27

Survival rate

Local 0.153 | 0.015 | Beta z
Regional 0.094 |0.009 | Beta =
Distant 0.023 [0.002 | Beta 27

Hazard ratio for lung cancer incidence

Non-smokers

Ref

Light smokers

17.80 | 1.78 Beta

28

Heavy smokers

29.90 |2.99 Beta

28

Hazard ratio for all-cause mortality

Non-smokers

Ref

Light smokers 3.00 [0.30 |Beta »
Heavy smokers 445 045 Beta »

Utility
Healthy 0.900 | 0.090 | Beta Assumed
Local 0.660 | 0.066 | Beta 30
Regional 0.463 |0.046 | Beta 30
Distant 0.310 |0.031 | Beta 30
Undetected (local) 0.660 | 0.066 | Beta 30
Undetected (regional) | 0.463 | 0.046 | Beta 30
Undetected (distant) | 0.310 | 0.031 | Beta 30
Disease-free 0.720 | 0.072 | Beta Assumed
Death 0.000 |- Constant -

Costs

Initial costs (40 s)

1 (Local)

10,002 | 6148 Gamma

2 (Regional)

15,774 | 10,890 | Gamma

7 (Distant)

20,049 | 13,150 | Gamma

Initial costs (50 s)

1 (Local)

10,792 | 7141 Gamma

2 (Regional)

16,039 | 10,667 | Gamma

7 (Distant)

18,530 | 13,080 | Gamma

Initial costs (60 s+)

1 (Local)

10,302 | 7961 Gamma

2 (Regional)

13,705 | 10,436 | Gamma

7 (Distant)

12,926 | 10,948 | Gamma

Incremental costs (40 s)

1 (Local)

2034 6689 Gamma

2 (Regional)

7764 13,323 | Gamma

7 (Distant)

12,956 | 13,726 | Gamma

Incremental costs (50 s)

1 (Local)

1898 ‘ 5818 ‘ Gamma

31

Continued

Scientific Reports |

(2025) 15:45604

| https://doi.org/10.1038/s41598-025-29600-3

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Mean | SD Distribution | Source

2 (Regional) 6080 | 10,801 | Gamma 31

7 (Distant) 14,128 | 15,637 | Gamma 31
Incremental costs (60 s +)

1 (Local) 2101|5393 | Gamma 3

2 (Regional) 4212 17930 | Gamma 31

7 (Distant) 10,704 | 13,766 | Gamma 31
Additional costs

LDCT 1186 |11.9 Gamma Internal data
X-ray 7.3 0.7 Gamma Internal data
Al software 0.8 0.1 Gamma Internal data

Table 1. Model input parameters.

A. Comparators B. Population distributions C. Detection & Diagnosis Sensitivity D. Markov model

— Local
Detected Reqional
(True-Positive) 9
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(1) No screening Non-smoker
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‘ Disease-free
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Fig. 1. Markov model.

