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INTRODUCTION

Since the launch of ChatGPT, large language models (LLMs) 
have generated widespread interest for their potential use 
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across diverse healthcare tasks [1,2]. Naturally, a growing 
number of studies have evaluated the accuracy of LLMs in 
medical applications. However, recent systematic reviews 
have raised concerns about the quality of reporting in 
these studies, including those published in top-tier journals 
[3-5]. Inconsistent and incomplete reporting hampers 
the ability of the reviewers and readers to evaluate the 
methodology and results of the studies, as well as to assess 
the reproducibility of the findings.

To address this issue, the MInimum reporting items for 
CLear Evaluation of Accuracy Reports of Large Language 
Models in healthcare (MI-CLEAR-LLM) checklist was 
developed to provide a minimal set of essential items for 
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specific model under investigation. At a minimum, studies 
should report the model’s name, version (ideally, including 
minor version details), developer, and whether it utilizes 
proprietary or open-source models. 

Proprietary LLMs—particularly those accessed via 
web-based chatbot interfaces—are typically updated on 
an ongoing basis, so users may not have full visibility 
into recent updates [11,12]. For instance, an interface 
advertising “gpt‑4o” may actually be running any of 
the available minor versions (referred to as snapshots), 
such as gpt-4o-2024-05-13, gpt-4o-2024-08-06, or gpt-
4o-2024-11-20, without notice [13]. In such cases, 
documenting the exact date of model access and query 
execution enhances transparency. 

For open-source models self-managed through local 
deployments, additional identification details become 
particularly important. Beyond the base model name and 
version, authors should specify any modifications made to 
the model architecture or configuration files, the source 
of the model weights (e.g., official repository, third-party 
implementation), and the specific commit hash or release 
tag when available. This level of detail is essential for 
reproducibility, as even minor differences in implementation 
or weight initialization can affect model behavior.

If feasible, authors are encouraged to share the specific 
model used in a study in an executable form by uploading it 
to a public online repository and providing a URL link. This 
enhances transparency and reproducibility and may enable 
others to replicate or build upon the study using the same 
model configuration. Additionally, when known, the cutoff 
date of the model’s training data should be reported, as it 
shows the scope and currency of the model’s knowledge base.

Model Access Mode
LLMs can be accessed through various modes, including 

web-based chatbot interfaces (e.g., ChatGPT), APIs (e.g., 
OpenAI API for GPT models) [7], and self-managed local 
deployment. Each access mode has distinct characteristics 
that may influence model performance (Table 2). 
Therefore, the specific access mode used in a study should 
be clearly stated.

Early studies evaluating the accuracy of LLMs in 
healthcare often used proprietary web-based chatbot 
interfaces due to their ease of use [14-16]. However, 
this access mode has notable limitations (Table 2). For 
instance, proprietary chatbot interfaces typically offer 
limited customization—such as minimal or no control 

transparent reporting of clinical studies evaluating LLM 
accuracy in healthcare applications [6]. The original version 
of MI-CLEAR-LLM primarily targeted studies using proprietary 
LLMs accessed via web-based chatbot interfaces (e.g., 
ChatGPT). Since its publication, however, an increasing 
number of studies have adopted application programming 
interfaces (APIs) [7] and self-managed LLMs (typically 
based on open-source models such as LLaMA or DeepSeek), 
prompting updates to reflect these developments. As 
with the original version, the updated MI-CLEAR-LLM 
focuses on key reporting considerations specific to LLM 
accuracy studies: specifically, the reporting of how LLMs 
are specified, accessed, adapted, and applied in testing, 
with particular attention to methodological elements 
that influence model outputs. To assist researchers, this 
article also provides examples from the published literature 
illustrating how these items have been reported.

A few broader reporting guidelines have recently emerged 
to support studies involving LLMs in healthcare [8-10]. 
These frameworks cover the full structure of research 
manuscripts, from title to conclusions, and also tend to 
include general items applicable to all types of clinical 
artificial intelligence research. In contrast, as noted above, 
MI-CLEAR-LLM complements such frameworks by more 
narrowly and practically addressing critical elements related 
to the selection and use of LLMs in research studies, which 
are areas under-addressed in wider-scope guidelines.

