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Abstract

Background/Objectives: Robotic-assisted surgery (RAS) has emerged as a technological
advancement in gastrointestinal (GI) procedures, addressing limitations of conventional
laparoscopy through enhanced dexterity, three-dimensional visualization, and ergonomic
improvements. While its clinical use is expanding, the comparative benefits and cost-
effectiveness of RAS across different GI domains remain unclear. Methods: An umbrella
review was conducted to evaluate RAS across six GI domains: esophageal, gastric, liver,
biliary, pancreatic, and colorectal. A systematic literature search of PubMed was performed
in April 2025, yielding 8961 articles. Reviews published in English since 2018 and compar-
ing RAS with laparoscopic or open approaches in human GI surgery were eligible. A total
of 250 articles met the inclusion criteria. Data on technical feasibility, clinical outcomes,
and cost-effectiveness were extracted. Methodological quality was appraised using the
AMSTAR 2 checklist. Results were synthesized narratively. The study was supported
by the National Research Foundation of Korea grant, and the protocol was registered in
PROSPERO (CRD420251042541). Results: RAS demonstrated domain-specific advantages.
Esophageal and gastric surgeries benefited from enhanced precision and lymphadenec-
tomy, while long-term outcomes were comparable to laparoscopy. Robotic liver and biliary
surgeries offered technical advantages in complex cases, but evidence was limited. The
most significant clinical benefits were observed in pancreatic and colorectal procedures, in
which RAS reduced conversion rates and improved short-term outcomes in anatomically
challenging scenarios. Cost-effectiveness was generally unfavorable but showed improve-
ment in high-volume centers due to reduced complications and shorter hospital stays.
Conclusions: Robotic assistance provides the most consistent clinical benefit in pancreatic
and colorectal surgery, especially for complex, high-risk cases. While high procedural costs
remain a barrier, selective use of RAS in appropriate settings may yield improved outcomes.
These findings support the need for ongoing evaluation of cost-effectiveness and long-term
results to guide evidence-based integration of robotics into GI surgery.

Keywords: robotic surgery; gastrointestinal procedures; surgical outcome; cost-benefit
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J. Clin. Med. 2025, 14, 8555

https://doi.org/10.3390 /jcm14238555


https://doi.org/10.3390/jcm14238555
https://doi.org/10.3390/jcm14238555
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0001-9487-9826
https://doi.org/10.3390/jcm14238555
https://www.mdpi.com/article/10.3390/jcm14238555?type=check_update&version=2

J. Clin. Med. 2025, 14, 8555

2 of 30

1. Introduction

Minimally invasive surgery (MIS) has transformed gastrointestinal (GI) surgery by
reducing morbidity, shortening hospital stays, and improving recovery. However, con-
ventional laparoscopy is limited by two-dimensional visualization, restricted instrument
movement, and ergonomic strain on surgeons [1]. Robotic-assisted surgery (RAS), devel-
oped to overcome these limitations, offers enhanced dexterity, three-dimensional imaging,
and improved ergonomics, facilitating complex GI procedures in confined anatomical
spaces [2].

While robotic surgery was initially dominated by urological and gynecologic applica-
tions, recent trends show a rapid expansion into GI procedures. Gastric, liver, pancreatic
and colorectal surgeries now represent a substantial and growing proportion of robotic
cases worldwide, particularly in cancer-focused institutions. Since receiving FDA approval,
robotic systems have been increasingly adopted in GI oncology.

More recently, the single-port (SP) system has allowed all instruments to be deployed
through a single 2.5 cm incision using a specialized cannula, improving access in confined
anatomical spaces such as the deep pelvis or retroperitoneum [3,4].

Although da Vinci remains the most widely used platform, other robotic systems, such
as Senhance, Hugo, and Versius, have also emerged, expanding the landscape of robotic
GI surgery. Evidence from multicenter reviews and meta-analyses suggests that robotic
surgery leads to reduced conversion rates, blood loss, and postoperative complications
compared to laparoscopic and open approaches [5].

Despite these clinical benefits, the high cost of robotic platforms remains controver-
sial [6]. While some argue these expenses are justified by better outcomes and shorter
hospital stays [5], others contend that current evidence is insufficient to justify widespread
adoption [7]. This umbrella review compares robotic and conventional approaches across
six GI domains—esophageal, gastric, liver, biliary, pancreatic, and colorectal—evaluating
clinical outcomes and cost-effectiveness with the ultimate goal of identifying which proce-
dures derive the greatest benefit from robotic assistance. In the existing literature, robotic
surgery has been compared to both laparoscopic and open approaches, often within the
same review. Because umbrella reviews synthesize data from previously published sys-
tematic reviews and meta-analyses, the comparator definitions follow those used in the
included reviews. Therefore, in this study, the term ‘conventional approaches’ refers to
laparoscopic and/or open surgery, depending on the comparator used in each individual
review. The heterogeneity of comparators is acknowledged and discussed as an intrinsic
methodological limitation of umbrella reviews.

2. Materials and Methods
2.1. Search Strategy

A comprehensive literature search was conducted in the PubMed (12 April 2025)
database. Gastrointestinal procedures were categorized into six domains: esophageal,
gastric, liver, biliary, pancreatic, and colorectal surgery. For each domain, relevant studies
were identified using combinations of search terms related to robotic surgery, conventional
surgical approaches, and domain-specific procedures; the full search strategies are provided
in Supplementary Table S1. This umbrella review protocol was registered in PROSPERO
(No. CRD420251042541) and is available at: https:/ /www.crd.york.ac.uk/PROSPERO/
view /CRD (accessed on 24 November 2025). The registered protocol outlines the objectives,
eligibility criteria, search strategy, and planned data synthesis methods of this review.

