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Background: Early and accurate diagnosis of Parkinson’s disease (PD) remains 
a major clinical and economic challenge, particularly in settings where 
dopaminergic imaging, such as positron emission tomography (PET) scans, 
is limited by cost, availability, and patient access. Artificial intelligence (AI) has 
emerged as a promising tool to support magnetic resonance imaging (MRI)-
based diagnosis of PD, but its economic value has yet to be fully evaluated.
Methods: The AI model used in this study analyzes susceptibility map-weighted 
MRI to detect nigrosome-1 signal loss (the “swallow-tail sign”), providing 
objective support for early PD identification. We conducted a patient-level 
cost–benefit analysis (CBA) comparing current PET-based diagnostic pathways 
with an MRI-based AI triage strategy for PD. A total of 24 mutually exclusive 
diagnostic scenarios were modeled to capture variation in disease presence, 
AI accuracy, and PET access. The analysis was conducted from a societal 
perspective in South Korea and a healthcare system perspective in the United 
States, covering both short-term (1-year) and long-term (2025–2050) horizons. 
Sensitivity analyses and AI adoption rate scenarios (30, 65, 100%) were included.
Results: In short-term analysis, AI-assisted diagnosis yielded net benefits of 
9.3 million US dollars (USD) (South Korea) and 76.0 million USD (United States) 
under 30% adoption, which increased to 31.0 million USD and 253.2 million 
USD, respectively, under full AI adoption. Benefit–cost (B/C) ratios exceeded 
1.4 in Korea and 1.3 in the U. S., and net benefit remained positive up to an AI 
unit cost of 226 USD in Korea and 1,506 USD in the U. S. The AI model also 
reduced PET use by over 31% through effective triage and enabled over 13,000 
Korean PD patients to access PET who might otherwise have forgone it due to 
cost. Long-term projection (Korea only) indicated cumulative net savings of 2.5 
billion USD by 2050 with gradually increasing AI adoption.
Discussion: MRI-based AI triage for PD diagnosis is a cost-beneficial strategy 
with the potential to reduce unnecessary imaging and expand access among 
underserved populations. Particularly in health systems with limited PET 
availability, this approach may offer scalable economic and clinical advantages 
over time.
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Introduction

Idiopathic Parkinson’s disease (IPD) is a progressive 
neurodegenerative disease characterized by tremors, bradykinesia, 
rigidity, and postural instability (1). While the clinical differential 
diagnosis of parkinsonism is often straightforward, additional 
diagnostic work-up may be warranted in patients with atypical 
presentations or early/mild stages of disease. Current clinical 
guidelines suggest cranial magnetic resonance imaging (MRI) as an 
initial structural assessment and recommend functional imaging such 
as positron emission tomography (PET) with fluorodeoxyglucose 
(FDG-PET) or dopamine transporter single-photon emission 
computed tomography (DAT-SPECT) when clinically indicated, 
particularly for diagnostically uncertain or atypical symptoms (2). 
However, dopaminergic imaging modalities are limited by high costs, 
radiation exposure, long scan times, and restricted accessibility. In 
South Korea, despite one of the highest PET scanner densities 
worldwide, availability remains only 3.8 per million people (3).

Nigrosome-1, located in the dorsolateral substantia nigra pars 
compacta, is the earliest site of dopaminergic neuron degeneration in 
IPD. Loss of T2/susceptibility-weighted hyperintensity, also known as 
the “swallow-tail sign,” in nigrosome-1 has emerged as a sensitive and 
specific early imaging biomarker for IPD (4). Recent advances in 
high-resolution MRI sequences, particularly susceptibility 
map-weighted imaging (SMWI), have enabled reliable visualization 
of this region.