MINIMUM REPORTING ITEMS

The minimum items for transparent reporting are outlined 
in Table 1, which comprises eight item categories, each 
containing multiple specific elements. While prompt 
optimization is technically a subcategory of adaptation 
strategies, it is presented here as a separate category 
because it currently represents the most frequently used 
approach and warrants particular attention. Researchers 
are encouraged to clearly report as many relevant items as 
possible. Some items may not be applicable depending on 
the study context and design. Detailed explanations of each 
item are provided in the subsequent ELABORATION section.

ELABORATION

Model Identification
LLM performance may vary across model variations and 

versions; therefore, it is essential to clearly identify the 
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Table 1. Minimum items for the transparent reporting of clinical studies that present the performance of LLMs

Checklist item category Details Yes/No/NA
Model identification • ‌�Model name, version (ideally, including minor version details), and developer

• ‌�Whether the model is proprietary or open-source 
• ‌�For proprietary LLMs: date of access and query execution
• ‌�For self-managed open-source models: modifications to the base model, the source of model 

weights, and the commit hash or release tag when available
• ‌�If feasible, sharing of the specific model used, along with a public repository URL
• ‌�When known, cutoff date of training data

Access mode • ‌�Access method: web-based chatbot, API, or self-managed local deployment
• ‌�Rationale for chosen access mode
• ‌�Disclosure of any system-level features beyond the LLM itself (e.g., system prompts, 

intersession memory) when known
• ‌�For self-managed local deployment, key computational environment details such as 

(GPU type and memory)

Input data type • ‌�Sufficient details on the type and format of data used with, or as part of, input prompts for 
LLM evaluation, to enable replication

Adaptation strategy used • ‌�Specification of the adaptation method(s) used, including a clear statement on whether model 
weights were altered (e.g., fine-tuning) or not (e.g., prompt optimization, RAG)

• ‌�Use of precise terminology for non-parametric adaptation, e.g., “adaptation data” or “prompt 
development data” rather than ambiguous terms like “fine-tuning” or “training” data

• ‌�Provision of a detailed methodological description of the adaptation process 
(extended details can be included in supplementary materials, if space is limited)

Prompt optimization 
procedures

• ‌�Steps taken to create the prompts
• ‌�Rationale behind selecting specific wording over alternatives (e.g., standard terminology, 

guideline alignment)
• ‌�Specification of any deliberate prompting strategies used (e.g., chain-of-thought, reflection, 

instruction, few-shot)
• ‌�Full, directly executable (i.e., copy-paste ready) text of representative prompts and, if feasible, 

a complete record of the prompts used as supplementary materials
• ‌�Summary of the prompt optimization process, such as the number of iterations and interim 

versions of prompts (as supplementary materials, if space is limited)

Prompt execution setup • ‌�Specific query submission configuration, such as:
  - ‌�For chatbot interface use: whether all questions were entered simultaneously or submitted 

sequentially over the course of a dialogue
  - ‌�For API use: whether queries were submitted as independent calls or as part of a constructed 

dialogue (e.g., including prior exchanges in the input)
• ‌�If feasible, the entire experiment script used for prompt execution as supplementary materials

Stochasticity management • ‌�Settings of technical parameters, such as the temperature, that modify the level of randomness
• ‌�Number of querying attempts made
• ‌�Method for synthesizing multiple responses (e.g., majority vote, average score, at least one 

correct answer across attempts), and the rationale behind it
• ‌�Analysis of the reliability of the LLM outputs across multiple attempts

