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High-throughput sequencing-based whole-genome sequencing (WGS) is highly effective for
identifying viral pathogens in microbial research. However, applying WGS directly to foodborne
viruses remains challenging because food matrices contain PCR inhibitors and viral titers are typically
much lower than those found in clinical specimens. This study aimed to develop a WGS method for
analyzing the hepatitis A virus (HAV) genome in clams using the lllumina MiSeq platform. To enhance
the HAVWGS method, we applied four approaches to HAV-positive clam field samples: size-exclusion
chromatography for sample preparation, a specialized RNA extraction method, optimized cDNA
synthesis, and the selection of DNA polymerase. Nine complete HAV genomes were obtained from
clams. The obtained HAV genomes and their genetic characteristics were then compared based on
phylogeny. Before optimization, only four clam samples yielded detectable ampilification; however,
following optimization, two additional samples became amplifiable, resulting in six samples suitable
for downstream WGS analysis. The developed WGS method was able to sequence low contamination
levels of 2.91-3.61 log1¢ genome copies/mL, achieving coverage of 97.5% and 92.6%. Notably, this
study confirmed an average sequencing depth of up to 82.20x and a minimum depth of 25.19x. As a
result of sequencing, one HAV-IA, and eight HAV-IB genotypes were identified from six clam samples
including the multiple strains. The sequence identity between the strains from clams and serum was
97.80% for HAV-IA and 95.2-97.80% for HAV-IB. This method of viral WGS in food samples may
contribute to rapid genotyping, understanding virus evolution, and enhancing epidemiological
surveillance in foodborne virus outbreaks.

Hepatitis A virus (HAV), is a single-stranded positive-sense RNA virus
classified within the Picornaviridae family'. There are six HAV genotypes,
termed I-VI. Human infections are primarily caused by genotypes I, II, and
111, and each are divided into subtypes A and B. Genotypes I and III are the
most commonly reported worldwide’. The non-specific symptoms of HAV
include malaise, loss of appetite, vomiting, and diarrhea. In more severe
cases, symptoms may include dark urine, pale stools, and j aundice’. HAV is
primarily transmitted via the fecal-oral route, either through direct human-
to-human contact or by consuming contaminated food".

Once released into the environment, HAV can persist for weeks to
months, either freely in the water column or by attaching to particulate
matter and accumulating in sediments’. HAV is notably resistant to low pH
and requires heating above 98 °C for effective inactivation’. Bivalve shellfish,

through their filter-feeding activity, can concentrate and retain human
enteric pathogens originating from sewage-contaminated waters®. Between
1986 and 2012, ~359 shellfish-borne viral outbreaks were reported world-
wide, primarily associated with the consumption of oysters, clams, mussels,
and cockles’. Notably, nearly 50% of these outbreaks occurred in Asia,
reflecting the region’s high consumption of raw or undercooked seafood’. In
South Korea, a total of 17,598 hepatitis A cases were reported in 2019, largely
linked to the consumption of HAV-contaminated salted clams’. Since the
implementation of the Hepatitis Mandatory Surveillance System, hepatitis
A has exhibited the highest incidence rate among viral hepatitis cases,
reaching 33.95 per 100,000 individuals’. In Europe, particularly in Italy,
from 1997 to 2015, the consumption of raw or insufficiently cooked shellfish
was identified as the predominant risk factor for shellfish-associated viral
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infections, accounting for 86.2% (75/87) of reported cases’. Similarly, in the
United States, a multistate HAV outbreak in 2005 resulted in 39 infections
following the consumption of contaminated oysters®. Epidemiological evi-
dence consistently indicates that human enteric viruses are the most com-
mon etiological agents transmitted through bivalve shellfish.

Despite these large scale HAV outbreaks, detection and surveillance
systems were still using the short fragments PCR of the VP1-P2B region
(392bp) or VP3-VP1 region (186bp)”™’. The integration of short gene
fragments with epidemiological data and comprehensive HAV character-
ization remains a major challenge in molecular epidemiology'®''. The
identification of foodborne HAV outbreaks faces multiple critical challenges:
First, the prolonged incubation period of 14-28 days, potentially extending
to 50 days, complicates the temporal association between exposure and
disease onset. Second, the inability to cultivate wild-type HAV in vitro limits
laboratory investigations. Third, despite the high infectivity of HAV (10-100
viral particles sufficient for infection), food samples typically contain mini-
mal viral contamination levels, hampering detection efforts™'>".

