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Mass General Brigham, an integrated healthcare system based in the Greater
Boston area of Massachusetts, annually serves 1.5 million patients. We estab-
lished the Mass General Brigham Biobank (MGBB), currently encompassing
142,238 participants, to unravel the intricate relationships among genomic
profiles, environmental context, and disease manifestations within clinical
practice. In this manuscript, we described genetic and phenotypic diversity
and their interaction in the MGBB by employing population genetics, geos-

patial assessment, and association analyses of rare and common genetic var-
iants. The population genetic variation captured the demographic histories in
the Greater Boston area throughout American history, highlighting commu-

nities tied to shared genetic and environmental factors. Furthermore, our
phenome-wide association analysis with socioeconomic factors, as well as
common and rare genetic variants, prioritized disease causes across a tertiary
academic medical center and community-based health system. Our investi-
gation underscores the potency of unbiased, large-scale analyses in a
healthcare-affiliated biobank, elucidating the dynamic interplay across
genetics, immigration, structural geospatial factors, and health outcomes in
one of the earliest American sites of European colonization.

Determinants of health include a complex interplay of socio-
demographic, structural, genetic, and environmental factors that are
also contextually dependent on time and geography. Disease risk
prediction models and therapeutic paradigms are largely agnostic to
many of these important features yet are intended for broad use. Such
training datasets often lack the breadth and depth of information and
the inherent diversity across features required for equitable applica-
tions. The United States populace is highly diverse, marked by com-
plex migration patterns and dynamic social constructs and represents
multilevel health contributors. For example, it is widely recognized
that the prevalence of diseases is closely linked to individual or

neighborhood social deprivation, which further varies across smaller
domains and regions"*. Furthermore, these determinants differentially
contribute to health outcomes depending on local factors™*.
Contemporary healthcare-associated biobanks represent a new
opportunity to discover novel determinants of health and augment
translation to clinical care. Such endeavors represent a recent colla-
borative synergy of large-scale population-based*® and local
healthcare-biobanks’ ™. Understanding how DNA sequence variation
tracks with contemporary and historical population demographics can
provide insights into differential disease burdens. For example,
1s5742904 (c.10580G>A, p.Arg3527GlIn) in APOB, a founder pathogenic
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mutation for familial hypercholesterolemia has significantly higher
allele frequency in Old Order Amish people. It substantially explains
the increased risk for coronary artery disease in this population'**,
Important insights related to genetic variations and clinical outcomes
often require profiling diverse participants. For example, G6PD
deficiency™ has long been recognized as a prevalent genetic hemolytic
disease in Sub-Saharan Africa. A more recent example is the discovery
of the association between disruptive variants in PCSK9"'® and
reduced coronary artery disease risk in West African ancestry, where
these variants are more prevalent, which has facilitated the develop-
ment of novel therapeutics. Studying diverse participants across a
spectrum of diseases is crucial to assess the penetrance of disease-
associated monogenic alleles” and polygenic models®.

Recent analyses of biobanks in the United States have uncov-
ered the complex genetic structure of Hispanic and/or Latinx groups
tracing their origins to the Americas®?. In these efforts, it has been
demonstrated that the fine genetic structure within biobanks can
identify varying disease risks by capturing both genetic and social
structures, thereby contributing to the advancement of persona-
lized medicine. Separately, recent advances in data size and meth-
odology have enabled us to precisely characterize the complex
population dynamics associated with multiple colonization
and admixture events® >, However, the interplay across these fea-
tures, or their interaction with large-scale genetic association stu-
dies using whole-genome imputed or sequenced data, remains
understudied.

The Greater Boston area represents among the earliest European
colonization of the United States with sequential ongoing migration
from diverse groups. In this study, we examined genetic variation
coupled with sociodemographic, clinical, and environmental/geospa-
tial factors in the Mass General Brigham Biobank (MGBB). By applying a
network-based clustering algorithm with recent reference datasets, we
established fine genetic clusters with subcontinental resolution within
MGBB. These clusters exhibited distinct genetic properties, geo-
graphic distributions, and genetic disease risks. In combination with
rare and common variant genetic association analyses, we gained
further insights into the different disease risks among these clusters.
Collectively, this study highlights the power of large-scale, unbiased
analyses within a healthcare-based biobank to understand the complex
interplay between genotypes and phenotypes, paving the way for
increasingly personalized interventions.

Results

Participant recruitment and electronic health record (EHR)
based phenotyping

Since 2010, 142,238 individuals within the Mass General Brigham
(MGB) network, the largest healthcare system in Massachusetts, have
consented to participate in the MGBB as of May 11, 2023 (Fig. 1a,
Supplementary Table 1). Among participants, 99.5% (n =141,519) con-
sented to re-contact. 56.8% of participants were female (n=280,851,
Supplementary Fig. 1). Median age at consent was 51 (interquartile
range; IQR 35-63) years for female participants and 58 (43-68) years
for males. Self-reported races were 84.4% White, 4.5% Black, and 3.0%
Asian. Self-reported ethnicities were 86.6% non-Hispanic and 2.44%
Hispanic (Supplementary Fig. 1). The participants are primarily cared
for at the two flagship MGB hospitals, both located in Boston, MA, and
their associated clinics — Massachusetts General Hospital (MGH) and
Brigham and Women'’s Hospital (BWH, Fig. 1b). The biobank data is
interlinked with EHR encompassing phenotype data across the MGB
network, as well as notable specialty centers in Boston, MA, including
the Mass Eye and Ear Institute (MEEI) and Dana-Farber Cancer Institute
(DFCI). To generate systemically annotated prevalent/incident out-
comes, we extracted International Classification of Diseases codes,
Ninth (ICD9) and Tenth (ICD10) revisions, from the EHR and mapped
them to PheCodes?. We identified 1577 of 1860 possible PheCodes

with at least one event (Fig. 1c). The median number of ICD codes per
PheCode was 7 (range, 1-134). We identified a median of 34 (IQR 11-74)
prevalent events per person. Participants were followed for a median
of 4.29 (IQR 2.47-5.9) years after inclusion to MGBB with a median of
10 (3-23) incident events per person. Precise geolocation information
is also available in a large fraction of MGBB participants (N =118,102)
and 82.7% (97,729/118,102) were from Massachusetts and 73.4%
(71,735/97,729) of those were from the greater Boston area (Fig. 1d).

Fine-scale clustering of genetic similarity in MGBB

Extending beyond traditional low-dimensional projections of genetic
similarity from genome-wide data, we utilized high-dimensional prin-
cipal components (PCs) to achieve greater granularity. Using genome-
wide genotyping arrays, we genotyped 53,306 participants in the
MGBB. By employing the top 30 genetic PCs and a network-based
clustering approach®, we identified 30 data-driven genetically similar
clusters (Fig. 2a, Supplementary Figs. 2 and 3, Supplementary
Tables 2 and 3). In conventional PC spaces, these clusters are located in
overlapping regions, indicating the value of incorporating higher-
dimensional information for a better description of genetic clusters
and their histories. The largest cluster (cluster 1, ordered by sample
size) includes 11,875 (22.3%) MGBB individuals. The smallest (cluster
30) includes only one MGBB participant as well as 27/27 reference
Sardinian individuals from Human Genome Diversity Project (HGDP)*,
suggesting the origin of this individual. As such, unsupervised clus-
tering with diverse participants from the 1000 Genomes Project Phase
3 (IKG)*” and HGDP reference panels® allowed us to infer the genetic
similarity between these clusters and participants worldwide in an
unbiased manner.

