

Comparative analysis of job satisfaction and determinants between medical and surgical hospitalists in South Korea: a nationwide cross-sectional online survey

Hongran Moon¹, Yoon Bin Jung^{2,*}, Seung Jun Han^{1,*}

¹Department of Internal Medicine and Hospital Medicine Center, Seoul National University Hospital, Seoul, Korea

²Department of Surgery, Yonsei University College of Medicine, Seoul, Korea

Purpose: The hospitalist system, formally adopted in South Korea in 2021 after a pilot program in 2016, has been associated with improvements in inpatient care outcomes and patient satisfaction. However, a persistent shortage of hospitalists—recently worsened by increasing demands on inpatient care—has raised concerns regarding workforce stability. This study aimed to compare job satisfaction and its determinants between medical and surgical hospitalists in South Korea.

Methods: A nationwide cross-sectional online survey was conducted in February 2024 among 389 board-certified hospitalists registered with the Korean Society of Hospital Medicine and the Korean Society of Surgical Hospital Medicine. The survey included questions on demographics, work environment, job satisfaction (monetary and nonmonetary), and career intentions. Statistical analyses included chi-square tests, Mann-Whitney U-tests, and multiple linear regression.

Results: A total of 94 hospitalists responded (67 medical and 27 surgical). Surgical hospitalists reported significantly longer weekly working hours (47.9 hours vs. 40.9 hours, $P = 0.013$) and higher patient loads (19.5 patients vs. 15.4 patients, $P = 0.003$). Despite these differences, overall satisfaction levels were similar between the groups. Eligibility for faculty appointment and availability of research and education funding were significantly associated with nonmonetary satisfaction. Annual salary was the most significant predictor of monetary satisfaction, explaining 17.2% of the variance.

Conclusion: Surgical hospitalists experienced higher workloads but maintained comparable satisfaction levels to their medical counterparts. Enhancing academic opportunities and tailoring financial incentives may be effective strategies to improve job satisfaction and support workforce retention across specialties.

[Ann Surg Treat Res 2025;109(6):401-407]

Key Words: Hospitalists, Internal medicine, Job satisfaction, Surgical specialties, Workload

INTRODUCTION

The hospitalist system was first introduced in the United States to enhance the efficiency of inpatient care. Evidence

suggests that hospitalist models are associated with improved patient outcomes, shorter hospital stays, and lower healthcare costs. Recognizing its potential, South Korea launched a comparable system, termed as the "inpatient care specialist"

Received May 12, 2025, Revised June 17, 2025, Accepted July 10, 2025

Corresponding Author: Seung Jun Han

Department of Internal Medicine and Hospital Medicine Center, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea

Tel: +82-2-2072-7667, **Fax:** +82-2-6072-5293, **E-mail:** 66141@snuh.org, **ORCID:** <https://orcid.org/0000-0001-8960-3542>

Co-Corresponding Author: Yoon Bin Jung

Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea

Tel: +82-2-2228-2100, **Fax:** +82-2-313-8289, **E-mail:** ybjung@yuhs.ac, **ORCID:** <https://orcid.org/0000-0001-9829-1931>

*Yoon Bin Jung and Seung Jun Han contributed equally to this study as co-corresponding authors.

Copyright 2025, the Korean Surgical Society

© Annals of Surgical Treatment and Research is an Open Access Journal. All articles are distributed under the terms of the Creative Commons Attribution Non-Commercial License (<http://creativecommons.org/licenses/by-nc/4.0/>) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

system, which began as a pilot program in September 2016, formally adopted in January 2021 [1]. According to studies conducted in Korea, both patients and nursing staff showed high satisfaction with the hospital system [2,3]. Additionally, it was found to effectively reduce emergency department admission times and overall hospital stays for patients with multiple comorbidities [4,5].

Since its initial implementation in 2016 in Korea, hospitalists have emerged as an essential component of inpatient care. Their role is particularly significant in addressing the challenges faced by both medical and surgical specialties, enabling a more sustainable and efficient healthcare system. In March 2024, 346 hospitalists were registered across 73 medical institutions nationwide [6]. The number of hospitalists in South Korea has been gradually increasing, with hospitalist systems being adapted to the specific needs of different medical disciplines. However, there is still a shortage of hospitalists across the country [7,8]. Recent trends in the healthcare workforce have further exacerbated staffing shortages, especially in inpatient care [9]. Korean Society of Hospital Medicine (KSHM) and Korean Society of Surgical Hospital Medicine (KSSH) collaborated to conduct an online survey targeting hospitalists nationwide to assess the working environment and job satisfaction of hospitalists, who are key providers of inpatient care across both medical and surgical disciplines.

