

REVIEW

Open Access

Risk factors associated to disability in primary headaches: a systematic review to inform future iterations of the Global Burden of Disease Study

Alberto Raggi^{1*}, Matteo Castaldo^{2,3}, Chia-Chun Chiang⁴, Soo Jin Cho⁵, Min Kyung Chu⁶, Adriana Della Pietra⁷, Philip R. Holland⁸, Andreas Kattem Husøy^{9,10}, Alejandro Labastida-Ramírez^{11,12}, Ellina Lytvynak¹³, Roberta Messina^{14,15}, Dilara Onan^{16,17}, Agnese Onofri¹⁷, Raffaele Ornello¹⁷, Lanfranco Pellesi¹⁸, Igor Petrušić¹⁹, Francesca Puledda^{8,20}, Bianca Raffaelli²¹, Eloísa Rubio-Beltrán⁸, Ruth Ruscheweyh²², Damiana Scuteri²³, Gabriele Sebastianelli²⁴, Sebastian Straube^{13,25}, Claudio Tana²⁶, Doga Vuralli²⁷, Marta Waliszewska-Prosó²⁸, Wei Wang²⁹, William Wells-Gatnik³⁰, Yohannes W. Woldeamanuel^{31,32,33,34,35}, Jr-Wei Wu³⁶, Sophie Merve Yener^{37,38}, Barbara Corso³⁹ and Paolo Martelletti⁴⁰

Abstract

Background Headache disorders are prevalent and disabling conditions. Despite the recent introduction of modern therapies, a large portion of patients are still sub-optimally treated, resulting in a minor or no decrease in health loss nor disability. The Global Burden of Disease (GBD) study classifies 88 risk factors which impact several conditions, thus enabling the estimation of the potential health gain due to addressing these risk factors, but such analysis is not available for headache disorders yet.

Objective To address which risk factors, as intended by the taxonomy of the GBD study, are associated to disability in primary headaches.

Methods Primary research studies addressing primary headache disorders and disability were searched in PubMed, Web of Science and SCOPUS, in the period between 2000 and 2025. The GBD taxonomy, which classifies risk factors into environmental and occupational, behavioural, and metabolic factors, was used. A descriptive analysis was employed to report the associations between disability measures and the presence/absence of specific risk factors, accounting for diagnoses and the age of patients.

Results A total of 64 studies (97,846 patients) were included, and a total of 86 single associations were found. Metabolic risk factors (high BMI, high fasting plasma glucose, and LDL cholesterol), and behavioural risk factors (low

*Correspondence:
Alberto Raggi
alberto.raggi@istituto-bestta.it

Full list of author information is available at the end of the article

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

physical activity, inadequate dietary habits, tobacco smoking, and alcohol consumption) were the most frequently reported.

Conclusions Our results suggest that it is possible to address headache-related disability by acting on a set of modifiable factors, with interventions tailored to the specific needs of patients or addressing the exposed populations as a whole. In particular, targeting dietary aspects and exercise is reasonably expected to promote weight loss, and might have an impact on the reduction in fasting plasma glucose and LDL cholesterol, ultimately improving patients' overall health status and reducing headache-related disability.

Keywords Migraine, Headache, BMI, Fasting plasma glucose, LDL cholesterol, Physical activity, Dietary habits

Introduction

Primary headache disorders are among the most prevalent conditions worldwide, affecting 2.9 billion people, and represent a leading cause of disability, as measured by Years Lived with Disability (YLDs) in the Global Burden of Disease Study (GBD) [1, 2]. Tension-type headache (TTH) is the most prevalent primary headache, typically associated to a low individual disability [3], while migraine, though less prevalent, is responsible for a substantially higher health loss [4]. This burden is expected to further increase among young adults aged 30–44 years, by 20% for migraine and 26% for TTH over the next 20 years, as a result of the population growth in size and of demographic shifts [5]. Cluster headache (CH), despite extremely disabling at the individual level [6], is not included among GBD estimates due to its low prevalence. The disability caused by primary headaches is determined by a complex interplay between clinical features, beyond attacks frequency and severity, and personal factors, including age, sex, employment status, socio-economic conditions, psychological comorbidities, and access to care [3, 4, 6]. Understanding these factors is crucial for assessing headaches' burden and identifying opportunities for intervention.

Recent therapeutic advances, particularly the development of calcitonin gene-related peptide (CGRP)-targeted treatments, have changed the management of migraine [7]. However, these therapies are ineffective for TTH [8], and their efficacy in CH remains inconsistent [9–11]. These new therapies have been shown to be cost saving [12], but differences in dispensation based on socio-economic status exist [13], raising concerns about healthcare equity as highlighted by UN Sustainable Development Goal 3 (SDG-3) and by the WHO Intersectoral Global Action Plan on Epilepsy and Other Neurological Disorders (WHOiGAP), which call for universal access to neurological care as a way to reduce the burden of neurological diseases [14, 15]. These two documents, in the perspective of headache disorders, point out several actions to reduce the burden of headache disorders, e.g. providing effective services for diagnosis, treatment and care, and implementing strategies for health promotion and headache prevention [16, 17]. Among the

actions that have been addressed as relevant, recognizing and managing comorbid diseases and risk factors were included.

The issue of risk factors in headache disorders is of relevance, but not systematically explored. In fact, several factors, usually identified as headache triggers, influence headache occurrence, particularly migraine. These include foods (e.g. alcohol, chocolate, caffeine-containing products, processed foods, seafood, fish, ice cream, foods containing nitrates or tyramine), behavioural factors (e.g. reduced sleep, smoking, stress or physical inactivity), physical factors (e.g. the myofascial trigger points), and finally environmental ones (e.g. noise, smell or light) [3, 4, 6]. These factors are, however, studied in relation to single headache attacks and are included in patients' education programs [18, 19], but are not generally included in systematic analyses on their impact on disability or disease burden: thus, the share of disability that might be avoided by acting on specific factors is unknown.

GBD regularly produces estimates of global health loss stratified by age, location, and sex [1]. The study quantifies disease burden using Disability-Adjusted Life Years (DALYs) which is a measure encompassing health loss due to premature mortality (Years of Life Lost – YLLs) and to non-fatal outcomes (YLDs). GBD also systematically produces estimates of the amount of burden that is attributable to a set of 88 risk factors, roughly categorized as environmental and occupational, behavioural, and metabolic [20]. These risk factors are conceptualized as share of deaths, YLLs, YLDs, or DALYs that can be attributed to – i.e., estimated to occur due to – exposure to a particular risk factor, and their control is therefore expected to contribute to a reduction of mortality, YLLs, YLDs, or DALYs associated to a condition. The quantification of risk factors is however still uneven: with reference to neurological disorders, risk factors quantification is available only for stroke (18 factors), encephalitis and meningitis (4 factors), dementias (3 factors), and for multiple sclerosis, Parkinson's disease, idiopathic epilepsy, and idiopathic intellectual disability (1 factor each) [2]. No quantification is available for headache disorders.

Pharmacological interventions are unlikely to be sufficient to reduce the burden of headache disorders as they

are not expected to produce a global impact on population-level disability [16, 17]. Healthcare strategies need to address modifiable risk factors relevant for headache disorders, otherwise the likelihood of reducing their burden will be minimal, as witnessed by the substantial stability of YLDs associated to migraine and TTH [21, 22].

Therefore, identifying the risk factors which are relevant to headache disorders is essential to determine how much of the headache-related disability could be prevented or reduced through targeted interventions addressing specific risk factors. This systematic review summarizes which risk factors, as classified in the taxonomy of the GBD, are associated to disability in primary headaches: this information is intended to stimulate the GBD to incorporate risk factors analysis also for headache disorders which, in turn, could provide useful inputs to plan interventions aimed at reducing headache-related disability worldwide.

Methods

A literature review with meta-analysis was performed and results were reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [23].

Search strategy

Two main terms with possible variations and outcomes, *i.e.* primary headache disorders and disability, were searched in PubMed, Web of Science and SCOPUS, using database-specific variations, in the period between 2000 and 2025. In particular, in addition to the generic terms disability and impact, the acronyms of the most used Patient-Reported Outcome Measures (PROMs) for disability, as per the results of previous reviews [24, 25], were included.

The PubMed string was: ((“Migraine”[Title/Abstract] OR “tension type headache”[Title/Abstract] OR “tension type headache”[Title/Abstract] OR “Cluster Headache”[Title/Abstract]) AND (“disability”[Title/Abstract] OR “impact”[Title/Abstract] OR “MIDAS”[Title/Abstract] OR “HIT-6”[Title/Abstract] OR “WHODAS”[Title/Abstract] OR “HDI”[Title/Abstract])) AND ((english[Filter] AND (2000:2025[pdat]))).

The SCOPUS string was: ((TITLE (migraine OR “Tension-Type Headache” OR “Tension Type Headache” OR “Cluster Headache”) AND TITLE (disability OR impact OR midas OR “HIT-6” OR whodas OR hdi)) OR ((ABS (migraine OR “Tension-Type Headache” OR “Tension Type Headache” OR “Cluster Headache”) AND ABS (disability OR impact OR midas OR “HIT-6” OR whodas OR hdi)) AND PUBYEAR > 1999 AND PUBYEAR < 2026 AND (LIMIT-TO (LANGUAGE, “English”))).

The Web of Science string was: (Migraine OR “Tension-Type Headache” OR “Tension Type Headache”

OR “Cluster Headache” (Abstract) AND disability OR impact OR MIDAS OR “HIT-6” OR WHODAS OR HDI (Abstract)) OR (Migraine OR “Tension-Type Headache” OR “Tension Type Headache” OR “Cluster Headache” (Title) AND disability OR impact OR MIDAS OR “HIT-6” OR WHODAS OR HDI (Title)) AND (2024 OR 2021 OR 2023 OR 2022 OR 2020 OR 2019 OR 2018 OR 2017 OR 2016 OR 2015 OR 2013 OR 2012 OR 2014 OR 2025 OR 2011 OR 2010 OR 2009 OR 2008 OR 2006 OR 2007 OR 2005 OR 2004 OR 2003 OR 2002 OR 2001 OR 2000 (Publication Years)) and English (Languages).

Retrieved references were exported as .csv files and imported to Rayyan QRCI [26] for duplicate checking. The set of records was then exported to Microsoft Excel for study selection and data extraction.

Study selection

Retrieved references were equally and randomly assigned to the authors to perform the title and abstract checks. In this phase, records were retained if they were primary research papers reporting information on disability associated to one of the three main primary headaches, *i.e.* migraine, TTH and CH. Therefore, records were excluded if they: a) did not have an abstract; b) were not in English; c) were published before 2000; d) were letters, editorials, conference material, book chapters, case reports with less than 10 subjects, or literature reviews; e) did not report on primary headache disorders; f) were clearly out of topic, *i.e.* did not address elements associated to or predictive of primary headache disability/impact. In this stage, we employed a conservative approach; therefore, in case of doubts, especially on the last criterion, the indication was to retain the record so that its full-text could be appropriately evaluated.

A double check procedure on titles and abstracts eligibility was randomly performed on 30% of selected references: AdP, AO, BR, DO, ER-B, LP, and MW-P performed the double check on abstracts. In this phase, the agreement among reviewers (*i.e.* the inter-rater reliability) was calculated using Krippendorff’s alpha coefficient (α), which ranges between 0 (total disagreement) and 1 (total agreement). In case of disagreement, the record was considered as selected and retained for full-text evaluation. If Krippendorff’s α was below 0.70, a second 30% set of references were submitted to double-check.

Eligible references were equally and randomly assigned to the authors who screened titles and abstracts, and, as a further control measure, a shuffle procedure was employed so that none of the authors had to evaluate a set of full texts that they previously handled at the abstract check. In the phase of full-text evaluation, studies were excluded if they: a) were not in English; b) were not on primary headaches; c) were letters, editorials, conference material, book chapters, case reports with less

than 10 subjects, or literature reviews; d) did not employ any disability PROMs; e) did not report any kind of association with a pre-defined list of risk factors based on GBD taxonomy. At this stage, the authors also performed data extraction.

The same authors (AdP, AO, BR, DO, ER-B, LP, and MW-P) performed a double check on 30% of the full texts, and Krippendorff's α was again calculated. In this phase, disagreement was resolved by a third rater (AR). If Krippendorff's α was below 0.70, a second 30% set of references were submitted to double-check.

Data extraction

Data extraction was performed through an *ad hoc* electronic spreadsheet of Microsoft Excel.