Input variables

The sensitivity and specificity values for CXR and LDCT were primarily obtained from large randomized trials
and meta-analyses'#?. Performance values for Al-assisted CXR were derived from recent clinical validation
studies of deep learning-based algorithms in chest radiography?*?®. Hazard ratios for lung cancer incidence and
mortality among light- and heavy-smokers were modeled relative to non-smokers, which served as the reference
group. Utility weights for lung cancer stages were drawn from previously published study?. Utility was defined
as a health-related quality-of-life (HRQOL) weight ranging from 0 (death) to 1 (perfect health). In the absence
of prior data, the utility for the disease-free (health) state was assumed to be 0.9, while the utility for death was
set to 0. A full list of data sources is provided in Table 1. For the Al-assisted strategies, diagnostic performance
estimates were derived from published studies specific to each modality. The CXR + Al strategy was modeled
as Al acting independently, based on the study by Nam et al.!¥, which evaluated a deep learning algorithm for
lung cancer detection without radiologist input, reflecting initiatives to implement Al-based CXR as a scalable
first-line screening tool. In contrast, the LDCT + Al strategy assumed that radiologists interpreted CT scans
with Al assistance as a confirmatory step, consistent with current clinical practice, regulatory frameworks in
Korea, and evidence from a systematic review by Wang et al.?. The sensitivity parameter was highest for the
LDCT + Al option, followed by the LDCT strategy, while the specificity parameter was highest for the CXR+ AI
option. Based on these sensitivity and specificity parameters, individuals with lung cancer were divided into
detected (true-positive) and undetected (false-negative) groups in the simulation model. False-negative cases
were explicitly incorporated and assumed to remain undiagnosed, progressing naturally through the Markov
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process without the benefit of early detection. The proportions of detected and undetected cases were determined
from the diagnostic performance values summarized in Table 1. Detailed cost data for lung cancer patients
in Gyeonggi province were obtained from the National Cancer Center. Age-specific annual medical cost data,
including the initial year (first year after diagnosis) and incremental (annual follow-up) costs, were used for
local, regional, and distant stages. All costs were converted to 2022 USD using an exchange rate of 1 USD = 1265
KRW. “Additional costs” refer to non-medical expenditures, including LDCT, CXR, and Al utilization and
maintenance fees. Background mortality was incorporated into the Markov model based on age-specific life
tables. Detailed mortality rates applied to each cycle are provided in Supplementary Table 2.

Statistical analyses

In the base-case analysis, we evaluated the cost-effectiveness of each alternative using the ACER and ICER,
applying an annual discount rate of 4.5%. ACER is calculated by dividing the total cost of a given strategy
by its effectiveness, while ICER is determined by dividing the difference in costs between two strategies by
the difference in their effectiveness (QALY). If the ICER is lower than the WTP threshold, the alternative is
considered cost-effective. To address potential inaccuracies at the beginning or end of each cycle, a half-cycle
correction was applied to both QALYs and costs. Sensitivity analysis is essential to reduce uncertainty inherent
in economic evaluations. We conducted a deterministic sensitivity analysis (DSA) using a range of 90% to 110%
for each parameter and a probabilistic sensitivity analysis (PSA) using distributions detailed in Table 1. The DSA
results highlighted the ICER variations based on single parameter changes, allowing us to pinpoint the most
sensitive input variable. Additionally, we performed a Monte Carlo simulation with 10,000 iterations for the
PSA, which randomly sampled values to determine the percentage of scenarios in which different strategies were
optimal. The results were presented using incremental cost-effectiveness (ICE) scatterplots and cost-effectiveness
acceptability curves (CEAC), which visually represent the findings.

Results

Base-case analysis

Table 2 describes the overall results of simulating Scenarios 1 to 4, and Fig. 2 displays the cost and effectiveness
of each strategy. Although Table 2 presents ICER-based comparisons, we also report ACER values to describe
overall cost-effectiveness relative to no screening. Compared to the no screening option, using CXR+ Al in
diagnosing lung cancer showed ACERs of $12,927 per QALY gained in Scenario 1, $15,601 per QALY gained in
Scenario 2, $13,190 per QALY gained in Scenario 3, and $9950 per QALY gained in Scenario 4. When comparing
incremental changes between strategies, the ICER for CXR + Al compared to the CXR strategy were $9491,
$10,030, $9552, $8679 per QALY gained in each respective scenario. Using LDCT + Al instead of CXR+ Al

Strategy Cost (USD) | Effectiveness (QALY) | Incremental cost (USD) | Incremental effectiveness (QALY) | ICER (USD/QALY)
Scenario 1: 54-74 years old

(1) No screening | 51,242 11.317

(2) CXR 51,384 11.326 142 0.010 14,658
(3) CXR+AI 51,431 11.331 46 0.005 9491
(5) LDCT + AlL 51,751 11.332 321 0.001 599,724
(4) LDCT 51,762 11.334 11 0.002 5739
Scenario 2: 40-80 years old