Whole-genome sequencing (WGS) of foodborne viruses in food
samples using high-throughput sequencing platforms has gained increasing
attention. For example, norovirus has been detected in oysters using Illu-
mina platform and optimization of metagenomic analyses using laboratory-
prepared oyster samples'*"”. However, performing WGS directly from food
matrices remains challenging, as matrix composition, texture, and solubility
can hinder viral nucleic acid extraction. Optimized and matrix-specific
extraction methods are essential for maximizing viral recovery while
minimizing contamination'®. To date, no studies have applied high-
throughput sequencing for WGS of wild-type foodborne viruses directly
from food samples. Most sequencing optimization efforts using high-
throughput platforms have focused on samples with high viral concentra-
tion and purity'”'"®. In clinical setting, high-throughput sequencing has been
utilized for WGS of viruses such as influenza, monkeypox, COVID-19, and
Zika in serum and plasma samples . Similarly, in the veterinary field,
viruses like porcine reproductive and respiratory syndrome virus and par-
vovirus have been subjected to WGS using high-throughput sequencing™.
These studies were performed in clinical and veterinary contexts, where
virus cultivation or enrichment is feasible, unlike food matrices with low
viral loads and complex inhibitors.

In this study, we developed and applied a WGS approach for the direct
detection and genetic characterization of wild-type HAV from contaminated
food samples. Our research aims to bridge these gaps by developing a WGS
method for HAV from clam samples. To optimize the HAV WGS method,
we focused on refining key steps in molecular detection, including RNA
extraction, cDNA synthesis, and the selection of DNA polymerase. Building
on these optimized methods, we developed an improved long PCR method
targeting the HAV capsid region and a WGS method using PCR amplicons
covering the entire HAV genome on the Illumina platform.

Results
RNA extraction, cDNA synthesis, and DNA polymerase
optimization
The 260/280 ratio of RNA purity was assessed for various RNA extraction
methods, including the RNeasy mini-Kit, RNeasy midi-Kit, NucliSens
miniMAG magnetic bead method, and TRIzol + RNA clean and con-
centrator method. The ratios observed were 2.18+0.25, 5.01+0.35,
2.79+0.25, and 1.13+0.25, respectively, indicating variations in RNA
purity among the methods. Total RNA yields were also measured, with the
RNeasy mini-kit yielding 100.40 + 19.23 ng/50 uL, the RNeasy midi-kit
yielding 134.59 +52.13 ng/150 uL, the NucliSens mini-MAG method
yielding 0.01 +0.04 ng/150 puL, and the TRIzol +RNA clean and con-
centrator combination yielding 162.10 + 8.2 ng/100 pL. The combination of
TRIzol + RNA clean and concentrator exhibited the best performance,
achieving high RNA purity and yield, and was deemed most suitable for
downstream applications.

To optimize cDNA synthesis conditions, various primer types and
concentrations were tested. The HAV strain HM175, known for cell

culturable strain, was used as a positive control. Tested samples included
HAYV detected in clam tissues (strain cau210584, undetectable Ct value by
qPCR) and HAYV detected in serum (strain cau230022, quantified at 6.29
log;o copies/mL). The efficiency of cDNA synthesis was validated using a
long PCR primer set. A combination of 50 uM oligo (dT)g primers with
50 uM random hexamer primers consistently amplified 3208 bp positive
bands in both clam and serum samples, demonstrating robust synthesis
efficiency, as shown in Fig. la.

Building on the optimized RNA extraction and cDNA synthesis pro-
tocols, the performance of three different DNA polymerases was evaluated
for sensitivity and detection limits (Fig. 1b). Serial dilutions of the HAV
HMI75 strain (ranging from 2.0 x 10> to 107 copies/uL) were used as
templates. Platinum SuperFi II DNA polymerase exhibited the highest
sensitivity, detecting HAV down to 2.0 x 10° copies/pL. In contrast, Ther-
mus aquaticus YT1 Taq polymerase and Q5" High-Fidelity DNA poly-
merase detected HAV at higher thresholds, with detection limits of up to
2.0 x 107 copies/pL.

Optimization of amplification for HAV WGS from clam samples

Nine HAV-positive clam samples were utilized to evaluate the optimization
of the sample preparation process. The revised protocol incorporated pro-
teinase K treatment, size exclusion chromatography, and ultrafiltration,
complementing the optimizations presented in Fig. 1. The efficacy of these
enhanced steps was validated using amplicon-based WGS. Following opti-
mization, two additional clam samples, cau210579 (lane E) and cau210589
(lane H), showed positive PCR bands, as presented in Fig. 2a. Moreover,
clearer and more defined PCR bands were observed in samples cau210574
(lane A), cau210576 (lane B), cau210584 (lane G), and cau210595 (lane I),
further confirming the improvements achieved through the revised pre-
paration steps. The same PCR amplicons were subsequently analyzed with a
bioanalyzer, demonstrating sufficient amplification of the 400-700 bp PCR
products to levels appropriate for WGS, as shown in Fig. 2b, which is con-
sistent with the results in Fig. 2a. Two clam samples (cau210574 and
cau210584) that were initially negative by RT-qPCR yielded positive
amplification at the 400 bp region during PCR analysis, as depicted in Fig. 2.