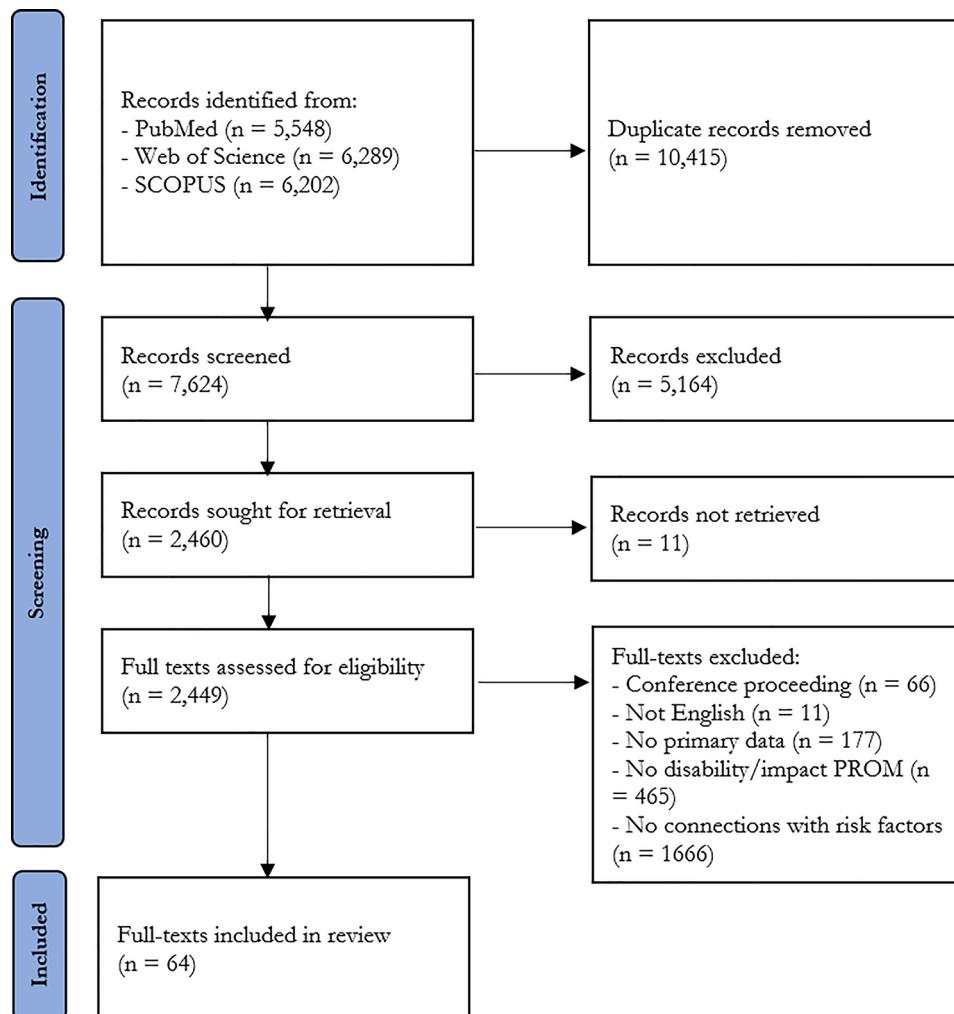
The GBD taxonomy includes a total of 88 risk factors, which are hierarchically organized up to four levels [20]. The three broad areas (environmental and occupational, behavioural, and metabolic factors) constitute level 1, and levels 2–4 gain higher specificity. For example, among behavioural risk factors, a level 2 factor is “Child and maternal malnutrition”, which is then further broken down into six different level 3 factors, including “Suboptimal breastfeeding”, which, in turn, is broken down into two different level 4 factors, namely “Non-exclusive breastfeeding” and “Discontinued breastfeeding”. For the purpose of this review, we agreed upon a list of 24 factors (mostly level 2), which enabled us to cover the whole set of GBD-defined risk factors (see Supplementary Table 1 for the full list of risk factors herein employed). Our list included 7 environmental and occupational risk factors, 11 behavioural risk factors, and 6 metabolic risk factors.

For the purpose of this review, we selected the presence of any significant association between the risk factor and the PROM. Different scenarios were therefore envisaged, as shown in the example below, built around Body Mass Index (BMI), defined as weight in kg divided by square of height in meters) and the 6-item Headache Impact Test (HIT-6) [27]. Both have continuous scores and can be divided into subgroups, *e.g.* for BMI normal weight, overweight and obesity, and for HIT-6 little or no impact, some impact, substantial impact, and severe impact. The scenarios include: a) linear association models between HIT-6 and BMI score, such as linear correlations (*e.g.* Pearson's correlations) or categorical associations (*e.g.* chi-squared test); b) prediction models, such as linear regressions in which BMI predicts HIT-6, or logistic regression in which BMI grades predict HIT-6 grades; c) groups difference models, in which patients with different BMI grades show different HIT-6 scores (*e.g.* t-test, ANOVA or non-parametric equivalents); d) repeated measures designs, where variation in BMI is associated to variation in HIT-6.

Given the descriptive nature of this review, we just highlighted the presence of these connections: if at least one connection was reported, we collected information on diagnoses, total sample size, percentage of female patients and age. Finally, we assessed whether the HIT-6 [27] and the Migraine Disability Assessment (MIDAS) [28] were used jointly.

Data analysis

A descriptive analysis was employed to report the associations between disability measures and the presence/absence of specific risk factors, accounting for diagnoses and the age of patients. Although in some of the included papers a causal relation between exposure to a risk factor and disability as described with a PROM could be established, we always referred to “associations” because this was, in a sense, the common denominator across different possible approaches to data analysis used across papers.


If appropriate, a specific meta-analysis based on a previously developed 0–1 coefficient built upon MIDAS and HIT-6 [25] was carried out.

Results

After duplicate exclusion, a total of 7624 records were subject to selection, and of them, 64 were included in the review (see Fig. 1 for PRISMA diagram) [29–92]. Double check agreement was 0.838 at abstract check and 0.947 at full-text evaluation.

The majority of included studies, 53 out of 64, addressed migraine only [29–81], two studies addressed CH only [82, 83], one was on TTH only [84], three were on non-specified headache disorders [85–87], four were on mixed populations of migraine and TTH patients [88–91], and one paper was on a mixed population of patients with migraine and non-specified headaches [92]. A total of 97,846 patients were enrolled in the studies herein selected: the vast majority, *i.e.* 88,481, corresponding to 90.4% of the patients, had migraine; 7777 had TTH (7.9%), and the remaining 1.7% had either CH or non-specified headaches. Females number was available for 62 studies, for a total of 74,516 females out of 97,691 patients, corresponding to 76.3%. Almost all studies were on adult populations, three [79, 90, 92] were on paediatric patients, and two were on mixed populations of adolescents and young adults [44, 73].

Taken at the broad level, a total of 86 matches were found in 64 papers. The most common risk factors were behavioural ones (with a total of 53 matches), but the single most common factor was high BMI, reported in 21 studies. Table 1 presents an overview of the risk factors associated to disability in the three primary headache disorders. Detailed information on the content of the selected papers is available in Supplementary Material.

Fig. 1 Flowchart of study selection

Environmental and occupational risk factors

Environmental and Occupational Risk Factors were reported in four studies, for a total of four matches and 290 patients, 86.2% of whom had migraine [64, 67, 80, 91].

Few associations were found: the most common association was with climate issues, specifically non-optimal temperatures, retrieved in two studies on migraine patients. The association was, however, not clearly defined in terms of high or low temperature in one of the studies [67], whereas in the second it was associated to sunny periods in far northern regions [80].

Behavioural risk factors

Behavioural Risk Factors were reported in 39 studies, for a total of 53 single matches and 27,589 patients, 93.9% of whom with migraine [30, 33, 37–39, 41, 43–51, 53, 59–63, 65–68, 70, 73, 74, 76, 78, 79, 82–87, 89, 92].

The most commonly reported associations were with dietary habits, retrieved in a total of 14 different studies,

of which 12 were conducted on patients with migraine [43, 46–51, 61, 68, 70, 74, 76], one on patients with TTH [84], and one on patients with non-specified headache disorders [87]. Results showed a negative effect of the scarce adherence to the Mediterranean diet, rather than of a poor-variety diet: in particular, high consumption of processed meat, sweetened beverages and high salt intake, as well as low consumption of fruit/vegetables, whole grains and omega-3 fatty acids were associated to a worse disability profile.

Nine studies reported a negative impact of low physical activity and disability, both in patients with migraine [47, 54, 59, 60, 63, 65, 78, 92] and in patients with non-specified headache disorders [86, 92]. Such a factor was sometimes simply referred to as “exercising regularly”, whereas in other papers a precise indication of the amount of activity, which is considered as a gold standard or prescribed as part of a clinical trial (e.g. at least 150 min/week moderate exercise [93]), was reported. Also, the concept of effort related to physical activity is

Table 1 Overview of risk factors for disability in primary headaches

Risk Factors	No. of Studies with association	Migraine	TTH	CH	Not specified	All Patients	% of females
All Available Risk Factors	64	88,481	7777	379	1209	97,846	76.3%
Environmental & occupational risks	4	250	40			290	74.5%
Non-optimal temperature (High/Low)	2	120				120	90.8%
Occupational exposure to carcinogens, pollution, and other chemicals	1	90				90	NR
Occupational exposure to noise	1	40	40			80	50.0%
Behavioural risks	39	25,928	86	379	1196	27,589	78.7%
Tobacco smoking	8	18,549		172		18,721	77.3%
High alcohol use	7	1432	62	207	92	1793	80.0%
Drug use (illicit)	2	11,674				11,674	75.5%
Diet low in fruit, vegetables, legumes, whole grains, nuts & seeds, milk, fiber, calcium, omega-3 fatty acids omega-6 fatty acids	10	1639			84	1723	84.2%
Diet high in red meat, processed meat, sugar-sweetened beverages, trans fatty acids, sodium/salt	11	2294	24		84	2402	84.4%
Intimate partner violence	2	866			92	958	78.0%
Childhood sexual abuse and bullying	4	3258				3258	87.4%
Low physical activity	9	1264			1029	2284	73.2%
Metabolic risks	26	80,481	7651	13	88,145	75.8%	
High fasting plasma glucose	4	12,258				12,258	76.5%
High LDL cholesterol	3	12,078				12,078	76.2%
High systolic blood pressure	1	11,837				11,837	76.0%
High BMI	21	79,819	7651		13	87,483	75.3%

Note. LDL, Low-Density Lipoprotein; BMI, Body Mass Index; TTH, Tension-Type Headache; CH, Cluster Headache

variable: referred to a self-description, measured through heart rate (e.g. 65% of age-specific maximum heart rate), or measured with perceived exertion scales [94].

Eight studies highlighted a negative impact of tobacco smoking on the disability of patients. Seven of them were on patients with migraine [30, 33, 44, 45, 47, 66, 73] and one on patients with CH [82]. All studies on migraine divided patients as active smokers and non-smokers, whereas the study on CH addressed the number of smoked cigarettes, smoking duration and implemented a smoking index, *i.e.* the product of the number of cigarettes smoked per day by the total number of years in which patients had smoked, which enabled addressing both group comparisons and linear relationships with smoking severity.

The association with alcohol use was explored in seven studies, and this was the only risk factor which was studied across all primary headaches: four studies were on patients with migraine only [41, 43, 67, 73], one on patients with CH only [83], one on patients with non-specified headache [85], and one mixing patients with migraine or TTH [89]. In all these studies, alcohol consumption was recorded as presence *vs.* absence of intake, with no consideration of the amount of intake, defined with standard drinks and therefore with categories based on frequency and quantity of intake (e.g. occasional drinkers *vs.* heavy drinkers [95]).

Themes connected to violence and abuse were reported in a total of five different manuscripts [37–39, 62, 85]: childhood abuse and bullying in relation to adult migraine-related disability were reported in four manuscripts [37–39, 62]; two studies addressed adult partner violence in relation to disability in both migraine and non-specified headache patients [39, 85]. The theme of abuse was addressed both with single questions (e.g. have you ever experienced some kind of abuse such as emotional, verbal, physical or sexual?), or with questionnaires such as the Childhood Trauma Questionnaire (CTQ) which enables gathering information on childhood traumatic events addressing both abuse (physical, sexual, and emotional), and neglect (both physical and emotional) [96]. Emotional abuse, physical neglect, as well as witnessing abuse in the family were the traumatic experiences associated to headache disability. Intimate violence was also shown to be associated to post-traumatic stress disorder, based on a study on a sample of females with migraine [85].

Metabolic risk factors

Metabolic Risk Factors were reported in 26 studies, for a total of 29 single matches and 88,145 patients, 91.3% of whom with migraine [29–36, 40, 42, 44, 47, 52, 53, 55–58, 69, 71, 72, 75, 77, 81, 88, 90].