The literature search was performed exclusively in PubMed. For each gastrointestinal
domain, we used predefined keyword combinations including terms such as ‘robotic
surgery’, ‘laparoscopic’, ‘open’, ‘esophagectomy’, ‘gastrectomy’, ‘hepatectomy’, ‘biliary
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surgery’, ‘pancreatectomy’, and ‘colorectal resection.” Detailed domain-specific search
7 "

strings (e.g., “robotic AND esophagectomy”, “robotic gastrectomy AND laparoscopy”,
“robotic hepatectomy AND open”) are provided in Supplementary Table S1.

2.2. Eligibility Criteria

Articles published after January 2018 were selected for this study. During our sys-
tematic search, we observed a substantial increase in publications related to robotic gas-
trointestinal surgery beginning in 2018. To ensure clinical relevance and capture recent
advancements in surgical robotics, we limited inclusion to articles published within this
timeframe. Eligible study types included meta-analyses, systematic reviews, and narrative
reviews. Only human studies published in English were included. We selected reviews
that evaluated the clinical performance of robotic surgery compared to conventional (la-
paroscopic or open) approaches. Reviews covering multiple or unrelated surgical sites
were excluded.

2.3. Screening and Data Extraction

Two independent researchers screened all records for relevance based on titles and
abstracts. Full-text articles of potentially eligible studies were assessed against the prede-
fined inclusion and exclusion criteria. Any discrepancies between reviewers were resolved
through discussion and consensus. For all eligible publications, data were manually ex-
tracted into standardized tables, including details on surgical domain, procedure type,
surgical approach, and key findings. A full quality control check of the extracted data was
conducted by two researchers to ensure accuracy and completeness.

Comparators were classified as ‘conventional approaches’, a term that reflects the
definitions used in the included reviews. These comparators included laparoscopic and/or
open surgery depending on the scope of each review. Because umbrella reviews syn-
thesize previously published reviews rather than re-analyzing primary data, comparator
heterogeneity could not be standardized across domains.

2.4. Methodological Quality Assessment

To assess the methodological rigor of the included reviews, the AMSTAR 2 (A Mea-
surement Tool to Assess Systematic Reviews 2) checklist was applied. This tool evaluates
the quality of systematic reviews based on 16 critical and non-critical domains, and assigns
an overall confidence rating (high, moderate, low, or critically low) in the validity of each
review’s findings. All assessments were performed independently by two reviewers, and
discrepancies were resolved by consensus.

To assess the degree of overlap among included systematic reviews, we calculated the
Corrected Covered Area (CCA), a validated metric quantifying the frequency of shared
primary studies across reviews [8]. The CCA quantifies the percentage of overlapping
primary studies across reviews, accounting for both the number of reviews and the number
of unique studies. A CCA of 0-5% was interpreted as slight overlap, 6-10% as moderate,
11-15% as high, and >15% as very high overlap. This review followed PRISMA 2020
guidelines; the completed checklist is provided in Supplementary Tables 52 and S3.

3. Results
3.1. Study Selection

A total of 8961 articles were initially identified through the systematic literature
search. After restricting the publication period to studies published between 2018 and 2025,
6200 articles remained. Following the application of eligibility criteria based on article
type, 4871 studies were excluded. An additional 56 non-English articles were removed.
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Subsequently, 920 articles involving human subjects were selected for further screening.
After reviewing titles and abstracts, 670 articles were excluded due to irrelevance to the
study topic, leaving 250 articles selected for full-text review. Of these, 25 studies focused
on esophageal surgery [5,9-32], 44 on gastric surgery [33-76], 33 on liver surgery [77-109],
30 on biliary surgery [110-139], 40 on pancreatic surgery [6,140-177], and 78 on colorectal
surgery [178-254] (Figure 1).

Initial Search Results
(n=8961)

Excluded (n=2761):
Published before January 2018

Y

Year of Publication Screening
(n=6200)

Excluded (n=4871):
Articles that are not a meta-analysis,
review, or systematic review

A,

Study Design Screening
(n=1329)

Excluded (n=409):
> Not English (n=56)
Not a human study (n=353)

A,

Articles retrieved for
Title and Abstract Screening (n1=920)

Excluded (n=670):
Articles that do not include
the outcome of interest

A4

A 4

Eligible Articles for Manuscript (n=250)
Esophageal (n=25)
Gastric (n=44)
Liver (n=33)
Biliary (n=30)
Pancreatic (n=40)
Colorectal (n=78)

Figure 1. Flow diagram of the study selection process.

A detailed summary of all included reviews, including study characteristics and key
findings, is provided in Supplementary Table S6.

3.2. Methodological Quality Assessment

Among the 250 included systematic reviews, 73 (29.2%) were rated as having high
methodological quality, 65 (26.0%) as moderate, 57 (22.8%) as low, and 55 (22.0%) as
critically low, based on the AMSTAR 2 tool (Supplementary Table S4). To evaluate the
degree of overlap among included reviews, we calculated the CCA for each gastrointestinal
surgical domain. The CCA values for esophageal (8.97%), gastric (6.81%), and liver (8.93%)
domains indicated moderate overlap. In contrast, the biliary (0.61%), pancreatic (0.02%),
and colorectal (0.01%) domains demonstrated slight overlap (Supplementary Table S5).
These findings suggest that while redundancy among primary studies was modest in
the upper gastrointestinal domains, it was minimal in the lower gastrointestinal and
hepatobiliary categories. The quality assessment for each domain is provided in Table 1,
and a detailed summary of the general characteristics and key findings of each included
article is presented in Supplementary Table S6.
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Table 1. Quality assessment of the studies included in each surgical domain.