(1) No screening | 48,165 12.962

(2) CXR 48,321 12.971 157 0.008 19,420
(3) CXR+AI 48,377 12.976 55 0.006 10,030
(5) LDCT + Al 48,796 12.977 420 0.001 653,887
(4) LDCT 48,812 12.979 15 0.002 7177
Scenario 3: 50-80 years old

(1) No screening | 51,050 11.460

(2) CXR 51,195 11.470 144 0.010 15,088
(3) CXR+AI 51,243 11.475 48 0.003 9552
(5) LDCT + Al 51,573 11.476 331 0.000 600,172
(4) LDCT 51,585 11.477 11 0.001 5823
Scenario 4: 60-80 years old

(1) No screening | 50,927 9.482

(2) CXR 51,028 9.492 101 0.010 10,335
(3) CXR+AI 51,054 9.495 26 0.003 8679
(5) LDCT + Al 51,242 9.495 188 0.000 671,780
(4) LDCT 51,248 9.496 6 0.001 5233

Table 2. Results of the base case analysis: Scenario 1 to 4.
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Fig. 2. Results of the cost-effectiveness analysis for Scenario 1: 54-74 years old.

resulted in an ICER of $599,724 per QALY in Scenario 1, far exceeding the commonly accepted WTP threshold
of $32,410 per QALY gained in Korea.

Sensitivity analysis

Deterministic sensitivity analysis (DSA) was conducted to examine the most sensitive input parameters by
changing each parameter value from the base-case analysis. Figure 3 presents a tornado diagram comparing
CXR+AI to the no screening option for Scenario 1, while Supplementary Figs. 1 to 3 display the results for
Scenarios 2 to 4. In most scenarios, the start age of lung cancer screening was determined to be the most sensitive
parameter affecting the outcome of ICER; the ICER values tend to be better, especially for older populations
in all scenarios. The initial incidence of lung cancer by stages (regional, distant) was the following variable
that is sensitive to the outcome. From the Monte Carlo simulation, we identified the integrated effects of the
input parameters by randomly choosing the values. Figure 4 presents the incremental cost-effectiveness (ICE)
scatter plot of 10,000 Monte Carlo iterations comparing all five strategies simultaneously. The CXR + Al strategy
demonstrated the highest probability of being the most cost-effective option among all alternatives, with a 91.8%
probability of being optimal in Scenario 1. The CXR+ Al alternative was the optimal cost-effective strategy
with probabilities of 83.9%, 81.8%, and 76.2% in Scenarios 2 to 4, respectively (Supplementary Figs. 4 to 6). In
Scenario 1, the probability of CXR+ Al being cost-effective was over 50% until the WTP threshold fell below
$140,000 as shown in the CEAC graph (Fig. 5).

Discussion

While AI has been applied in diagnosis and therapeutic decision-making for lung cancer screening, there is
limited evidence regarding its cost-effectiveness. To our best knowledge, this is the first economic evaluation
that considers the cost-effectiveness of Al-based CAD-integrated PACS diagnostic aid as a medical device
compared with standard care from a healthcare system perspective. Our model distinguished between AI
acting independently and AT assisting radiologists. This distinction is important, as standalone AI may enhance
scalability and reduce workforce demand, whereas collaborative human-AI interpretation has been shown
to achieve higher diagnostic accuracy, particularly for complex modalities such as LDCT. These differences
in integration approach may influence not only clinical outcomes but also the cost-effectiveness of screening
programs. The results demonstrated that Al-based CAD-PACS aid will give incremental health gain per patient
of 0.015 QALY with an incremental cost-effectiveness ratio of $9491 per QALY. A Markov microsimulation
model was developed to optimize the utilization of data from important randomized controlled trials and
observational studies, while also accounting for the diversity and variability among health checkup population.
The findings indicated that lung cancer screening using an Al-based digital device led to a modest increase
in healthcare costs while providing improved health benefits in CXR option. As a result, the Al-based digital
device was deemed highly cost-effective for lung cancer screening, based on a willingness-to-pay threshold of
$32,409.9 per QALY gained. In contrast, LDCT showed higher costs but limited incremental benefits, which
may explain why the LDCT strategy appeared more expensive yet slightly more effective than LDCT + AL This
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Tornado Diagram: ICER (Scenario 1)
(1) No screening vs. (3) CXR+Al (WTP: 32,410 USD)