The most commonly addressed risk factor for higher disability was high BMI, which was the single most frequently addressed risk factor, both in terms of amount of studies (21 out of 64 included, *i.e.* 32.8% of the total) and in terms of the amount of patients in which such relation was observed (87,483 out of 97,877, corresponding to 89.4% of the total) [29–36, 40, 42, 44, 47, 52, 55, 56, 71, 72, 75, 77, 88, 90]. All studies addressing BMI as a risk factor included people with migraine, and two of them also had mixed populations of people with migraine and TTH [88], or with migraine, TTH, and non-specified headache [90].

With regard to other metabolic factors, high fasting plasma glucose was found in relation to disability in migraine patients in four different studies [29, 53, 58, 81], with different indicators of glucose metabolism being found to be associated to higher disability. High LDL (Low-Density Lipoprotein) cholesterol was found to be associated to disability in migraine patients in three studies [29, 57, 69], and high systolic blood pressure in one study [29]. Specifically, this study [29] was the only one in which all four retrieved metabolic risk factors were included in the analyses.

Risk factors by disease and age group

As previously mentioned, almost all studies were on adults with migraine. Two studies were on patients with CH, and they showed a relation with behavioural risk factors, namely alcohol use and tobacco smoking [82, 83]. Five were on patients with TTH, finding associations with the following: environmental & occupational factors, specifically occupational noise [91]; behavioural factors, specifically diet high in red meat, processed meat, sugar-sweetened beverages, trans fatty acids, sodium/salt, and alcohol use [84, 89]; the metabolic factors, specifically high BMI [88, 90].

With regard to the age of patients, five studies in total included adolescents [44, 73, 79, 90, 92], and of them, two had a mixed populations of adolescents and young adults [44, 73]. Two risk factors were reported twice, namely the metabolic factor high BMI, and the behavioural factor smoking, both in the studies on mixed populations [44, 73]. High alcohol use, illicit drug use and low physical activity were reported once in three different studies.

Employed disability measures

The disability measures that were most commonly used were the HIT-6 and the MIDAS [27, 28], which were used together in only four studies [43, 75, 76, 79], none of which on the same risk factor – high alcohol use, and diet high in red meat, processed meat, sugar-sweetened beverages, trans fatty acids, sodium/salt [43]; high BMI [75]; diet low in fruit, vegetables, legumes, whole grains, nuts & seeds, milk, fiber, calcium, omega-3, omega-6 fatty

acids [76]; illicit drugs use [79] – which did not enable us to apply for further analyses. Few other measures were employed, including the MIGSEV and PARADISE-24 [97, 98].

Discussion

Taken as a whole, the results of the present review suggest that part of the disability related to headache disorders, and to migraine in particular, might be avoided by acting on a set of risk factors. In particular, metabolic risk factors (high BMI, high fasting plasma glucose, and LDL cholesterol) and behavioural risk factors (low physical activity, inadequate dietary habits, tobacco smoking, and alcohol consumption) are the most suitable for large-scale public health interventions. In fact, the risk factors herein reported have been most often studied in relation to headache attack occurrence, but not deeply in terms of their impact on the disability of patients or disease burden, which is the main reason for the limited number of eligible publications in relation to the amount of retrieved records, and the unsuitability for conducting meta-analysis using the previously developed 0–1 coefficient built upon MIDAS and HIT-6 [25]. In turn, such impossibility prevented us from providing information on the causal direction and strength of the associations herein presented. Nevertheless, elements of interest have been found, and some hypotheses on the way in which the retrieved risk factors might play a role in the public health approach to headache disorders can be formulated.

High BMI and other metabolic factors

An increasing body of evidence indicates that excess body weight is an important modifiable risk factor for both the onset and progression of headache disorders, particularly migraine [99]. Epidemiological studies have consistently demonstrated a bidirectional association between elevated BMI and migraine: individuals with obesity show a higher prevalence of both episodic and chronic migraine, while recurrent migraine attacks can contribute to sedentary behaviour and weight gain. For example, a population-based meta-analysis found that overweight and obesity are risk factors for frequent or chronic migraine, particularly among women [100]. Another study observed that total body obesity (measured by BMI) and abdominal obesity are associated to higher migraine prevalence and increased attack frequency [101]. Increased BMI is a marker of disability, primarily due to mobility limitations and heightened pain sensitivity [102]. However, increased disability was also found in relation to migraine-specific outcomes. Therefore, it is reasonable to hypothesize that it is due to mechanisms that are shared between migraine and obesity, such as limitations in social situations and stigma

[103]. Consequently, factors related to the lived experience of having migraine and high BMI complement the biological underpinnings of migraine expression and pathophysiology.

The mechanisms underlying this relationship are multifactorial. Adipose tissue acts as an active endocrine organ, producing pro-inflammatory cytokines such as TNF- α and interleukins, which may exacerbate neuroinflammation and alter pain pathways [104]. Moreover, obesity is associated to insulin resistance, impaired endothelial function, and increased oxidative stress, all of which may modulate migraine susceptibility and chronicity and may contribute to increased cardiovascular risk [105]. In fact, according to the findings of the present study, among the metabolic risk factors addressed for higher disability, the most investigated was high BMI. Interestingly, despite the close interplay between BMI and lipid metabolism, particularly with LDL cholesterol levels, the relation with the latter was poorly examined. In one study, higher LDL cholesterol levels were significantly associated to increased migraine severity, supporting the hypothesis that dyslipidemia may contribute to headache burden through vascular and inflammatory mechanisms [106].

Given the high prevalence of both obesity and migraine in the general population, strategies targeting BMI represent a key component of large-scale preventive approaches. Integrating weight management into migraine care may not only improve headache outcomes but also reduce the burden of associated comorbidities such as cardiovascular disease and type 2 diabetes [105]. In particular, the results of the Chronic Migraine Epidemiology and Outcomes Study (CaMEO) [29] highlighted that patients with high cholesterol have a higher prevalence of chronic migraine, higher disability (as assessed with MIDAS score) and experience more allodynia and medication overuse. Another cross-sectional study that included 266 female patients observed a statistically significant correlation between higher consumption of calories, carbohydrates, proteins, and fats, with severe migraine pain and disability [53]. Hence, it is possible to hypothesize that these factors are involved in increased disability due to a reduction in pain thresholds. This is in agreement with the results of a recent single-blind, crossover, randomized, controlled trial, according to which ingesting 75 g glucose increases pain sensitivity, while decreasing pain inhibitory responses on pressure pain thresholds [107]. Clinical intervention studies also lend support to the idea that weight loss can improve migraine outcomes. In a randomized controlled trial, a very low-calorie ketogenic diet reduced monthly migraine days and severity compared to a hypocaloric balanced diet in overweight patients with high-frequency episodic migraine [76]. Bariatric surgery has likewise

been associated to marked alleviation of migraine severity, shorter duration of attacks, and more migraine-free days in obese patients with migraine, compared to non-surgical weight loss methods [108]. Future, adequately designed and powered clinical trials are mandatory to confirm this hypothesis, along with preclinical studies aimed at elucidating the underlying mechanisms.

Low physical activity

Migraine patients often lead sedentary lives [109]; in fact, physical inactivity is one of the targets of the education programs of patients [18, 19]. However, physical inactivity might also be due to fears that exercise may trigger an attack—a concern based on prior exercise-induced episodes. To overcome this fear-avoidance cycle known as kinesiophobia, it is crucial that patients receive proper explanations about why, how, and when it is safe to exercise. In recent years, WHO guidelines on physical activity have been provided, suggesting that adults should undertake regular physical activity to improve several health domains (including overweight and obesity, hypercholesterolemia, and diabetes) as well as decrease mortality [110]. Exercise at appropriate intensity and timing—avoiding vigorous activity during the pre-ictal or ictal phases—has demonstrated effective outcomes by optimizing therapeutic windows.

Systematic reviews establish that aerobic exercise reduces migraine days [111, 112], while a randomized controlled trial showed that 40-minute sessions three times weekly over three months yielded improvements equivalent to topiramate prophylaxis [113]. In migraine patients with co-existing TTH, aerobic exercise has proven not only safe but also efficacious in reducing overall headache burden [114]. Strength training appears superior to aerobic exercise in reducing migraine burden [115], with a combination of muscle-strengthening and vigorous activities yielding a 52% reduction of migraine occurrence [116]. Integrating regular exercise with regular lifestyle behaviours – consistent sleep, hydration, mealtimes – is essential [117]. Pacing through gradual exposure enhances self-efficacy and mitigates psychological barriers [118], which might be beneficial also in terms of stigma reduction: by participating in group activities aimed to increase regular physical activity, patients have the opportunity to form social relationships, which, in turn, reduces isolation. Educating headache patients, particularly those with migraine, about the safety and benefits of exercise, explaining its mechanisms and the value of regular practice, improves adherence and cultivates a resilient and healthier lifestyle, as exercising regularly is also a way to reduce excess weight.

Dietary factors

The role of dietary factors in the burden of headache disorders is still debated, as it is difficult to precisely evaluate dietary habits. Diet changes widely among different individuals, and within the same individual over time. Moreover, it is difficult to keep track of nutrients, as the best method to monitor dietary habits is to administer food frequency questionnaires that, in most cases, are retrospective or cross-sectional, and do not depict the changing dietary habits of individuals over time. However, keeping track of dietary habits is of importance, as these are commonly recognised (or perceived) as triggers for headaches, particularly migraine headaches [119, 120].

Some foods, such as red wine, cheese, crustaceans, and chocolate, are often reported as triggers for migraine attacks [121]; however, the degree to which these might actually “provoke” a headache attack is debatable. For example, some of the most commonly recognised dietary factors (e.g. nitrite, tyramine, caffeine, fats and several condiments) were not differently reported by patients with episodic and chronic migraine [120]. Besides, diets rich in carbohydrates can contribute to worsening insulin resistance, which is impaired in individuals with migraine according to observational data [58, 122–125], and has been described as a risk factor for increased disability [58, 81, 124]. An unbalanced diet can also contribute to the development of overweight or obesity, which are associated to migraine chronification, as previously discussed [126], and to higher disability *per se*. For headache disorders different from migraine, the relationship between dietary factors and the burden of headache has not been adequately studied yet. A study in an the Asian population showed that chocolate and coffee were significantly associated to migraine compared to TTH [127]. Questionnaires and inventories that specifically address headache triggers should be developed to determine whether certain factors are disease-specific contributors to worsening health and disability across different headache disorders [120].

Some special diets can be used as a headache treatment. Low-calorie ketogenic diet is able to prevent migraine [128] and cluster headache attacks [129]. However, the ketogenic diet is a special and imbalanced nutritional regime that is different from usual diets, and should be limited to individuals not responding to preventive migraine drugs. There is no clear evidence to prescribe an “ideal diet” that fits for all and that should be recommended to prevent headache disorders. However, according to our findings, the Mediterranean diet seems to be the best regimen in individuals with headache who do not require dietary limitations or a special therapeutic nutritional regimen. To better address the role of dietary factors on headache burden, further large, prospective

studies are needed both in migraine and in other headache disorders, with replicable methodology and clear results.

Tobacco and alcohol

Tobacco and alcohol consumption are among the most important behavioural and modifiable risk factors for all-cause YLDs: smoking was ranked as the third most important factor, and second among behavioural ones, accounting for 2.6% of all-cause YLDs; whereas high alcohol consumption was ranked as the eighth factor, and fourth among behavioural ones, accounting for 1.6% of all-cause YLDs [1]. Tobacco use is a well-known risk factor for the development of many chronic diseases [105, 130]. The exact relationship between nicotine use or exposure and primary headaches remains unknown. In a recent meta-analysis of 37 studies, the overall prevalence of tobacco smoking in primary headaches was 32% [131]. The prevalence was 20% among migraine patients, 19% among those with TTH and 65% among those with cluster headache. Current smoking is also associated to an increased risk of migraine and a reduced risk of TTH. This review found no association between past smoking and migraine, and no association between current smoking and cluster headache [131], despite such an association being previously observed [82, 132], and a recent genome-wide association study meta-analysis indicated that smoking is a causal risk factor for cluster headache [133].