Domain Num!aer of AMSTAR 2 Evaluation CCA Value (%) Overlap Level
Reviews
High: 10, Moderate: 0, o
Esophageal 25 Low: 4, Critically low: 11 8.97% Moderate
. High: 0, Moderate: 30, o
Gastric 44 Low: 10, Critically low: 4 6.81% Moderate
. High: 16, Moderate: 11, o
Liver 33 Low: 1, Critically low: 5 8.93% Moderate
. High: 5, Moderate: 0, o .
Biliary 30 Low: 9, Critically low: 16 0.61% Slight
. High: 15, Moderate: 2, o .
Pancreatic 40 Low: 14, Critically low: 9 0.02% Slight
Colorectal 78 High: 27, Moderate: 22, 0.01% Slight

Low: 19, Critically low: 10

AMSTAR 2: A Measurement Tool to Assess Systematic Reviews 2; CCA: Corrected Covered Area.

3.3. Esophageal Surgery

Robotic esophageal surgery encompasses a wide range of techniques (McKeown,
Ivor Lewis, and Heller myotomy), and the included reviews differed substantially in how
deeply they analyzed each approach. This variation in procedural focus contributes to
heterogeneity in the reported short-term and oncologic outcomes.

3.3.1. Technical Considerations

Robotic surgery in esophageal procedures offers unique technical advantages over
laparoscopic approaches, particularly in the confined mediastinal space. The rigid, straight
laparoscopic instruments limit maneuverability during critical steps such as lymphadenec-
tomy near the recurrent laryngeal nerve and thoracic duct dissection. In contrast, robotic
systems provide wristed instrumentation and stable 3D visualization, facilitating fine
dissection and improved access, especially in the upper mediastinum during esophagec-
tomy [9-11]. These benefits are particularly evident in complex procedures such as the
McKeown and Ivor Lewis esophagectomies. The McKeown approach (Figure 2) involves
three surgical fields—abdominal, thoracic, and cervical—with a cervical anastomosis that
allows for extended lymphadenectomy but carries a higher risk of recurrent laryngeal
nerve injury [255]. The Ivor Lewis approach, by contrast, is a two-field technique with an
intrathoracic anastomosis, offering lower anastomotic stricture rates but posing greater risk
if a leak occurs. Robotic platforms enhance precision during these procedures, particularly
in esophagogastric anastomosis and lymph node retrieval, contributing to oncologic ade-
quacy [12]. However, robotic esophagectomy often requires redocking during two-field
procedures and may involve a steeper learning curve. While robotic stapling and hand-
sewn techniques are increasingly used, the lack of tactile feedback remains a technical
challenge during high-tension suturing or dissection near vascular structures [9].

Although the Versius system is shown here as an example of emerging robotic plat-
forms (Figure 3), it is important to note that its use in esophageal surgery remains limited.
Most of the evidence included in this umbrella review is based on the da Vinci multi-port
systems (Figure 4), which currently dominate robotic esophagectomy. The inclusion of
Versius reflects the scope of the reviewed literature rather than any direct comparison of
platform performance.
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Figure 2. Port positioning and operating room layout. (a) Port positioning for TTE and (b) cor-
responding BSU positions. The TTE was a minimal access McKeown'’s procedure with cervical
esophagogastric anastomosis, performed using a three-hole approach. An 11 mm endoscope port was
placed in the 5th or 6th intercostal space. The right 5 mm instrument port was placed approximately
in the 3rd intercostal space. The left 5 mm instrument port was placed in the 7th-8th intercostal
space. One 10 mm assistant port was placed between the left instrument port and the endoscope
port. BSU: bedside unit, TTE: transthoracic esophagectomy. Reproduced from [Puntambekar et al.,
Sci Rep, 2022 [255]] under the terms of the Creative Commons Attribution 4.0 International License
(http:/ /creativecommons.org/licenses /by /4.0/).

Endoscopic
camera Surgeon console

Visualisation BSU
Instrument

‘—40

: GiE
e

Instrument BSU

Figure 3. Overview of the Versius Surgical System. Adapted from Haig et al. (a) Schematic repre-
sentation of the setup of Versius and (b) real-world images of the Versius setup. BSU: bedside unit.
Reproduced from [Puntambekar et al., Sci Rep, 2022 [255]] under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Figure 4. The da Vinci Xi robotic system. (a) FLEX joints should be compacted, leaving one-fist-width
spacing between each robotic arm (b) to allow the robotic arms to move in parallel. (c) The instrument
carriage tends to clash with the adjacent arm (circle) when the FLEX joints are spaced apart. (d) The
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robotic arms also clash (circle) when the operative target (solid arrow) lies outside of the FLEX joint
alignment (dotted arrows). Reproduced from [Ngu et al., RSRR, 2017 [3]] under the terms of the
Creative Commons Attribution—NonCommercial (unported, v3.0) License (http:/ /creativecommons.
org/licenses/by-nc/3.0/).

3.3.2. Advantages and Limitations

Robotic-assisted minimally invasive esophagectomy (RAMIE) has shown favorable
short-term outcomes compared to laparoscopic techniques, including reduced intraopera-
tive blood loss, lower incidence of recurrent laryngeal nerve injury, and fewer pulmonary
complications [10,12]. In Heller myotomy for achalasia, the robotic approach is associ-
ated with lower rates of mucosal injury and improved postoperative dysphagia scores [5].
Lymph node yield also tends to be higher in RAMIE, reflecting improved precision during
mediastinal dissection [13,14]. However, RAMIE is limited by longer operative times,
increased setup complexity, and the absence of haptic feedback [9,15]. These challenges
can be especially pronounced in patients with obesity or complex mediastinal anatomy.
Importantly, long-term oncologic outcomes, including survival and recurrence rates, appear
comparable between robotic and laparoscopic approaches [13,16].