Amplicon-based WGS using high-throughput sequencing
Among nine clam samples analyzed, four demonstrated RT-qPCR positive
results, as presented in Table 1. The HAV viral loads were quantified as 2.91,
3.57, 3.61, and 3.22 log;, copies/mL for samples cau210576, cau210579,
cau320589, and cau210595, respectively. Sample cau320589 exhibited the
highest viral load at 3.61 log;, copies/mL. Six clam samples (cau210574,
cau210576, cau210579, cau210584, cau210589, and cau210595) were
mapped to the two genotypes (IA and IB) of the reference strains. Mapping
the sequences to the HAJFF-Kan12 strain identified a total of six strains:
cau210574-1, cau210576, cau210579, cau210584-1, cau210589, and
cau210595-1. The coverage percentages were 97.5% for cau210574-1,96.7%
for cau210576, 93.3% for cau210579, 92.6% for cau210584-1, 93.4% for
cau210589, and 87.7% for cau210595-1.

Analysis of sequencing data revealed variability in average sequencing
depths across the samples. The highest average depth was observed in
sample cau210579 (82.20x), whereas the lowest was noted in cau210584
(25.19x). Intermediate average depths were recorded for samples
cau210574 (43.15x), cau210576 (37.45x), cau210589 (50.98x), and
cau210595 (49.15x), as depicted in Fig. 3.

Phylogenetic analysis of the whole-genome sequence of HAV
from clam

Figure 4 showed that the sequence of clam sample cau210579 clustered
within the MW405349-ON911721 clade, which includes HAV strains from
South Korea, Japan, and China. The nucleotide sequence of cau210579
demonstrated a high identity of 99.27% with AB819870 (HAJFF-Kanl2
strain from Japan) and OM291913 (HAV KUMC 19-1 strain from South
Korea). Among the HAV strains detected in clams, eight were identified as
genotype IB. The nucleotide sequence identity analysis revealed that
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Fig. 1 | The results of reverse transcription PCR and DNA polymerase optimi-
zation. a Reverse transcription PCR optimization. M: 1.0 kb plus DNA ladder,

P: positive control (HM175 strain), N: negative control (RNase-free water),
Clam: hepatitis A virus (HAV)-positive clam sample (cau210584 strain), Serum:

HAV-positive serum sample. b DNA polymerase activity for long PCR. M: 1.0 kb
plus DNA ladder, lane 1-3: 2.0 x 10’-10° copies/uL of HAV HM175 strains.
N: negative control (RNase-free water).

cau210574-1 had a 97.80% similarity with cau210595-1, and cau210574-2
had a 95.52% similarity with cau210574-1. The cau210576 strain showed a
98.40% similarity with the reference strains KP879216.1 and KX035096.
Additionally, cau210584-1 had a 97.90% similarity with cau210584-2,
which in turn had a 97.92% similarity with cau210589. Moreover, the
cau210595-1 strain also had a 97.80% similarity with cau210574-1, while
cau210595-2 showed a 96.97% similarity with cau210574-1. Regarding
clades, these sequences formed the five distinct clades shown in Fig. 4. Strain
cau210574-1 and cau210584-1 clustered into one clade. Two sequences,
cau210595-1 and cau210595-2, clustered from the same clam sample.
Another clade consisted of cau210584-2 and cau210589. Additionally,
cau210576 formed a divergence from the reference strain, whereas
cau210574-2 formed a separate single node within the IB genotype.

Using the amino acid sequence identity and phylogeny, one IA and
eight IB genotypes were identified, as shown in Fig. 5. The cau210579 strain
had a 98.68% similarity with ON911721 (DgLn5.14 strain from China),
forminga clade from ON911721 to cau210579. The IB genotype had a single
clade with the HM175 strain and its adapted strains, ranging from
KX343016 to KX035096. Wild-type IB strains clustered into two large
clades: one consisting of the ON524433.1 to ON524426 sequences, and
another comprising the other strains identified in this study, which formed
the cau210576 to cau210574-2 clade. In addition, the amino acid sequence
identity analysis of the identified HAV strains showed high similarity
among the strains from this study. From cau210574-2 to cau210595-2, each
strain had a high similarity of 95.52-98.91%. Additionally, cau210584-1
to cau210589 had a 97.89-97.91% amino acid sequence similarity.
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Fig. 2 | The results of the improvement of sample preparation. a PCR electro- B: cau210576, C: cau210577, D: cau210578, E: cau210579, F: cau210582, G:
phoresis band image of the amplicon-based whole-genome sequencing (WGS) cau210584, H: cau210589, I: cau210595. b Bioanalyzer peak image of the amplicon-

primer. The lanes are labeled as follows: M: 100 bp plus DNA ladder, P: positive based WGS primer.
control HM175 strain, N: negative control (RNase-free water), A: cau210574,