Building on this progress, artificial intelligence (AI)-based deep 
learning models have been developed to automatically detect and 
quantify nigrosome-1 abnormalities on SMWI MRI (5). Previous 
studies demonstrated that such models facilitate rapid and accurate 
quantification of nigral hyperintensity, support IPD diagnosis, and 
predict symptom severity, showing particularly high specificity (5, 6). 
When used as a triage tool, MRI-based AI quantification can 
potentially improve cost-effectiveness by restricting expensive, 
radiation-exposing FDG-PET to only those patients suspected of early 
IPD by the AI. Although no prior study has formally evaluated 
MRI-based AI as a PET triage mechanism, previous work has shown 
that deep-learning models substantially enhance MRI-based detection 
of nigrosome-1 abnormalities, providing a plausible rationale for 
using AI to guide downstream imaging decisions. Importantly, this 
triage role reflects AI’s function in enhancing MRI interpretation 
rather than replacing dopaminergic imaging. PET remains the 
confirmatory standard when diagnostic uncertainty persists in clinical 
practice. This approach may help streamline diagnostic workflows and 
reduce the burden on specialized imaging resources. However, the 
cost–benefit of such AI triage strategies may vary depending on the 
healthcare system, insurance structure, and diagnostic costs.

Despite its clinical promise, widespread adoption of AI-based 
diagnostic tools requires careful economic evaluation, particularly 
within publicly funded healthcare systems. Quantifying the trade-offs 
between diagnostic accuracy, healthcare costs, and resource allocation 
is essential to guide real-world implementation and 
reimbursement decisions.

Given the variability in healthcare systems, insurance structures, 
and diagnostic costs across countries, the cost–benefit of such AI 
triage strategies may differ significantly by setting. Therefore, this 
study aims to evaluate the economic value of implementing an 
MRI-based AI diagnostic strategy for Parkinson’s disease (PD) using 

cost–benefit analysis (CBA) in two national contexts: South Korea and 
the United States.

Materials and methods

Study overview

This study conducted a cost–benefit analysis (CBA) to evaluate the 
economic value of implementing an AI-assisted MRI triage strategy 
for the early diagnosis of IPD, compared to the conventional 
diagnostic strategy based on direct PET imaging. The analysis was 
performed from the societal perspective for South Korea and the 
healthcare system perspective for the United States. The model 
included a short-term (1-year) time horizon for both countries, and 
an additional long-term horizon (2025–2050) for South Korea to 
assess extended economic outcomes. The target population comprised 
adults aged 65 years or older who were clinically suspected of having 
Parkinson’s disease. Based on national demographics and previously 
reported incidence rates, the cohort was assumed to consist of 48,888 
individuals in South Korea and 90,000 individuals in the United 
States. A patient-level simulation model was used to represent 
diagnostic and cost pathways for each individual within a hypothetical 
national cohort.

AI model description

The AI-assisted diagnostic strategy in this study was based on 
Heuron IPD, a commercially available software developed by 
Heuron Co., Ltd. (Seoul, Republic of Korea), designed for automated 
nigrosome-1 assessment on SMWI (6–8). Neuroradiologists 
performed visual grading of the substantia nigra with reference to 
patients’ neurological examination findings, and discrepant cases 
were adjudicated through consensus review. The dataset was 
partitioned into training, validation, and internal test sets, and 
augmentation techniques were applied to improve robustness to 
variations in MRI acquisition. The model outputs quantitative 
indices including bilateral nigral hyperintensity maps, volumetric 
measures, and standardized Z-scores, providing objective support 
for early IPD assessment. Diagnostic accuracy parameters used in 
this study were sources from the software’s validated performance 
report. Similar deep-learning approaches have been used in other 
neurological contexts to detect subtle and pathognomonic visual or 
temporal features such as dynamic facial landmark patterns for 
depression or distributionally robust modeling of heterogeneous 
facial expressions, highlighting the broader technical relevance of 
feature-based AI diagnostics (9, 10).

Intervention and comparators

Two strategies were compared: (1) the conventional functional-
imaging pathway, in which patients for whom PET would normally 
be clinically considered undergo PET imaging for diagnostic 
confirmation, and (2) the AI-assisted MRI triage strategy, where 
MRI interpreted with AI is used to determine whether PET is 
necessary rather than assuming MRI is universally followed by 
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PET. This modeling framework focuses on the subset of cases in 
which PET is clinically relevant due to diagnostic uncertainty, rather 
than implying universal PET use in all suspected PD patients. This 
approach allowed early-stage detection in high-confidence MRI-AI 
cases while reducing unnecessary PET procedures. The AI software 
was assumed to be applied at the point of MRI interpretation, prior 
to any PET decision.