Startage (74 to °)
pl_initial_2regional_all (0.49 to )
— pl_initial_3distant_all ( to 0.36)
u_Ohealthy (0.99 to )
u_1local (0.726 to )
PA_TP_3CXR_AI ( to 0.766)
u_4diseasefree (0.792 to )
plinitial_1local_all (0.251 to )
u_3distant (0.341 to )
cAdditional _CXR ( to 8.03)
u_2regional (0.509 to )
1 pM_recurrence ( to 0.55)
discounting (U to 0.045)
p_detection (0.015 to )
pA_TN_3CXR_AI (0.987 to )
pS_cure_2regional_all (0.103 to )
pS_cure_1local_all (0.169 to )
pS_cure_3distant_all (0.025 to )
cAdditional _Al ( to 0.88)
cAdditional_LDCT (130.46 to )
PA_TP_4LDCT (0.76 to 0.84)
PA_TP_2CXR (0423 to 0.517)
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ICER

Fig. 3. Tornado diagram for Scenario 1: 54-74 years old Abbreviations: pI_initial_2regional_all, initial
population of lung cancer (regional); pI_initial _3distant_all, initial population of lung cancer (distant);
u_Ohealthy, utility for healthy state; u_1local, utility for lung cancer (local); pA_TP_3CXR_Al, sensitivity

of CXR + AL u_4diseasefree, utility after treated; pI_initial 1local_all, initial population of lung cancer

(local); u_3distant, utility for lung cancer (distant); cAdditional _CXR, cost for CXR; u_2regional, utility for
lung cancer (regional); pM_recurrence, probability of lung cancer recurrence; p_detection, probability of
detecting lung cancer naturally (assumed); pA_TN_3CXR_AI, specificity of CXR+ AI; pS_cure_2regional_all,
probability of being treated from lung cancer (regional); pS_cure_1local_all, probability of being treated

from lung cancer (local); pS_cure_3distant_all, probability of being treated from lung cancer (distant);
cAdditional _AlI, cost for Al software; cAdditional _LDCT, cost for LDCT; pA_TP_4LDCT, sensitivity of LDCT;
PA_TP_2CXR, sensitivity of CXR; pA_TP_5LDCT_AI, sensitivity of LDCT + AL; pA_TN_4LDCT, specificity
of LDCT; pA_TN_2CXR, specificity of CXR; pA_TN_5LDCT_AI, specificity of LDCT + AL; u_5undetected,
utility for undetected lung cancer.

difference is primarily attributed to random variation within the Markov simulation rather than a true clinical
advantage. Furthermore, CXR-based screening demonstrated greater cost-effectiveness than LDCT, largely
due to the lower screening cost and the relatively low lung cancer incidence in the Korean population, which
reduces the marginal QALY gain achievable by more intensive LDCT screening. The benefit of AI addition
was also minimal for LDCT, since LDCT already has very high baseline sensitivity, leaving limited room for
measurable improvement. Consequently, the incremental cost of Al-assisted LDCT outweighed its marginal
clinical gain. Notably, although the baseline sensitivity of CXR alone (0.470) was nearly half that of LDCT
(0.810), Al integration improved the sensitivity of CXR to 0.696, substantially narrowing the diagnostic gap. This
improvement, combined with the lower screening and follow-up costs of chest radiography, resulted in favorable
cost-effectiveness for the CXR + Al strategy, even with lower absolute sensitivity. While subgroup differences
may exist depending on age or smoking history, this finding highlights that moderate diagnostic enhancement
through AT can lead to substantial economic benefits when applied to a general population. The specificity of the
CXT + Al model, however, was derived from a single study and may have been slightly overestimated, which we
acknowledge as a limitation.