Cluster 1 (N=11,875) was genetically similar to the Western Eur-
opean participants in the reference dataset [CEU (Utah residents with
Western or Northern European ancestry) and GBR (British from Eng-
land or Scotland) in 1KG, French and Orcadian in HGDP, Supplemen-
tary Fig. 3]. Cluster 2, the second largest cluster (V=10,802), includes
GBR as cluster 1, but is more enriched by Orcadian (northern Scottish
origin) suggesting different origin of these large European groups in
Boston. In addition to cluster 1 and 2, we identified eight European-like
clusters that cluster with Italian (cluster 3, N=5757), Russian (cluster 4,
N=4142), Spanish (cluster 13, N=968), Adygei (cluster 17, N=468),
Finnish (cluster 25, N=35), Basque, and Sardinian reference partici-
pants reflecting known patterns of demography in the Greater Boston
Area. We also identified two distinct Admixed-American-like clusters:
Cluster 6, with a population of 3211, enriched with PUR (Puerto Rican in
Puerto Rica); and Cluster 9 comprising 1184 individuals with Colom-
bian, Maya, PEL (Peruvian in Lima, Peru); Pima, CLM (Colombian in
Medellin, Colombia), and MXL (Mexican ancestry in Los Angeles, CA).
Additionally, four African-like clusters were identified: Cluster 7, with
2151 individuals, enriched with African Caribbean in Barbados
and African Ancestry in Southwest USA; Cluster 18, specific to
Nigerian Africans (V= 64, Esan in Nigeria, Yoruba in Ibadan, Nigeria);
Cluster 23, specific to Kenyan Africans (N=40, Bantu and Luhya in
Webuye, Kenya); and Cluster 19 with other Western Africans (N=15,
Mandinka, Mende people in Sierra Leone, Gambian in Western Divi-
sions in the Gambia). Furthermore, three East-Asian-like clusters were
identified: Cluster 20, with 175 individuals, specific to Japanese; Cluster
21, comprising 240 individuals, specific to Uygur; and Cluster 10,
including 749 individuals, with other East Asians. We identified a single
large cluster (cluster 11, n=560) enriched in South Asian reference
participants.

Even with a diverse reference dataset, eight clusters comprising
9874 (18.8%) MGBB participants did not have enrichments of specific
populations from the reference dataset. Among these un-annotated
clusters, seven clusters (5, 8, 12, 14, 15, 16, and 22) exhibited genetic
similarities to European populations. We calculated pairwise Fixation
Index (Fst) values among clusters, and then constructed a
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Fig. 1| Overview of the Mass General Brigham Biobank. a The number of the
participants in MGBB. The columns represent the cumulative number of indivi-
duals who have consented to the MGBB. Colors indicate the vital status of parti-
cipants as of July 2023. b The number of hospital encounters of participants the
MGB Network. The left bar chart indicates the total number of encounters by
hospital. The top bar chart indicates the number of individuals presented to the
hospitals in the combinations shown in the middle panel. Please note that these
encounters include sites where recruitment did not take place. ¢ The number of
PheCodes outcomes in MGBB. The columns indicate the number of outcomes in
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phylogenetic tree of the clusters (Supplementary Fig. 4a). The
observed population differentiation between clusters further corro-
borates the genetic similarities between reference populations and
residents of Greater Boston.

To infer continuous population structures within these genetic
clusters, we conducted ADMIXTURE® analyses, many of which show
similar patterns of structure across increasing numbers of ancestral
components (Supplementary Fig. 4b). Using cross-validation, ten was
the best fit number of components (Fig. 2b and Supplementary Fig. 5).
We identified two European components (distinguished by compo-
nents 1 and 9). The component 1 was most enriched in the Finnish-like
cluster (cluster 25), and relatively enriched in northern European-like
clusters (1, 2, and 4) more than the southern European-like clusters (3,
13, and 15). In contrast, component 9 was enriched in the southern
European-like cluster. We also observed a third component included in
the European-like cluster (component 3), which is prominent in the
Kalash (Indo-European in northwest Pakistan) and other Pakistani
reference populations. While this was enriched in southern European-
like clusters, it was more enriched in un-annotated European-like
genetic clusters 5, 8, 12, 14, and 22 than other annotated European
genetic clusters, possibly consistent with Middle Eastern origins as this
group is poorly represented in reference datasets.

Cluster 5—the 5th largest cluster in this study (n = 3514)—is one of
such un-annotated European-like clusters. By comparison of allele
frequencies between gnomAD*° and our dataset, we found that cluster
5 has allele frequencies most similar to the Ashkenazi Jewish reference
population (Supplementary Table 4). We also observed strong
enrichment of skin neoplasms and inflammatory bowel diseases which
are known to be enriched in established Ashkenazi cohorts (Supple-
mentary Fig. 6a). We also observed significant enrichment of Ashke-
nazi Jewish founder mutations (e.g., APC 11307K, c3920T>A,
p.lle1307Lys, BRCAI 185delAG, c.68_69del, p.Glu23fs, BRCAI 5382insC,
¢.5266dup, p.GIn1756fs, BRCA2 6174delT, c.5946del, p.Ser1982fs)**? in
this genetic cluster (Supplementary Fig. 6b). These founder mutations
were also enriched in un-annotated European-like clusters 12 and 15
suggesting close genetic relationships between these clusters to the
Ashkenazi-Jewish-like cluster 5.

Effective population size of genetic clusters in the Greater
Boston area

To characterize the genetic clusters observed in the MGBB, we esti-
mated the historical transition of effective population size of each
cluster using genome-wide genetic data. We conducted identity
by descent (IBD) based estimation for effective population sizes
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(Ne, Fig. 2c, and Supplementary Fig. 7, Supplementary Fig. 8). Our
results were consistent with some prior results conducted outside of
the U.S. For example, we replicated a previously described bottleneck
event in the Ashkenazi-Jewish-like participants (cluster 5, Fig. 2c). The
lowest N, was estimated to be 1170 (95% confidence interval; 95%CI
1100-1270) individuals 28 generations ago®. We observed similar
bottleneck events in clusters 12 and 15 around the same generation
[minimal N, was 4,510 (95%Cl 4220-5130) in cluster 12 and 32,600
(30,000-35,700) in cluster 15] consistent with the aforementioned
sharing pattern of Ashkenazi founder mutations with cluster 5. The
largest genetic cluster 1 indicates a population bottleneck occurring
approximately 12 generations ago. Notably, the cluster 2 which is the
second largest in MGBB and genetically similar to cluster 1 does not
exhibit such a bottleneck, suggesting different historical trajectories
for these genetically similar participants. This timeframe coincides
with the initial colonization of the Boston area by British settlers. This
event is not evident in the British or Irish participants from the UK
Biobank (UKBB) here or in previous studies®** (Fig. 2c), suggesting a
unique founder event among British Americans likely due to initial U.S.
colonization. We also observed a significant bottleneck event in the
Admixed-American participants, specifically in clusters 6 and 9, with a
pronounced magnitude in the Puerto-Rican-like cluster 6 [minimal N,
was 11,300 (11,100-11,600)]. However, we did not observe such bot-
tlenecks for other clusters.