Model structure

The simulated cohort represents patients for whom PET may be 
clinically indicated based on guideline-consistent diagnostic 
uncertainty, and each individual in the simulated cohort was assigned 
to one of 24 mutually exclusive patient types, defined by combinations 
of five binary variables: (1) presence or absence of actual Parkinson’s 
disease, (2) presence or absence of economic burden to access PET 
imaging, (3) detection outcome of MRI (detected or not), (4) detection 

outcome of PET (detected, not detected, or not performed), and (5) 
whether AI was used in interpreting MRI. These 24 combinations 
represented all possible clinical and diagnostic scenarios under both 
strategies. Types 1–12 correspond to the AI-assisted strategy, while 
types 13–24 were assigned to the conventional PET-based pathway. 
The clinical characteristics of each type were identical between the two 
groups, but diagnostic workflows and associated cost structures 
varied. The analysis therefore focuses on diagnostic pathways among 
patients likely to undergo PET under standard care, rather than 
modeling PET use in all suspected PD patients. The AI adoption rate 
was modeled as a key variable determining the distribution between 
the two groups. For instance, with a 40% AI adoption rate, 40% of the 
population is distributed among types 1–12, and the remaining 60% 
is distributed among types 13–24. Each type’s cost and benefit 
trajectory were simulated based on their diagnostic path, accounting 
for early detection, misdiagnosis, delayed diagnosis, or avoided 
PET. Table 1 provides detailed definitions of all 24 patient types and 
diagnostic logic.

TABLE 1  Patient classification matrix by PD status, economic burden, diagnostic results, and AI usage.

Patient 
types

PD 
status

Economic 
burden

MRI 
detection

PET 
detection

AI 
usage

Notes

1 True No O O Yes Additional AI cost

2 True No O X Yes Additional AI cost

3 True No X O Yes Additional AI cost; missed diagnosis causing delayed diagnosis costs

4 True No X X Yes Additional AI cost; missed diagnosis causing delayed diagnosis costs

5 True Yes O O Yes Additional AI cost; additional PET cost; early treatment cost saving

6 True Yes X N/A Yes Additional AI cost

7 False No O O Yes Additional AI cost; PET cost saving by triage

8 False No O X Yes Additional AI cost; PET cost saving by triage

9 False No X O Yes Additional AI cost

10 False No X X Yes Additional AI cost

11 False Yes O N/A Yes Additional AI cost

12 False Yes X O Yes Additional AI cost

13 True No O O No Same as comparator (conventional PET strategy)

14 True No O X No Same as comparator (conventional PET strategy)

15 True No X O No Same as comparator (conventional PET strategy)

16 True No X X No Same as comparator (conventional PET strategy)

17 True Yes O O No Same as comparator (conventional PET strategy)

18 True Yes X N/A No Same as comparator (conventional PET strategy)

19 False No O O No Same as comparator (conventional PET strategy)

20 False No O X No Same as comparator (conventional PET strategy)

21 False No X O No Same as comparator (conventional PET strategy)

22 False No X X No Same as comparator (conventional PET strategy)

23 False Yes O N/A No Same as comparator (conventional PET strategy)

24 False Yes X O No Same as comparator (conventional PET strategy)

Types 1–12 reflect patients under the AI-assisted MRI triage strategy, while types 13–24 to the conventional PET strategy. “PD status” indicates whether the patient truly has PD, irrespective of 
diagnostic outcomes. This represents the ground truth status used for modeling accuracy and misdiagnosis. “Economic burden” refers to whether the patient faces significant financial strain 
when accessing diagnostic services; this affects PET utilization in the model. “MRI detection” represents whether PD is detected using MRI. “O” indicates a positive detection, “X” indicates 
non-detection. “PET detection” indicates whether PD is detected using PET imaging. “O” signifies detection, “X” signifies non-detection, and “N/A” indicates that PET was not performed. “AI 
use” is marked “Yes” if the patient followed the AI-assisted MRI triage strategy, and “No” if the conventional PET strategy was used. The cost consequence column describes the cost attribution 
for each case: whether AI-related costs were incurred, PET imaging was avoided, or if delayed diagnosis penalties applied. PD, Parkinson’s disease; PET, Positron Emission Tomography; MRI, 
Magnetic Resonance Imaging; AI, Artificial Intelligence. Shades are not related to its significance, rather blue means positive (sensitive or cost-saving) cases while red represents negative 
(additional costs or miss-diagnostics) situations.
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Input variables