The difference between the two clades was 5.9%. However, among the eight ~ sample preparation, a specific RNA extraction method, cDNA synthesis,
HAV strains identified in this study, only the cau210576 strain showed a  and the selection of DNA polymerase. This four-step optimization process

high similarity of 98.39% with the reference strain M59808. enabled the development of HAV WGS methods that required neither cell
adaptation nor artificial viral spiking.
Discussion Clams are known to contain PCR inhibitors such as salts, algae, gly-

We developed and optimized methods for HAV WGS from clam samples.  cogen, and polysaccharides, with salts and polysaccharides being particu-
To enhance the HAV sequencing method, we applied four approaches to  larly prominent. Polysaccharides can impede the resuspension of
HAV-positive clam field samples: size-exclusion chromatography for precipitated RNA and disrupt enzymatic processes”. Additionally, high
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Table 1 | Hepatitis A virus viral load from clam and virus strain results confirmed by whole-genome sequencing

Sample ID Ct value HAV viral load® Genotype® Coverage (%) Average Depth GenBank number
cau210574 ND° NA? 1B 97.5 43.15 PQ008999
1B 96.7 43.15 PQ009000
cau210576 38.66 2.91 1B 96.7 37.47 PQ009001
cau210577 ND NA NA - - -
cau210578 ND NA NA - - -
cau210579 36.19 3.57 1A 93.3 82.2 PQ009002
cau210582 ND NA NA - - -
cau210584 ND NA 1B 92.6 25.19 PQ009003
1B 88.2 25.19 PQO009004
cau210589 36.05 3.61 1B 93.4 50.98 PQO009005
cau210595 37.49 3.22 1B 87.7 49.15 PQO009006
B 93.8 49.15 PQO009007

“HAV viral load (log1o copies/uL).

"HAJFF-Kan12, wild-type HM175 2 strains mapped. Duplicate markings are the result of multiple strain identification.

°ND: Not detected.
9NA: Not available.
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Fig. 3 | Whole-genome sequencing analysis in integrative genomics viewer of hepatitis A virus from clam samples.

concentrations of salts like calcium may compete for binding with DNA
polymerase, further inhibiting the PCR process™. Size exclusion chroma-
tography is recognized for its effectiveness in removing free plasma proteins,
desalting proteins, and separating large protein molecules™”. Using size
exclusion chromatography efficiently removed these PCR and sequencing
inhibitors.

A comparative analysis of four RNA extraction methods for WGS
optimization revealed that combining TRIzol + RNA clean and con-
centrator methods delivered superior results. The selected approach pro-
duced purified RNA with a 260/280 ratio of 1.13 +0.25 and a total RNA
yield of 162.10 + 8.2 ng/100 uL, confirming its optimal performance. The
findings aligned with previous research on HAV nanopore sequencing™®,
which identified the TRIzol LS method as optimal for producing higher
purity RNA, achieving a 260/280 ratio of 2.19.

Considering that HAV genomes possess a 3’ UTR followed by a poly
A-tail”, it was hypothesized that a combination of random hexamer primers
and oligo (dT),g primers would provide more efficient amplification. This
combined approach successfully generated 3208 bp amplicons in clam and
serum samples, as shown in Fig. la. The results corroborate previous
studies™, which demonstrated increased specificity and sensitivity in cDNA
synthesis from long non-coding RNA when employing initial poly A-tailing
followed by random hexamer primers.

Selection of an appropriate DNA polymerase is crucial for amplifying
long viral genomes, particularly in complex food matrices where inhibitors
are present. High-fidelity DNA polymerases are commonly used in long
PCR due to their high accuracy™'. The fidelity of DNA polymerases varies by
type, with low-fidelity enzymes such as Taq exhibiting fidelity values around
107°, whereas high-fidelity enzymes typically have values closer to 107",
Previous studies have demonstrated the suitability of Pyrococcus furiosus pfu
DNA polymerase for long PCR™”, a finding confirmed in the current
investigation. Experimental results showed that Platinum SuperFi II DNA
polymerase exhibited 100-fold higher sensitivity, likely due to the consistent
buffer composition maintained throughout the cDNA synthesis and long
PCR steps. Given the lack of prior research addressing this specific aspect,
further investigation is required to elucidate the underlying mechanisms.