ICERs exhibited extreme sensitivity to the assumptions made regarding the lung cancer mortality benefit
associated with screening, both during and after the active screening phase, as observed in trials. Variations in
this parameter led to the widest range of ICER values in one-way sensitivity analyses, indicating that the cost-
effectiveness of lung cancer screening in Korea heavily relies on achieving a mortality benefit that is at least
equivalent to that observed in the trials. At an indicative ‘willingness-to-pay’ threshold in Korea approximately
$30,000, 76.2-91.8% of simulations in a probabilistic sensitivity analysis resulted in ICERs that could be
considered cost-effective using parameters.

This evaluation is the first to integrate Korean trends in lung cancer screening rates, applying them to a
general population and screening prevalence model. This model was used to estimate both the number of
Koreans currently undergoing screening and those who are not, while also accounting for the competing risks of
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ICE Scatterplot: Scenario 1
(3) CXR+Al vs. (2) CXR
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Cost-Effectiveness Acceptability Curve (CEAC)
100.0% = (1) No screening
—o— (2) CXR
90.0% —o— (3) CXR+AI
—o— (4) LDCT
80.0% (5) LDCT+Al
70.0%
@
2
E 60.0%
w
S 50.0%
2
2
B 400%
e
ES
30.0%
20.0% -
10.0%
y Iod
~0- -y 4
0.0% - & /D/D_Q;D\D w“”‘*”““‘\‘“l‘“‘ i e b b b bbb ok i el ="
I T T T I T T T 1
0 20000 40000 60000 80,000 100000 120,000 140,000 160,000
Willingness-to-Pay (USD)
Fig. 5. Cost-effectiveness acceptability curve (CEAC) for Scenario 1.
lung cancer-related and all-cause mortality. We also incorporated updated, comprehensive health-system costs
associated with lung cancer, estimated in a large population-based cohort study linked to routinely collected,
administrative health databases. Preliminary cost estimates®! and ours indicate that the overall healthcare costs
for treating distant lung cancer have nearly doubled. It's noteworthy that systemic therapy costs, only contribute
to a portion of the overall expenses. Screening can potentially mitigate the higher costs and lower survival rates
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associated with later-stage disease, thereby potentially enhancing cost-effectiveness. Our findings also suggest
that variations in the cost of LDCT scanning substantially influence the ICER, highlighting the importance of
cost management in large-scale screening probrams. The cost of an LDCT scan could potentially be reduced
in a large-scale screening program. Our threshold analysis demonstrated that lung cancer screening would
be deemed cost-effective in our base case if the scan price was set at $128, considering a willingness-to-pay
threshold of $32,409.9 per QALY gained.

High false-positive rates caused by benign intrapulmonary lymph nodes or non-calcified granulomas,
overdiagnosis, and the potential risk of radiation-induced cancer from prolonged exposure are notable concerns
associated with LDCT in lung cancer screening®. These challenges persist as the most critical obstacles in the
application of LDCT for this purpose®. Although CAD techniques demonstrate high sensitivity in detecting
lung cancer nodules, they often come with comparatively low specificity®®. Implementation of CAD systems
in clinics for lung cancer screening is recommended. Studies have indicated that false-positive results in lung
cancer screening decrease with each millimeter increase in the threshold nodule size. Trial data from NLST,
PLCO, and others have shown that annual lung cancer screening reduces lung cancer mortality by 11-21%,
while biennial screening reduces it by only 6.5-9.6%. Triennial screening has limited effectiveness in reducing
lung cancer mortality. Furthermore, more frequent LDCT screening leads to increased false-positive results®®.