Genetic clusters, geographic and socioeconomic factors and
disease risks

Geospatial information provides valuable insights into the environ-
ment surrounding the participants. First, to contextualize genetically
similar participants and geolocation information, we used geospatial
scan statistics to explore the geographical structure of MGBB genetic
clusters. We observed 22 statistically significant regions of geo-
graphical enrichment among 13 genetic clusters in smaller than 4-km
radius areas in the Boston area (Fig. 3a, Supplementary Fig. 9). We
observed concentrations of genetically similar participants, which
recapitulate the colonization and segregation histories of the Greater
Boston Area. One example of strong enrichment was observed in the
southern area (Roslindale/Mattapan/Dorchester and separately Rox-
bury) by cluster 7 enriched by ACB/ASW (African Caribbean in Barba-
dos and African ancestry in Southwest U.S., expected number 105 and
observed number 725, P<1x107"). Another strong enrichment is
observed north of Boston (Charlestown/Chelsea) by cluster 6 enriched
by PUR (Puerto Rican in Puerto Rico, expected number 81 and
observed number 224, P<1x107"). This enrichment also extends to
Boston’s South End and further to Roxbury, Hyde Park, and Jamaica
Plain, potentially reflecting the historical impact of residential segre-
gation in these areas. We also observed enrichment of Ashkenazi-
Jewish-like (cluster 5) and East-Asian-like clusters (cluster 10) in areas
seeded by early founding communities, such as Back Bay/Brookline
(cluster 5) and Allston (cluster 10). In the Cambridge area, we observed
significant enrichment of multiple clusters (clusters 1, 5, 10, 11, 12, and
13), potentially related to the high density of academic institutions and
the commercial biomedical industry attracting multiple communities
and individuals.

The western European-like clusters cluster 1 and cluster 2 were
similar in conventional PC space (Supplementary Fig. 2) and ADMIX-
TURE analysis (Supplementary Fig. 4b)*, but well differentiated by
network-based clustering (Fig. 2a and Supplementary Fig. 2) as well as
geospatially. The CEU/GBR-like cluster 1 was enriched in central areas
of the Boston (Beacon Hill), representing the earliest sites of British
colonization. Cluster 2 (Orcadian-like, tagging northern populations of
the British Isles including those hailing from Scotland and Ireland) is
enriched in two different geographical locations, including Chelsea
and South Boston, similarly potentially reflecting historical residential
segregation of Irish immigrants during a secondary wave of

immigration. These different geographical enrichments of cluster 1
versus cluster 2 reflect the distinct recent histories of these two
genetically close European-like participants aligned with population
size estimation.

Socioeconomic status was correlated with geographic
distributions'. Using geocoded location information for each partici-
pant in our study, we calculated a Social Deprivation Index (higher SDI
indicating greater deprivation) for each participant (Fig. 3b). To sys-
temically identify the associations between socioeconomic status and
disease risk in MGBB, we associated SDI with phenome-wide outcomes
captured by EHR, adjusting for genetic principal components. We
found SDI was significantly associated with 402 out of 1561 phenome-
wide outcomes (Bonferroni P<0.05/1561=3.2x107°, Supplementary
Figs. 10a and 10b, Supplementary Table 5). Among 402 significant
associations in the MGBB, 369 associations were tested in the external
dataset (UKBB). 98.1% of the associations showed directional con-
cordance and 84.8% were significantly replicated (P<0.05/
369=13x10", Supplementary Fig. 10c). Greater SDI was generally
associated with increased disease prevalence and incidence (388 out
of 402). The strongest SDI-associated PheCodes was with Tobacco use
disorder [PheCode 318, odds ratio (OR) per one standard deviation
(SD) of SDI was 1.53 (95% CI 1.48-1.59)], followed by Mood disorders
[PheCode 296, OR =1.26 (95% CI1.23-1.30)], and Depression [PheCode
296.2, 1.25 (1.22-1.29)]. We observed stronger associations for Phe-
Codes categorized under ‘Mental Disorders’, followed by ‘Unchar-
acterized Symptoms’, ‘Respiratory Systems’, and ‘Circulatory Systems’
in deprived individuals (Fig. 3c). No PheCodes in Congenital Anomalies
were associated with SDI. However, several PheCodes in ‘Neoplasms’
or ‘Pregnancy Complications’ were inversely associated with SDI. For
example, ‘Prostate Cancer’ [PheCode 185, 0.85 (0.80-0.90)] or ‘Other
and unspecified complications of birth puerperium affecting man-
agement of mother and postpartum’ [PheCode 654, 0.71 (0.66-0.76)]
had significant/nominal inverse associations with SDI (Fig. 3d).

Using coronary artery disease (CAD) as an example of a common
complex disease condition, we identified a significant association
between SDI and CAD independent from clinical and genetic risk. The
association remained significant even after adjustments for clinical risk
score (Pooled Cohort Equation, PCE)*, and polygenic risk score® [PRS,
ORispspr 1.24 (1.16-1.34), ORysppce 1.69 (1.60-1.78), ORysp.prs 1.51
(1.39-1.63), in the multivariate model adjusted by the first ten genetic
PCs, Supplementary Fig. 10d].

Exome sequencing in MGBB

Using high-coverage whole-exome sequencing in the same group of
individuals, we systemically identified rare coding variants in MGBB.
There were significant differences in variant distributions across clus-
ters (alternate allele count, Supplementary Fig. 11a). For instance, the
Ashkenazi-Jewish-like cluster 5 had fewer singleton variants [median 21
(IQR 17-25) for cluster 4, and 75 (52-105) for others in all individuals,
139 (125-156) and 467 (387-557) for down sampled cohort. Supple-
mentary Figs. 11b and 1ic]. In contrast, there were significantly more
singletons in clusters 12 and 15, even though they are closely related to
cluster 5 [324 (299-357) and 400 (370-425), respectively].