Previous analyses of HAV outbreaks from contaminated salted clam
shellfish were limited to the VP1-2B region (392 bp)’. Efforts to establish
epidemiological links between import sources, contaminated food, and
patients were inconclusive, primarily due to variations in sequence lengths
and target regions. In contrast, the optimized WGS protocol developed in
this study successfully amplified HAV from six clam samples through
refined food preprocessing and HAV amplification techniques. This novel
WGS methodology demonstrated superior sensitivity for detecting low-titer
HAV, achieving successful sequencing at contamination levels ranging from
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Fig. 4 | The phylogenetic tree of hepatitis A virus (HAV) nucleotide whole-genome sequence. Red leaves indicate clam HAV strains identified in this research.
The numbers of compressed sequence distances are shown in parentheses.

291 to 3.61 log;, copies/mL. Notably, even with titers below the detection
limit, samples cau210574 and cau210584 achieved high coverage rates of
97.5% and 92.6%, respectively. While earlier studies were limited by
restricted target regions and sequence lengths, this study offers a more
comprehensive and sensitive approach for detecting and analyzing HAV.

Another search achieved wild-type HAV WGS from frozen berries
using PCR amplicons on the Illumina MiSeq platform™, employing a
similar methodological approach. However, this approach had the limita-
tion of requiring additional HAV isolation steps using Frp/3 cells”, which
hindered its practical application due to the rare successful propagation of
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Fig. 5 | Phylogenetic tree of hepatitis A virus (HAV) amino acid sequence whole-genome sequence. Red leaves indicate clam HAV strains identified in this research.

The numbers of compressed sequence distances are shown in parentheses.

wild-type HAV, necessitating cell adaptation. In contrast, this study enables
direct WGS without requiring cell culture adaptation. Additionally, whereas
earlier studies offered limited sequencing quality data, the methodology
presented here demonstrated robust metrics, achieving average depths of up
to 82.20x and minimum depths of 25.19x.

Our study identified multiple strains within the same clam sample,
with mixed contamination detected in three samples: cau210574,
cau210584, and cau210595. As filter feeders, shellfish are known to filter fine
particles from the water™, which can concentrate pathogens. Various bac-
terial and viral pathogens have been reported in shellfish. By transferring
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oysters free of specific pathogens to saline water, the progression of different
infections has been studied”’. Additionally, mixed calicivirus infections in
shellfish have been linked to illnesses from consuming raw oysters™.

In the IB cluster, the strains mainly used as reference genes, KX523680
(LV8 strain) to KP879216 (HM175/18f strain), formed a single clade in
Fig. 5. The ON911721 (isolate DgLn5.14), which was reportedly isolated
from the serum of a patient with hepatitis A in China in 2014, has a high
sequence identity with the IB type strain identified in this study. The high
sequence identity indicates that the data are unlikely to result from
sequencing errors caused by interference with the mapping reference
sequence or PCR primers. The clade containing the IA type cau210579 strain
was identified in the current study, with reference strains comprising isolates
from Japan, China, and South Korea. These results confirm the endemic
nature of HAV, as previously documented'. While earlier research identified
IA and I1IA as the predominant genotypes in South Korea’, the current HAV
WGS analysis revealed that IB genotypes were most frequently detected in
clam samples.

Currently, WGS of HAV directly from food, and water, samples has
not been reported. The methodology established in this study provides a
critical framework for future HAV WGS research and enables systematic
data accumulation for more comprehensive epidemiological investigations.
For efficient sample preparation, additional size exclusion chromatography
and ultrafiltration proved effective for inhibitor removal and concentration
after proteinase K treatment. In the subsequent steps, optimizations inclu-
ded using TRIzol and RNA clean and concentrator, employing a mixture of
two types of primers for cONA synthesis, and utilizing Platinum SuperFi II
DNA polymerase. The improved WGS method successfully sequenced very
low contamination levels of 2.91-3.61 log; copies/mL, achieving coverage
0f97.5% and 92.6%. The analysis confirmed an average sequencing depth of
up to 82.20x and a minimum depth of 25.19x. Future studies should include
a broader range of shellfish samples and HAV genotypes. Extending this
method to food and environmental samples may also enable the identifi-
cation of additional HAV genotypes.