Table 2 summarizes all key input parameters, including diagnostic 
test characteristics, initial probabilities of clinical conditions among 
the suspected PD population, direct medical costs for imaging or AI 
processing, annual treatment costs for early versus delayed 
management of PD, and relevant non-medical cost variables. AI 
sensitivity and specificity values were derived from a multicenter 
clinical trial across 10 tertiary care hospitals in South Korea 
(ClinicalTrials.gov Identifier: NCT4334902). Parameter values were 
derived from published literature, national statistics, and clinical trial 
data when available.

Specific variables included the sensitivity and specificity of MRI with 
and without AI assistance, PET detection performance, per-scan cost of 
PET, AI software licensing fee, and average outpatient consultation and 
transportation costs. In addition, estimates for employment rates and 
average hourly wages among individuals aged 65 years or older were 
used to calculate indirect costs such as time loss and caregiver burden.

Where appropriate, country-specific values were assigned 
separately for South Korea and the United States. In South Korea, both 
direct medical and non-medical costs (e.g., time and transportation) 
were included in the base-case analysis to reflect real-world burden. 
For the U.S. analysis, only direct medical costs were considered in 

2025 U.S. dollars. The exchange rate applied for currency conversion 
weas 1,416.54 KRW per 1 USD, based on government forecasts for 
2025 (11).

Statistical analyses

We calculated the marginal economic impact of AI-assisted 
diagnosis compared to the conventional PET strategy by estimating 
per-patient marginal benefits (MB) and marginal costs (MC) across 
24 patient types (Table 3). The analysis considered both direct medical 
costs (e.g., PET scans, AI processing, treatment) and indirect costs 
(e.g., productivity loss, transportation). All input variables referenced 
in the formulas (e.g., v1.1, v2.3) are detailed in Table 2. The net benefit 
(total benefit minus total cost) and the benefit–cost (B/C) ratio were 
computed by aggregating individual patient-level values weighted by 
their respective population proportions. In the Korean setting, we 
additionally simulated a long-term scenario model, projecting the 
cumulative net benefit through 2050, assuming AI adoption increases 
linearly to 80% within 10 years. This model incorporated both direct 
and indirect costs. By contrast, the U.S. analysis focused solely on 
direct medical costs, excluding non-medical elements due to limited 
data generalizability.

TABLE 2  Model input parameters used in the model.

Variable types South Korea Source USA Source

1. Population characteristics

V1.1 PD diagnostic rate among outpatients (%) 0.50 Assumed 0.50 Assumed

V1.2 PD population aged 65 + (N) 48,888 (16, 17) 90,000 (18)

V1.3 AI adoption rate (%) 0.30 Assumed 0.30 Assumed

V1.4 PET unaffordability rate (%) 0.30 Assumed 0.30 Assumed

2. Diagnostic accuracy

V2.1 Sensitivity (AI) 0.943 (19) 0.943 (19)

V2.2 Specificity (AI) 0.917 (19) 0.917 (19)

V2.3 Sensitivity (PET) 0.932 (20) 0.932 (20)

V2.4 Specificity (PET) 0.857 (20) 0.857 (20)

3. Direct medical costs (USD)

V3.1 PET scan cost (per scan) 735 (20) 2,587 (21)

V3.2 AI usage cost (per scan) 7 Assumed 100 Assumed

4. Indirect medical costs (USD)

V4.1 Annual medical cost after early PD diagnosis 4,062 (22) 24,439 (23)

V4.2 Annual medical cost after delayed PD diagnosis 4,753 (22) 30,439 (24)