Many migraine patients believe that smoking worsens their condition, although this relationship has not been clearly established over the past 50 years. In one of the earliest studies, Volans and Castleden reported that half of the patients believed that smoking increased the intensity of their migraine pain [134], with similar results reported more recently by López-Mesonero and colleagues [135]. Another study involving 4,560 participants from the National Health and Nutrition Examination Survey found that, among adults who had never smoked, heavy exposure to environmental tobacco smoke, reflected by serum cotinine concentrations (a marker of tobacco exposure), was significantly associated to severe headache or migraine [136]. Despite their widespread use among young people prone to primary headaches, the impact of electronic cigarettes has not been examined yet. The reason why smoking was found to be a risk factor for increased disability is unclear. A potential hypothesis is that smoking is associated, in migraine patients, to the development of cranial autonomic symptoms which are typical of trigeminal autonomic cephalgias [137], and to higher severity, frequency, and duration of attacks [138–140].

Alcohol consumption has been associated to the occurrence of several types of headaches, including primary

headache disorders such as migraine and cluster headache, and secondary ones, such as alcohol-induced headache, which can occur shortly after drinking, or several hours later (the so-called “*hangover headache*”) [141]. Alcohol is also a major risk factor for chronic diseases regardless of age and gender. Among primary headaches, alcohol, particularly red wine, has long been considered a potential trigger for migraine attacks [142]. Red wine is the alcoholic beverage most frequently reported by patients to precipitate headache, while other alcoholic drinks, such as beer, white wine or spirits, appear to play a less consistent and generally weaker role. The higher triggering potential of red wine may be related to its richer content in biologically active compounds such as histamine and tyramine, which can influence vascular tone and modulate inflammatory pathways [143]. Nonetheless, the specific contribution of these components remains debated, as inter-individual variability in alcohol metabolism and sensitivity likely modulates the response. Retrospective studies indicate that about one-third of migraine patients report alcohol as a precipitating factor, although only around 10% identify it as a frequent or consistent trigger [144]. In contrast, prospective studies have shown a limited or absent role, suggesting that the apparent inverse association between alcohol consumption and migraine may reflect reverse causality, whereby individuals with migraine tend to avoid alcohol, rather than alcohol providing a protective effect [145]. A meta-analysis of 126,173 participants with migraine found that the risk of migraine in alcohol drinkers is approximately 1.5 times lower than in non-drinkers (RR 0.71, 95% CI 0.57–0.89). An explanation for this phenomenon may indicate that it is migraine that leads to alcohol avoidance, rather than alcohol playing a protective role against migraine [146].

The way in which alcohol consumption impacts disability is likely due to the increase in headache frequency and intensity, as well as the impact on the associated symptoms like osmophobia. However, it has to be acknowledged that the consumption of alcoholic beverages is an activity which is carried out in social situations, and the consumption of moderate alcohol consumption has been associated to better quality of life among healthy adults as well [147, 148], and quality of life is a domain which is well connected to disability among individuals with migraine [149, 150].

Other factors

Two risk factors were not commonly associated to disability outcomes, despite their relevance for the onset and maintenance of headache disorders (and migraine in particular), namely high blood pressure and experiencing interpersonal violence in childhood or adulthood.

Clinical studies suggest that hypertension contributes to the progression from episodic to chronic migraine, with shared mechanisms with migraine such as autonomic dysregulation, disturbed renin-angiotensin system, and endothelial dysfunction [151]. However, surprisingly, high blood pressure was identified as a factor associated to disability in migraine patients in only one study [29], despite its recognized significance as a common comorbidity in migraine [152–155] and the use of anti-hypertensive agents, including beta-blockers, angiotensin II receptor antagonists, and angiotensin-converting enzyme inhibitors as prophylactic treatments. This gap in the literature underscores the necessity for more focused research to further investigate the role of elevated blood pressure in migraine-related disability, which, to date, is unclear and likely due to an effect on the measurement of disability (*i.e.* reliance on the MIDAS). Demonstrating the association between hypertension and disability outcomes may provide valuable insights for targeted interventions, highlighting the importance of managing hypertension to potentially reduce migraine-related disability and improve overall patient prognosis.

Behavioural risk factors in children and adolescents represent a particularly relevant but still underexplored dimension in relation to primary headache disorders. Among behavioural and psychosocial risk factors, the role of violence and abuse deserves specific consideration. Evidence suggests that emotional, physical, and sexual abuse, as well as neglect, may have long-lasting consequences on headache-related disability [37, 156, 157]. Studies adopting both single-question assessments and validated tools such as the CTQ consistently indicate that exposure to abuse and neglect is associated to a higher risk of developing disabling headache conditions later in life. Emotional abuse, physical neglect, and witnessing domestic violence have emerged as particularly relevant predictors, with up to 40% of migraine patients reporting at least one adverse childhood experience. In pediatric populations, the link between bullying, peer victimization, and headache is of growing concern. Adolescents exposed to recurrent bullying show increased prevalence of both migraine and tension-type headache, with odds ratios ranging from 1.5 to 2.3 compared to non-victimized peers [158, 159]. These findings suggest a potential cumulative effect of psychosocial stressors during neurodevelopmental stages, which may amplify pain perception and contribute to symptom chronicification. Intimate partner violence has also been associated to increased disability and comorbid post-traumatic stress disorder in adult women with migraine [160]. This suggests that early exposure to violence may interact with later adverse experiences to worsen the clinical course of headache disorders. Taken together, these observations highlight the need to systematically assess experiences of

abuse and violence in both research and clinical practice. Early identification of at-risk children and adolescents, combined with psychosocial support and school-based interventions, can mitigate the long-term impact of these traumatic experiences [160]. Furthermore, integrating trauma-informed approaches into headache management could represent an important step toward more effective care.

Employed outcome measures

An aspect that has to be taken into consideration in the interpretation of these results is that most of the research results presented herein have been produced using the MIDAS questionnaire. This poses a practical issue with the interpretation of data as MIDAS items are based upon the frequency of headaches; in fact, they refer to the number of days in which activities were not carried out, or partially carried out due to headache [28]. The MIDAS might pose a relevant recall bias in patients who do not keep a headache diary, and therefore need to give responses "by eye". The reliability of MIDAS, in particular for patients with chronic headaches, was in fact previously raised [161], and it is possible to presume that, in the context of severe headaches, those days with lower pain intensity might not be recalled [162]. This is part of the rationale for developing composite disability indexes that enable integration of disability information which are based on the frequency of headache-related problems (i.e. the MIDAS), and information which also account for their severity, like those reported in the HIT-6 or in the WHODAS-2, which provide information that, although correlated, are neither overlapping nor transposable [149]. Unfortunately, MIDAS and HIT-6 were jointly used only in four studies, which prevented us from exploiting the available 0–1 coefficients [25] and from running a full meta-analysis.

Limitations

Limitations to this study include the following. First, we were unable to locate eleven studies despite attempts using institutional library resources and direct messages to the corresponding authors. Second, our analysis is limited to the observation of a relation between the exposure to a risk factor and the score to a disability measure. This situation might correspond to a variety of statistical relations, *e.g.* correlations or group differences. Therefore, the meaning of the observed relation might be variable, but the "direction" in the relation between disability measure and exposure to risk factor was maintained: the presence of risk factor was associated to worse disability profiles. Moreover, papers included in this review employed different PROMs to address disability, which conceptualized headache-related disability in different ways. For example, the MIDAS is based on the frequency of days

in which patients experience limitations, whereas other measures conceptualized disability in terms of "severity of limitations". Our inability to apply for a meta-analysis exploiting the previously developed 0–1 coefficients [25], due to the substantial lack of studies employing the MIDAS and HIT-6 together, prevented us to from calculating an estimate of the associations between risk factors and the coefficient that was developed with the aim of informing future GBD iterations. Third, we relied on a specific and "*a priori*" definition of risk factor, which had a positive impact, *i.e.* the fact that it is a recognised and valid one. However, it also limited the scope of the present review by excluding factors which might worsen the clinical profiles of patients and probably their disability level, examples of this include inadequate hydration, irregular meals (*e.g.* skipping breakfasts), or irregular sleep-wake patterns. Fourth, caution should be given in the interpretation of our results as broadly referred to primary headache as a broad group, as most of the papers herein included were on migraine.

Conclusions

In conclusion, this review found that several risk factors as defined by GBD taxonomy are associated to disability outcomes in patients with primary headaches, and in particular with migraine, as most of the literature is on migraine. Our results suggest that it might be possible to address headache-related disability by acting on a set of modifiable factors, with interventions that might be either tailored to the specific needs of patients or address the exposed populations as a whole.

At present, the results of our systematic review do not provide an indication of the direction or strength of the association between the risk factors and headache-related disability, which is due to our inability to apply for a meta-analysis exploiting the previously developed 0–1 coefficients [25]. In fact, studies are lacking that enable a direct evaluation of the direction and strength of the association between exposure to risk factors and disability outcomes in patients with headache disorders. Should future studies demonstrate the presence of a strong association this would surely have profound public health implications, considering the high prevalence of headache disorders. A recently published meta-analysis of population studies found that the one-year headache prevalence among the most exposed group, *i.e.* adults aged 18–65 which likely comprises most of the world's workforce, is approximately 65%, with migraine prevalence (including both episodic and chronic migraine) being 25% of the population, thus higher than previously reported [163].

Although our results do not enable to address how much of the headache-related disability might be attributed to the risk factors herein found, we believe that

the evidence we gathered here is sufficient to argue that future analyses addressing such associations deserve being carried out, and that future iterations of the GBD should estimate what is the amount of YLDs that can be attributable to some of the risk factors herein identified. To get to this point, longitudinal studies investigating causality between these risk factors and headache-related disability are needed. In fact, actions targeting risk factors might reduce disability that patients experience in their daily lives, and maybe also prevent the development of headache attacks, or reduce the risk of their chronicification. For example, a program targeting dietary aspects and exercise is reasonably expected to promote weight loss in those who need it, but also a reduction of fasting plasma glucose and LDL cholesterol: such interventions might therefore have an impact on disability reduction.

A recent editorial took a position on the opportunity to prioritise brain health strategies by incorporating neurological disorders within non-communicable disease (NCD) agendas. Including brain disorders, and therefore headaches, would give policy relevance to the strategies aimed to prevent disease onset and reduce their burden at population and individual levels, which is of relevance since brain disorders affect approximately 3.4 billion individuals globally [164]. However, it has to be noted that lack of inclusion of brain disorders among NCD agendas does not imply that public health interventions targeting NCDs such as diabetes, obesity, hypertension, and hypercholesterolemia cannot impact on brain disorders as well. Actually, brain disorders can largely benefit from policies against other NCDs [165]: what we are missing is the evidence on the amount of impact addressing risk factors common to many conditions may have for brain disorders, including headaches, which constitute the largest part of those with brain disorders (2.9 out of 3.4 billion individuals). This prevents us from directing health policies, and from evaluating their results: for this reason, research is needed to uncover how much health improvement and disability reduction can be achieved through these kind of intervention.

Abbreviations

BMI	Body Mass Index
CaMEO	Chronic Migraine Epidemiology and Outcomes Study
CGRP	Calcitonin Gene-Related Peptide
CH	Cluster Headache
CTQ	Childhood Trauma Questionnaire
DALYs	Disability-Adjusted Life Years
GBD	Global Burden of Disease Study
HIT-6	6-item Headache Impact Test
LDL	Low-Density Lipoprotein
MIDAS	Migraine Disability Assessment
NCDs	Non-communicable Diseases
PRISMA	Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PROMs	Patient-Reported Outcome Measures
SDG-3	Sustainable Development Goal 3
TTH	Tension-Type Headache

WHOiGAP	WHO Intersectoral Global Action Plan on Epilepsy and Other Neurological Disorders
YLDs	Years Lived with Disability
YLLs	Years of Life Lost

Supplementary information

The online version contains supplementary material available at <https://doi.org/10.1186/s10194-025-02233-7>.

Supplementary Material 1

Acknowledgements

Alberto Raggi is supported by the Italian Ministry of Health (RRC). Igor Petrušić is supported by the Ministry of Science, Technological Development and Innovation, Republic of Serbia (contract number: 451-03-136/2025-03/200146). The visual abstract was created in BioRender: Sebastianelli, G. (2025) <https://BioRender.com/qibnudm>.

Author contributions

Alberto Raggi planned the study, organized data search, the whole process of records screening and selection, drafted the introduction, methods, results and part of the discussion sections of the manuscript. Paolo Martelletti planned the study and supervised the whole manuscript. The remaining authors selected records, extracted data and drafted sections of the manuscript.

Funding

Not applicable.

Data availability

No datasets were generated or analysed during the current study.