This study aimed to compare the satisfaction levels and determinants of satisfaction between medical and surgical hospitalists in South Korea. By examining these differences, this study sought to identify key factors that contribute to satisfaction within each group and provide insights to support the development and sustainability of hospitalist systems across diverse specialties.

METHODS

Ethics statement

This study utilized anonymized survey data, ensuring that no personal identifiers or sensitive information were included. The research protocol was submitted to the Institutional Review Board of Seoul National University Hospital and was exempted from further review (No. E-2502-026-1611).

Study population and data collection

In February 2024, an online cross-sectional survey was administered to a total of 389 board-certified hospitalists using the membership directory of KSHM (238 members) and KSSH (151 members). According to data obtained from the Ministry of Health and Welfare, there were 119 internal medicine hospitalists and 60 surgical hospitalists practicing in Korea as of February 2024 [10]. Among them, 67 medical and 27 surgical hospitalists participated in our survey, representing

approximately 56.3% and 45.0% of each group, respectively. While memberships of both organizations are not mandatory for hospitalists, the number of members has steadily increased due to the active roles of the organizations in supporting the profession. The survey collected a wide range of data, including demographic characteristics (age and sex), work environment (work experience, hospital location, working hours, and contract terms), job satisfaction, and career intentions. Monetary satisfaction was evaluated based on 4 items: annual salary, night shift allowance, incentive, and the seniority-based salary system. Nonmonetary satisfaction was assessed using 7 items related to academic and institutional support: eligibility for faculty appointment, promotion system, education funding, research funding, private school teachers' pension scheme, professors' office support, and duty room support.

To identify factors influencing job satisfaction, a multiple linear regression analysis was performed using the stepwise method for model selection. For comparative analyses, the Pearson chi-square test or Fisher exact test was used to evaluate categorical variables, while the Mann-Whitney U-test was employed for continuous variables that did not follow a normal distribution.

Statistical analysis

All statistical analyses were conducted using IBM SPSS Statistics for Windows (ver. 29.0, IBM Corp.), and P-values below 0.05 were considered statistically significant.

RESULTS

Basic information

A total of 94 individuals responded to the survey, comprising 67 board-certified specialists in medical departments (including internal medicine, family medicine, pediatrics, and emergency medicine) and 27 board-certified specialists in surgical departments (including general surgery, neurosurgery, and obstetrics and gynecology). The baseline characteristics of the 2 groups are summarized in Table 1. There were no significant differences between the 2 groups in terms of age, sex, or the size of the hospital each subject worked for. There were statistically significant differences in weekly working hours, the roles of the hospitalists, the number of inpatients, and work schedules.

The average weekly working hours differed between the 2 groups, with medical hospitalists working approximately 40.9 hours per week, compared to 47.9 hours for surgical hospitalists. Regarding their roles, the majority of medical hospitalists (53.7%) operated independently in patient management, whereas 74.1% of surgical hospitalists predominantly engaged in collaborative care models, working alongside designated surgeons. There was a statistically significant difference in the number of patients per physician between internal medicine and surgery; while internists were responsible for an average of 15.4 patients per