We identified median 15 [12-18] rare (Minor allele frequency,
MAF < 0.01), high-confidence autosomal predicted loss-of-function
(pLoF) variants per participant (Supplementary Fig. 11d). Overall, we
observed higher number of alternate allele-counts in AFR or AMR
participants consistent with previous reports. We observed 2 times
higher number of synonymous variants in AFR participants, but this
trend is milder in missense or pLoF variants (Supplementary Fig. 11d).
The largest number of pLoF variants were observed in African-like
clusters [median 23 (IQR 20.25-25.75) in cluster 23, 22 (17-24) in
cluster 18, 20 (19-22) in cluster 27, 20 (17.0-23.0) in cluster 7]. The
Northern European-like clusters 2 and 1 had the fewest pLoFs [13
(11.0-16.0) in cluster 2 and 14 (11-17) in cluster 1]. We also identified
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Fig. 2 | Fine-scale population history in the MGBB. a PCA representation of the
genetic clusters in MGBB. Each dot represents a participant, with colors indicating
distinct genetic clusters identified through graph-based clustering from genetic
principal components (Methods). The numbers indicate cluster identification. The
detailed cluster information will be found in Supplementary Table 3. b Population
differentiation in MGBB revealed by ADMIXTURE analysis. The heatmap displays
the proportions of ADMIXTURE components (K =10) within each genetic cluster.
The columns at the top of the heatmap represent the number of MGBB participants

in each cluster. c Effective population size estimated using coalescent pattern in
MGBB genetic clusters. The horizontal axis shows generations ago from the pre-
sent. The vertical axis shows the effective population size. Black lines indicate
estimates, and gray lines indicate 95% confidence interval. The numbers on the top
of charts indicate genetic cluster. UKBB British and Irish are the estimates from self-
reported White British and Irish in UKBB. PC principal component, 1KG 1000
genomes project, HGDP Human Genome Diversity Project, MGBB Mass General
Brigham Biobank, UKBB UK Biobank.

1,425 individuals (2.8% of total participants) with at least one rare
autosomal pLoF homozygous genotype across 760 genes.

We next explored established pathogenic variants (Fig. 4a) in
MGBB. 2.6% (1318/50,625) of participants carry a potentially actionable

pathogenic/likely pathogenic variant (actionable findings) per the
American College of Medical Genetics and Genomics secondary find-
ings guideline (ACMG SF, version 3.1)°***. These included 6 homo-
zygotes (one TP53, one LDLR, and 4 MUTYH), and 7 potential
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a Geographical enrichment of genetically similar groups in the greater Boston area.
The circles indicate the areas with significant enrichment after multiple testing
correction for the corresponding genetic sub-clusters. The geographic enrichment
was scanned in unbiased manner. Only genetic clusters with significant enrichment
were shown. b Social Deprivation index (SDI) map across Massachusetts and the
Greater Boston area. The color indicates SDI value, with darker red indicating
higher deprivation status (higher SDI). c Phenome-wide association analysis for SDI.
We tested the logistic linear association between the SDI and 1561 PheCode-based
outcomes (prevalence and incidence) in MGBB participants. The model was
adjusted for age, sex, and the first ten genetic principal components. An association
was considered statistically significant if P-value was less 3.2 x 107 (0.05/1561). The
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color of the bars indicated the direction of the effect of SDI and red color indicates
positive associations between SDI and disease risk and blue indicates negative
associations (higher SDI suggests higher deprivation). The P-value for the SDI term
was computed by multivariable logistic regression model. The exact P-values are
listed in Supplementary Table 5. d The disease frequency (prevalence + incidence)
by deprivation status and genetic similarities. The color of bars indicated depri-
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displayed. Complication of Birth, Other and unspecified complications of birth;
puerperium affecting management of mother (PheCode 654). Basemap: Stamen
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Fig. 4 | Rare pathogenic variant identification by exome sequencing.

a Pathogenic variants identified in the MGBB. The heights of bars indicate number
of carriers of pathogenic/likely-pathogenic variants for ACMG actionable genes.
The colors of the bars indicate the mode of inheritance of the genes. The numbers
after the gene symbols also indicate carrier counts. b Carrier frequency of indivi-
duals with pathogenic variants in ACMG actionable genes, categorized by genetic
similarity. The dotted line represents the average frequency in the MGBB. ¢ Number
of pLoF variants in ACMG actionable genes with clinical annotations. The heights of
bars indicate the proportion of the annotated variants in the observed pLoF var-
iants in ACMG actionable genes. In (b) and (c), only the genetic clusters with more
than 100 individuals are shown. d Annotation rate of pLoF variants in ACMG
actional genes. The squares indicate estimated odds ratios in reference to
European-like participants. The error bars indicate 95% confidence interval. The
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odds ratio and 95% confidence interval were estimated by two-sided Fisher’s exact
test. e Summary of phenome-wide gene burden testing in the MGBB. We conducted
exome-wide phenome-wide association analysis across 1482 PheCodes based out-
comes in 15,866 genes. The heights of bars indicate the number of significant
associations (P<2.16 x 10 =5 x 107%/23,191,897 phenotype-transcript pairs) for
designated genes. The color of each column corresponds to the associated
PheCode-category. The P-value for the rare deleterious-variant burden was calcu-
lated using logistic regression implemented in the REGENIE software. The exact P-
values are listed in Supplementary Table 6. MGBB Mass General Brigham Biobank,
ACMG American College of Medical Genetics and Genomics, pLoF predicted loss of
function, AFR African-like, AMR Admixed-American-like, EAS East-Asian-like, EUR
European-like, SAS South-Asian-like.

compound heterozygotes (2 BTD, 3 MUTYH, one ATP7B, and one GAA).
Across genetic clusters, we observed substantial differences in the
prevalence of these pathogenic variants (Fig. 4b). In general, European
participants showed higher rates for known actionable findings.
Despite lower numbers of alternate allele counts in the European
participants, the genetic diagnostic rate was significantly higher in
European participants (Fig. 4c). Namely, pLoF variants on ACMG SF
v3.1 genes found in African-like and Admixed-American-like partici-
pants have significantly lower likelihood of being annotated with
a high-quality (more than equal two-stars) pathogenic/likely patho-
genic annotation in comparison to the European-like participants

[ORfrican-iike = 0.27 (95%Cl 0.18-0.41) and ORagmixed-American-like = 0-48
(0.35-0.65), tested by Fisher’s exact test, Fig. 4d], at least partly related
to the overrepresentation of causative variants recurrently observed in
European participants in the Clinvar*>* database. In addition, we
observed variability in the prevalence of actionable findings among
European-like sub-clusters. The highest prevalence of actionable
findings was observed in clusters 12 (4.7%) and 5 (4.4%). Conversely,
clusters 3 (2.4%) and 2 (2.1%) showed a lower prevalence of actionable
findings than the mean rate over the MGBB (2.6%).