5. Non-medical costs (USD)

V5.1 No. of persons per visit (including caregiver) 2 Assumed N/A

V5.2 Time for PET scan (hrs) 4 Assumed N/A

V5.3 Time for outpatient visit (hrs) 4 Assumed N/A

V5.4 Average hourly wage of aged 65+ 14.6 (25) N/A

V5.5 Employment rate of aged 65 + (%) 0.396 (26) N/A

V5.6 Transportation cost (round trip) 18.2 (27) N/A

Sensitivity (AI) and specificity (AI) refer to the performance of the deep-learning algorithm applied to SMWI MRI image alone. These metrics do not represent combined MRI+PET 
performance. PET remains the confirmatory reference standard in current clinical practice. PD, Parkinson’s disease; PET, Positron Emission Tomography; MRI, Magnetic Resonance Imaging; 
AI, Artificial Intelligence; USD, United States Dollar; N/A, not applicable.
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TABLE 3  Formulas and explanations of marginal benefits (MB) and marginal costs (MC) by patient types: comparing AI vs. PET diagnosis pathways.

Formulas for marginal benefits (MB) and marginal costs (MC) Meaning Patient types

MB1 Marginal benefit

Medical 

costs

Costs for PET v1.2 * (1 − v1.4) * v1.3 * (1 − v2.1) * v3.1
Avoided PET costs due to false negatives identified by AI (without economic 

burden)
3, 4

MB2 Marginal benefit Costs for PET {v1.2 * (1 − v1.1)/v1.1} * (1 − v1.4) * v1.3 * v2.2 * v3.1 Avoided PET costs for true negatives correctly excluded by AI 7, 8

MC1 Marginal cost Costs for PET v1.2 * v1.4 * v1.3 * v2.1 * v3.1
Additional PET costs due to true positives identified by AI (with economic 

burden)
5

MC2 Marginal cost Costs for PET {v1.2 * (1 − v1.1)/v1.1} * v1.4 * v1.3 * (1 − v2.2) * v3.1 Additional PET costs due to false positives generated by AI 12

MC3 Marginal cost AI processing costs (v1.2/v1.1) * (1 − v1.4) * v1.3 * v3.2 AI usage cost for true positives 1, 2, 3, 4, 7, 8, 9, 10

MC4 Marginal cost AI processing costs v1.2 * v1.4 * v1.3 * v3.2 AI usage cost for false positives 5, 6

MC5 Marginal cost AI processing costs {v1.2 * (1 − v1.1)/v1.1} * v1.4 * v1.3 * v3.2 AI usage cost for false negatives 11, 12

MB3 Marginal benefit Treatment costs v1.2 * (1 − v1.4) * v1.3 * (1 − v2.1) * v2.3 * v4.1 Reduced treatment costs due to earlier diagnosis of true positives by AI 3

MC6 Marginal cost Treatment costs v1.2 * v1.4 * v1.3 * v2.1 * v2.3 * v4.1 Additional treatment cost for false negatives due to delayed diagnosis 5

MB4 Marginal benefit Treatment costs v1.2 * v1.4 * v1.3 * v2.1 * v2.3 * v4.2
Reduced treatment costs due to fewer false positives with unnecessary 

treatment
5

MC7 Marginal cost Treatment costs v1.2 * (1 − v1.4) * v1.3 * (1 − v2.1) * v2.3 * v4.2 Productivity loss due to delayed diagnosis in false negatives 3

MB5 Marginal benefit

Indirect 

costs

Time costs v1.2 * (1 − v1.4) * v1.3 * (1 − v2.1) * v5.1 * v5.4 * v5.5 * v5.2 Avoided productivity loss for true positives diagnosed early 3, 4

MB6 Marginal benefit Time costs
{v1.2 * (1 − v1.1)/v1.1} * (1 − v1.4) * v1.3 * v2.2 * v5.1 * v5.4 * 

v5.5 * v5.2
Avoided productivity loss for false positives correctly excluded 7, 8

MC8 Marginal cost Time costs v1.2 * v1.4 * v1.3 * (1 − v2.1) * v2.3 * v5.1 * v5.4 * v5.5 * v5.2 Productivity loss due to unnecessary care in false positives 5

MC9 Marginal cost Time costs
{v1.2 * (1 − v1.1)/v1.1} * v1.4 * v1.3 * (1 − v2.1) * v2.3 * v5.1 * 

v5.4 * v5.5 * v5.2
Transportation cost for false negatives receiving PET confirmation 12

