
Design and Synthesis of Boron-Containing Noncanonical
Amino Acids With Enhanced Stability and Solubility
Eunsol Jo1,2 | Hyojung Ahn1,2 | Guldana Issabayeva1,2 | On-Yu Kang3 | Jungtaek Kim4 | Young-Chul Song4 | Ik Jae Lee5 |
Hei-Cheul Jeung6 | Ji Young Hyun1,2 | Seong Jun Park1,2 | Hwan Jung Lim1,2

1Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea | 2Department of Medicinal

Chemistry and Pharmacology, University of Science & Technology, Daejeon, Republic of Korea | 3Nucleic Acid Therapeutics Research Center, Korea

Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do, Republic of Korea | 4Chemical Analysis Center, Korea Research

Institute of Chemical Technology, Daejeon, Republic of Korea | 5Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei

University College of Medicine, Seodaemun-gu, Republic of Korea | 6Department of Medical Oncology, Yonsei University College of Medicine,

Gangnam-gu, Republic of Korea

Correspondence: Seong Jun Park (sjunpark@krict.re.kr) | Hwan Jung Lim (indium@krict.re.kr)

Received: 12 November 2025 | Revised: 20 November 2025 | Accepted: 20 November 2025

Keywords: amino acids | boron | noncanonical | stability | synthesis

ABSTRACT
The development of noncanonical amino acids (ncAAs) provides a powerful strategy to expand the chemical space of proteins

beyond the natural repertoire, thereby overcoming intrinsic pharmacodynamic limitations of peptides and proteins. Among these,

boron-containing ncAAs are of particular interest due to the versatile reactivity of boron and its proven therapeutic relevance in

clinically approved drugs. However, poor aqueous solubility, instability under physiological conditions, and oxidative degradation

have hindered their broader biological application. Here, we report the design and synthesis of a new class of boron-containing

ncAAs with enhanced solubility and stability. Structural modifications around the boron center and optimized substituents were

employed to improve compatibility with biological systems while retaining functional reactivity. Moreover, fluorescence analysis

revealed distinct photophysical properties, indicating potential applications in protein engineering and biosensing. These results

highlight the utility of cyclic boron architectures as a versatile platform for the development of boron-based amino acid analogs

with broad implications in chemical biology, drug discovery, and biomolecular design.

1 | Introduction

The design and synthesis of noncanonical amino acids (ncAAs)
have played crucial roles in drug discovery by addressing
the inherent pharmacodynamic limitations of proteins [1]
and peptides composed of the 20 canonical amino acids [2].
Natural peptides often exhibit poor absorption due to low
permeability and limited metabolic stability, which restricts
their utility in therapeutic applications [3–5]. To overcome
these drawbacks, the incorporation of ncAAs has emerged as
an effective strategy [2, 6]. Beyond improving drug-like proper-
ties, ncAAs offer unique opportunities to enhance structural

complexity, modulate physicochemical parameters, and intro-
duce novel functionalities inaccessible to the natural amino
acid repertoire.

Among these, boron-containing amino acids represent a partic-
ularly intriguing class of ncAAs because of the versatile chemis-
try of boron and its relevance in medicinal chemistry [7–12] and
enzymology [13, 14]. Boron atoms display distinctive electronic
and structural features, including the ability to form reversible
covalent bonds and interact with diols [15], nucleophiles [16],
and other electron-rich species [17]. These properties enable
boron-containing molecules to act as enzyme inhibitors [18, 19],
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chemical sensors [20], and a tool to modulate the function of pro-
teins [21]. Notably, boronic acids and boronate esters are already
employed in clinically approved drugs, such as Bortezomib [22]
and Ixazomib [23], which function as proteasome inhibitors in
cancer therapy [24, 25]. (Figure 1a).

Despite their promise, boron-containing ncAAs also present
critical challenges that limit their broader use. Many boronic
acid derivatives suffer from poor aqueous solubility, instability

under physiological conditions, and susceptibility to oxidative
degradation, collectively reducing their biological utility [26].
For example, boronophenylalanine (BPA) exhibits inferior
solubility and stability compared to natural amino acids
such as phenylalanine or tyrosine [27, 28]. Overcoming

FIGURE 1 | FDA-approved boron-containing drugs and the concept of ncAA design.