To understand the clinical consequences of rare coding variants,
we performed exome-wide and phenome-wide association study
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Fig. 5| Genome-wide and Phenome-wide association study. a Genome-wide and
Phenome-wide scan in the MGBB. We conducted association analysis between
common genetic variants (Minor allele counts >40) and 1483 PheCodes (Case
counts >60). The columns represent the number of significant associations
(P<3.37 x10™) on each chromosome. We annotated chromosomes with the
representative locus in the chromosome. The exact P-values are listed in Supple-
mentary Table 7. b Manhattan plot of GWAS for Rhesus isoimmunization during
pregnancy in women (n =29,159). The horizontal axis displays the genomic coor-
dinates from chromosome 1 to chromosome X. The vertical axis represents the
strength of association in negative log;, P-value. The significantly associated var-
iants in the RHD locus are highlighted. The P-values for the imputed genotype
dosage were calculated using the logistic regression model implemented in the

REGENIE software. ¢ Odds ratio for Rhesus isoimmunization during pregnancy by
rs55794721 genotypes. The dots and error bars represent the estimated odds ratios
and 95% confidence intervals compared to the reference homozygotes ([C/C]).

d RHD read counts from Whole Blood RNA sequence data obtained from the GTEx
dataset. The horizontal axis displays the number of reads aligned to the RHD gene,
categorized by rs55794721 genotypes. e Frequencies of rs55794721 homozygotes
across genetic clusters in MGBB. The horizontal axis corresponds to the genetically
similar groups in MGBB, while the vertical axis represents the group wise frequency
of rs55794721 homozygotes ([G/G]). MGBB Mass General Brigham Biobank, ACMG
American College of Medical Genetics and Genomics, AFR African-like, AMR
Admixed-American-like, EAS East-Asian-like, EUR European-like, SAS South-Asian-
like, GWAS Genome-Wide Association Study, GTEx Genotype-Tissue Expression.

(PheWAS) across 1482 PheCodes and 15,866 genes in 50,622 partici-
pants (“Methods”). We identified 71 significant associations
(P<216x107%, 0.05/23,191,897 tested phenotype-transcript pairs,
Supplementary Table 6) in the burden of rare pLoF and deleterious
missense variants with 17 genes, which included 9 ACMG SF v3.1 genes
across 60 clinical outcomes (Fig. 4e). In addition to the genes asso-
ciated with known traits, we found significant associations between
PTEN deleterious variants and increased risk for secondary hypothyr-
oidism. This link was not described by previous rare variant targeted
analysis*>*> while PTEN deleterious variants have been known to be
causal for hamartoma syndrome including thyroid cancers and
abnormalities***. Nevertheless, we highlight numerous persistent risk
signals from known Mendelian mechanisms of disease in MGBB. For
these associated trait-gene pairs, we assessed the penetrance and
prevalence to further describe the rare-variant burden on the disease
in clinical settings (Supplementary Fig. 12). We observed a wide range
of penetrance (3.88% to 100%) and generally low prevalence (0.197%
to 19.0%).

Genome-wide PheWAS in MGBB
To further explore the relationship between genotype and phenotype
in MGBB, we conducted a comprehensive genome-wide PheWAS using

ICD code-based PheCodes. We associated over 20 million common
variants with 1483 PheCodes in 52,374 participants, which were
imputed using the TOPMed imputation reference panel (r2,
“Methods”)**. We identified 140 associations that reached genome-
wide significance (P<3.37 x 10", 5x107%/1483 tested phenotype,
Fig. 5a, Supplementary Fig. 13a, Supplementary Table 7). We refined
the prognosis of identified known low-frequency monogenic variants.
For instance, we observed that the variant rs6025 (F5, c.1601G > A,
p.Arg534GIn; Factor V Leiden) is strongly associated with Congenital
deficiency of other clotting factors, including factor VIl [OR=12.21
(95%Cl 9.98-14.94), P=1.6 x 1077]. Similarly, rs113993960—a patho-
genic variant in CFTR (c.1521_1523del, p.Phe508del)—is associated with
Cystic fibrosis [OR =14.87 (11.98-18.46), P=4.3 x 107%].

Some of these variants exhibited a pronounced recessive effect on
the phenotype. A prime example is the variant rs55794721, which is
associated with Rhesus isoimmunization in pregnancy (Fig. 5b). This
medical condition exemplifies recessive inheritance resulting from the
deletion of the RHD gene. As anticipated, the OR for heterozygotes was
not significant [ORyetero = 0.976 (95%Cl 0.553-1.72)] compared to the
strong effect observed in homozygotes [ORyomo=18.9 (95%Cl
12.4-29.7), Fig. 5c]. Recent large-scale sequencing analysis of structural
variants” identified high linkage disequilibrium (LD) between
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rs72660908 and a large deletion affecting RHD (R? > 0.99). Supporting
this, we confirmed very low expression level of RHD*® in whole blood
transcriptome associated with risk allele at rs72660908 (G, Fig. 5d) and
median O coverage by exome sequencing in MGBB (Supplementary
Fig. 13b). We also observed a significant enrichment of cases among
individuals who were homozygous for rs55794721, with 145 out of 202
cases having the A/A genotype at this locus. As previously reported,
individuals with the homozygous alternate allele for rs55794721 were
dominantly observed in continental European-like participants and we
observed very few copies in African-like/East-Asian-like participants.
Furthermore, the frequency fluctuates even among European-like
participants as illustrated by different frequencies among clusters we
denote as European-like. The highest prevalence was observed in
cluster 16 (17.7%) followed by cluster 1 (17.1%) and lowest in cluster 5
(9.0%, Fig. 5e), suggesting different genetic risk architecture among
European-like sub-clusters.

Another noteworthy example is the association between
1s73404549 and sickle cell anemia. This variant is in strong LD with
rs334 (HBB c.20 A>T, p.Glu7Val, HbS), a well-established pathogenic
variant for sickle cell anemia. Despite high medical relevance, rs334
was not included in the TOPMed reference panel. We re-evaluated the
impact of rs334 using exome sequencing data on sickle cell anemia and
clinical red blood cell counts. rs334 showed stronger and larger effect
size for sickle cell anemia than imputed rs73404549 (OR334 = 63.41 £
[3922_10253], Pr5334=1.28 X 107151, Br573404549=28.96 [1972—4252],
Prs73404540 =1.89 x 107%%).