3.3.3. Cost-Effectiveness

Despite improved perioperative outcomes, robotic esophagectomy remains more
costly than laparoscopic approaches due to the high capital expense of robotic systems,
longer operative times, and specialized instrumentation [17,18]. However, in complex
cases such as redo surgery or paraesophageal hernia repair, robotic assistance may reduce
healthcare costs associated with postoperative complications and overall hospitalization,
thereby partially offsetting the initial investment [19,20]. Therefore, while RAMIE may not
be cost-effective for routine cases, its value increases in technically demanding scenarios.

3.4. Gastric Surgery

Gastric surgery represents one of the most heterogeneous domains in robotic GI
surgery, with differences in distal versus total gastrectomy, D2 lymphadenectomy, and
reconstruction techniques. The included reviews vary considerably in the depth of analysis
across these subprocedures, which explains the diversity in reported outcomes.

3.4.1. Technical Considerations

Gastric cancer surgery often requires extensive lymphadenectomy and precise anasto-
mosis within a confined space. While laparoscopic gastrectomy has been widely adopted,
it remains technically challenging for D2 lymph node dissection and intracorporeal re-
construction [33]. Robotic gastrectomy provides greater articulation through wristed
instruments, allowing for improved maneuverability around major vessels such as the
left gastric artery and splenic hilum [34-36]. Additionally, the robotic platform facilitates
suturing during intracorporeal Billroth I/II or Roux-en-Y reconstruction (Figure 5), espe-
cially in high BMI patients or those with visceral obesity [37-39,256]. The stable camera
platform and 3D visualization enhance the precision of perigastric dissection, contributing
to better lymph node yield and fewer vascular injuries [40]. However, robotic systems also
introduce limitations such as increased setup time, limited haptic feedback, and instrument
clashing in narrow pelvic anatomy [39-41].
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Figure 5. Robotic Roux-en-Y gastric bypass. (a) Port position in robotic gastric bypass. (b) Operating
room setup and patient cart positioning for robot-assisted Roux-en-Y gastric bypass (RYGB). (c) Sketch
diagram showing horizontal stapler fire for formation of gastric pouch. (d) Sketch diagram showing
creation of the gastrojejunostomy (GJ). A hand-sewn G]J is being created. The third arm is holding the
gastric pouch and Roux limb together. Reproduced from [Bindal et al., Dig Med Res, 2021 [256]] under
the terms of the Creative Commons Attribution—NonCommercial—NoDerivatives 4.0 International
License (https:/ /creativecommons.org/licenses/by-nc-nd/4.0/).

3.4.2. Advantages and Limitations

Robotic gastrectomy (RG) is associated with significantly reduced intraoperative
blood loss, lower conversion rates, and fewer postoperative complications compared to
laparoscopic gastrectomy (LG) [42,43]. These advantages are most apparent in technically
demanding situations, particularly in cases requiring D2 lymphadenectomy, where robotic
assistance enables more precise dissection and yields higher lymph node retrieval without
increasing operative morbidity [36,44]. The oncologic importance of achieving an adequate
D2 lymphadenectomy has been repeatedly emphasized, and several studies suggest that
robotic systems may facilitate more consistent nodal dissection due to improved visualiza-
tion and instrument dexterity [45]. RG has also demonstrated reduced pancreatic fistula
rates in overweight patients and may offer additional functional benefits, such as improved
gastric conduit preservation [46].

Despite these advantages, RG is associated with longer operative times and a pro-
longed learning curve, particularly for total gastrectomy. Furthermore, several studies
report no significant difference in long-term oncologic outcomes—such as recurrence or
overall survival—between RG and LG [40,47].

3.4.3. Cost-Effectiveness

Robotic gastrectomy entails higher upfront costs related to robotic system acquisition,
maintenance, and disposable instrumentation. Studies have shown that RG increases
operative cost compared to LG by approximately 1.3-1.7 times [41,48,49]. However, this
may be partially offset by fewer complications, lower readmission rates, and shorter
recovery time in high-risk or obese patients [33,50]. Despite these potential benefits, cost-
effectiveness remains limited in standard-risk patients undergoing routine gastrectomy.
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3.5. Liver Surgery

Robotic liver resection covers a broad spectrum of procedures, from minor hepatec-
tomy to major posterosuperior segmentectomy and bile duct reconstruction. The included
reviews reflect this procedural diversity, leading to variability in the emphasis placed on
technical complexity and perioperative outcomes.

3.5.1. Technical Considerations

Liver resection presents specific challenges related to vascular control, parenchymal
transection, and access to posterosuperior segments. Laparoscopic liver surgery often relies
on the Cavitron Ultrasonic Surgical Aspirator (CUSA) for precise parenchymal dissection,
which cannot be directly controlled by the robotic console. Instead, robotic systems utilize
alternative tools such as bipolar forceps or vessel sealers, often requiring bedside assistant
coordination [77-79]. The robotic approach, however, provides enhanced access to difficult
segments (VII and VIII) due to wristed instruments and improved ergonomics [80-82].
Robotic visualization also facilitates fine suturing in bile duct reconstructions and hepatico-
jejunostomies, although the lack of haptic feedback may pose risks during deep dissection
or vascular clipping [77,83-85]. Moreover, robotic resections (Figures 6 and 7) require
careful port placement and repositioning when switching between hepatic lobes [257].