Table 1. Baseline characteristics of the study participants

Characteristic	Total	Medical	Surgical	P-value
No. of patients	94	67	27	
Age (yr)	42.5 ± 6.16	42.3 ± 6.28	43.0 ± 5.95	0.609
Male sex (%)	49 (52.1)	35 (52.2)	14 (51.9)	0.973
No. of team members	3.4 ± 3.32	3.9 ± 3.71	2.4 ± 1.71	0.050
No. of hospitalists in the hospital	12.1 ± 12.19	11.2 ± 10.84	14.5 ± 14.99	0.234
Weekly working time (hr)	42.9 ± 12.47	40.9 ± 9.80	47.9 ± 16.62	0.013*
Additional working time (hr/wk)	5.9 ± 9.99	5.8 ± 9.68	6.2 ± 10.95	0.851
No. of inpatients	16.6 ± 5.92	15.4 ± 5.64	19.5 ± 5.78	0.003**
Annual salary (million KRW)	187.5 ± 48.05	191.0 ± 47.14	178.9 ± 50.22	0.313
Duration of employment (yr)	4.03 ± 2.24	4.2 ± 2.33	3.6 ± 1.98	0.270
Clinical authority of the hospitalist				
Independent practice	39 (41.5)	36 (53.7)	3 (11.1)	<0.001***
Outpatient designated physician and co-attending	39 (41.5)	19 (28.4)	20 (74.1)	
Under the direction of an outpatient physician	16 (17)	12 (17.9)	4 (14.8)	
Hospital size				
Tertiary general hospital	75 (79.8)	52 (77.6)	23 (85.2)	0.634
General hospital	18 (19.1)	14 (20.9)	4 (14.8)	
Hospital	1 (1.1)	1 (1.5)	0 (0)	
Work location				
Seoul	52 (55.3)	34 (50.7)	18 (66.7)	0.225
Incheon, Gyeonggi-do, Gangwon-do	33 (35.1)	26 (38.8)	7 (25.9)	
Daejeon, Sejong, Chungcheong-do	3 (3.2)	3 (4.5)	0 (0)	
Gwangju, Jeolla-do, Jeju	5 (5.3)	4 (6.0)	1 (3.7)	
Busan, Daegu, Ulsan, Gyeongsang-do	1 (1.1)	0 (0)	1 (3.7)	
Promotion system	21 (22.3)	14 (20.9)	7 (25.9)	0.594
Working schedule				
Type 1 (weekdays only)	49 (52.1)	36 (53.7)	13 (48.1)	0.002**
Type 2 (7 days a week)	24 (25.5)	12 (17.9)	12 (44.4)	
Type 3 (24/7 coverage)	18 (19.1)	18 (26.9)	0 (0)	
Weekend or night shifts only	3 (3.2)	1 (1.5)	2 (7.4)	
Night shift allowance	42 (44.7)	33 (49.3)	9 (33.3)	0.160
Seniority-based salary system	40 (42.6)	30 (44.8)	10 (37.0)	0.492
Incentive				
Same incentive system as other faculty	20 (21.3)	15 (22.4)	5 (18.5)	0.714
Separate incentive system applied	21 (22.3)	16 (23.9)	5 (18.5)	
No incentive	54 (56.4)	36 (53.7)	17 (63.0)	
Eligibility for faculty appointment				
Contractually specified or institutionally permitted	24 (26.4)	18 (27.7)	6 (23.1)	0.683
Verbally indicated as possible	10 (11.0)	8 (12.3)	2 (7.7)	
Not possible or not mentioned	57 (60.6)	39 (60.0)	18 (69.2)	
Education funding	58 (61.7)	44 (65.7)	14 (51.9)	0.212
Research funding	31 (33.0)	23 (34.3)	8 (29.6)	0.661
Teachers' pension scheme	46 (48.9)	33 (49.3)	13 (48.1)	0.923
Professor's office support	70 (74.5)	50 (74.6)	20 (74.1)	0.956
Duty room support	29 (30.9)	24 (35.8)	5 (18.5)	0.100

Values are presented as number only, mean ± standard deviation, or number (%).

*P < 0.05, **P < 0.01, ***P < 0.001

KRW, Korean Won.

physician, surgeons managed an average of 19.5 patients per surgeon (P = 0.003).

In South Korea, the hospitalist system is categorized into 3 operational models. Type 1 requires the presence of a hospitalist for at least 8 hours daily, 5 days per week, during daytime hours

(07:00–19:00); type 2 extends this coverage to all 7 days of the week; and type 3 ensures a full-time coverage of 24 hours, 7 days a week. Among medical hospitalists, 26.9% operated under the type 3 model, providing continuous care, while no surgical hospitalists worked under this model. Surgical hospitalists were

predominantly operated under the type 1 and type 2 models.

Job satisfaction and retention

Regarding nonmonetary satisfaction, "neutral" was the most frequently reported response in both groups, answered by 38.8% medical hospitalists and 33.3% of surgical hospitalists. No significant differences in distribution were observed. The percentage of respondents who wished to continue their positions as hospitalists after their current contract periods was 83.6% in medical hospitalists and 85.2% in surgical hospitalists. Similarly, for monetary satisfaction, the most common response among medical and surgical hospitalists was "neutral," reported by 38.8% and 33.3%, respectively, with no statistically significant difference in distribution between the 2 groups (Table 2).