Declarations

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Competing interests

Alberto Raggi, Associate Editor of the Journal of Headache and Pain, Head of Public Health Section of SN Comprehensive Clinical Medicine. Matteo Castaldo, Editorial Board Member of The Journal of Headache and Pain. Chia-Chun Chiang, Consultant for Pfizer, AbbVie, Amneal, Satsuma and eNeura. Research support from the American Heart Association, Pfizer and Lundbeck; Editorial Board Member of The Journal of Headache and Pain. Soo Jin Cho, Lecture honoraria from Organo Korea, Handok-Teva, Abbvie Inc, GC holdings, and SK Chemical over the past 24 months; Editorial Board Member of The Journal of Headache and Pain, and Editor in Chief of Headache and Pain Research. Min Kyung Chu, Lecture honoraria from Organo Korea, Handok-Teva, and SK Chemical over the past 24 months. Grants from the Yonsei University College of Medicine (6-2021-0229), the Korea Health Industry Development Institute (HV22C0106), and a National Research Foundation of Korea grant from the Korean Government (MSIT; 2022R1A2C1091767); Editorial Board Member of The Journal of Headache and Pain. Adriana Della Pietra, Editorial Board member of the Journal of Headache and Pain. Philip R Holland, Editorial Board member of the Journal of Headache and Pain. Andreas Kattem Husøy, Lecture honorarium from Teva in 2025; Editorial Board member of the Journal of Headache and Pain. Alejandro Labastida-Ramírez, Editorial Board member of the Journal of Headache and Pain. Ellina Lytvynak, Editorial Board member of the Journal of Headache and Pain, and of SN Comprehensive Clinical Medicine. Roberta Messina, Personal fees from AbbVie, Biomedia, Lundbeck, Organon, Pfizer, and Teva, and grants from the Italian Ministry of Health; Editorial Board Member of The Journal of Headache and Pain. Dilara Onan, Editorial Board Member of The Journal of Headache and Pain and SN Comprehensive Clinical Medicine. Agnese Onofri, Editorial Board Member of The Journal of Headache and Pain. Raffaele Ornello, Personal fees from AbbVie, Bayer, Eli Lilly, Lundbeck, Novartis, Organon, Pfizer, and Teva;

Editorial Board Member of The Journal of Headache and Pain, International Journal of Stroke, *Confinia Cephalalgica*, and *Arquivos de Neuropsiquiatria*. Lanfranco Pellesi, Editorial Board Member of Clinical and Translational Science, The Journal of Headache and Pain, BMC Neurology, Pain Research and Management, European Journal of Medical Research and Brain Conflux. Igor Petrušić, Editorial Board member of the Journal of Headache and Pain, Head of Imaging Section of SN Comprehensive Clinical Medicine. Francesca Puledda, Consultancy and speaker fees from TEVA, Abbvie, Pfizer, Organon; Associate Editor for Cephalgia and Cephalgia Reports and Editorial Board Member of The Journal of Headache and Pain. Bianca Raffaelli, Research grants from Lundbeck, Novartis, German Research Foundation, German Migraine and Headache Society, Else Kröner-Fresenius-Stiftung and personal fees from Abbvie/Allergan, Eli Lilly, Lundbeck, Novartis, Organon, Perfood and Teva; Editorial Board Member of The Journal of Headache and Pain and Cephalgia. Eloísa Rubio-Beltrán, Editorial Board Member of The Journal of Headache and Pain. Ruth Ruscheweyh, Travel grants and/or honoraria for lectures or advisory boards, and consulted for AbbVie, Betapharm, Lundbeck, Novartis, Pfizer and Teva. Editorial Board Member of The Journal of Headache and Pain. Damiana Scuteri, Editorial Board Member of The Journal of Headache and Pain. Gabriele Sebastianelli, Honoraria from AbbVie; Editorial Board Member of The Journal of Headache and Pain. Sebastian Straube, Grants from the Workers' Compensation Board – Alberta, the College of Physicians & Surgeons of Alberta, the Government of Alberta, and the Alberta Medical Association. Honoraria from the Occupational Medicine Specialists of Canada, the M.S.I. Foundation, the Canadian Centre of Recovery Excellence, The Policy Works, and Ontario Tech University; Editorial Board Member of The Journal of Headache and Pain, SN Comprehensive Clinical Medicine, and the Scandinavian Journal of Pain. Claudio Tana, Editorial Board Member of The Journal of Headache and Pain. Doga Vuralli, Editorial Board Member of The Journal of Headache and Pain. Marta Waliszewska-Prosót, Editorial Board Member of The Journal of Headache and Pain. Wei Wang, Editorial Board Member of The Journal of Headache and Pain, and of SN Comprehensive Clinical Medicine. William Wells-Gatnik, Editorial Board Member of The Journal of Headache and Pain, and of SN Comprehensive Clinical Medicine. Yohannes Woldeamanuel, Funding from the National Institute of Neurological Disorders and Stroke of the National Institutes of Health, K01NS124911; Editorial Board Member of Chronic Stress, Frontiers in Neurology, Frontiers in Pain Research, The Journal of Headache and Pain, Therapeutic Advances in Chronic Disease; Associate Editor of BMC Neurology. Jr-Wei Wu, Speaker honoraria from Biogen-Idec, Pfizer, AbbVie, Eli Lilly, Organon, and HAVA Bio-Pharma; Editorial Board Member of The Journal of Headache and Pain. Sophie Merve Yener, Editorial Board Member of The Journal of Headache and Pain. Barbara Corso, Editorial Board Member of The Journal of Headache and Pain. Paolo Martelletti, Editor in Chief of The Journal of Headache and Pain and of SN Comprehensive Clinical Medicine.

Author details

¹Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy

²Headache Centre, Department of Medicine and Surgery, University of Parma, Parma, Italy

³Clinical Psychophysiology and Clinical Neuropsychology Labs, University of Parma, Parma, Italy

⁴Department of Neurology, Mayo Clinic, Rochester, USA

⁵Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea

⁶Department of Neurology, Yonsei University College of Medicine, Seoul, Korea

⁷Department Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, US

⁸Headache Group, Wolfson Sensory Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK

⁹Department of Neuroscience and Movement Science, Norwegian University of Science and Technology Trondheim, Trondheim, Norway

¹⁰Department of Neurology, St Olavs University Hospital Neurology Clinic, Trondheim, Norway

¹¹Division of Neuroscience, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK

¹²Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK

¹³Division of Preventive Medicine, Department of Medicine, University of Alberta, Edmonton, Canada

¹⁴Neurology Unit and Neuroimaging Research Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy

¹⁵Vita-Salute San Raffaele University, Milan, Italy

¹⁶Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Yozgat Bozok University, Yozgat, Turkey

¹⁷Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy

¹⁸Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark

¹⁹Laboratory for Advanced Analysis of Neuroimages, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia

²⁰National Institute for Health Research (NIHR) King's Clinical Research Facility, King's College London, London, UK

²¹Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany

²²Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany

²³Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy

²⁴Department of Medicico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy

²⁵School of Public Health, University of Alberta, Edmonton, Canada

²⁶Internal Medicine Unit, Eastern Hospital, ASL Taranto, Taranto, Italy

²⁷Department of Neurology and Algology, Neuropsychiatry Center, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Faculty of Medicine Gazi University, Ankara, Turkey

²⁸Department of Neurology, Wroclaw Medical University, Wroclaw, Poland

²⁹Headache Center, Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China

³⁰Texas Tech University Health Sciences Center, El Paso, USA

³¹Circadian-Migraine Lab, Department of Neurology, Mayo Clinic Arizona, Phoenix, USA

³²Biobehavioral Pain Lab, Arizona State University, Phoenix, USA

³³Datta Meghe Medical College, Nagpur, India

³⁴Ex-Amplify Therapeutics Inc., San Diego, USA

³⁵Advanced Clinical & Research Center, Addis Abeba, Ethiopia

³⁶Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan

³⁷Migraine Foundation Australia, Melbourne, Victoria, Australia

³⁸Department of Neurology, Monash Health, Melbourne, Victoria, Australia

³⁹Neuroscience Institute, National Research Council (CNR), Padova, Italy

⁴⁰Unitelma Sapienza University of Rome, Rome, Italy

Received: 23 October 2025 / Accepted: 21 November 2025

Published online: 23 December 2025

References

1. GBD 2023 Disease and Injury and Risk Factor Collaborators (2025) Burden of 375 diseases and injuries, risk-attributable burden of 88 risk factors, and healthy life expectancy in 204 countries and territories, including 660 sub-national locations, 1990–2023: a systematic analysis for the Global Burden of Disease Study 2023. *Lancet* 406(10513):1873–1922
2. GBD 2021 Nervous System Disorders Collaborators (2024) Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. *Lancet Neurol* 23(4):344–381. [https://doi.org/10.1016/S1474-4422\(24\)00038-3](https://doi.org/10.1016/S1474-4422(24)00038-3)
3. Pan LH, Ling YH, Wang SJ, et al (2025) Hallmarks of primary headache: part 2 – Tension-type headache. *J Headache Pain* 26(1):164. <https://doi.org/10.1111/jhpa.12098>
4. Raggi A, Leonardi M, Arruda M, et al. (2024) Hallmarks of primary headache: part 1 - migraine. *J Headache Pain* 25(1):189. <https://doi.org/10.1186/s10194-024-01889-x>
5. GBD 2021 Headache Collaborators (2025) Global, regional, and national burden of headache disorders, 1990–2021, with forecasts to 2050: a Global

Burden of Disease study 2021. *Cell Rep Med* 18:102348. <https://doi.org/10.16/j.xcrm.2025.102348>