Discussion
In this study, we conducted multidimensional investigations into the
structure of a modern healthcare-based biobank based at one of the
earliest sites of durable European colonization. We show how expan-
ded immigrant communities in the U.S. often exhibit genetic simila-
rities to contemporary continental populations and reflect common
bottlenecks. However, we also observe distinct bottlenecking effects
of early colonization and patterns of admixture, and identify geneti-
cally similar participants groups not well represented in reference
datasets. Using geospatial indices, genetic similarities, and phenome-
wide outcome data, we described the architecture of diseases asso-
ciated with regional socioeconomic factors such as area-level poverty,
education level, single-parent households, living in rented housing
units or overcrowded housing units, living without care or
unemployment*’. We further leverage rich genotyping and pheno-
typing to clarify several clinically relevant genetic associations com-
plementing clinical and environmental features. This work advances an
overall goal of comprehensively quantifying heterogeneous health
determinants that uniquely vary across diverse communities in the U.S.
Leveraging population genetics, we delineated the complex
genetic components present within the Boston area. Most importantly,
our data likely reflect the continued segregation and marginalization
of specific genetically similar groups, despite decades of efforts to
mitigate racial disparities’ . Our integrated dataset will provide a
valuable resource for studying and devising strategies to address these
complex socio-health consequences. In addition, while our findings
align well with prior studies on nationwide cohorts®****, our
research offers further granular insights into the individual-level his-
tories of the participants, including lifestyle, genetic, and social risk
factors associated with the diseases. Further efforts are required to
address and reduce this stratification in this area. Area-defined SDI
improved prediction performance when incorporated into existing
clinical’** and genetic risk stratification models***” for common
complex diseases. In this study, by integrating large scale EHR data and
geographical information, we systemically assessed the impact of SDI
on Phenome-wide scale across genetically diverse population and
drew several clinical implications. First, our systemic assessment sug-
gests that although SDI is a significant contributor to a wide range of

diseases, the impacts of SDI are significantly varied across disease
domains. For example, while mental and cardiopulmonary diseases
were more prevalent among individuals experiencing social depriva-
tion, cancers and congenital diseases are observed almost equally,
irrespective of deprivation status. Conversely, we observed several
inverse associations between cancer and adverse pregnancy outcome
diagnoses and deprivation status, which may reflect greater recogni-
tion in the context of greater healthcare access. Furthermore, SDI is
differentially yet ubiquitously associated with a wide array of health
outcomes across various genetic groups. Finally, although the effect of
SDI persisted across various genetic clusters, the varying magnitude of
association suggests an interaction between social deprivation and
genetic factors as previously suggested®®*’.

In addition to enabling detailed disease modeling, healthcare
biobanks are unique and powerful resources for exploring rare genetic
conditions, disease outcomes, and facilitating implementation in
clinical medicine®®. First, we confirmed a larger number of pLoF var-
iants among individuals genetically similar to Africans, consistent with
previous reports®®%, Next, we identified individuals carrying action-
able variants, as defined by a curated database. However, these indi-
viduals predominantly belong to clusters we denoted as European-like,
who have relatively fewer LoF variants overall. This observation implies
a bias against non-European individuals in previous literature used for
data curation, potentially resulting from disparities in clinical genetic
testing'”®*. Using an unbiased genomic scan, our study uncovered
several significant associations, which may further refine prognosis
within healthcare settings. Furthermore, we confirmed a penetrant
association between an upstream variant of the RHD gene and Rhesus
isoimmunization during pregnancy™®, while also clarifying varied
prevalence across diverse communities. Bringing these findings toge-
ther, we highlight that healthcare biobanks, compared to general
population-based biobanks, are enriched with uncommon outcomes,
and associated genetic variations, thereby offering an ideal environ-
ment to study clinically pertinent scenarios.

Nevertheless, our study warrants several limitations. First, most of
our enrollment occurred in tertiary hospitals. While this enabled us to
include patients with rare and more severe conditions, the prevalence
may not reflect the general population due to inclusion bias as pre-
viously described®. Second, due to the nature of voluntary participation
in the Biobank, MGBB may not fully represent Greater Boston area
residents. Also, MGBB participants are centralized in the greater Boston
area of Massachusetts, with recruitment primarily from the two largest
hospitals in Boston. Communal and geospatial characteristics are likely
to vary in other New England regions and more broadly across the U.S.
While we highlight the non-random geographic distribution of genetic
alleles, further investigations of geographically distinct locales are
necessary. Moreover, while our study provides detailed insights into
European-like participants, the resolution for non-European partici-
pants is less robust due to limited sample sizes, reflecting the demo-
graphy of the included region. Furthermore, given non-random
geographic distribution of alleles, various non-genetic factors may
confound the relationship between genetic background and socio-
economic status, warranting careful interpretation of the results.

In conclusion, by utilizing population genetics, we discerned
specific genetic clusters within the MGBB. These clusters reflect the
colonization histories of the Greater Boston area and exhibit existing
social structures and better contextualizing risks for genetically similar
participants. Individual-level clinical and lifestyle risk factors in com-
bination with community context, structural factors, and genetic var-
iation advance disease modeling toward precision medicine initiatives.

Methods

Patient recruitment in MGBB and study protocols

MGBB, previously known as Partners Biobank, is an integrated research
initiative based in Boston, Massachusetts. It collects biological samples
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and health data from consenting individuals at Massachusetts General
Hospital, Brigham and Women'’s Hospital, and local healthcare sites
within the MGB network®. This repository of samples and data sup-
ports researchers aiming to decipher disease mechanisms, enhance
personalized medicine, and innovate therapeutic solutions. Since July
1st, 2010, the MGBB has enrolled 142,238 participants, and extracted
DNA from 88,665 participants’ samples (62.3%). All participants pro-
vided written/electronic informed consent for broad biological and
genetic research. The study protocol to analyze MGBB data was
approved by the Mass General Brigham Institutional Review Board
under protocol number 2018P001236. The study protocols to analyze
UKBB data was approved under protocol number 2021P002228 and
performed under UKBB application number 7089.

Genotype quality control and imputation

53,306 individuals were genotyped by Illumina Global Screening Array
(Illumina, CA) in four batches (13,140 in the 1st batch, 11,649 in the 2nd
batch, 5976 in the 3rd batch, and 22,541 in the 4th batch). Genotypes
were called using the Z-call software®. After genotype calling, we con-
ducted quality control with the following steps. We re-aligned geno-
typing probes to the GRCh38 reference genome using the blast
software®® and extracted probes with perfect unique match. We
removed indels and multi-allelic sites, and removed variants with high
missingness (>2%) and low minor allele counts (<2). After genotype
quality control, we estimated continental level genetic similarity using
the 1KG dataset. We extracted common, high-quality SNPs (missingness
<1%, MAF >1%) across MGBB and the 1KG dataset. After pruning SNPs, we
computed SNP weights for genetic principal component using the 1KG
dataset. Then, we projected MGBB participants into the same principal
component space using 10 PCs. Using genetic PCs in 1KG dataset as a
feature matrix, we trained a K-nearest neighbor model for 1KG reference
populations (AFR, AMR, EAS, EUR, and SAS) to assign population labels
to MGBB participants. With these inferred labels, we calculated Hardy-
Weinberg disequilibrium for each population and removed variants with
P<1 %107, Finally, we compared the allele frequency in these popula-
tions with gnomAD allele frequency, then removed variants with devia-
tion from gnomAD allele frequency (Chi-square value>300) in
genetically similar group. These quality control procedures were done
by genotyping batch. We took the intersection of the variants in these
four batches and generated dataset for imputation. Using the same set of
variants, we imputed the genotypes by TOPMed imputation server®, We
used TOPMed multi-ancestry imputation reference panel (TOPMed r2
panel) including 97,256 reference samples and 308,107,085 variants.
Pre-phasing was carried out by Eagle software’’, and imputation was
conducted by Minimac4 software®. After the imputation, we merged all
the four batches by vcftools” and converted to bgen file by
PLINK2 software (June 6, 2022)"* for the downstream analysis.