Factors influencing job satisfaction

Multiple linear regression analysis was conducted to identify factors influencing nonmonetary satisfaction, using predictors including age, sex, department (medical or surgical), duration

of hospitalist career, eligibility for faculty appointment, promotion system, education funding, research funding, teachers' pension scheme, professor's office support, and duty room support. The analysis demonstrated that the regression model was statistically significant, with $F = 15.337$ ($P < 0.001$). The adjusted R^2 value was 0.326, indicating that the model explained 32.6% of the variance in nonmonetary satisfaction. Among the predictors, the eligibility for faculty appointment showed a significant positive effect on nonmonetary satisfaction, with $\beta = 0.389$ ($P < 0.001$), leading to the rejection of the null hypothesis and acceptance of the alternative hypothesis. Similarly, the availability of research funding and education funding was also found to be a statistically significant factor, with $\beta = 0.240$ ($P < 0.05$) and 0.203 ($P < 0.05$), respectively. To determine the relative influence of these variables on nonmonetary satisfaction, we further compared the standardized β coefficients. The results suggested that the eligibility for faculty appointment had a greater relative impact than research or education funding (Table 3).

Table 2. Comparison of satisfaction and retention ratio between medical and surgery hospitalists

Variable	Total (n = 94)	Medical (n = 67)	Surgical (n = 27)	P-value
Monetary satisfaction				
Strongly disagree	8 (8.5)	7 (10.4)	1 (3.7)	0.146
Disagree	24 (25.5)	15 (22.4)	9 (33.3)	
Neutral	35 (37.2)	26 (38.8)	9 (33.3)	
Agree	23 (24.5)	18 (26.9)	5 (18.5)	
Strongly agree	4 (4.3)	1 (1.5)	3 (11.1)	
Nonmonetary satisfaction				
Strongly disagree	19 (20.2)	11 (16.4)	8 (29.6)	0.683
Disagree	14 (14.9)	11 (16.4)	3 (11.1)	
Neutral	35 (37.2)	26 (38.8)	9 (33.3)	
Agree	23 (24.5)	17 (25.4)	6 (22.2)	
Strongly agree	3 (3.2)	2 (3.0)	1 (3.7)	
Anticipated Retention	79 (84.0)	56 (83.6)	23 (85.2)	0.848

Values are presented as number (%).

Table 3. Multiple regression analysis of factors affecting nonmonetary job satisfaction

Variable	Unstandardized coefficients		Standardized coefficients β	t(P)	TOL	VIF
	B	SE				
Constant	1.953	0.170		11.510***		
Eligibility for faculty appointment	0.639	0.147	0.389	4.344***	0.944	1.059
Research funding	0.569	0.227	0.240	2.502*	0.826	1.211
Education funding	0.472	0.218	0.203	2.161*	0.860	1.162
F(P)				15.337***		
Adjusted R^2				0.326		
Durbin-Watson				2.059		

B, unstandardized regression coefficient; SE, standard error; β , standardized regression coefficient; TOL, tolerance; VIF, variance inflation factor; F(P), F-statistic and P-value; R^2 , coefficient of determination; Durbin-Watson, Durbin-Watson statistic.

* $P < 0.05$, *** $P < 0.001$.

Table 4. Multiple regression analysis of factors affecting monetary job satisfaction

Variable	Unstandardized coefficients		Standardized coefficients β	t(p)	TOL	VIF
	B	SE				
Constant	1.114	0.434		2.567*		
Annual salary	0.009	0.002	0.428	4.150***	1.000	1.000
F(P)				17.224***		
Adjusted R ²				0.172		
Durbin-Watson				1.977		

B, unstandardized regression coefficient; SE, standard error; β, standardized regression coefficient; TOL, tolerance; VIF, variance inflation factor; F(P), F-statistic and P-value; R², coefficient of determination; Durbin-Watson, Durbin-Watson statistic.

*P < 0.05, ***P < 0.001.

Another multiple regression analysis was conducted using variables including age, sex, department (medical or surgical), duration of hospitalist career, annual salary, night shift allowance, incentive and seniority-based salary system to identify factors influencing monetary satisfaction. The results showed that the regression model was statistically significant, with F = 17.224 (P < 0.001). The adjusted R² value was 0.172, indicating that the model explained 17.2% of the variance in monetary satisfaction. Among the predictors, annual salary had a significant positive effect on monetary satisfaction ($\beta = 0.428$, P < 0.001) (Table 4).