Methods

Preparing the positive control virus

The reference HAV strain HM175 (ATCC VR-1402) and fetal rhesus
monkey kidney cells FRhK-4 (ATCC CRL-1688) were obtained from the
ATCC. FRhK-4 cells were maintained in DMEM supplemented with 10%
heat-inactivated fetal bovine serum (FBS; Gibco, Grand Island, NY, USA) at
37°C”. For virus propagation, FRhK-4 cell monolayers at 80-90% con-
fluence were infected with HAV and incubated at 37 °C for 5 days. The
virus-containing supernatant was harvested after three freeze-thaw cycles
(-80°C/37°C) and clarified by centrifugation at 2500 x g for 15 min at
4°C*. The HM175 strain served exclusively as a positive control for sub-
sequent molecular analyses.

Prescreening of HAV from clam

The clam samples were collected from 2019 to 2020 through the Ministry of
Food and Drug Safety of the Republic of Korea. Clam samples were pre-
screened for HAV positivity following the ISO 15216-1:2017 standard*".
Digestive tissues were dissected from five clams, treated with 3 U/mL pro-
teinase K, and then pooled. The tissue homogenate was incubated at
100 rpm for 60 min at 37 °C, followed by clarification via centrifugation at
4000 x g for 5 min at 4 °C. The resulting supernatant was used for RNA
extraction”'.

RNA extraction was performed using the NucliSens miniMAG
system (NSmM; Biomerieux, Marcy I'Etoile, France). Subsequently,
cDNA synthesis was carried out with the RevertAid H Minus First Strand
cDNA Synthesis Kit (Thermo Fisher Scientific Inc., Cincinnati, OH,
USA). The primer sequences used for HAV prescreening and quantifi-
cation were HAVfor (GGT AGG CTA CGG GTG AAA C), HAVrev
(AAC TCA CCA ATA TCC GC), and HAVpro (CTT AGG CTA ATA
CTT CTA TGA AGA GAT GC)*. The qPCR process was carried out by
initially heating to 95 °C for 10 min, followed by 45 cycles of heating at

95°C for 15sec, 55°C for 20sec, and then 72°C for 15sec using a
CFX96™ Real-Time PCR system (Bio-Rad, Hercules, CA, USA) and
Premix Ex Taq (2X)™ (Takara Bio Inc., Shiga, Japan). A standard curve
for the HAV quantitative genomic DNA (VR-3257SD, ATCC) was used.
The viral copy number was determined by linear regression analysis,
which showed a high correlation with an R* value of 0.99. The same clam
sample was used in subsequent processes.

Optimization of clam sample preparation

The workflow for sample preparation optimization appears in Fig. 6. The
protocol began with homogenizing raw clam (Venerupis philippinarum)
digestive tissues (3.0 g) combined with 3 U/mL proteinase K solution. The
homogenized clam sample underwent a two-step incubation process,
initially at 37 °C for 60 min with shaking at 100 rpm, followed by a second
incubation at 60 °C for 15 min. Afterward, the sample was centrifuged at
4000 x g for 5 min at 4 °C. Following centrifugation, 5 mL of supernatant
was collected, and the remaining homogenate was stored at —80 °C for RNA
extraction',

The optimization protocol incorporated a PD-10 desalting col-
umn and ultrafiltration to improve sample preparation and RNA
recovery. For sample preparation, 3.0 g of clam digestive tissues were
homogenized in a solution containing 3 U/mL of proteinase K to digest
proteins and enhance viral RNA release. The homogenate was incu-
bated at 37 °C with gentle shaking at 100 rpm for 60 min to allow
sufficient enzymatic activity. The mixture was then incubated at 60 °C
for 15 min to inactivate potential contaminants and enhance protein
digestion. After incubation, the homogenized sample was centrifuged
at 4000 x g for 5min at 4°C to separate the supernatant from the
debris. A total of 5 mL of clarified supernatant was carefully collected,
and the pellet was discarded™”.

For desalting, PD-10 desalting columns packed with Sephadex
G-25 resin (Cytiva, Marlborough, MA, USA) were used to remove
small molecules and impurities from the supernatant. The columns
were equilibrated by sequentially adding deionized water (~10 mL) five
times to ensure thorough resin preparation. After equilibration, the
columns were placed into clean 50 mL centrifuge tubes to prevent
cross-contamination during sample processing. A measured volume of
2.25 mL of the clarified supernatant (minimum 1.75 mL, maximum
2.5 mL) was carefully pipetted onto the center of the resin bed within
the PD-10 column to ensure even distribution. The column was then
centrifuged at 1000 x g for 2 min at 4 °C to collect the eluted super-
natant. To improve desalting efficiency, the process was repeated twice,
ensuring maximum removal of impurities.