MB7 Marginal benefit
Transportation 

costs
{v1.2 * (1 − v1.1)/v1.1} * (1 − v1.4) * v1.3 * v2.2 * v5.1 * v5.6

Avoided transportation costs for true positives or false positives correctly 

excluded
7, 8

MC10 Marginal cost
Transportation 

costs
v1.2 * v1.4 * v1.3 * (1 − v2.1) * v2.3 * v5.1 * v5.6 Transportation cost for false positives undergoing unnecessary PET 5

MC11 Marginal cost
Transportation 

costs

{v1.2 * (1 − v1.1)/v1.1} * v1.4 * v1.3 * (1 − v2.1) * v2.3 * v5.1 * 

v5.6
Transportation cost for true positives receiving PET confirmation 12

Variables used in the formulas (e.g., v1.1, v.2.3) are defined in Table 2, which lists diagnostic parameters, cost components, and population probabilities. Each marginal benefit or marginal cost represents the unit-level difference between AI and PET strategies. PET, 
Positron Emission Tomography; AI, Artificial Intelligence; MB, Marginal Benefit; MC, Marginal Cost.
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TABLE 4  Short-term cost–benefit results of AI adoption for PD diagnosis in Korea and the U.S.

(Unit: USD) South Korea United States

AI (30%) AI (65%) AI (100%) AI (30%) AI (65%) AI (100%)

MB1 430,206 932,113 1,434,020 2,786,975 6,038,446 9,289,917

MB2 6,918,769 14,990,666 23,062,562 44,821,405 97,113,044 149,404,683

MC1 184,374 399,477 614,580 1,194,418 2,587,905 3,981,393

MC2 269,445 583,797 898,149 1,745,527 3,781,974 5,818,422

MC3 144,953 314,064 483,176 3,780,000 8,190,000 12,600,000

MC4 31,061 67,299 103,538 810,000 1,755,000 2,700,000

MC5 31,061 67,299 103,538 810,000 1,755,000 2,700,000

MB3 2,215,379 4,799,989 7,384,598 24,537,822 53,165,280 81,792,738

MC6 15,707,540 34,033,003 52,358,465 173,978,690 376,953,827 579,928,965

MB4 18,381,227 39,825,992 61,270,757 216,692,063 469,499,470 722,306,877

MC7 2,592,474 5,617,028 8,641,581 30,562,083 66,217,847 101,873,610

MB5 27,050 58,608 90,166

MB6 435,030 942,564 1,450,099

MC8 178,748 387,288 595,828

MC9 178,748 387,288 595,828

MB7 342,145 741,314 1,140,483

MC10 140,583 304,597 468,611

MC11 140,583 304,597 468,611

Net benefit 9,290,818 20,130,105 30,969,392 75,957,548 164,574,686 253,191,825

B/C ratio 1.48 1.36

Ethics approval and consent to participate

This study protocol was reviewed and approved by the Institutional 
Review Board (IRB) of Severance Hospital, Yonsei University (IRB 
number: 1-2025-0034). Written informed consent was waived by the 
IRB due to the retrospective and de-identified nature of the data.

Results

Short-term economic outcomes

Table 4 summarizes the short-term economic impact of adopting 
AI-assisted diagnosis for PD across three levels of adoption (30, 65, 
100%) in both South Korea and the United States. In Korea, where a 
societal perspective was taken, the net benefit was estimated at 9.29 
million US dollars (USD) under 30% AI adoption and increased to 
30.97 million USD at full adoption. The benefit–cost (B/C) ratio was 
1.48, indicating consistent efficiency gains. In the United States, where 
only direct medical costs were considered, the estimated net benefit 
rose from 75.96 million USD at 30% AI adoption to 253.19 million 
USD at 100% adoption, with B/C ratios of 1.36. Notably, the break-
even point for AI unit cost, where net benefit becomes zero, was 
calculated to be approximately 226 USD in Korea and 1,506 USD in 
the United States. These thresholds suggest that the AI model remains 
cost-effective even with considerable implementation costs. Because 
the PET unaffordability rate (base case: 30%) is a key structural 
assumption in the model, sensitivity analysis was performed across a 

wide range (0–100%). Net benefit remained positive throughout, 
varying from 10.90 million USD at 0% unaffordability to 5.53 million 
USD at 100%, corresponding to 117.3 to 59.5% of the base-case 
estimate. These results collectively suggest that AI integration into PD 
diagnostic pathways delivers substantial short-term economic benefits 
in both national settings, with increasing returns as adoption scales.