DISCUSSION

South Korea is facing a critical challenge in its healthcare workforce, especially after a massive resignation of resident physicians in February 2024, due to the government announcement of a drastic increase in medical student quotas [11]. Prior to this event, the number of surgeons in the country had been steadily declining, as confirmed by various studies and statistical reports. Projections by the Korea Institute for Health and Social Affairs indicate that if the current trend were to persist, the country would face a shortage of approximately 8,800 surgeons by 2035 [12]. The decline can be attributed to several factors, with excessive workload and insufficient compensation in surgical specialties being the most significant. Our study reflected similar workload challenges among hospitalists. Notably, surgical hospitalists worked in smaller teams while handling larger patient loads and longer working hours. This disparity suggests that the shortage of the hospitalist workforce is more acute in surgical departments than in medical departments. The type 3 model may be less common among surgical hospitalists due to a shortage of personnel, as this scheduling format requires a relatively high physician-to-patient ratio. There was also a notable difference in clinical roles between medical and surgical hospitalists, a disparity that likely reflects underlying workforce limitations.

It is important to note that the number of surgical hospitalists in the present sample was relatively small, mirroring the actual scarcity of surgical hospitalists nationwide. While this limited the statistical power for subgroup analyses, the findings nonetheless provide valuable preliminary insights into a uniquely understudied group. Future studies should seek to include a larger and more representative cohort of surgical hospitalists to validate and expand upon these results.

This study provides valuable insights into the satisfaction level and determinants among medical and surgical hospitalists in South Korea. By analyzing both nonmonetary and monetary factors, our study explores the challenges and opportunities within the evolving hospitalist system. In spite of differences in working hours, number of inpatients, or clinical dependency between medical and surgical hospitalists, there were no significant differences in levels of satisfaction between the 2 groups. The analysis highlighted that the eligibility for academic affiliation was a significant predictor of nonmonetary satisfaction, suggesting that hospitalists value opportunities for professional development and academic recognition. Similarly, the availability of research grants and educational expenses positively influenced nonmonetary satisfaction. This aligns with previous studies indicating that support for research and academic activities enhances job satisfaction and retention rates among healthcare professionals [13]. In terms of monetary satisfaction, annual salary emerged as the primary determinant, explaining 17.2% of the variance. While this percentage is relatively modest, it underscores the importance of competitive compensation in maintaining a motivated and stable workforce. In cases of hospitals with high workload and long working hours, addressing financial incentives may help mitigate dissatisfaction in hospitalists. While these findings offer meaningful practical implications, it is also important to consider the statistical limitations of the model. Although the overall explanatory power was limited, annual salary remained a statistically significant predictor (P < 0.001), underscoring its consistent influence. This suggests that, despite the modest

R^2 , key financial factors—particularly base salary—still play a critical role in shaping monetary satisfaction. Future studies should incorporate additional organizational and individual-level variables, such as perceived fairness or financial stress, to better capture the complexity of financial satisfaction in hospitalists.

This study suggests several practical strategies for improving hospitalist satisfaction across specialties. First, expanding academic opportunities and fostering a culture of continuous professional development may enhance nonmonetary satisfaction. As previous researches have pointed out, faculty appointment opportunities and the availability of research mentorship could enhance professional growth and satisfaction of hospitalists [13,14]. Institutions should consider providing hospitalists with more opportunities to engage in research, attend conferences, and access educational resources. Second, financial incentives tailored to the unique challenges of each specialty could improve overall satisfaction. For hospitalists in the surgery department, who face longer working hours and higher physical demands, night shift allowances or performance-based bonuses may be particularly effective. The results of this study align with the trends observed in the hospitalist workforce since 2020. Over the past few years, there have been improvements in the incentive system—from 20.3% in 2020 to 43.6% in 2024—and an increased likelihood of faculty appointments, now at 37.4%. Such enhancements in the work environment have led to noteworthy changes: the average age of hospitalists has increased from 39 in 2020 to 42.5 in 2024, and the average employment duration has risen from 2.2 to 4.03 years. Despite a limited influx of new specialists, these trends suggest enhanced workforce stability. Furthermore, anticipated retention rates have grown from 64.4% in 2020 to 84.0% in 2024, indicating a maturing and more sustainable hospitalist system [13]. These findings are consistent with prior research demonstrating that the implementation of surgical hospitalist systems can improve patient outcomes and reduce healthcare costs in the Korean setting [15]. Overall, our analysis benefits the hospitalist framework by analyzing the hospitalist work environment and proposing plausible strategies for improvement.