The eluted sample was then subjected to ultrafiltration for further
concentration using Vivaspin-20 centrifugal concentrators with a nominal
molecular weight cutoff of 10 kDa (Sartorius, Géttingen, Germany). This
step retained viral RNA while excluding smaller contaminants. Ultra-
filtration was performed by centrifuging the sample at 8000 x g for 50 min at
4°C to achieve optimal concentration levels". The final concentrated
sample was aliquoted and stored at —80 °C to preserve RNA integrity for
subsequent extraction and downstream analyses.

Optimization of the RNA extraction method from clam samples

The RNA extraction optimization workflow appears in Fig. 6. Initial
RNA extraction employed the NucliSens miniMAG magnetic bead
method”. A comparative analysis evaluated four RNA extraction
methods: NucliSens miniMAG (NSmM; Biomerieux) magnetic bead
method, RNeasy mini-kit (Qiagen, Hilden, Germany), RNeasy midi-
kit (Qiagen), and a combination of TRIzol with RNA clean and
concentration-5 kits (Zymo Research, Irvine, CA, USA). The extrac-
tion protocols adhered to manufacturer guidelines, incorporating a
modified approach for the combination of TRIzol and RNA clean and
concentrator-5 kits*’. The modification included mixing the RNA-
containing aqueous phase obtained after TRIzol LS treatment with an
equal volume of absolute ethanol. The resulting mixture underwent
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Fig. 6 | Schematic diagram of this study. The red box in the diagram indicates the optimized method. Created in BioRender. Jeong, S. (2025) https://BioRender.com/
g940791.

centrifugation at 16,000 x g for 30 s through a Zymo-spin IC column. Optimization of the reverse transcription PCR and DNA
Subsequent processing steps followed the manufacturer’s protocol. ~polymerase

Final RNA elution was performed in 15 puL, with storageat —80 °Cuntil ~ Reverse transcription for cDNA synthesis was performed using 2.0 ng of total
further analysis. RNA and the RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo
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Table 2 | Reverse transcription PCR reaction composition and
primer concentrations

Component Final volumes and concentrations of RT-PCR
components
Primer 1 Primer 2 Primer 3
5X PCR buffer 1X 1X 1X
RTase® 1L 1L 1uL
RNase 1pL 1pL 1pL
inhibitor (20U)
Primer (tested) Oligo(dT)1s  Random Oligo(dT)s
100 nM hexamer 50 nM + Random
100 nM hexamer 50 nM
10 mM dNTP 2L 2L 2puL
RNA 2L (2 ng) 2 uL (2 ng) 2 L (2 ng)
Nuclease- to20pL to 20 L to20pL
free water
Total volume 20 uL 20 uL 20 L

“RTase: SuperScript IV Reverse Transcriptase (Thermo Fisher Scientific).

Table 3 | PCR reaction composition and component
concentrations for each DNA polymerase

Component Final volumes and concentrations of PCR
components
Taq DNA Q5® SuperFi lI°
polymerase®
PCR buffer 1X 1X 1X
dNTP 0.2mM 0.2mM 0.2mM
Forward primer 0.25uM 0.25uM 0.25uM
Reverse primer 0.25uM 0.25uM 0.25uM
DNA polymerase 1 unit 1 unit 1 unit
cDNA 2L 2L 2L
Nuclease-Free water to25pL to25pL to25pL
Initial denaturation 94 °C, 1 min 98°C, 98°C,
30sec 30sec
Denaturation 40cycles 94°C,20sec 98°C, 98°C,
10sec 10sec
Annealing 53°C, 1 min 53°C,1min  53°C, 1 min
Extension 72 °C, 1 min 72°C,1min  72°C, 1 min
Final extension 72°C,10min  72°C, 72°C,
10 min 10 min

“Thermus aquaticus YT1 Taq polymerase (Bioneer).
°Q5° High-Fidelity DNA Polymerase (New England Biolabs).
°Platinum SuperFi Il DNA polymerase (Thermo Fisher Scientific).

Fisher Scientific). Three different primer sets were evaluated for efficiency and
specificity, as summarized in Table 2 and Fig. 6. The reverse transcription PCR
(RT-PCR) reaction was conducted under the following thermal conditions:
25 °C for 5 min, 42 °C for 1 hr, and 70 °C for 5 min using a T100 Thermal
Cycler (Bio-Rad)®”. The final reagent concentrations and reaction volumes
used for RT-PCR are also detailed in Table 2. To optimize DN A amplification,
three commercially available DNA polymerases were compared for their
efficiency and sensitivity in detecting HAV genomic DNA. The tested DNA
polymerases included: (1) Thermus aquaticus YT1 Taq polymerase (Bioneer,
Daejeon, South Korea), (2) Q5® High-Fidelity DNA Polymerase (New Eng-
land Biolabs, Ipswich, MA, USA), and (3) Platinum SuperFi II DNA Poly-
merase (Thermo Fisher Scientific). To evaluate the detection limits of each
polymerase, HAV quantitative genomic DNA (VR-3257SD, ATCC) was
serially diluted to concentrations ranging from 10° to 10” copies/uL. PCR
reactions were prepared under standardized conditions, with final con-
centrations, reaction mixtures, and thermal cycling parameters specified in

Table 3. The comparison of DNA polymerases aimed to determine their
sensitivity, specificity, and robustness for HAV detection, providing critical
insights into their suitability for WGS and genotyping applications.