- 6. Coppola G, Arruda MA, Ashina M, et al (2025) Hallmarks of primary headache: part 3 – cluster headache. *J Headache Pain* 26(1):196. <https://doi.org/10.1186/s10194-025-02145-6>
- 7. Haghdoost F, Puledda F, Garcia-Azorin D, et al (2023) Evaluating the efficacy of CGRP mAbs and gepants for the preventive treatment of migraine: a systematic review and network meta-analysis of phase 3 randomised controlled trials. *Cephalalgia* 43:43331024231159366 <https://doi.org/10.1177/03331024231159366>
- 8. Robbins MS (2021) Diagnosis and management of headache: a review. *JAMA* 325(18):1874–1885. <https://doi.org/10.1001/jama.2021.1640>. PMID: 33974014
- 9. Goadsby PJ, Dodick DW, Leone M, et al (2019) Trial of galcanezumab in prevention of episodic cluster headache. *N Engl J Med* 381:132–141. <https://doi.org/10.1056/nejmoa1813440>
- 10. Jensen RH, Tassorelli C, Tepper SJ, et al (2025) Efficacy and safety of eptinezumab in episodic cluster headache: a randomized clinical trial. *JAMA Neurol* e251317. <https://doi.org/10.1001/jamaneurol.2025.1317>
- 11. Tassorelli C, Jensen RH, Goadsby PJ, et al (2025) Long-term safety, tolerability, and efficacy of eptinezumab in chronic cluster headache (CHRONICLE): an open-label safety trial. *Lancet Neurol* 24:429–440. [https://doi.org/10.1016/S1474-4422\(25\)00065-1](https://doi.org/10.1016/S1474-4422(25)00065-1)
- 12. Lazaro-Hernandez C, Caronna E, Rosell-Mirmi J, et al (2024) Early and annual projected savings from anti-CGRP monoclonal antibodies in migraine prevention: a cost-benefit analysis in the working-age population. *J Headache Pain* 25(1):21. <https://doi.org/10.1186/s10194-024-01727-0>
- 13. Wennersten T, Lindh JD, Nilsson Remahl AIM, et al (2025) Higher socioeconomic status is associated with dispensation of monoclonal antibodies against calcitonin gene-related peptide in migraine: a nested case-control study. *Cephalalgia* 45(6):3331024251348648. <https://doi.org/10.1177/03331024251348648>
- 14. United Nations (2015) Transforming our world: the 2030 agenda for sustainable development. United Nations, New York. A/RES/70/1. Available at: <https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf> (Accessed 13/08/2023)
- 15. World Health Organization (2023) Intersectoral global action plan on Epilepsy and other neurological disorders 2022–2031. World Health Organization, Geneva
- 16. Martelletti P, Leonardi M, Ashina M, et al (2023) Rethinking headache as a global public health case model for reaching the SDG 3 HEALTH by 2030. *J Headache Pain* 24(1):140. <https://doi.org/10.1186/s10194-023-01666-2>
- 17. Leonardi M, Martelletti P, Burstein R, et al (2024) The world health organization intersectoral global action plan on epilepsy and other neurological disorders and the headache revolution: from headache burden to a global action plan for headache disorders. *J Headache Pain* 25(1):4. <https://doi.org/0.1186/s10194-023-01700-3>
- 18. Seng EK, Martin PR, Houle TT (2022) Lifestyle factors and migraine. *Lancet Neurol* 21(10):911–921. [https://doi.org/10.1016/S1474-4422\(22\)00211-3](https://doi.org/10.1016/S1474-4422(22)00211-3)
- 19. Rosignoli C, Ornello R, Onofri A, et al (2022) Applying a biopsychosocial model to migraine: rationale and clinical implications. *J Headache Pain* 23(1):100. <https://doi.org/10.1186/s10194-022-01471-3>
- 20. GBD 2021 Risk Factors Collaborators (2024) Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. *Lancet* 403(10440):2162–2203. [https://doi.org/10.1016/S0140-6736\(24\)00933-4](https://doi.org/10.1016/S0140-6736(24)00933-4)
- 21. Steiner TJ, Stovner LJ, Jensen R, et al (2020) Migraine remains second among the world's causes of disability, and first among young women: findings from GBD2019. *J Headache Pain* 21(1):137. <https://doi.org/10.1186/s10194-020-01208-0>
- 22. Steiner TJ, Husøy A, Stovner LJ (2024) GBD2021: headache disorders and global lost health - a focus on children, and a view forward. *J Headache Pain* 25(1):91. <https://doi.org/10.1186/s10194-024-01795-2>
- 23. Moher D, Liberati A, Tetzlaff J, et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med* 151(4):264–9,W64. <https://doi.org/10.1371/journal.pmed.1000097>
- 24. D'Amico D, Tepper SJ, Guastafierro E, et al (2021) Mapping assessments instruments for headache disorders against the ICF biopsychosocial model of health and disability. *Int J Environ Res Public Health* 18(1):246. <https://doi.org/10.3390/ijerph18010246>
- 25. Waliszewska-Prosól M, Montisano DA, Antolak M, et al (2024) The impact of primary headaches on disability outcomes: a literature review and meta-analysis to inform future iterations of the Global Burden of Disease study. *J Headache Pain* 25(1):27. <https://doi.org/10.1186/s10194-024-01735-0>
- 26. Ouzzani M, Hammady H, Fedorowicz Z, et al (2016) Rayyan—a web and mobile app for systematic reviews. *Syst Rev* 5:210. <https://doi.org/10.1186/s13643-016-0384-4>
- 27. Kosinski MR, Bayliss M, Björner J, et al (2003) A six-item short-form survey for measuring headache impact: the HIT-6. *Qual Life Res* 12:963–974. <https://doi.org/10.1023/a:1026119331193>
- 28. Stewart WF, Lipton RB, Whyte J, et al (1999) An international study to assess reliability of the migraine disability assessment (MIDAS) score. *Neurology* 53:988–994. <https://doi.org/10.1212/wnl.53.5.988>
- 29. Lipton RB, Fanning KM, Buse DC, et al (2018) Identifying natural subgroups of migraine based on comorbidity and concomitant condition profiles: results of the chronic migraine epidemiology and outcomes (CaMEO) study. *Headache* 58(7):933–947. <https://doi.org/10.1111/head.13342>
- 30. Buse DC, Muenzel EJ, Zagar AJ, et al (2025) Rates and risk factors for migraine progression using multiple definitions of progression: results of the longitudinal OVERCOME (US) study. *Headache* 65(4):589–607. <https://doi.org/10.1111/head.14925>
- 31. Ahmed Z, Honovich R, Thompson SF, et al (2023) Clinical characteristics and patient-reported outcomes of chronic and episodic migraine patients at a US tertiary headache center: a retrospective observational study. *Headache* 63(7):908–916. <https://doi.org/10.1111/head.14527>
- 32. Buse D, Manack A, Serrano D, et al. (2012) Headache impact of chronic and episodic migraine: results from the American Migraine prevalence and prevention study. *Headache* 52(1):3–17. <https://doi.org/10.1111/j.1526-4610.2011.02046.x>
- 33. Martin VT, Fanning KM, Serrano D, et al (2014) Chronic rhinitis and its association with headache frequency and disability in persons with migraine: results of the American Migraine prevalence and prevention (AMPP) study. *Cephalalgia* 34(5):336–348. <https://doi.org/10.1177/0333102413512031>
- 34. Chia V, Bogdanov A, Yusuf A, et al (2020) Characteristics of migraine patients with Migraine disability assessment (MIDAS) scores in real-world clinical practice. *Cephalalgia Rep* 3. <https://doi.org/10.1177/2515816320928463>
- 35. Chase BA, Frigerio R, Rubin S, et al (2025) Migraine genetic susceptibility does not strongly influence Migraine characteristics and outcomes in a treated, real-world, community cohort. *J Clin Med* 14(2):536. <https://doi.org/10.3390/jcm14020536>
- 36. Téllez-Zenteno JF, Pahwa DR, Hernandez-Ronquillo L, et al (2010) Association between body mass index and migraine. *Eur Neurol* 64(3):134–139. <https://doi.org/10.1159/000316656>
- 37. Tietjen GE, Brandes JL, Peterlin BL, et al (2010) Childhood maltreatment and migraine (part II). Emotional abuse as a risk factor for headache chronicification. *Headache* 50(1):32–41. <https://doi.org/10.1111/j.1526-4610.2009.01557.x>
- 38. Tietjen GE, Brandes JL, Digre KB, et al (2007) History of childhood maltreatment is associated with comorbid depression in women with migraine. *Neurology* 69(10):959–968. <https://doi.org/10.1212/01.wnl.0000271383.6037667>
- 39. Trivedi M, Dumkrieger G, Chong CD, et al (2024) A history of abuse is associated with more severe migraine- and pain-related disability: results from the American registry for migraine research. *Headache* 64(9):1109–1123. <https://doi.org/10.1111/head.14787>
- 40. Tietjen GE, Peterlin BL, Brandes JL, et al (2007) Depression and anxiety: effect on the migraine-obesity relationship. *Headache* 47(6):866–875. <https://doi.org/10.1111/j.1526-4610.2007.00810.x>
- 41. Singh S, Sarda K, Hegde R (2017) A Pan-India study to assess the quality of life, symptom profile and management trends in patients with migraine: a cross-sectional study. *J Assoc Physicians India* 65(12):63–69
- 42. Bao J, Ma M, Dong S, et al (2020) Early age of migraine onset is independently related to cognitive decline and symptoms of depression affect quality of life. *Curr Neurovasc Res* 17(2):177–187. <https://doi.org/10.2174/156720261766200207130659>
- 43. Vitali-Silva A, Bello VA, Poli-Frederico RC, et al (2024) Relationship between food triggers and sensory hypersensitivity in patients with migraine. *Arq Neuropsiquiatr* 82(1):1–7. <https://doi.org/10.1055/s-0044-1793934>
- 44. Almansour NA, Alsalamah SS, Alsubaie RS, et al (2025) Association between migraine severity and sleep quality: a nationwide cross-sectional study. *Front Neurol* 16:1529213. <https://doi.org/10.3389/fneur.2025.1529213>
- 45. İnanç Y, Orhan FÖ, İnanç Y (2018) The effects of Maras powder use on patients with migraine. *Neuropsychiatr Dis Treat* 14:1143–1148. <https://doi.org/10.2147/NDT.S164818>

46. Feyzpour M, Sedgi FM, Baghdadi G, et al (2024) Investigating the relationship between diet quality, lifestyle and healthy eating index with severity and migraine attacks: a cross-sectional study. *Front Nutr* 11:1510809. <https://doi.org/10.3389/fnut.2024.1510809>

47. Askarpour M, Sheikh A, Khorsha F, et al (2021) Association of plant-based dietary patterns with migraine headache severity and duration among women. *J Iran Med Couns* 4(1):12–24. <https://doi.org/10.18502/jimc.v4i1.5737>

48. Arab A, Khorvash F, Karimi E, et al (2023) Associations between adherence to Mediterranean dietary pattern and frequency, duration, and severity of migraine headache: a cross-sectional study. *Nutr Neurosci* 26(1):1–10. <https://doi.org/10.1080/1028415X.2021.2009162>

49. Balali A, Karimi E, Kazemi M, et al (2024) Associations between diet quality and migraine headaches: a cross-sectional study. *Nutr Neurosci* 27(7):677–687. <https://doi.org/10.1080/1028415X.2023.2244260>

50. Lotfi K, Askari G, Mohammad H, et al (2022) Association between dietary acid load and clinical features of migraine headaches among Iranian individuals. *Sci Rep* 12(1):2460. <https://doi.org/10.1038/s41598-022-06515-x>

51. Khorsha F, Mirzababaei A, Togha M, et al (2021) Association of dietary diversity score (DDS) and migraine headache severity among women. *Neurol Sci* 42(8):3403–3410. <https://doi.org/10.1007/s10072-020-04982-6>

52. Togha M, Nematgorgani S, Khorsha F, et al (2021) The relationship between major dietary patterns and disease severity among migraine patients. *Arch Neurosci* 8(2):e102414. <https://doi.org/10.5812/ans.102414>

53. Arabshahi V, Togha M, Khorsha F (2024) The association between dietary glycemic index and disease severity among the women with episodic migraine. *Nutr Neurosci* 27(12):1380–1390. <https://doi.org/10.1080/1028415X.2024.2338343>

54. AboTaleb HA, Al-Hayani MM, Alghamdi BS (2021) Migraine-related disabilities among Saudi Migraine patients and its association with social factors. *Arch Neurosci* 8(1):e108778. <https://doi.org/10.5812/ans.108778>

55. Bigal ME, Gironda M, Tepper SJ, et al (2006) Headache prevention outcome and body mass index. *Cephalgia* 26(4):445–450. <https://doi.org/10.1111/j.1468-2982.2005.01054x>

56. Ojha P, Malhotra V, Pandey N (2018) Association between generalized obesity and migraine features in Indian females. *Indian J Physiol Pharmacol* 62(4):453–457

57. Wu J, Yuan X, Zhao J, et al (2025) Association of the insulin resistance marker triglyceride glucose index with migraine: results of a cross-sectional and prospective cohort study. *J Oral Facial Pain Headache* 39(1):165–175. <https://doi.org/10.22514/jofph.2025.017>

58. Bhoi SK, Kalita J, Misra UK (2012) Metabolic syndrome and insulin resistance in migraine. *J Headache Pain* 13(4):321–326. <https://doi.org/10.1007/s10194-012-0416-y>

59. Domingues RB, Teixeira AL, Domingues SA (2011) Physical practice is associated with less functional disability in medical students with migraine. *Arq Neuropsiquiatr* 69(1):39–43. <https://doi.org/10.1590/s0004-282X2011000100009>

60. Toprak Celenay S, Korkut Z, Karaaslan Y, et al (2024) Relationship between pain activity patterns, and physical and psychological aspects and sleep quality in women with migraine. *Women Health* 64(8):662–673. <https://doi.org/10.1080/03630242.2024.2394791>

61. Fayed AI, Enam H, Abdel-Fattah AN, et al (2024) The correlation between the frequent intake of dietary migraine triggers and increased clinical features of migraine (analytical cross-sectional study from Egypt). *Sci Rep* 14(1):4150. <https://doi.org/10.1038/s41598-024-54339-8>

62. Demiryürek E Ö, Demiryürek BE, Tekin A, et al (2017) The association between childhood traumatic events and headache-related parameters in patients with Migraine: a cross-sectional study in Turkish population. *Noro Psikiyatration* 54(4):291–294. <https://doi.org/10.5152/npa.2016.8817>

63. Hagan KK, Li W, Mostofsky E, et al (2021) Prospective cohort study of routine exercise and headache outcomes among adults with episodic migraine. *Headache* 61(3):493–499. <https://doi.org/10.1111/head.14037>

64. Bakirhan H, Pehlivan M, Uyar Cankay T, et al (2022) Migraine severity, disability, and duration: is a good diet quality, high intake of phytochemicals and polyphenols important? *Front Nutr* 9:1041907. <https://doi.org/10.3389/fnut.022.1041907>

65. Diren G S, Kaya Ciddi P, et al (2023) Effect of physical activity level on pain, functionality, and quality of life in migraine patients. *Agri* 35(4):212–219. <https://doi.org/10.14744/agri.2022.26504>

66. Raggi A, Covelli V, Schiavolin S, et al (2016) Psychosocial difficulties in patients with episodic migraine: a cross-sectional study. *Neurol Sci* 37(12):1979–1986. <https://doi.org/10.1007/s10072-016-2705-8>

67. Cieza A, Añczewska M, Ayuso-Mateos JL, et al (2015) Understanding the impact of brain disorders: towards a 'Horizontal Epidemiology' of psychosocial difficulties and their determinants. *PLoS One* 10(9):e0136271. <https://doi.org/10.1371/journal.pone.0136271>