This study has several limitations. First, due to its cross-sectional design, causal relationships between the identified factors and job satisfaction cannot be established. The associations observed should be interpreted as exploratory, and future longitudinal studies are warranted to examine how satisfaction levels and their determinants evolve over time. Second, the study relied on self-reported data, which may be subject to recall or response biases. Third, given the relatively small number of surgical hospitalists and the number of predictors included in the regression model, statistical power may have been suboptimal. As such, the findings from this

subgroup should be considered exploratory and interpreted with caution. Nonetheless, this limited sample size also reflects the actual scarcity of surgical hospitalists in Korea and underscores the need for more robust data on this understudied group. Further studies should consider recruiting a larger and more representative sample across various healthcare settings and regions. Additionally, qualitative approaches, such as in-depth interviews or focus groups, could offer deeper insights into the contextual and specialty-specific challenges faced by hospitalists.

Surgical hospitalists manage more hospitalized patients and work longer periods of time than medical hospitalists. Despite these differences in workload, there was no difference in job satisfaction between surgical and medical hospitalists. Factors influencing hospitalist job satisfaction included eligibility for academic affiliation, availability of research grants, availability of research and educational expenses, and annual salary.

ACKNOWLEDGEMENTS

Fund/Grant Support

None.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

ORCID iD

Hongran Moon: <https://orcid.org/0000-0002-0076-9413>

Yoon Bin Jung: <https://orcid.org/0000-0001-9829-1931>

Seung Jun Han: <https://orcid.org/0000-0001-8960-3542>

Author Contribution

Conceptualization, Project administration, Supervision: SJH, YBJ

Data curation, Investigation, Methodology: HM, SJH

Formal analysis, Visualization: HM

Validation: All authors

Writing – Original Draft: HM, SJH

Writing – Review & Editing: All authors

REFERENCES

1. Song SY, Han HY, Park SY, Kim J, Park KM, Kyong T. Current status of hospitalist practice and factors influencing job satisfaction in Korea. *J Gen Intern Med* 2025;40:302-8.
2. Chae W, Choi DW, Park EC, Jang SI. Improved inpatient care through greater patient-doctor contact under the hospitalist management approach: a real-time assessment. *Int J Environ Res Public Health* 2021;18:5718.
3. Chae W, Kim J, Park EC, Jang SI. Comparison of patient satisfaction in inpatient care provided by hospitalists and nonhospitalists in South Korea. *Int J Environ Res Public Health* 2021;18:8101.
4. Lee JH, Kim AJ, Kyong TY, et al. Evaluating the outcome of multi-morbid patients cared for by hospitalists: a report of integrated medical model in Korea. *J Korean Med Sci* 2019;34:e179.
5. Ohn JH, Kim NH, Kim ES, et al. An acute medical unit in a korean tertiary care hospital reduces the length of stay and waiting time in the emergency department. *J Korean Med Sci* 2017;32:1917-20.
6. Jung YB. Implementation and clinical implications of surgical hospitalist program [dissertation]. Seoul (KR): Yonsei University; 2024.
7. Kim J. The impact of hospitalist care in Korea. *J Korean Med Sci* 2019;34:e177.
8. Kim HW. The current status of hospital medicine in Korea, 2019. *Korean J Med* 2019;94:139-44.
9. Jeong J, Nam Y, Oh JY, Lee J, Ohn JH, Lee JH, et al. Changes in the work patterns of hospitalists in South Korea following medical school expansion. *Korean J Med* 2024;99:315-21.
10. Ministry of Health and Welfare, Republic of Korea. Status of hospitalist workforce in Korean hospital [Internet]. Ministry of Health and Welfare; 2024 Feb [cited 2025 May 12]. Available from: <https://open.go.kr>
11. Park HW. Encouraging message from the Korean Academy of Medical Sciences to junior doctors in struggle. *J Korean Med Sci* 2024;39:e108.
12. Shin Y, Go D, Lee J, Lee J, Moon S. Forecasting of physician workforce supply and demand by specialty [Internet]. Ministry of Health and Welfare; 2021 [cited 2025 May 12]. Available from: <https://dl.nanet.go.kr/detail/MONO12023000015321>
13. Han SJ, Shin DH, Kim NH, et al. Nationwide survey of internal medicine hospitalists in Korea: motivation and sustainability of a hospitalist career. *Korean J Intern Med* 2023;38:434-43.
14. Harrison R, Hunter AJ, Sharpe B, Auerbach AD. Survey of US academic hospitalist leaders about mentorship and academic activities in hospitalist groups. *J Hosp Med* 2011;6:5-9.
15. Jung YB, Jung EJ, Lee KY. A surgical hospitalist system in Korea: a preliminary study of the effects on hospital costs and postoperative outcomes. *Ann Surg Treat Res* 2021;100:298-304.