SCHEME 1 | Synthetic scheme of 5 (4-BOLAA) and 9 (3-BOLAA). SCHEME 2 | Synthetic scheme of 14 (4-BOLAA_O).
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these limitations requires the development of new syn-
thetic approaches that yield boron-containing ncAAs with
improved stability, solubility, and compatibility with biological
systems [29].

Recent advances in synthetic chemistry have explored strategies
to stabilize boron moieties while preserving their functional reac-
tivity. Approaches include steric protection of the boron center
[30], design of cyclic boronates [31], and systematic tuning of
substituents to enhance stability and aqueous compatibility
[32]. Concurrently, progress in peptide synthesis and protein
engineering provides opportunities to incorporate such improved
boron-containing ncAAs into biomolecular frameworks, thereby
enabling systematic evaluation of their structural and functional
properties [33].

In this study, we report the synthesis of a new class of boron-
containing ncAAs specifically designed to overcome the key lim-
itations of solubility and stability (Figure 1b).

2 | Results and Discussion

To enhance the stability of boron-containing phenylalanine, it is
essential to improve the robustness of the C─B bond through
structural modification. Additionally, the designed structures
could exhibit superior water solubility compared with BPA.
We hypothesized that introducing cyclic boron-containing archi-
tectures would enable the development of next-generation
boron-containing ncAAs.

Specifically, cyclic boron compounds exhibited a reduced rate
of C─B bond dissociation relative to linear counterparts. This
effect was especially pronounced in the boron oxalate-like
(BOL) structure, which maintained its structural integrity
even under strongly basic conditions, unlike alkyl-borates
such as benzoxaborinine (BN) and benzoxaborole (BL) [32].
Such enhanced resistance to hydrolytic cleavage highlights
the superior robustness of the BOL framework compared
with other boron-based motifs, underscoring its potential

FIGURE 2 | Measurements of oxidative stability of BPA and BOLAAs by time-dependent 1H NMR studies.
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utility in applications demanding high stability across diverse
environments.

The synthetic procedures for the designed structures were devel-
oped based on general schemes for the synthesis of unnatural
amino acids. Using protected glycine 1 as a starting material,
alkylation with substituted benzyl bromide afforded 4-bromo
phenylalanine derivatives (2 and 6) in good yields (Scheme 1).
The bromo group was subsequently converted into pinacolbor-
ane (4 and 8) by a Pd-catalyzed coupling reaction [17].
Hydrolysis, followed by cyclization under basic condition, gave
the desired cyclic boron structures (4-BOLAA 5 and 3-BOLAA 9)
in good yields. The structures of the boron-containing molecules
were assigned by proton, carbon, and boron NMR spectroscopy,
which clearly identified the cyclic nature of the structures.
For the oxygen-linked structure, protected L-serine 10 was used
as a starting material (Scheme 2). O-arylation, followed by subse-
quent borylation, afforded the desired product 12 in good yields.
Hydrolysis of the borane 12 and the resulting boric acid 13 was
cyclized under basic condition to obtain 14 (4-BOLAA_O).

Using the designed structures, the oxidative stability of the three
ncAAs and BPA was evaluated through time-dependent NMR
studies. Under conditions similar to physiological environments,
with hydrogen peroxide as the oxidant, the stability of ncAAs in
water was assessed. Compared to BPA (t1/2= 2.57 h), 5 (4-BOLAA)
had more than seven times greater, as shown in Figure 2a–b. For
9 (3-BOLAA), the increase in stability was even more pronounced,
as illustrated in Figure 2c. In contrast, the oxygen-linked 14
(4-BOLAA-O) showed poor stability under the same condition
(Figure 2d). This suggests that the position and electronic proper-
ties of the boron atom play a key role in enhancing stability.

The water solubility of the two compounds was measured using
ICP-OES, revealing that the newly synthesized BOL derivatives
exhibited significantly higher solubility (approximately 12 g/L)
compared to BPA (0.55 g/L). Both 9 (3-BOLAA) and 5
(4-BOLAA) showed similar solubility profiles (Table 1). The
increased solubility of cyclic BOLAA derivatives compared

to BPA can be attributed to the reduction of the inherent
hydrophobicity of the boronic acid group in BPA, enhancing
interactions with water. The cyclic structure likely decreases
the extent of intramolecular interactions that are present in
BPA, thereby facilitating better solvation and solubility in aque-
ous environments.