Exome sequencing and quality control

Exome sequences were performed by on lllumina NovaSeq instruments
(Illumina, CA) with a custom exome capture kit (Human Core Exome,
Twist Bioscience, CA), with a target of at least 20x coverage at > 85% of
target sites. Alignment, processing, and joint calling of variants were
performed using the Genome Analysis ToolKit (GATK, version 4.1)"
following GATK best practices. The joint called dataset containing all
53,420 individuals processed by Hail framework’™ for further (1) geno-
type, (2) variant, and (3) sample quality controls. First, we split the multi-
allelic site into biallelic by split_ multi_hts function. Following this pro-
cess, we removed low-quality genotypes and genotypes called by
unbalanced allele balance. Following genotype quality control, we
conducted variant-level quality control. First, we filtered variants in the
low complexity region or outside of the target region (broad.-
custom_exome_vl.Homo _sapiens_assembly38.bed) with 50 bp flanks.
We excluded (i) monomorphic variants and, (ii) variants with high
missing rate (>10%). Using a quality-controlled variant set, we

conducted sample-level quality control. We collected sample QC metric
by hail’s sample_qc function. We implemented five hard filters (percent
chimeric reads, percent contamination, call rate, mean depth, and mean
genotyping quality, Supplementary Fig. 14) and four soft filters (number
of singletons, Ts/Tv ratio, Het/Hom variant ratio, and Insertion/Deletion
ratio, Supplementary Fig. 15). For soft filters, we obtained residuals of
metrics regressing by the first ten genetic PCs and excluded +/-4 SD
outliers. Finally, using only unrelated quality-controlled samples, we
computed Hardy-Weinberg P-values by continental genetic similarity
estimated from genotyping data. Hardy-Weinberg P-values in chromo-
some X was computed only for Female participants. We excluded var-
iants with Hardy-Weinberg P-values <1 x 10" or monomorphic variant.
After quality control steps, 7,895,027 variants in 22 autosomes and
chromosome X were found in 50,625 individuals remained.

Relatedness inference

We utilized the pc_relate” function from hail (version 0.2) to adjust for
the presence of an admixed participants within the MGBB, using 91,615
pruned, common (MAF >1%) variants that are located outside the
major histocompatibility complex (chromosome 6
24,000,000-37,000,000 base pair). Among 53,306 individuals, we
identified 3147 pairs with a kinship greater than 0.0884.

Derivation of genetic principal components

To obtain insights utilizing reference populations, first we combined
array genotypes from unrelated MGBB participants with recently gen-
erated whole-genome sequence datasets from genetically diverse
populations including 3380 individuals from 1KG and HGDP*. We
intersected 495,213 autosomal, non-palindromic variants outside the
high LD region with minor allele counts >10. After merging two datasets,
we pruned variants by PLINK2 software” with —indep-pairwise option
1000 100 0.2 resulting in 257,754 variants. Using these genotypes, we
derived the weight for each variant for PCs excluding related samples.
Using derived weights, we calculated 30 PCs for all the individuals from
MGBB, 1KG, and HGDP which were used in subsequent analysis.

Fixation index

Pairwise Fixation indices (Fst) were computed among in MGBB-, 1KG-
and HGDP- populations using PLINK2 software. The phylogenetic tree
was constructed neighbor-joining method’® implemented by ape R
package”’.

ADMIXTURE analysis

Using PCs derived above, we conducted admixed component analysis
using ADMIXTURE software (version 1.3.0)*. We optimized the num-
ber of admix component K from 1 to 20 and found that K =10 showed
the least cross-validation error (Supplementary Fig. 5).

Genetic similarity clustering

To derive fine-scale genetic clusters in the participants, we conducted
Graph-based clustering which is frequently used in single-cell RNA-seq
clustering analysis implemented in Seurat software (version 4.1.0)%.
Though Seurat is primarily tailored for single-cell RNA seq data ana-
lyses, we leveraged its robust clustering capabilities for genetic simi-
larity clustering. Using the first 30 PCs derived above, we constructed a
nearest-neighbor graph and classified individuals into distinct clusters
using the Louvain algorithm, a default clustering approach in Seurat
with resolution parameter of 0.2. As Seurat identified the clusters in an
unsupervised mode, we used individuals from the 1KG or HGDP as a
“spike in” positive controls (true labels).

Effective population size estimation

To estimate the effective population size using haplotype sharing
information, we used IBDNe in combination with the hap-ibd. First, we
phased the genotypes of unrelated MGBB participants with SHAPEIT
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software (version 4.2). Then, using hap-ibd software (version 1.0,
15Jun23.92f)’%, we calculated IBD sharing, and this output was fed into
IBDNe software (version 23Apr20)”° to determine the effective popu-
lation size for each genetically similar group. To compare the effective
population size trajectories in British/Irish-like participants in UKBB
and MGBB, we computed effective population size in down-sampled,
unrelated UKBB self-reported White British or Irish participants (UKBB
Field ID 21000) to the same sample size as MGBB British/Irish-like
participants (N=11,508 and N=10,802, respectively), using
microarray-based genotypes. To confirm the finding, we also used the
newly established HapNe® software and obtained consistent results
(Supplementary Fig. 8).

Variant annotation

We annotated WES data using the VEP software (version 107)%°, sup-
plemented with the Loftee*® and dbNSFP®' plugins. The “—pick” option
was enabled to prioritize the canonical transcript. Additionally, in silico
predictions from dbNSFP (version 4.2) were employed to prioritize
missense variants.

Pathogenic variant annotation

We downloaded ClinVar database*®* on Aug 16, 2022, and annotated
all the variants identified by exome sequence using snpEff software
(version 5.0e)%. We identified 536,729 variants registered in the Clin-
Var Database overall. To identify the carriers of pathogenic/likely
pathogenic variants in the ACMG SF v3.1 actionable genes**°, we only
used variants with review status “reviewed_by expert_panel”,
“criteria_provided, multiple_submitters, no_conflicts”

Disease phenotyping

We obtained patient data from the electronic health record system
spanning the MGB network. We extracted all ICD9 and ICD10 codes
assigned to each patient. To enhance the interpretability and powered
analysis of the disease outcome, we employed the PheWAS R package
(version 1.2)** to map these codes to corresponding PheCodes?. In this
study, we use PheCodes as the sole clinical outcomes for analyzing
socioeconomic status and conducting genetic analyses. The PheWAS
package utilizes a comprehensive catalog of PheCodes (https://
phewascatalog.org/phecodes). We curated all occurrences of each
ICD code and assigned the corresponding PheCodes, irrespective of
the number of times each ICD code was identified. For ICD codes that
did not map to valid PheCodes, those entries were marked as not
applicable (N/A). We excluded all unmapped or N/A PheCodes from
the analysis to ensure only valid, interpretable phenotypes were
included. This mapping process facilitated a more standardized and
consistent representation of the patient’s conditions for subsequent
analyses. To determine the prevalence or incidence of diseases, we
considered the date of blood draw for genotyping as the reference
date. By aligning with the corresponding date of PheCodes occur-
rences, we identified the prevalent or incident outcomes related to the
date of enrollment in MGBB.