Independence of test data • ‌�Clear disclosure of any overlap between test data and either training or adaptation data
• ‌�Specification of the nature and source of data used for model adaptation and test
• ‌�For test data sourced online: exact URLs, accessibility, and potential prior exposure within the 

model’s training corpus

LLM = large language model, NA = not applicable, URL = uniform resource locator, API = application programming interface, GPU = 
graphics processing unit, RAG = retrieval-augmented generation
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over hyperparameters like temperature (which influences 
response randomness, or stochasticity)—and usually lack 
the ability to integrate with external data sources (e.g., 
through retrieval-augmented generation [RAG] [17,18]). 
Proprietary chatbot interfaces may involve opaque system-
level features beyond the LLM itself, such as intersession 
memory or hidden system prompts, which often include 
elements designed to personalize responses for individual 
users. These system-level features can be updated 
dynamically and without notice. They can introduce user-
specific variability and undermine the reproducibility of 
results. Therefore, the system-level features should be 
reported when known.

A key characteristic of chatbot interfaces is the use of 
contextual memory within a chat session. Multiple user 
queries and the model’s responses in a chat session are 
linked together, and the model’s answer to a given query is 
influenced by the preceding exchanges within the session. 
In contrast, API access treats each query as an independent 
call, meaning the response to one question is unaffected 
by previous interactions, unless the user deliberately 
constructs a chat session by including prior exchanges in 
the input [7]. Thus, unless the task evaluated in a study 
inherently involves sequential dialogue (e.g., evaluation 
of an LLM simulating a patient interview), web-based 
chatbot interfaces are generally not ideal for evaluating 
LLM accuracy. For example, when assessing an LLM’s 
performance in answering standalone medical questions—

such as case-based quiz items from medical journals 
[14,19] or generating differential diagnoses based on 
structured clinical vignettes (e.g., a set of history, physical 
examination, and laboratory results) [20]—API access, with 
each question submitted as a separate API call, is more 
appropriate. This approach ensures that each question is 
handled independently and minimizes sources of variability.

Self-managed local deployment involves researchers 
deploying and controlling the model infrastructure 
themselves, typically using open-source models. This mode 
offers maximal transparency, flexibility, and data privacy 
protection by processing data locally without transmission 
to external servers—particularly important when handling 
sensitive patient information. However, self-managed local 
deployment requires significant computational resources 
and technical expertise. For self-managed local deployment, 
we recommend researchers report key computational 
environment details such as hardware specifications (e.g., 
graphics processing unit type and memory), processing 
time when feasible, and other relevant infrastructure 
requirements. This documentation promotes reproducibility 
and provides valuable evidence for assessing practical 
feasibility in clinical settings. 

Input Data Type
Authors should clearly specify the type of data used 

with, or as part of, the input prompts to evaluate the 
LLM. Common examples include structured or unstructured 

Table 2. Comparison of typical access modes for LLMs

Characteristic
Web-based chatbot interface 

(e.g., ChatGPT)
API access to proprietary LLMs 

(e.g., OpenAI API for GPT models)
Local deployment 

(e.g., open-source models such as LLaMA)

Ease of use Very easy; no programming skills 
needed

Requires basic programming or 
scripting

Requires advanced technical skills for setup 
and use

Customization & 
control

Minimal; predefined settings High, including control over 
hyperparameters (e.g., 
temperature), output format (e.g., 
JSON), and integration with 
external data sources (e.g., RAG)

Very high: full control, also including 
fine-tuning through additional training on 
domain-specific data

Behavior 
transparency

May include opaque features 
(e.g., intersession memory, 
system-level prompts)

Transparent and controllable 
behavior

Fully transparent; all components user-
controlled

Batch processing Not supported or limited Supported; suitable for automation Fully supported; customizable workflows

Data security Data sent to external servers Data sent to external servers Data remains local; highest level of security

Cost Often free or subscription-based Token-based; can become costly at 
scale

Minimal usage cost after setup; requires 
hardware resources

LLM = large language model, GPT = generative pretrained transformer, API = application programming interface, JSON = JavaScript object 
notation, RAG = retrieval-augmented generation
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electronic health record data as text (such as radiology 
reports, clinical notes, or lab results) as well as medical 
images. Sufficient detail on the data type and format should 
be provided to enable replication by readers.