Furthermore, fluorescence analysis revealed bathochromic shifts
in spectra of the boron-containing ncAA 5 (4-BOLAA) compared
to their deboronated counterpart 16 (Figure 3), indicating potential
applications in fluorescence-based assays and biosensing [32].

3 | Conclusion

In this study, we successfully developed a new class of boron-
containing ncAAs that address the long-standing limitations of
solubility and stability in conventional boron amino acid deriv-
atives. By adopting a cyclic boron architecture, we demonstrated
that C─B bond stability can be substantially improved, resulting
in enhanced oxidative resistance and significantly higher water
solubility than BPA. Our findings establish a robust design prin-
ciple for the creation of boron-containing amino acids with
improved biological compatibility, paving the way toward their
broader use in therapeutic, diagnostic, and biomaterials applica-
tions. Applications of the developed boron-containing ncAAs for
medicinal purposes are currently underway, and the results will
be reported in due course.

4 | Experimental Section

4.1 | Chemistry

Commercially available reactants and solvents were used with-
out additional purification. Analytical thin layer chromatography
(TLC) was performed on Kieselgel 60 F254 glass plates precoated
with a 0.2 mm thickness of silica gel. The TLC plates were visu-
alized by shortwave (254 nm). Medium-pressure liquid chroma-
tography (MPLC) was performed on CombiFlash NextGen
300+ apparatus using Buchi FlashPure EcoFlex silica cartridges
with 50 μm particle size. Preparatory TLC was performed on
Kieselgel 60 F254 glass plates precoated with a 1.0 mm thickness
of silica gel. 1H NMR spectra were obtained at 300MHz,
400MHz, or 500MHz (Bruker). 13C NMR spectra were acquired
at 100 and 125MHz (Bruker). 11B NMR spectra were obtained at
160MHz (Bruker). Liquid chromatography mass spectrometry
(LCMS) with an electrospray ionization (ESI) method was used
to obtain mass spectra. High-resolution mass spectra (HRMS)
were recorded with a fast atom bombardment (FAB) using a sec-
tor field mass analyzer. Compound purity was measured using a
Shimadzu Nexera lite HPLC system. Data acquisition and proc-
essing were performed using LabSolutions software.

The compounds 1, 2, 6, 10, and 11 were synthesized according to
the reported procedure [34−36].

4.2 | General Procedure 1: Synthesis of Aryl
Boronic Esters via Miyaura Borylation

To a round-bottom flask equipped with a stirring bar were
added appropriate bromo benzoate (3.8 mmol, 1.0 eq.),

FIGURE 3 | UV spectra of 4-BOLAA and the deboronated com-

pound 16.

TABLE 1 | Aqueous solubilities of the boron-containing ncAAs.

Compound Water solubility, g/L Mean value, g/L

BPA 1.1 1.1 0.9 1.03 ± 0.12

5(4-BOLAA) 35.9 35.3 35.5 35.57 ± 0.31

9(3-BOLAA) 29.4 31.0 36.4 32.27 ± 3.65

4 of 8 European Journal of Organic Chemistry, 2025
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Pd(dppf )Cl2·CH2Cl2 ([1,1 0-bis(diphenylphosphino)ferrocene]
dichloropalladium(II), complex with dichloromethane) (0.76mmol,
0.2 eq.), bis(pinacolato)diboron (5.7 mmol, 1.5 eq.), and potassium
acetate (9.5 mmol, 2.5 eq.). The round-bottom flask was capped
with a rubber septum, evacuated, and backfilled with Argon.
The reactants were dissolved in anhydrous 1,4-dioxane at room
temperature. The reaction mixture was heated up to 80°C and
stirred overnight. After the reaction was completed, the resulting
mixture was filtered through celite and washed with EtOAc. The
filtrate was extracted with water. The organic layer was collected
and dried over anhydrous Na2SO4, filtered, and the solvent was
evaporated under reduced pressure. The crude product was purified
by MPLC (EtOAc /n-hexane, 1:4) to afford the target compound.

4.3 | General Procedure 2: Synthesis of Boronic
Acid via Hydrolysis of Boronic Ester

To a solution of the requisite boronic ester, prepared according to
General Procedure 1 (0.31 mmol, 1.0 eq.) in THF/H2O (4:1) was
added sodium (meta)periodate (1.40 mmol, 4.5 eq.) and ammo-
nium acetate (0.93 mmol, 3.0 eq.) at 0°C. The reaction mixture
was stirred at 30°C overnight. After the reaction was completed,
the reaction mixture was quenched with water and was extracted
with EtOAc. The organic layer was collected and dried using
anhydrous Na2SO4, and the solvent was evaporated under
reduced pressure. Afterward, the crude product was purified
by MPLC (MeOH/DCM, 1:9) to afford the target compound.