Figure 6. The operation layout of robot assisted hepatectomy. (A) Position of the patient. (B) Position
of the operating hole. (C) Photo of the operating hole. (D) Da Vinci Xi™ robot (Intuitive Surgical,
Sunnyvale, CA, USA) and assistant during operation. (E) The surgeon controls the Da Vinci Xi™
robot on the surgeon’s console. Reproduced from [Sun et al., Intelligent Surgery, 2022 [257]] under
the terms of the Creative Commons Attribution—NonCommercial—NoDerivatives 4.0 International
License (https:/ /creativecommons.org/licenses/by-nc-nd /4.0/).
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Figure 7. Operation Steps of Robot Assisted Hepatectomy. (A) Explore the abdominal cavity.
(B) Cholecystectomy. (C) Place hepatic port blocking tape. (D) Isolate the left hepatic artery. (E) Ligate
the left hepatic artery. (F) Isolate the left portal vein. (G) Ligate the left portal vein. (H) View
the ischemic line. (I) Line the ischemia line. (J) Detach the left deltoid ligament. (K) Severed
liver. (L) Detach the left liver pedicle. (M,N) Cut off the left hepatic vein. (O) Hepatic hemostasis.
(P) Place hemostatic yarn. (Q) Remove the specimen. (R) Place drainage tube. (S) Sample of
left liver. Reproduced from [Sun et al., Intelligent Surgery, 2022 [257]] under the terms of the
Creative Commons Attribution—NonCommercial—NoDerivatives 4.0 International License (https:
/ / creativecommons.org/licenses /by-nc-nd/4.0/).

Intraoperative ultrasound also plays a crucial role in robotic liver surgery, enabling
accurate demarcation of tumor margins and helping guide safe parenchymal transection at
an appropriate distance from the lesion.

3.5.2. Advantages and Limitations

Robotic liver resection (RLR) is associated with reduced blood loss, lower conversion
rates, and shorter hospital stays compared to open or laparoscopic approaches in major
hepatectomies [79,80,86]. Its advantages are especially pronounced in complex resections
or in patients with cirrhosis, where reduced bleeding and improved access may reduce
postoperative morbidity [87]. Studies also report comparable oncologic outcomes for
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hepatocellular carcinoma and colorectal liver metastasis between robotic and laparoscopic
techniques [88,89]. However, RLR involves significantly longer operative times, and its
clinical efficacy remains debated in the literature, with some studies reporting outcomes
comparable to conventional approaches without demonstrating clear superiority [90-92].
Additionally, the absence of tactile sensation and high dependency on the bedside assistant
for tasks like suctioning or CUSA operation can limit intraoperative autonomy [77,87,93].

3.5.3. Cost-Effectiveness

Robotic liver resection incurs higher direct costs due to robotic instruments, mainte-
nance fees, and increased operating room time. Nonetheless, economic analyses indicate
that RLR may be cost-effective in selected high-complexity cases by reducing conversion
and complication rates [94,95]. In patients requiring resections of posterosuperior segments
or bile duct reconstructions, robotic surgery may offer cost-offsetting benefits by minimiz-
ing ICU duration and readmissions. In routine minor resections, however, laparoscopic
techniques remain more cost-efficient [89,96].

3.6. Biliary Surgery

Robotic biliary surgery includes both routine benign procedures and highly complex
oncologic resections, such as hilar cholangiocarcinoma. Because the included reviews
focus on different procedural subsets, the depth and scope of analysis vary accordingly
across studies.

3.6.1. Technical Considerations

Surgical robots feature wristed instruments with increased flexibility and enhanced
freedom of movement (Figure 8), offering technical advantages in complex cases and pa-
tients with altered foregut anatomy [110-112]. In demanding procedures, such as resections
for hilar cholangiocarcinoma, robotic systems facilitate meticulous dissection of critical
structures including the hepatic artery, portal vein, and biliary confluence within a confined
space [113,114]. Lymphadenectomy around the hepatoduodenal ligament is also enhanced
by the tremor filtration and stable camera platform of robotic system, supporting precise
nodal dissection without vascular injury [110,115]. Robotic platforms improve intracorpo-
real suturing during hepaticojejunostomy, enabling secure bilioenteric anastomosis with
reduced tension and better visualization [115-117]. This precision is particularly beneficial
in patients with inflammatory changes, advanced liver disease, or elevated BMI [118,258].

3.6.2. Advantages and Limitations

Robotic biliary surgery demonstrates comparable short-term outcomes to laparo-
scopic surgery in benign disease, with similar complication rates, blood loss, and hospital
stay [111,119,120]. With ongoing technological advancements and growing surgical ex-
pertise, its application has expanded to more complex procedures, including resections
for hilar cholangiocarcinoma [116,121-123]. However, operative time is generally longer
for robotic procedures, particularly in the learning phase [119,120]. Long-term oncologic
outcomes, including survival and recurrence rates, are comparable between robotic and
laparoscopic approaches for gallbladder cancer and cholangiocarcinoma [115,116]. Limita-
tions of robotic biliary surgery include the lack of haptic feedback, steep learning curve
for complex reconstructions, and restricted access in emergency settings or low-resource
environments [123].
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Figure 8. Single-incision robotic cholecystectomy using the da Vinci Single-Port (SP) robotic surgical
system. (a) The SP system has three robotic arms that can be controlled by the operator. (b) The middle
arm, in this case, the Cardiere forceps arm, is used for gallbladder traction. (c) The multidirectional
Endo-Wrist allows approaching the surgical field with the appropriate angle. (d) In acute cholecystitis,
the cystic duct may become dilated, making it difficult to ligate using a typical single-size medium-
large (green) robotic hemolock. In the SP system, the assistant can insert a larger (purple size; red
arrow) hemolock through the umbilical port to clip the cystic duct. Reproduced from [Choi et al.,
Sci Rep, 2023 [258]] under the terms of the Creative Commons Attribution 4.0 International License
(https:/ / creativecommons.org/licenses/by/4.0/).