Geocoding

The participants’ current address data was geocoded using the
DeGAUSS framework®’, a collection of geospatial tools designed for
cleaning and formatting geographic data. This process converts the
address information into standardized spatial data, specifically latitude
and longitude coordinates. Our analysis focused on participants residing
in Massachusetts. We excluded (1) Participants whose addresses were
located outside of the state of Massachusetts, (2) Participants for whom
the geocoding process failed. We successfully geocoded 118,102 parti-
cipants and 48,369 with genotype data. We defined Greater Boston
based on the definition by the Metropolitan Area Planning Council
(https://www.mapc.org/get-involved/subregions/#sub) including 22
cities and 79 towns.

Spatial enrichment analysis

We utilized the Bernoulli model in SaTScan®. Under this model, indi-
viduals belonging to a specific genetic cluster were treated as “cases,”
while all other individuals were treated as “controls.” This model
compares the rates of cases in different areas to determine if the rate of
cases inside the potential cluster area is significantly different from
outside. To avoid detecting overly large and potentially less mean-
ingful clusters, we limited our scan by setting the maximal diameter of
the spatial cluster window. Specifically, we restricted this to a max-
imum radius of 4 km.

Area-based deprivation score index

For individuals whose addresses were successfully geocoded, we
proceeded with the following steps: (A) We assigned each indivi-
dual’s address to a corresponding U.S. Census tract. Census tracts
are small, relatively stable geographic areas that are defined by the
United States Census Bureau. They are designed to be relatively
homogeneous units with respect to population characteristics,
economic status, and living conditions. (B) We then merged this
Census tract-level data with SDI (2018 SDI, downloaded from https://
www.graham-center.org/maps-data-tools/social-deprivation-index.

html)*. SDI is a composite measure of area level deprivation based
on seven demographic characteristics collected in the American
Community Survey (ACS) and used to quantify the socioeconomic
variation in health outcomes. The final SDI is a composite measure of
seven demographic characteristics collected in the ACS: percent
living in poverty, percent with less than 12 years of education, per-
cent single-parent households, the percentage living in rented
housing units, the percentage living in the overcrowded housing
unit, percent of households without a car, and percentage non-
employed adults under 65 years of age. This approach allows for a
detailed, regional census tract-level analysis of the social conditions
experienced by the study participants.

Phenome-wide association analysis of social deprivation index
We conducted a phenome-wide association analysis for SDI in 38,526
individuals in the MGBB with clinical and geospatial information. Using
area-based SDI as an exposure, we tested its association with binary
PheCode-based outcomes. To control for known confounding factors
such as race/ethnicity and to ensure population-agnostic results, we
included the first ten genetic principal components, along with age
and sex, in the logistic regression model. The SDI was normalized to
have a mean of zero and a standard deviation of one. In the replication
analysis, we utilized the Townsend Deprivation Index at recruitment in
the UKBB (UKBB Field 22189) in the same manner. We restricted the
analysis to PheCodes with more than 10 cases, resulting in 1561 effec-
tive tests in the MGBB. The replication analysis was conducted for 369
of the PheCodes with more than 10 cases in the UKBB, out of 402
PheCodes with significant associations in the MGBB. Phenome-wide
significance was set at P<3.2 x 10~ =0.05/1561, and significant repli-
cation was considered at P<1.3 x 107 =0.05/369.

Clinical risk, genetic risk, and social risk for CAD

We calculated the 10-year Atherosclerotic Cardiovascular Disease
(ASCVD) risk scores based on the PCE using the PooledCohort R
package®**%, The PCE accounts for sex, race, age, total and HDL
cholesterol, systolic blood pressure, antihypertensives prescription,
current smoking, and prevalence of diabetes mellitus. For missing
values, we performed multiple imputation by chained equations using
the mice R package®, using enrollment age, sex, and race as predictors.
PRS was computed using GPS-mult model recently published (https://
www.pgscatalog.org/score/PGS003725/)”. CAD was defined by the
existence of the ICD codes (ICD9, ICD10) in their EHR. We assessed the
individual association of 10-year ASCVD risk, CAD-PRS, and SDI with
CAD based on logistic regression adjusting the first 10 genetic
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principal components. Age and sex were not introduced to the model
as PCE used these variables.

Phenome-wide genetic association study

We conducted a phenome-wide rare variant association study (RVAS)
for exome genotypes and genome-wide association study (GWAS) for
imputed genotypes using the Regenie software (version 3.2.5)%. We
associated rare variant burden or imputed genotype dosage with 1482
or 1483 PheCodes under additive model, respectively. For sex specific
endpoints, only males or females were included in the analysis where
appropriate.

The step 1 was fit using pruned common variants derived from
microarray-derived genotypes (MAF > 1%, pruned by PLINK2 software’
with option -indep-pairwise 1000 100 0.9).

For RVAS, we generated masks comprised of predicted loss of
function (high confidence by the Loftee software’®) and damaging
missense variants predicted by >90% of 29 in silico prediction pro-
grams included in dbNSFP (version 4.2)% with MAF < 0.001. To account
for multiple hypothesis testing, the significance threshold was set at
P<216 x 107° by dividing 0.05 with 23,191,897-tested trait x
transcript pairs.

For GWAS, the significance threshold was set at P<3.37 x10™ by
dividing the conventional genome-wide significant threshold 5x 1078
with 1483 tested phenotypes. To define distinct associated loci, we
added the flanking region (500,000 base-pairs) for all the variants
with genome-wide significance (P<3.37 x10") and merged all over-
lapping regions.

In phenome-wide RVAS and GWAS, MGBB participants were ana-
lyzed as one group based on the sensitivity analysis described in
Supplementary Information Text and Supplementary Fig. 16. Briefly,
we estimated Lambda GC (observed chi-squared value divided by
expected value) at top 1 percentile of the test statistics for rare variant
burden PheWAS and common variant PheWAS and compared the
distributions of Lambda GCs across various study settings.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Publicly funded genotyping and exome sequencing data from 13,500
MGBB participants generated in this study have been deposited in
dbGaP (accession phs002018). Additional genotyping and exome
sequencing data are available under restricted access through industry
collaborations; access can be requested under the institutional review
board protocol for the current study. Summary data for the leading
genetic and clinical associations are provided in the Supplementary
Table file. Complete summary statistics from the genetic association
analyses are available for download on the Association To Function
Knowledge Portal (https://a2f.hugeamp.org/).

Code availability

The analysis codes are available at Zenodo (https://doi.org/10.5281/
zenodo.12518901). The docker/singularity images used in the analysis
are publicly available through docker hub (https://hub.docker.com/u/
skoyamamd).
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