Projected reduction in PET scans

Figure 1 illustrates the distribution of patients across diagnostic 
subgroups under the AI-assisted pathway, with implications for PET 
scan utilization. Among a total of 97,776 patients assessed, 31,381 
(32.1%) in group B1 represent avoided PET scans due to AI 
effectively ruling out non-PD cases, highlighting the model’s triage 
capability. 13,830 (14.1%) in group C1 correspond to PD patients 
who were correctly identified by AI but may have previously forgone 
PET imaging due to economic burden; under the AI-guided strategy, 
these individuals receive recommended PET scans reimbursable, 
enabling early diagnosis and timely intervention. In contrast, 1,951 
(2.0%) in group A2 represent missed PD cases where PET scans were 
skipped due to AI misclassification, posing a risk of delayed 
diagnosis. Additionally, 1,217 (1.2%) in group D2 reflect PET scans 
unnecessarily conducted on non-PD patients misclassified as PD, 
contributing to potential overuse and excess cost. In the Korean 
clinical setting, PET is routinely recommended as the confirmatory 
step when diagnostic uncertainty persists, and MRI alone rarely 
determines final diagnosis. Therefore, the modeled cohort reflects 
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patients for whom PET would normally be offered within this 
PET-eligible group, economic barriers represent the primary real-
world reason for forgoing PET.

Long-term projections through 2050 
(Korea only)

Based on Korea’s projected PD prevalence and population aging 
trends, we estimated the annual and cumulative net benefit of 
implementing the AI-based diagnostic support tool over a 26-year 

horizon (2025–2050). The results indicated that the annual net benefit 
starts at 2.1 million USD in 2025 and increases steadily, reaching 264.7 
million USD in 2050. Cumulatively, the net benefit is projected to 
amount to 2.5 billion USD over the 26-year period (Figure 2).

Discussion

AI has emerged as a key enabler of diagnostic innovation, 
particularly in imaging-heavy diseases like PD, where early detection 
is crucial yet often delayed due to accessibility or cost constraints. Our 

FIGURE 1

PET scan impact by patient subgroup (A1-D2) defined by PD status, economic burden, and sensitivity.
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study aimed to quantify the economic value of implementing an 
MRI-based AI triage system for PD diagnosis. Using CBA, we 
modeled patient-level outcomes across 24 diagnostic scenarios and 
assessed both short-and long-term impacts from national perspectives 
in South Korea and the United States.

Importantly, this modeling framework reflects the real-world 
clinical context in which PET is not universally performed but is 
typically reserved for diagnostically uncertain cases. To ensure the 
model aligned with actual practice, we referenced national Korean 
data indicating that approximately 20,000 PET scans are performed 
annually for Parkinsonism-related diagnostic evaluation. Thus, the 
model focused on the clinically relevant subgroup for whom PET 
would reasonably be considered, rather than assuming universal PET 
use across all suspected PD patients.

Furthermore, if future neuroprotective or disease-modifying 
therapies become available, early diagnostic confirmation will 
become substantially more valuable. In such a scenario, the 
AI-assisted MRI triage strategy evaluated in this study could 
function as a cost-effective early screening tool, particularly for 
early-stage PD. This highlights that the economic utility of AI 
could be even greater in future treatment landscapes than 
estimated in this analysis.

We developed a granular modeling framework that categorized 
into 24 mutually exclusive patient types, reflecting variations in 
disease presence, diagnostic pathways, economic burden, and AI 

detection outcomes. This structure enabled nuanced simulation of 
AI’s dual effects of reducing unnecessary imaging while expanding 
early access among patients who would have otherwise forgone PET 
due to cost barriers. The AI strategy was evaluated under both short-
term (1-year) and long-term (2025–2050) horizons. For South 
Korea, we adopted a societal perspective, incorporating both 
medical and non-medical costs (e.g., transportation, productivity 
loss), while the U.S. model used a healthcare system perspective that 
included direct medical costs only. Adoption rates of 30, 65, and 
100% were modeled to reflect gradual technology diffusion, and key 
assumptions were stress-tested through sensitivity analysis. In 
particular, varying the PET unaffordability rate from 0 to 100% did 
not change the direction of the results, and net benefit remained 
positive across all scenarios, underscoring the robustness of the 
model’s economic conclusions.