4.4 | General Procedure 3: Synthesis of BOLAA
via Deprotection and Intramolecular Cyclization

To a solution of the requisite boronic acid, prepared according to
General Procedure 2 (0.17 mmol, 1.0 eq.) in acetonitrile was
added dropwise 1 N aqueous solution of HCl (0.85 mmol, 5.0 eq.)
at 0°C. The reaction mixture was stirred at 0°C for 3 h. After the
reaction was completed, the reaction solvent was evaporated
under blower. The residue was dissolved in diethyl ether and
extracted with water. The aqueous layer was collected, and water
was removed under blower. Following that, the residue was dis-
solved in MeOH/H2O (2:1) and lithium hydroxide monohydrate
(LiOH·H2O) (0.85 mmol, 5.0 eq.) was added to the above reaction
mixture at 0°C. The reaction mixture was stirred at 0°C for 5 h.
After the reaction was completed, the reaction solvent was evap-
orated under blower. The crude product obtained was dissolved
in a minimum amount of MeOH and was purified by reverse prep
TLC (nBuOH/AcOH/H2O, 3:1:1) to afford the target compound.

4.5 | Synthesis of Methyl 5-(3-(tert-Butoxy)-2-
((diphenylmethylene)amino)-3-Oxopropyl)-2-
(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Yl)
benzoate (3)

The desired product was synthesized according to General Procedure
1 using 2 (2.0 g, 3.8 mmol, 1.0 eq.), [1,1 0-bis(diphenylphosphino)
ferrocene] dichloropalladium(II) complex with dichloromethane
(0.6 g, 0.76 mmol, 0.2 eq.), bis(pinacolato)diboron (1.4 g, 5.7 mmol,
1.5 eq.), and potassium acetate (0.90 g, 9.5 mmol, 2.5 eq.), affording
the desired product in 43% yield (0.87 g, 1.6 mmol).

1H NMR (300MHz, CDCl3) δ 7.67 (d, J= 1.6 Hz, 1H), 7.60–7.53
(m, 2H), 7.40–7.27 (m, 7H), 7.25–7.21 (m, 1H), 6.67 (d, J= 6.8 Hz,
2H), 4.13 (dd, J= 8.5, 4.9 Hz, 1H), 3.84 (s, 3H), 3.28–3.16 (m, 2H),
1.45 (s, 9H), 1.39 (s, 12H); 13C NMR (100MHz, MeOD-d4)
δ 173.51, 171.91, 169.59, 140.59, 140.28, 137.09, 134.68, 134.37,
133.14, 131.51, 131.16, 129.74, 129.71, 129.27, 128.95, 128.52,
85.30, 82.82, 79.32, 78.99, 78.67, 68.57, 52.77, 40.05, 28.30,
25.16, 25.13; 11B NMR (160MHz, MeOD-d4) δ 31.91 (bs), 18.64
(s); HRMS (FAB) calcd. for C34H40BNO6 m/z: 569.2949, found
m/z: 570.3028 [M+H]+.

4.6 | Synthesis of (4-(3-(tert-Butoxy)-2-((diphenyl
Methylene)amino)-3-Oxopropyl)-2-(methoxy
Carbonyl)phenyl)boronic Acid (4)

The desired product was synthesized according to General
Procedure 2 using 3 (150mg, 0.31 mmol, 1.0 eq.), sodium
(meta)periodate (290mg, 1.4 mmol, 4.5 eq.), and ammonium ace-
tate (70mg, 0.93 mmol, 3.0 eq.), affording the product in 57%
yield (86mg, 0.18 mmol).
1H NMR (300MHz, MeOD-d4) δ 7.72 (d, J= 1.5 Hz, 1H), 7.52–
7.44 (m, 2H), 7.44–7.21 (m, 8H), 6.64 (d, J= 7.3 Hz, 2H), 4.20–
4.11 (m, 1H), 3.85 (s, 3H), 3.20 (dtd, J= 22.1, 13.3, 4.2 Hz, 2H),
1.46 (s, 9H); 13C NMR (100MHz, MeOD-d4) δ 173.39, 171.97,
169.67, 140.46, 139.92, 137.32, 135.31, 133.36, 131.76, 131.65,
131.34, 129.91, 129.83, 129.39, 129.09, 128.67, 85.38, 82.84,
68.82, 52.88, 40.12, 28.29, 25.19; 11B NMR (160MHz, MeOD-d4)
δ 30.31 (bs); LCMS (ESI): 488.29 [M+H]+.