3.6.3. Cost-Effectiveness

Robotic biliary surgery incurs higher direct costs than laparoscopic surgery, largely
due to robotic system acquisition, maintenance, and instrument expenses [124]. Increased
operative time and disposable costs further contribute to the financial burden [119-121].
While shorter hospital stays and reduced conversion rates may partially offset expenses in
complex cases, routine robotic cholecystectomy has not demonstrated cost-effectiveness
over laparoscopy in benign disease [120]. Robotic surgery may provide greater economic
value in high-risk or technically demanding cases, such as hilar cholangiocarcinoma,
where improved surgical precision may reduce postoperative complications and long-term
morbidity [123].

3.7. Pancreatic Surgery

Robotic pancreatic surgery encompasses technically distinct procedures, including
distal pancreatectomy and pancreaticoduodenectomy, which differ markedly in complexity.
The included reviews emphasize these subprocedures to varying degrees, contributing to
heterogeneity in the range and depth of reported outcomes.

3.7.1. Technical Considerations

Pancreatic surgery poses unique technical challenges due to the retroperitoneal lo-
cation, proximity to major vascular structures, and the complexity of anastomotic recon-
struction. In robotic distal pancreatectomy (DP), the wristed instruments facilitate precise
dissection along the splenic artery and enable delicate mobilization of the pancreas, espe-
cially in spleen-preserving approaches [140]. However, parenchymal transection remains
reliant on laparoscopic energy devices or robotic staplers, as robotic-compatible CUSA
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systems are not widely available [141]. In robotic pancreaticoduodenectomy (PD), sta-
ble 3D visualization supports accurate vascular control during dissection of the superior
mesenteric vessels (Figure 9), and enhanced dexterity aids in performing duct-to-mucosa
pancreaticojejunostomy with finer suturing [142-144,259]. Lymphadenectomy around the
hepatoduodenal ligament and interaortocaval regions is also facilitated by the robot’s
precision in confined retroperitoneal planes. Nevertheless, the complexity of robotic PD
demands significant operative experience and institutional infrastructure, particularly for
safe execution of anastomoses and vascular management. Limited haptic feedback may
affect depth perception during critical steps, requiring reliance on visual cues and surgeon
expertise [145].

Right approach ' _

(@) (b)

()

Figure 9. Surgical approaches to the superior mesenteric artery (SMA) in robotic pancreaticoduo-
denectomy. (a) Schematic view of the right and left approaches to the SMA. (b) The right approach
is considered as the standard protocol for RPD. (c) The left approach is used in patients with obe-
sity, intra-abdominal adhesions, or malignant diseases requiring lymph node dissection around the
SMA. Reproduced from [Takagi et al., JCM, 2022 [259]] under the terms of the Creative Commons
Attribution 4.0 International License (https:/ /creativecommons.org/licenses/by/4.0/).

3.7.2. Advantages and Limitations

In distal pancreatectomy (DP), robotic surgery has demonstrated favorable short-
term outcomes compared to the laparoscopic approach, including lower conversion rates,
reduced intraoperative blood loss, and higher spleen preservation rates, particularly in
challenging dissections near the splenic hilum [140]. In pancreaticoduodenectomy (PD),
robotic surgery achieves similar morbidity and mortality rates compared to laparoscopic
and open approaches, with improved anastomotic precision and potential reductions in
delayed gastric emptying and wound infection [146]. Oncologic outcomes, such as R0
resection rates and lymph node yields, are comparable across techniques [147]. However,
limitations of robotic pancreatic surgery include prolonged operative times, especially
during the learning curve, and the lack of tactile sensation during vascular dissection.
Additionally, robotic PD remains restricted to high-volume centers due to its technical
demands and resource intensity [145]. Long-term functional outcomes are not yet well
defined in the current literature and warrant further study. Access and surgeon training also
represent barriers to wider adoption, particularly in low-resource or non-academic centers.
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Despite the technical advantages of robotic assistance, postoperative pancreatic fistula
remains a significant risk following both distal pancreatectomy and pancreaticoduodenec-
tomy, underscoring the intrinsic complexity of pancreatic surgery regardless of platform.

3.7.3. Cost-Effectiveness

Robotic pancreatic surgery generally incurs higher overall costs compared to laparo-
scopic and open approaches. The primary cost drivers include robotic system acquisition,
maintenance, and the use of disposable instruments [148]. Longer operative times further
contribute to increased operating room costs. However, in the case of robotic DP, procedural
costs may decrease with surgical experience. Studies suggest that after a minimum of five
cases, operative efficiency improves and costs begin to decline, highlighting the importance
of structured training [149]. Furthermore, robotic DP and PD have demonstrated advan-
tages including shorter hospital stays, lower conversion rates, and fewer complications,
which may contribute to cost mitigation [148—-150]. Nonetheless, these benefits have not
consistently translated into overall cost savings across institutions. Thus, while the eco-
nomic justification for robotic surgery remains weak in routine cases, its application may be
more favorable in complex or high-risk patients, where its technical advantages can reduce
perioperative morbidity and reoperation risk.