68. Bakirhan H, Yıldırın H, Uyar Cankay T (2022) Associations between diet quality, DASH and Mediterranean dietary patterns and migraine characteristics. *Nutr Neurosci* 25(11):2324–2334. <https://doi.org/10.1080/1028415X.2021.1963065>

69. Yıldırım AT, Şençan R, Öngün G, et al (2025) White matter cerebral lesions in patients with migraine and its relationship with the triglyceride-glucose index. *Turk J Neurol* 31(1):46–52. <https://doi.org/10.55697/tn.2025.249>

70. Wang HF, Liu WC, Zailani H, et al (2024) A 12-week randomized double-blind clinical trial of eicosapentaenoic acid intervention in episodic migraine. *Brain Behav Immun* 118:459–467. <https://doi.org/10.1016/j.bbi.2024.03.019>

71. Duarte H, Teixeira AL, Rocha NP, et al (2014) Increased serum levels of adiponectin in migraine. *J Neurol Sci* 342(1–2):186–188. <https://doi.org/10.1016/j.jns.2014.04.035>

72. Bulboaca A, Ursu C, Uifalean A, et al (2015) Correlation between migraine severity and comorbidities in episodic migraine patients. *Rom J Neurol* 14(2):85–89. <https://doi.org/10.37897/rjn.2015.2.4>

73. Bonfert MV, Sollmann N, Renner T, et al (2022) Burden of disease and lifestyle habits in adolescents and young adults prone to frequent episodic migraine: a secondary comparative analysis. *J Child Health Care* 26(2):215–227. <https://doi.org/10.1177/13674935211008712>

74. Mohammadnezhad G, Assarzadegan F, Koosha M, et al (2025) Eicosapentaenoic acid versus placebo as adjunctive therapy in chronic migraine: a randomized controlled trial. *Headache* 65(1):153–163. <https://doi.org/10.1111/head.14808>

75. Tereshko Y, Dal Bello S, Di Lorenzo C, et al (2023) 2:1 ketogenic diet and low-glycemic-index diet for the treatment of chronic and episodic migraine: a single-center real-life retrospective study. *J Headache Pain* 24(1):95. <https://doi.org/10.1186/s10194-023-01635-9>

76. Caprio M, Moriconi E, Camajani E, et al (2023) Very-low-calorie ketogenic diet vs hypocaloric balanced diet in the prevention of high-frequency episodic migraine: the EMIKETO randomized, controlled trial. *J Transl Med* 21(1):692. <https://doi.org/10.1186/s12967-023-04561-1>

77. Ligong Z, Jinjin Q, Chunfu C, et al (2015) Effect of obesity and leptin level on Migraineurs. *Med Sci Monit* 21:3270–3274. <https://doi.org/10.12659/msm.894666>

78. Gupta A, Kumar S, Rishi P (2023) Effect of aerobic exercises and therapeutic pain neuroscience education on disability, pain, head posture and QOL in migraine patients. *Comparative Exercise Physiology* 19(2):119–126. <https://doi.org/10.3920/CEP220029>

79. Hikita T, Goda H, Ogawa Y (2023) Caffeine consumption as a risk factor for childhood and adolescence migraine. *Pediatr Int* 65(1):e15429. <https://doi.org/10.1111/ped.15429>

80. Bekkelund SI, Hindberg K, Bashari H, et al (2011) Sun-induced migraine attacks in an Arctic population. *Cephalgia* 31(9):992–998. <https://doi.org/10.1177/033102411409071>

81. Ali M, Hussein M, Magdy R, et al (2022) The potential impact of insulin resistance and metabolic syndrome on migraine headache characteristics. *BMC Neurol* 22(1):422. <https://doi.org/10.1186/s12883-022-02966-x>

82. Hamdy MM, Nasr N, Hamdy E (2024) Smoking and cluster headache presentation and responsiveness to treatment. *BMC Neurol* 24(1):349. <https://doi.org/10.1186/s12883-024-03706-z>

83. Göbel CH, Koch B, Heinze-Kuhn K (2025) Headache phenotype and the psychosocial burden of cluster headaches: an analysis of patients prior to hospitalization. *Pain Ther* 14(2):753–767. <https://doi.org/10.1007/s40122-025-00715-9>

84. Domínguez-Balmaseda D, Del-Blanco-Muñiz JÁ, González-de-la-flor A, et al (2022) Associations between fatty acid intake and tension-type headache: a cross-sectional study. *J Clin Med* 11(23):7139. <https://doi.org/10.3390/jcm1137139>

85. Gerber MR, Fried LE, Pineles SL, et al (2012) Posttraumatic stress disorder and intimate partner violence in a women's headache center. *Women Health* 52(5):454–471. <https://doi.org/10.1080/03630242.2012.684088>

86. Müller B, Gaul C, Glass Å, et al (2022) Physical activity is associated with less analgesic use in women reporting headache—a cross-sectional study of the

German Migraine and headache society (DMKG). *Pain Ther* 11(2):545–560. <https://doi.org/10.1007/s40122-022-00362-4>

87. Marchetti M, Gualtieri P, De Lorenzo A, et al (2022) Dietary ω-3 intake for the treatment of morning headache: a randomized controlled trial. *Front Neurol* 13:987958. <https://doi.org/10.3389/fneur.2022.987958>
88. Bigal ME, Tsang A, Loder E, et al (2007) Body mass index and episodic headaches: a population-based study. *Arch Intern Med* 167(18):1964–1970. <https://doi.org/10.1001/archinte.167.18.1964>
89. Domingues RB, Domingues SA, Lacerda CB, et al (2014) Alcohol use problems in migraine and tension-type headache. *Arq Neuropsiquiatr* 72(1):24–27. <https://doi.org/10.1590/0004-282X20130186>
90. Ravid S, Shahar E, Schiff A, et al (2013) Obesity in children with headaches: association with headache type, frequency, and disability. *Headache* 53(6):954–961. <https://doi.org/10.1111/head.12088>
91. Chądzyński P, Kacprzak A, Domitrz W, et al (2019) Migraine headache facilitators in a population of Polish women and their association with migraine occurrence - preliminary results. *Neurol Neurochir Pol* 53(5):377–383. <https://doi.org/10.5603/PJNNs.a2019.0044>
92. Lim TJ, Kong J, Nam SO, et al (2022) Effect of the COVID-19 pandemic on headache in Pediatric Migraine patients at a single tertiary center. *Ann Child Neurol* 30(2):53–60. <https://doi.org/10.26815/acn.2022.00038>
93. World Health Organization (2020) WHO guidelines on physical activity and sedentary behaviour. Geneva: WHO. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK566046/>. Accessed 02/09/2025
94. Mahler DA, Horowitz MB (1994) Clinical evaluation of exertional dyspnea. *Clin Chest Med* 15(2):259–269. [https://doi.org/10.1016/S0272-5231\(21\)01072-8](https://doi.org/10.1016/S0272-5231(21)01072-8)
95. World Health Organization (2002) International guide for monitoring alcohol consumption and related harm. Geneva: WHO. Available from: <https://www.who.int/publications/item/international-guide-for-monitoring-alcohol-consumption-and-related-harm>. Accessed 02/09/2025
96. Bernstein DP, Stein JA, Newcomb MD, et al (2003) Development and validation of a brief screening version of the Childhood Trauma Questionnaire. *Child Abuse Negl* 27(2):169–190. [https://doi.org/10.1016/s0145-2134\(02\)00541-0](https://doi.org/10.1016/s0145-2134(02)00541-0)
97. El Hasnaoui A, Vray M, Richard A, et al (2003) Assessing the severity of migraine: development of the MIGSEV scale. *Headache* 43(6):628–635. <https://doi.org/10.1046/j.1526-4610.2003.03105.x>
98. Cieza A, Sabariego C, Añczewska M, et al (2015) PARADISE 24: a measure to assess the impact of brain disorders on people's lives. *PLoS One* 10(7):e0132410. <https://doi.org/10.1371/journal.pone.0132410>
99. Hatami M, Soveid N, Lesani A, Djafarjan K, Shab-Bidar S (2021) Migraine and obesity: is there a relationship? a systematic review and meta-analysis of observational studies. *CNS Neurol Disord Drug Targets* 20(9):863–870. <https://doi.org/10.2174/1871527320666210713114840>
100. Ornello R, Ripa P, Pistoia F, et al (2015) Migraine and body mass index categories: a systematic review and meta-analysis of observational studies. *J Headache Pain* 16:27. <https://doi.org/10.1186/s10194-015-0510-z>
101. Kristoffersen ES, Børte S, Hagen K, Zwart JA, Winsvold BS (2020) Migraine, obesity and body fat distribution - a population-based study. *J Headache Pain* 21(1):97. <https://doi.org/10.1186/s10194-020-01163-w>
102. Sirtori A, Brunani A, Liuzzi A, et al (2011) Quality of life, disability and BMI are related in obese patients. *Int J Rehabil Res* 34(3):270–272. <https://doi.org/10.097/MRR.0b013e328347be15>
103. Puhl RM, Himmelstein MS, Pearl RL (2020 Feb-Mar) Weight stigma as a psychosocial contributor to obesity. *Am Psychol* 75(2):274–289. PMID: 32053000. <https://doi.org/10.1037/amp0000538>
104. Morgan CT, Nkademeng SM (2025) The role of inflammation in Migraine headaches: a review. *FASEB Bioadv* 7(7):e70033. <https://doi.org/10.1096/fba.024-00188>
105. Tana C, Onan D, Messina R, et al (2025) From headache to heart health: investigating the Migraine-cardiovascular disease connection. *Neurol Ther* 14(4):1229–1268. <https://doi.org/10.1007/s40120-025-00785-z>
106. Tana C, Santilli F, Martelletti P, et al (2015) Correlation between Migraine severity and cholesterol levels. *Pain Pract* 15(7):662–670. <https://doi.org/10.1111/papr.12229>
107. Ye D, Fairchild TJ, Vo L, Drummond PD (2023) High blood glucose and excess body fat enhance pain sensitivity and weaken pain inhibition in healthy adults: a single-blind cross-over randomized controlled trial. *J Pain* 24:128–144. <https://doi.org/10.1016/j.jpain.2022.09.006>
108. Di Vincenzo A, Beghetto M, Vettor R, et al (2020) Effects of surgical and non-surgical weight loss on migraine headache: a systematic review and meta-analysis. *Obes Surg* 30(6):2173–2185. <https://doi.org/10.1007/s11695-020-04429-z>
109. Denche-Zamorano Á, Paredes-Mateos V, Pastor-Cisneros R, et al (2022) Physical activity level, depression, anxiety, and self-perceived health in spanish adults with Migraine: a cross-sectional study. *Int J Environ Res Public Health* 19(21):13882. <https://doi.org/10.3390/ijerph192113882>
110. Bull FC, Al-Ansari SS, Biddle S, et al (2020) World Health Organization 2020 guidelines on physical activity and sedentary behaviour. *Br J Sports Med* 54(24):1451–1462. <https://doi.org/10.1136/bjsports-2020-102955>
111. Lemmens J, De Pauw J, Van Soom T, et al. (2019) The effect of aerobic exercise on the number of migraine days, duration and pain intensity in migraine: a systematic literature review and meta-analysis. *J Headache Pain* 20(1):16. <https://doi.org/10.1186/s10194-019-0961-8>
112. La Touche R, Fernández Pérez JJ, Proy Acosta A, et al (2020) Is aerobic exercise helpful in patients with migraine? A systematic review and meta-analysis. *Scand J Med Sci Sports* 30(6):965–982. <https://doi.org/10.1111/sms.13625>
113. Varkey E, Cider A, Carlsson J, Linde M (2011) Exercise as migraine prophylaxis: a randomized study using relaxation and topiramate as controls. *Cephalgia* 31(14):1428–1438. <https://doi.org/10.1177/0333102411419681>
114. Krøll LS, Hammarlund CS, Linde M, Gard G, Jensen RH (2018) The effects of aerobic exercise for persons with migraine and co-existing tension-type headache and neck pain. A randomized, controlled, clinical trial. *Cephalgia* 38(12):1805–1816. <https://doi.org/10.1177/0333102417752119>
115. Woldeamanuel YW, Oliveira ABD (2022) What is the efficacy of aerobic exercise versus strength training in the treatment of migraine? A systematic review and network meta-analysis of clinical trials. *J Headache Pain* 23(1):134. <https://doi.org/10.1186/s10194-022-01503-y>
116. Wang Y, Zhu X, Liang Y (2025) Which exercise patterns are most effective for reducing severe headache/Migraine in adults? evidence from a nationally representative U.S. sample. *Am J Lifestyle Med* 9:15598276251341206. <https://doi.org/10.1177/15598276251341206>
117. Woldeamanuel YW, Cowan RP (2016) The impact of regular lifestyle behavior in migraine: a prevalence case-referent study. *J Neurol* 263(4):669–676. <https://doi.org/10.1007/s00415-016-8031-5>
118. La Touche R, de Oliveira Ab, Paris-Alemany A, Á R-V (2024) Incorporating therapeutic education and exercise in Migraine management: a biobehavioral approach. *J Clin Med* 13(20):6273. <https://doi.org/10.3390/jcm13206273>
119. Hindiyeh NA, Zhang N, Farrar M, Banerjee P, Lombard L, Aurora SK (2020) The role of diet and nutrition in Migraine triggers and treatment: a systematic literature review. *Headache* 60(7):1300–1316. <https://doi.org/10.1111/head.13836>
120. Hajjarzadeh S, Shalilahmadi D, Nikniaz Z, Mahdavi R, Hajjarzadeh S (2022) The comparison of the main dietary and non-dietary trigger factors in women with chronic and episodic migraine. *Nutr Diet* 79(5):616–622. <https://doi.org/10.1111/1747-0080.12761>
121. Wöber C, Holzhammer J, Zeithofer J, Wessely P, Wöber-Bingöl C (2006) Trigger factors of migraine and tension-type headache: experience and knowledge of the patients. *J Headache Pain* 7(4):188–195. <https://doi.org/10.1007/s10194-006-0305-3>
122. Rainero I, Limone P, Ferrero M, et al (2005) Insulin sensitivity is impaired in patients with migraine. *Cephalgia* 25(8):593–597. <https://doi.org/10.1111/j.1468-2982.2005.00928.x>
123. Strelc S, Donneau AF, Dardenne N, et al (2017) Screening for the metabolic syndrome in subjects with migraine. *Cephalgia* 37(12):1180–1188. <https://doi.org/10.1177/0333102416672494>
124. Siva ZO, Uluduz D, Keskin FE, et al (2018) Determinants of glucose metabolism and the role of NPY in the progression of insulin resistance in chronic migraine. *Cephalgia* 38(11):1773–1781. <https://doi.org/10.1177/0333102417748928>
125. Del Moro L, Rota E, Pirovano E, Rainero I (2022) Migraine, brain glucose metabolism and the “Neuroenergetic” hypothesis: a scoping review. *J Pain* 23(8):1294–1317. <https://doi.org/10.1016/j.jpain.2022.02.006>
126. Chai NC, Bond DS, Moghekar A, Scher AI, Peterlin BL (2014) Obesity and headache: part II—potential mechanism and treatment considerations. *Headache* 54(3):459–471. <https://doi.org/10.1111/head.12297>
127. Tai MS, Yap JF, Goh CB (2018) Dietary trigger factors of migraine and tension-type headache in a South East Asian country. *J Pain Res* 11:1255–1261. <https://doi.org/10.2147/JPR.S158151>
128. Roldán-Ruiz A, Bertotti G, López-Moreno M (2025) Effects of dietary interventions in patients with Migraine: a systematic review. *Nutr Rev* 83(7):e1815–e1827. <https://doi.org/10.1093/nutrit/nuae188>