4.7 | Synthesis of 2-Amino-3-(1-Hydroxy-3-Oxo-1,3-
Dihydrobenzo[c [1, 2] Oxaborol-5-Yl)propanoic
Acid (5)

The desired product was synthesized according to General
Procedure 3 using 4 (83 mg, 0.17 mmol, 1.0 eq.), 1 N aqueous
HCl (0.85 mL, 0.85 mmol, 5.0 eq.), and lithium hydroxide mono-
hydrate (LiOH·H2O, 35 mg, 0.85 mmol, 5.0 eq.), affording the
product in 95% yield (38 mg, 0.16 mmol).
1H NMR (300MHz, MeOD-d4) δ 7.59 (s, 1H), 7.48 (d, J= 7.3 Hz,
1H), 7.41 (dd, J= 7.4, 1.5 Hz, 1H), 3.62 (dd, J= 9.1, 4.2 Hz, 1H),
3.27 (d, J= 4.3 Hz, 1H), 2.88 (dd, J= 14.0, 9.1 Hz, 1H); 13C NMR
(100MHz, MeOD-d4) δ 179.05, 176.13, 160.06, 137.21, 136.69,
132.69, 128.87, 124.38, 57.10, 39.71; 11B NMR (160MHz,
MeOD-d4) δ 8.81 (bs); HRMS (FAB) calcd. for C10H10BNO5 m/z:
235.0652, found m/z: 236.1215 [M+H]+.

4.8 | Synthesis of Methyl 4-(3-(tert-Butoxy)-2-
((diphenylmethylene)amino)-3-Oxopropyl)-2-
(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Yl)
benzoate (7)

The desired product was synthesized according to General
Procedure 1 using 6 (1.5 g, 3.0 mmol, 1.0 equiv), [1,1 0-bis
(diphenylphosphino)ferrocene] dichloropalladium(II) complex
with dichloromethane (0.49 g, 0.6mmol, 0.2 equiv), bis(pinacolato)
diboron (1.1 g, 4.5mmol, 1.5 equiv), and potassium acetate (0.74 g,
7.5mmol, 2.5 equiv), affording the product in 53% yield (0.91 g,
1.6mmol).
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1H NMR (400MHz, CDCl3) δ 7.78 (d, J= 8.1 Hz, 1H), 7.59–7.53
(m, 2H), 7.37–7.27 (m, 6H), 7.19 (d, J = 1.7 Hz, 1H), 7.13 (dd,
J= 8.0, 1.8 Hz, 1H), 6.69–6.60 (m, 2H), 4.11 (dd, J= 8.5, 5.1 Hz,
1H), 3.87 (s, 3H), 3.28–3.17 (m, 2H), 1.45 (s, 9H), 1.35
(d, J = 11.3 Hz, 12H); 13C NMR (100MHz, CDCl3) δ 170.94,
170.66, 168.53, 142.83, 139.51, 136.39, 133.84, 131.46, 130.70,
130.25, 128.86, 128.83, 128.38, 128.33, 128.07, 127.73, 83.99,
81.50, 67.47, 52.29, 39.57, 28.19, 24.97, 24.93; 11B NMR
(160MHz, MeOD-d4) δ 30.15 (bs), 18.25 (s); LCMS (ESI):
570.10 [M+H]+.

4.9 | Synthesis of (5-(3-(tert-Butoxy)-2-
((diphenylmethylene)amino)-3-Oxopropyl)-2-
(methoxycarbonyl)phenyl)boronic Acid (8)