Our findings suggest that the implementation of an MRI-based 
diagnostic system can yield substantial economic benefits. In the 
Korean context, where societal costs are considered, the AI-assisted 
strategy resulted in a net savings of 9.3 million USD under 30% 
adoption and 31.0 million USD at full uptake. The B/C ratio 
remained above 1.4, supporting the strategy’s cost-efficiency. 
Importantly, the AI model triaged over 31% of patients out of PET 
imaging and also enabled PET access for over 13,000 PD patients 
who previously may have been excluded due to financial limitations. 
The long-term simulation (2025–2050) revealed even greater 

FIGURE 2

Projected annual and cumulative net benefits of AI-assisted diagnosis in Korea, 2025–2050 (unit: million USD).
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economic value, with cumulative net savings projected to reach 2.5 
billion USD by 2050 under gradually increasing AI adoption in 
Korea. This suggests that the cost-effectiveness of AI not only 
persists but amplifies over time, particularly in aging societies with 
rising PD prevalence. These findings position AI as a scalable 
solution to address both access and cost challenges in 
neurodegenerative disease diagnostics. Previous studies have shown 
that AI aids cost-saving and improves healthcare outcomes in acute 
stroke and multiple sclerosis patients (12–14). Although a prior 
study has evaluated the cost-effectiveness of early PD detection 
using non-wearable sensors (15), to our knowledge this is the first 
economic evaluation of AI-based diagnostic software specifically 
for PD. This reinforces the novelty and policy relevance of 
our findings.

Despite the promising economic results, several limitations 
must be acknowledged. First, the model relied on assumptions for 
key parameters such as the proportion of patients who forgo PET 
imaging due to economic barriers and the long-term medical costs 
associated with delayed PD diagnosis. While these inputs were 
informed by existing literature, real-world validation is essential to 
refine these assumptions. In addition, the model focused on 
patients for whom PET would normally be recommended in the 
Korean clinical setting. Individuals who do not undergo PET 
because the diagnosis appears clinically obvious were not included, 
as such cases are uncommon in real-world practice. Second, AI 
performance metrics (e.g., sensitivity and specificity) were drawn 
from controlled trial settings. In clinical reality, diagnostic accuracy 
may vary depending on MRI protocol heterogeneity, institutional 
infrastructure, and radiologist expertise. Future prospective studies 
are needed to evaluate how AI tools perform when deployed across 
diverse healthcare environments. Third, the model adopted a 
simplified linear trajectory for AI uptake and assumed stable 
reimbursement and pricing structures over 25 years. Although real-
world technology diffusion often follows nonlinear patterns such 
as S-curve adoption, empirical data on long-term uptake of 
AI-assisted PD imaging are currently unavailable. Therefore, a 
linear trajectory was applied as a conservative and transparent 
baseline assumptions. Additionally, while the U.S. model included 
only direct medical costs, broader societal costs such as caregiver 
burden and transportation could further improve the cost-
effectiveness profile if included. Future research should also 
examine the integration of AI tools within clinical decision support 
systems and assess patient-centered outcomes, such as time to 
diagnosis, satisfaction, and long-term quality of life. Incorporating 
stakeholder perspectives, including physicians, payers, and patient 
advocacy groups, will be critical to support real-world adoption 
and scale-up.

In conclusion, this study demonstrates that MRI-based AI 
triage for PD is not only clinically promising but also 
economically viable. By reducing unnecessary PET scans and 
enabling access for underserved patients, AI can help optimize 
diagnostic pathways in both the short and long term. South 
Korea, with its rapidly aging population and robust imaging 
infrastructure, represents an ideal environment for early 
adoption. With further validation and policy alignment, this 
approach may serve as a replicable model for other nations 
aiming to modernize neurodegenerative disease diagnostics.
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