Conventional screening chest radiography has failed to yield positive results in several studies®”. However, the
integration of digital chest radiography along with computer-aided diagnostic techniques and highly quantum-
efficient detectors®®*, as well as Al-based detection algorithms shows promise in improving the visualization
of pulmonary structures and enhancing detection accuracy. Our study demonstrated that an Al-based lung
cancer screening approach proved to be more cost-effective and sensitive compared to traditional methods.
While lung cancer screening with chest radiography presents challenges such as the occasional oversight of lung
cancer lesions by radiologists*’, specialized training for interpreting chest radiographs in lung cancer screening
settings can be advantageous*!. Additionally, relying solely on Al readings can be beneficial, especially in areas
where there is a lack of radiologists. This approach is not only cost-effective but may also contribute to reducing
mortality. Digitalized chest radiography is readily accessible and cost-effective, offering minimal radiation
exposure to participants. While LDCT boasts higher sensitivity in lung cancer screening for detecting small
nodules, the lack of financial resources presents obstacles to implementing lung cancer screening using LDCT.

Our study has several limitations. Firstly, the current Korean national lung cancer screening program targets
individuals aged 54-74 years with a smoking history of 30 pack-years or more, whereas our model simulated
a broader population including non-smokers, light-smokers, and heavy-smokers to evaluate population-wide
cost-effectiveness. This difference in the target population may limit the direct comparability of our results with
the existing national program, although it provides meaningful insights into potential outcomes if eligibility
criteria were expanded in the future. Secondly, we did not account for the effects of smoking cessation among
patients detected in the screening program due to a lack of available information. It is noteworthy that mortality
rates double when patients fail to quit smoking after the early detection of lung cancer. Considering that
additional benefits of smoking cessation have been documented in various cost-effectiveness studies of lung
cancer screening?, the inclusion of smoking cessation effects should be considered in future research. Thirdly,
the uncertainty regarding these parameters introduces ambiguity into the study’s conclusions. However, by
employing sensitivity analyses, particularly probabilistic sensitivity analysis, we demonstrated that the outcomes
remained largely consistent with our primary findings. Specifically, we confirmed that increasing screening
rates across various age ranges is cost-effective, even when parameter values were adjusted within reasonable
bounds. Furthermore, uncertainties are compounded by the possibility of negotiations influencing unit prices,
which contribute to the overall expenses of the digital Al-based platform, particularly if the intervention were
to be introduced. Fourthly, our analysis was conducted from a healthcare provider perspective; however, it’s
crucial to recognize that lung cancer imposes substantial health-related and economic burdens not only on
individual patients but also on society as a whole. Anticipated increases in broader societal costs in the coming
years are largely attributed to shifts in the demographic composition of the population, leading to an aging
society. In addition, the performance of Al models may vary depending on the dataset and training process,
which could limit generalizability across populations. Our model incorporated estimates from peer-reviewed
studies to reflect realistic performance levels in clinical settings. Importantly, the economic value of Al-assisted
screening is highly sensitive to diagnostic accuracy: greater sensitivity enhances early detection benefits, whereas
reduced specificity could increase downstream costs from false positives. Therefore, robust external validation
of Al models is critical to ensure both clinical and economic applicability. Moreover, the specificity value for the
CXR + Al strategy was derived from a single validation study, which may overestimate its diagnostic performance
compared to results reported in broader multicenter analyses. This limitation highlights the need for additional
large-scale evidence to confirm the reproducibility of CXR-based Al performance across diverse populations.

Conclusion

The study’s findings suggest that Al-based computer-aided detection for lung cancer screening shows significant
potential for improving outcomes and achieving substantial cost-effectiveness on a large scale. This highlights
the importance of integrating such identification into routine medical practice to improve the lung cancer
screening process.

Data availability

Data is provided within the manuscript or supplementary information files.
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