3.8. Colorectal Surgery

Robotic colorectal surgery spans procedures of varying difficulty, from right colec-
tomy to deep pelvic total mesorectal excision and IPAA. The included reviews focus on
different colorectal subsites, which explains the variability in the level of detail across
outcome measures.

3.8.1. Technical Considerations

Robotic colorectal surgery provides distinct technical advantages in procedures involv-
ing complex pelvic dissection and challenging anastomoses. In total mesorectal excision
(TME) for rectal cancer, the robotic system enhances precision during sharp dissection
within the narrow pelvis, facilitating preservation of the hypogastric nerves and pelvic
autonomic plexus [178,179]. Pelvic lateral lymph node dissection, which is technically
challenging laparoscopically, may also be facilitated by robotic precision in advanced rectal
cancer cases [180]. Robotic articulation also enables stable and accurate dissection along the
mesorectal plane, reducing the risk of circumferential resection margin involvement [181].
In ileal pouch-anal anastomosis (IPAA), the platform improves suturing in deep pelvic
spaces, contributing to secure anastomosis and sphincter preservation [182]. Robotic right
colectomy benefits from intracorporeal anastomosis, allowing improved vascular control
and tension-free anastomotic construction [183]. Although CUSA is rarely used in col-
orectal surgery, energy devices such as vessel sealers and robotic staplers play a critical
role in mesenteric dissection and division. However, robotic dissection in obese patients
or those with bulky tumors remains technically demanding despite improved access an-
gles [184-186]. Splenic flexure mobilization is another challenging step in rectal surgery,
but many technical barriers have been mitigated with surgical robot evolution (Figure 10).
For instance, the da Vinci Xi system offers a clear advantage over its predecessor, the da
Vinci Si, by enabling multi-quadrant surgery without the need for redocking. This allows
for a more efficient single-docking approach, reducing operative time and improving ac-
cess for procedures such as rectosigmoid resection and splenic flexure takedown [260].
Thus, colorectal surgery stands to benefit further from innovations that enhance precision,
efficiency, and operative flexibility across the abdominal quadrants.
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Figure 10. Splenic flexure mobilization in rectal surgery, using the da Vinci Xi robotic system in a
cross-armed single-docking approach. First, a tip-up fenestrated grasper inserted through the port
number one retracts the descending colon. Then, the arms are crossed either from the medial or
lateral aspect of arm one to take down the flexure. (a) The standard port placement line was moved
15-20° counterclockwise to facilitate mobilization. (b) Traction of descending colon. (c) Crossover
from the medial aspect of arm one. (d) Crossover from the lateral aspect of arm one. Reproduced
from [Erozkan et al., MIS, 2023 [260]] under the terms of the Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/).

3.8.2. Advantages and Limitations

Robotic colorectal surgery demonstrates improved short-term outcomes compared to
laparoscopy in terms of overall complication rates, blood loss, and hospital stay [187,188].
Especially, robotic rectal resection is associated with significantly lower conversion rates to
open surgery and improved quality of TME, particularly in male patients with a narrow
pelvis or obese patients [189]. In selected cases, robotic surgery enables higher lymph node
harvest and improved preservation of urinary and sexual function, attributed to superior
nerve-sparing dissection [190]. Long-term oncologic outcomes, including disease-free
survival and local recurrence rates, are generally comparable between robotic, laparoscopic,
and open approaches [191,192]. Limitations of robotic colorectal surgery include prolonged
operative time, particularly during the learning phase, lack of tactile feedback, and high
dependence on institutional resources and surgeon expertise [193]. In addition, robotic
appendectomy and routine colectomy for benign disease have not demonstrated clear
superiority over laparoscopic techniques in uncomplicated cases [194].

3.8.3. Cost-Effectiveness

Robotic colorectal surgery is consistently associated with higher direct costs than
laparoscopic approaches due to equipment acquisition, maintenance fees, and use of pro-
prietary instruments [195]. Increased operative time further adds to the total surgical cost.
Although the cost-effectiveness of robotic colectomy for benign disease remains limited,
reduced conversion rates, shorter hospital stays, and improved functional outcomes may
offset expenses in complex pelvic procedures [196]. Current evidence suggests that robotic
surgery may provide greater economic value in high-risk or technically demanding cases,
such as low rectal cancer or IPAA, where its technical advantages can lead to improved
perioperative outcomes and reduced long-term morbidity [182,197].
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4. Discussion

Robotic surgery has advanced gastrointestinal (GI) surgery by offering enhanced
visualization, dexterity, and instrument control in anatomically complex spaces. However,
its clinical value is not uniform across surgical domains and depends heavily on procedural
complexity, institutional volume, and resource availability. A cross-domain comparative
summary of robotic GI surgery is provided in Table 2.

Table 2. Cross-domain comparative summary of robotic gastrointestinal surgery.