The desired product was synthesized according to General
Procedure 2 using 7 (0.57 g, 1.0 mmol, 1.0 eq.), sodium (meta)
periodate (0.96 g, 4.5 mmol, 4.5 eq.), and ammonium acetate
(0.23 g, 3.0 mmol, 3.0 eq.), affording the product in 64% yield
(0.31 g, 0.64 mmol).
1H NMR (400MHz, CDCl3) δ 7.76 (d, J= 8.2 Hz, 1H), 7.49 (ddt,
J= 8.9, 3.1, 1.6 Hz, 2H), 7.34 (dd, J= 3.5, 1.8 Hz, 1H), 7.32–7.26
(m, 1H), 7.19 (s, 5H), 7.10 (tt, J= 7.3, 2.8 Hz, 1H), 6.69–6.53 (m,
2H), 4.17 (dt, J= 7.1, 3.8 Hz, 1H), 3.99 (t, J= 4.3 Hz, 3H), 3.31 (qd,
J= 13.1, 8.2 Hz, 2H), 1.43 (s, 9H); 13C NMR (100MHz, CDCl3)
δ 170.89, 170.80, 170.59, 143.50, 139.44, 137.67, 137.44, 136.27,
132.53, 131.53, 130.62, 130.36, 130.17, 128.88, 128.79, 128.54,
128.38, 128.31, 128.07, 127.99, 127.71, 127.59, 81.56, 67.32,
52.88, 39.62, 28.14; 11B NMR (160MHz, MeOD-d4) δ 30.33
(bs); LCMS (ESI): 488.10 [M+H]+.

4.10 | Synthesis of 2-Amino-3-(1-Hydroxy-3-Oxo-
1,3-Dihydrobenzo[c [1, 2] Oxaborol-6-Yl)propanoic
Acid (9)

The desired product was synthesized according to General
Procedure 3 using 8 (97 mg, 0.20 mmol, 1.0 eq.), 1 N aqueous
HCl (1.0 mL, 1.0 mmol, 5.0 eq.), and lithium hydroxide monohy-
drate (LiOH·H2O, 42mg, 1.0 mmol, 5.0 eq.), affording the prod-
uct in 95% yield (45 mg, 0.19 mmol).
1H NMR (400MHz, MeOD-d4) δ 7.65 (d, J= 7.7 Hz, 1H),
7.48–7.39 (m, 1H), 7.27 (d, J= 7.8 Hz, 1H), 3.87 (dt, J= 9.3,
4.5 Hz, 1H), 3.49–3.39 (m, 1H), 3.09–2.98 (m, 1H); 13C NMR
(100MHz, MeOD-d4) δ 177.35, 175.39, 140.91, 137.32, 130.86,
129.35, 125.56, 57.32, 38.50, 20.84; 11B NMR (160MHz, MeOD-d4)
δ 8.43 (bs); LCMS (ESI): 236.00 [M+H]+.

4.11 | Synthesis of Methyl (S)-5-(3-Methoxy-3-Oxo-
2-(tritylamino)propoxy)-2-(4,4,5,5-Tetramethyl-1,3,2-
Dioxaborolan-2-Yl)benzoate (12)

The desired product was synthesized according to General
Procedure 1 using 11 (2.9 g, 5.1 mmol, 1.0 eq.), [1,1 0-bis
(diphenylphosphino)ferrocene] dichloropalladium(II) complex
with dichloromethane (0.8 g, 1.0 mmol, 0.2 eq.), bis(pinacolato)
diboron (1.6 g, 6.1 mmol, 1.5 eq.), and potassium acetate (1.3 g,
12.8 mmol, 2.5 eq.), affording the product in 95% yield (3.0 g,
4.8 mmol).

1H NMR (400MHz, CDCl3) δ 7.56–7.48 (m, 6H), 7.41 (dt, J= 4.9,
2.5 Hz, 2H), 7.26 (s, 6H), 7.18 (dt, J= 8.1, 4.0 Hz, 3H), 7.00 (dd,
J= 8.2, 2.6 Hz, 1H), 4.28 (dt, J= 9.3, 3.2 Hz, 1H), 4.02 (dd, J= 9.2,
6.7 Hz, 1H), 3.90 (s, 3H), 3.71 (dt, J= 11.1, 5.5 Hz, 1H), 3.22
(s, 3H), 1.39 (s, 12H); 13C NMR (100MHz, MeOD-d4) δ 174.98,
169.74, 160.77, 147.12, 137.11, 135.14, 129.91, 128.97, 127.67,
119.40, 115.78, 85.30, 72.14, 71.37, 57.47, 52.97, 52.52, 25.18,
25.02; 11B NMR (160MHz, MeOD-d4) δ 30.39 (bs), 18.56 (s);
HRMS (FAB) calcd. for C37H40BNO7 m/z: 621.2898, found m/z:
622.2989 [M+H]+.