Long PCR

From serial diluted HAV HM175 strain, the long PCR was performed for the
sensitivity test. HAV HM175 strain was RNA extracted, and cDNA synthesis
using TRIzol and RNA clean and concentration-5 kits (Zymo Research) and
a combination of 50 pM oligo dT primers and 50 uM random hexamer
primers. The developed long PCR method targeted the 5UTR to the 2A
region of the HAV genome, covering nucleotide positions 78-3286 (a total of
3208 base pairs). The forward primer HAV-F1 (GCC TAG GCT ATA GGC
TAA AT) was newly designed, while the reverse primer BR9 (AGT CAC
ACC TCT CCA GGA AAA CTT) was slightly modified from a previously
reported sequence”. Long PCR was performed under the SuperFi II con-
ditions outlined in Table 3, using a T100 Thermal Cycler (Bio-Rad).

HAV genome amplification and lllumina sequencing

Primer design employed the Primal Scheme tool (http://primal.zibraproject.
org), utilizing multiple reference genomes: HAJFF-Kanl2 strain
(AB819870.1), HM175 wild type strain (M14707), SYMAV-D13/Gabon/
2016 (LC515202), SLF88 strain (AY644670), Kor-HAV-F strain
(JQ655151), and HAJ85-1 strain (AB279735). The amplicon genome
sequencing strategy enabled WGS from clam samples. PCR amplification
utilized two primer sets (A and B): set A comprising 18 forward and 18
reverse primers, and set B containing 17 forward and 17 reverse primers.
These primers generated overlapping fragments of 200-500 bp, providing
complete HAV genome coverage”’. Table 4 details the amplification size for
each primer pair.

The optimized protocol for HAV whole-genome amplification (Fig. 6)
utilized a 25 uL reaction mixture containing 12.5 uL of 2X Platinum SuperFi
IT PCR Master mix (Thermo Fisher Scientific), 50 uM of primer set A (pools 1
and 2) or set B (pools 3 and 4), 6.20 pL of RNase-free water, and 2 uL of cDNA
template. The PCR thermal cycling conditions consisted of initial dena-
turation at 98 °C for 30 sec, followed by 40 cycles of denaturation at 98 °C for
15 sec and annealing/extension at 60 °C for 5 min, with a final extension at
72 °C for 1 min. QC of PCR products was performed using a Bioanalyzer®.

The DNA library was prepared with the TruSeq Nano DNA Library
Prep Kit (Illumina) following the manufacturer’s protocol. After genome
pooling, sequencing was performed on a MiSeq platform (Illumina) using
300 bp paired-end reads. Post-sequencing processing involved removing
adapters and reads below a Q-score threshold of 30 using Trimmomatic
v0.38. Control DNA and duplicate reads were eliminated with Picard
v2.20.2, and coverage normalization was carried out using BBMap 38.84".

Phylogenetic analysis

The complete HAV whole-genome sequences were aligned with 49 refer-
ence HAV sequences to identify conserved and variable regions using
ClustalW in DNASTAR Lasergene MegAlign Pro (ver 17.2.1;
DNASTAR)”. ClustalW was chosen for its robust pairwise and multiple
sequence alignment capabilities, ensuring high alignment quality by bal-
ancing sequence similarity and evolutionary distance.

Phylogenetic analysis of nucleotide sequences was conducted using
the Neighbor-Joining method, which calculates evolutionary distances to
construct an unrooted tree, revealing relationships among HAV geno-
types and strains. For whole-genome amino acid sequence analysis,
alignment was performed with the MAFFT program using the G-INS-i
algorithm™. This alignment ensured the precise identification of homo-
logous residues essential for accurate phylogenetic reconstruction. For
the phylogenetic tree of the amino acid sequences, the maximum like-
lihood method was applied using RAXML-NG (ver. 1.1.0)*. The
GTR+F+1+ G4 model was selected to account for varying evolu-
tionary rates across sites. maximum likelihood-based tree construction
was performed with 1000 rapid bootstrap replicates to provide high
statistical confidence in the tree topology™.
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