Domain Optimal Indications ESt abhshed. Cost-Effectiveness Evidence ]'3ased
Clinical Benefits Conclusion
McKeown or Ivor Lower pulmonary and .
. - . e Selectively
Lewis nerve injury rates; Potentially justified
Esophageal . recommended for
esophagectomy; Improved lymph node in complex cases
. complex cases.
Heller myotomy yield
Lower conversion and .
b2 complication rates; Selectively
. lymphadenectomy; P g Moderate only in recommended for
Gastric . . Improved X . . .
High-risk or obese high-risk cases high-risk cases; cost
. lymphadenectomy and : .
patients . - restricts broad adoption.
anastomotic precision
Selectively
Posterior Lower conversion rates; recommended for
. segmentectomy; Bile  Shorter hospital stays; Favorable only in complex cases; cost and
Liver . . 4 .y
duct reconstruction; Enhanced access in complex resections debated clinical
Cirrhotic liver complex resections superiority restrict
routine use.
. Enhanced dissection
Hilar S ) .
. . and suturing in confined e Selectively
cholangiocarcinoma; Potentially justified
Lo spaces; Improved : recommended for
s Hepaticojejunos- in complex or L
Biliary lymphadenectomy and . ) . high-risk cases; further
tomy; . 7. high-risk oncologic .
. anastomotic precision; evidence needed to
High BMI or : . cases N .
. . Comparable in benign justify broader adoption.
inflammation .
disease
. Favorable in complex  Strongest evidence of
PD; Lower conversion rates; p .g. .
. . cases and clinical value in
Spleen-preserving Improved anastomotic . . .
. e high-volume centers; high-risk cases or
Pancreatic DP; precision in PD; ;
. . . Improves with advanced centers; not
High-risk or obese Comparable oncologic e .
. training and yet scalable for routine
patients outcomes . . .
experience implementation.
Reasonable in Substantial advantages
Lower complication and mplex cases; in high-risk pelvic ca
TME; IPAA; Rectal o or Comprcato COMPpIex cases; TS € PEIVIC Cases,
. conversion rates; Shorter  Justified by reduced particularly rectal
Colorectal cancer in male or . o .
. hospital stays; Improved morbidity and cancer; cost restricts
obese patients . . . .
nerve preservation enhanced functional ~ routine use for benign
outcomes conditions.

BMLI: body mass index; PD: pancreaticoduodenectomy; DP: distal pancreatectomy; TME: total mesorectal excision;
IPAA: ileal pouch-anal anastomosis.

Among the six domains, robotic assistance appears to confer the most consistent clini-
cal advantage in pancreatic and colorectal surgery. Clinically, robotic assistance enhances
dissection in dense anatomical planes, reduces conversion rates, and shortens hospital stays.
These benefits are particularly evident in demanding procedures such as total mesorectal
excision and pancreaticoduodenectomy, where the precision of robotic systems improves
safety and technical outcomes. Economically, both procedures may achieve cost-efficiency
in high-volume centers by reducing complications and facilitating faster recovery.
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Despite these advantages, certain procedures with strong theoretical benefits remain
underutilized in robotic practice. For example, robotic liver surgery offers enhanced access
and fine control, particularly in posterior segment resections, yet its adoption remains
limited due to technical demands, steep learning curves, and a lack of high-quality data.
This mismatch between potential benefit and real-world adoption warrants attention.
Structured training programs and multi-institutional collaborations could help standardize
technique and generate stronger evidence to guide implementation.

Moving forward, the expansion of robotic surgery should be driven by clinical value,
not technological novelty. While robotic systems provide significant advantages in certain
GI procedures, their optimal use depends on thoughtful procedural selection, institutional
expertise, and ongoing evidence generation. Integration of robotic platforms must be
guided by procedure-specific outcomes, long-term oncologic safety, and cost-effectiveness.
Future research should prioritize comparative studies across diverse healthcare settings,
especially in lower-volume centers and regions with constrained surgical access, to evaluate
scalability and equity in robotic care delivery. Addressing the gap between potential and
practice will be essential in shaping the next phase of robotic gastrointestinal surgery.

This umbrella review has several inherent limitations. First, the analysis depends
entirely on previously published systematic reviews and meta-analyses, and therefore
inherits their methodological variability, including differences in search scope, patient
selection, and outcome definitions. Second, comparator heterogeneity—some reviews
comparing robotic surgery to laparoscopic approaches, others to open surgery—limits the
ability to standardize effect estimates across domains. Third, variations in robotic platforms
across studies (e.g., da Vinci, SP, Versius, Senhance) introduce additional heterogeneity, as
most evidence remains dominated by da Vinci systems. Finally, because umbrella reviews
do not reanalyze primary data, the depth of procedure-specific comparisons is constrained
by the granularity of the included reviews. These limitations should be considered when
interpreting the findings.

5. Conclusions

This umbrella review analyzed 250 studies across six GI surgical domains to assess the
comparative value of robotic surgery. Robotic platforms enhance dexterity, visualization,
and ergonomics, with the most notable benefits being seen in complex pancreatic and
colorectal procedures. These cases show lower conversion rates and fewer complications,
with outcomes that are comparable to conventional approaches. While high costs remain a
challenge, the findings of this review may serve as a valuable resource for clinicians, surgical
trainees, and healthcare decision-makers evaluating the appropriate integration of robotic
platforms into gastrointestinal surgical practice. Continued technological refinement,
coupled with rigorous clinical research, will be essential to defining the optimal role of
robotic surgery.
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Abbreviations

The following abbreviations are used in this manuscript:

AMSTAR2 A Measurement Tool to Assess Systematic Reviews 2

BMI Body Mass Index

CCA Corrected Covered Area

CUSA Cavitron Ultrasonic Surgical Aspirator
DP Distal Pancreatectomy

GI Gastrointestinal

IPAA Ileal Pouch-Anal Anastomosis

LG Laparoscopic Gastrectomy

MIS Minimally Invasive Surgery

PD Pancreaticoduodenectomy

RAMIE Robotic-Assisted Minimally Invasive Esophagectomy
RAS Robotic-Assisted Surgery

RG Robotic Gastrectomy

RLR Robotic Liver Resection

SP Single-Port

TME Total Mesorectal Excision
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