129. Di Lorenzo C, Coppola G, Di Lenola D, et al (2018) Efficacy of modified atkins ketogenic diet in chronic cluster headache: an open-label, single-arm, clinical trial. *Front Neurol* 9:64. <https://doi.org/10.3389/fneur.2018.00064>

130. Hajdusianek W, Żórawik A, Waliszewska-Prosół M, Poręba R, Gać P (2021) Tobacco and nervous system development and function-new findings 2015–2020. *Brain Sci* 11(6):797. <https://doi.org/10.3390/brainsci11060797>

131. Błaszczyk B, Martynowicz H, Przegralek J, et al (2025) Smoking in primary headaches - a systematic review and meta-analysis. *J Headache Pain* 26(1):133. <https://doi.org/10.1186/s10194-025-02076-2>

132. Hannerz J (1997) Symptoms and diseases and smoking habits in female episodic cluster headache and migraine patients. *Cephalgia* 17(4):499–500. <https://doi.org/10.1046/j.1468-2982.1997.1704499.x>

133. Winsvold BS, Harder AVE, Ran C, et al (2023) Cluster headache genomewide association study and meta-analysis identifies eight loci and implicates smoking as causal risk factor. *Ann Neurol* 94(4):713–726. <https://doi.org/10.1002/ana.27643>

134. Volans GN, Castleden CM (1976) The relationship between smoking and migraine. *Postgrad Med J* 52(604):80–82. <https://doi.org/10.1136/pgmj.52.604.480>

135. López-Mesoner L, Márquez S, Parra P, Gámez-Leyva G, Muñoz P, Pascual J (2009) Smoking as a precipitating factor for migraine: a survey in medical students. *J Headache Pain* 10(2):101–103. <https://doi.org/10.1007/s10194-009-0098-2>

136. Wu J, Yang P, Wu X, Yu X, Zeng F, Wang H (2023) Association between second-hand smoke exposure and severe headaches or migraine in never-smoking adults. *Headache* 63(10):1341–1350. <https://doi.org/10.1111/head.14640>

137. Rozen TD (2011) A history of cigarette smoking is associated with the development of cranial autonomic symptoms with migraine headaches. *Headache* 51(1):85–91. <https://doi.org/10.1111/j.1526-4610.2010.01707.x>

138. Lai TH, Fuh JL, Wang SJ (2009) Cranial autonomic symptoms in migraine: characteristics and comparison with cluster headache. *J Neurol Neurosurg Psychiatry* 80(10):1116–1119. <https://doi.org/10.1136/jnnp.2008.157743>

139. Danno D, Wolf J, Ishizaki K, Kikui S, Yoshikawa H, Takeshima T (2020) Cranial autonomic symptoms of Migraine in Japan: prospective study of 373 Migraine patients at a tertiary headache center. *Headache* 60(8):1592–1600. <https://doi.org/10.1111/head.13888>

140. Karsan N, Nagaraj K, Goadsby PJ (2022) Cranial autonomic symptoms: prevalence, phenotype and laterality in migraine and two potentially new symptoms. *J Headache Pain* 23(1):18. <https://doi.org/10.1186/s10194-022-0389-w>

141. García-Azorín D (2022) The complex relationship between alcohol and migraine. *Headache* 62(10):1245–1246. <https://doi.org/10.1111/head.14426>

142. Panconesi A (2008) Alcohol and migraine: trigger factor, consumption, mechanisms. A review. *J Headache Pain* 9(1):19–27. <https://doi.org/10.1007/s10194-008-0006-1>

143. Krymchantowski AV, da Cunha Jevoux C (2014) Wine and headache. *Headache* 54(6):967–975. <https://doi.org/10.1111/head.12365>

144. Panconesi A (2016) Alcohol-induced headaches: evidence for a central mechanism? *J Neurosci Rural Pract* 7(2):269–275. <https://doi.org/10.4103/096-3147.178654>

145. Yuan S, Daghlas I, Larsson, SC (2022) Alcohol, coffee consumption, and smoking in relation to migraine: a bidirectional Mendelian randomization study. *Pain* 163(2):e342–8. <https://doi.org/10.1097/j.pain.0000000000002360>

146. Błaszczyk B, Straburzyński M, Więckiewicz M, et al (2023) Relationship between alcohol and primary headaches: a systematic review and meta-analysis. *J Headache Pain* 24(1):116. <https://doi.org/10.1186/s10194-023-0165-3>

147. Valencia-Martín JL, Galán I, Guallar-Castillón P, Rodríguez-Artalejo F (2013) Alcohol drinking patterns and health-related quality of life reported in the Spanish adult population. *Prev Med* 57(5):703–707. <https://doi.org/10.1016/j.ypmed.2013.09.007>

148. Raggi A, Corso B, Minicuci N, et al (2016) Determinants of quality of life in ageing populations: results from a cross-sectional study in Finland, Poland and Spain. *PLoS One* 11(7):e0159293. <https://doi.org/10.1371/journal.pone.0159293>

149. Leonardi M, Raggi A, Bussone G, D'Amico D (2010) Health-related quality of life, disability and severity of disease in patients with migraine attending to a specialty headache center. *Headache* 50(10):1576–1586. <https://doi.org/10.1111/j.1526-4610.2010.01770.x>

150. Raggi A, Schiavolin S, Leonardi M, et al (2015) Chronic migraine with medication overuse: association between disability and quality of life measures, and impact of disease on patients' lives. *J Neurol Sci* 348(1-2):60–66. <https://doi.org/10.1016/j.jns.2014.11.004>

151. Ramusino MC, Perini G, Capelli M, et al (2022) Potential contribution of hypertension to evolution of chronic Migraine and related mechanisms. *J Oral Facial Pain Headache* 36(3-4):221–228. <https://doi.org/10.11607/ofph.3174>

152. Mancia G, Rosei EA, Ambrosioni E, et al (2011) Hypertension and migraine comorbidity: prevalence and risk of cerebrovascular events: evidence from a large, multicenter, cross-sectional survey in Italy (MIRACLES study). *J Hypertens* 29(2):309–318. <https://doi.org/10.1097/JHH.0b013e3283410404>

153. Rist PM, Winter AC, Buring JE, Sesso HD, Kurth T (2018) Migraine and the risk of incident hypertension among women. *Cephalgia* 38(12):1817–1824. <https://doi.org/10.1177/0333102418756865>

154. Caponnetto V, Deodato M, Robotti M, et al (2021) Comorbidities of primary headache disorders: a literature review with meta-analysis. *J Headache Pain* 22(1):71. <https://doi.org/10.1186/s10194-021-01281-z>

155. Terhart M, Overeem LH, Hong JB, Reuter U, Raffaelli B (2025) Comorbidities as risk factors for migraine onset: a systematic review and three-level meta-analysis. *Eur J Neurol* 32(3):e16590. <https://doi.org/10.1111/ene.16590>

156. Anto M, Jaffee S, Tietjen G, Mendizabal A, Szperka C (2021) Adverse childhood experiences and frequent headache by adolescent self-report. *Pediatr Neurol* 121:51–55. <https://doi.org/10.1016/j.pediatrneurool.2021.04.004>

157. Tietjen GE, Brandes JL, Peterlin BL, et al (2010) Childhood maltreatment and migraine (part I). *Headache* 50(1):20–31. <https://doi.org/10.1111/j.1526-4610.2009.01556.x>

158. Gini G, Pozzoli T, Lenzi M, Vieno A (2014) Bullying victimization at school and headache: a meta-analysis of observational studies. *Headache* 54(6):976–986. <https://doi.org/10.1111/head.12344>

159. Nilles C, Williams JVA, Patten S, Pringsheim T, Orr SL (2023) Association between peer victimization, gender diversity, mental health, and recurrent headaches in adolescents: a Canadian population-based study. *Neurology* 101(17):e1654–e1664. <https://doi.org/10.1212/WNL.000000000000207738>

160. Magne H, Pereira B, Moisset X (2025) High prevalence of primary headaches among patients with post-traumatic stress disorder: an observational study of consecutive patients. *J Headache Pain* 26(1):150. <https://doi.org/10.1186/s10194-025-02094-0>

161. Raggi A, Grazzi L, Grignani E, et al (2018) The use of MIDAS in patients with chronic migraine and medication-overuse headache: should we trust it? *Neurol Sci* 39(Suppl 1):125–127. <https://doi.org/10.1007/s10072-018-3373-7>

162. McKenzie JA, Cutrer FM (2009) How well do headache patients remember? A comparison of self-report measures of headache frequency and severity in patients with migraine. *Headache* 49(5):669–672. <https://doi.org/10.1111/j.1526-4610.2009.01411.x>

163. Husøy AK, Yu S, Liu R, et al (2025) The global prevalence of headache disorders of public-health importance: a meta-analysis of population-based individual participant data from 41,614 adults from 17 countries. *J Headache Pain* 26(1):204. <https://doi.org/10.1186/s10194-025-02142-9>

164. The Lancet Neurology (2024) United action is needed to prioritise brain health. *Lancet Neurol* 23(12):1169. [https://doi.org/10.1016/S1474-4422\(24\)00448-4](https://doi.org/10.1016/S1474-4422(24)00448-4)

165. Leonardi M, Moro E, Boon P, et al (2025) Neurology cannot be embedded in non-communicable disease agendas. *Lancet Neurol* 24(5):383–384. [https://doi.org/10.1016/S1474-4422\(25\)00102-4](https://doi.org/10.1016/S1474-4422(25)00102-4)

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.