4.12 | Synthesis of (S)-(4-(3-Methoxy-3-Oxo-2-
(tritylamino)propoxy)-2-(methoxycarbonyl)phenyl)
boronic Acid (13)

The desired product was synthesized according to General
Procedure 2 using 12 (2.9 g, 4.6 mmol, 1.0 eq.), sodium (meta)
periodate (4.4 g, 20.7 mmol, 4.5 eq.), and ammonium acetate
(1.0 g, 13.8 mmol, 3.0 eq.), affording the product in 38% yield
(0.94 g, 1.8 mmol).
1H NMR (300MHz, MeOD-d4) δ 7.54–7.47 (m, 6H), 7.33–7.12 (m,
12H), 4.28 (dd, J = 9.9, 5.0 Hz, 1H), 4.09 (dd, J= 9.9, 6.5 Hz, 1H),
3.92 (s, 3H), 3.69 (dd, J= 6.5, 5.0 Hz, 1H), 3.26 (s, 3H); 13C NMR
(100MHz, MeOD-d4) δ 174.95, 169.43, 160.02, 147.09, 134.94,
133.15, 129.89, 128.96, 127.65, 120.68, 115.62, 72.12, 71.41,
57.48, 54.79, 53.05, 52.52; 11B NMR (160MHz, MeOD-d4)
δ 30.13 (bs), 18.42 (s); HRMS (FAB) calcd. for C31H30BNO7 m/z:
539.2115, found m/z: 540.2153 [M+H]+.

4.13 | Synthesis of O-(1-Hydroxy-3-Oxo-1,3-
Dihydrobenzo[c [1, 2] Oxaborol-5-Yl)-L-Serine (14)

The desired product was synthesized according to General
Procedure 3 using 13 (0.8 g, 1.5 mmol, 1.0 eq.), 1 N aqueous
HCl (15mL, 15 mmol, 10 eq.), and lithium hydroxide monohy-
drate (LiOH·H2O, 0.3 g, 7.5 mmol, 5.0 eq.), affording the product
in 95% yield (0.36 g, 1.43 mmol).
1H NMR (400MHz, MeOD-d4) δ 7.44 (d, J= 7.9 Hz, 1H), 7.27 (d,
J= 2.2 Hz, 1H), 7.12 (dd, J = 7.9, 2.3 Hz, 1H), 4.44 (d, J= 4.6 Hz,
2H), 4.18 (d, J = 4.5 Hz, 1H); 13C NMR (100MHz, MeOD-d4)
δ 175.22, 159.28, 139.57, 131.06, 120.68, 110.00, 67.70, 54.99;
11B NMR (160MHz, MeOD-d4) δ 18.55 (s), 8.85 (bs); LCMS
(ESI): 252.10 [M+H]+.

4.14 | Measurement of Oxidative Stability

A solution of the compound (0.1 M, 5 mL) in a DMSO-d6/PBS
mixture (1:4, v/v) was treated with hydrogen peroxide (H2O2,
30 wt%, 0.5 eq.) at 10–15°C in a water bath. At predetermined
time intervals, aliquots (0.3 mL) were withdrawn and immedi-
ately quenched by addition to a preprepared solution of sodium
bisulfite (NaHSO3, 0.5 M in D2O, 0.1 mL) in an NMR tube. The
reaction was monitored by 1H NMR spectroscopy.

4.15 | Measurement of Water Solubility

Precisely weighed samples of each compound (BPA, 3.0 mg; 5,
20.0 mg; 9, 3.0 mg) were suspended in water (45 μL) and stirred
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at 25°C for 24 h. The suspensions were then centrifuged
(10,000 rpm, 5 min) to remove any undissolved solids. The boron
concentrations in the resulting supernatants were determined by
ICP-OES (NFEC-2025-06−306 719) and ICP-MS (NFEC-2022-
02−276 618).

4.16 | Measurement of Bathochromic Shift

A solution of the compound (4 mM, 5mL) was prepared in a
DMSO-d6/PBS mixture (1:4, v/v). The UV–Vis absorption spec-
trum of the solution was recorded over the wavelength range
of 250–400 nm at room temperature using a UV–Vis spectropho-
tometer. Subsequently, the solution was treated with hydrogen
peroxide to induce a bathochromic shift, and the UV–Vis spectra
were recorded again.
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