Model Adaptation
Studies often employ various model adaptation strategies 

to improve LLM performance for specific tasks or domains 
under investigation. These strategies generally fall into two 
fundamentally different categories [21,22]:

• Non-parametric approaches, which do not alter the 
model’s internal parameters (i.e., weights), such as prompt 
optimization or integration with external knowledge via 
RAG or web search tools.

• Parametric approaches, which do modify the model’s 
parameters—most commonly through fine-tuning through 
additional model training using domain-specific datasets.

It is important to clearly distinguish between these 
two types of adaptation. Parametric adaptation leads to 
permanent changes in the model itself, whereas non-
parametric methods affect performance only within the 
specific study setup. Because the latter does not alter 
the model’s weights, their effects are not inherently 
reproducible unless the same adaptation procedures are 
applied prior to model use.

Despite their fundamental differences, these approaches 
are sometimes described in the literature without clear 
distinction, using terms such as “fine-tuning” or “training” 
in a broader, less precise sense. As technical jargon, these 
terms specifically refer to the process of modifying a 
model’s parameters using additional training data. Using 
these terms more generally to refer to any procedure 
intended to refine model performance can create confusion. 
Precise terminology is essential for clear communication. 
For instance, the term “training data” is sometimes used by 
authors to refer to data used in non-parametric adaptation. 
However, this can be misleading, as the small amount of 
data used for prompt development or retrieval setup is 
fundamentally different from the training data used in 
traditional machine learning pipeline. To promote clarity, it 
is preferable to use more specific terms such as “adaptation 
data” or “prompt development data.”

Study reports should describe the adaptation strategy in 
specific terms and provide sufficient methodological detail. 
If space is limited, such information can be included in 
supplementary materials.

Prompt Optimization
Prompt optimization, including various forms of prompt 

engineering, currently appears to be the most frequently 
used adaptation strategy to improve model performance 
in clinical studies evaluating LLMs and warrants careful 
attention.

Thorough documentation of both the methods used and 
the rationale behind prompt design is essential. Even small 
changes in prompt wording—such as replacing a single 
word—can result in substantial variation in the model’s 
outputs, a phenomenon known as prompt brittleness 
[12,23]. For example, in a radiology study, the difference 
between phrasing a task as “Calculate the LI-RADS category” 
versus “Determine the LI-RADS category,” though subtle, 
resulted in substantially different model outputs [24]. When 
applicable, authors should explain the rationale for specific 
word choices, such as the use of standardized terminology 
or alignment with terms from clinical guidelines.

If more deliberate prompting strategies beyond basic 
prompt phrasing were used, these should be explicitly 
described. Common examples include chain-of-thought 
prompting, which guides the model to reason step by step; 
reflection prompting, which encourages the model to critique 
or revise its own responses; instruction prompting, which 
provides clear task directives; and few-shot prompting, which 
demonstrates task structure by including a few examples in 
the input prompt for in-context learning [21].

Given the sensitivity of LLM outputs to prompt 
formulation, complete transparency is essential. Authors 
should provide the full, exact text of representative prompts 
in a form that is directly executable (i.e., copy-paste ready) 
by readers. This also includes any custom instructions, if 
applicable (e.g., “You are an experienced physician...”). 
This level of detail is critical to ensure both reproducibility 
and accurate interpretation of study findings. 

If feasible, it is even better if authors provide a complete 
record of the prompts used, such as in the form of the 
entire experiment script, as supplementary materials, to 
further support reproducibility. Additionally, it is encouraged 
to provide a summary of the prompt optimization process, 
such as the number of iterations or testing rounds involved 
and interim versions of prompts as supplementary materials. 
Reporting unsuccessful prompt variations or optimization 
attempts can be valuable. When certain prompt formulations 
or strategies were tested but did not yield satisfactory 
results, documenting these negative results—including 
the rationale for abandonment—can prevent others 
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from repeating ineffective approaches and contribute to 
collective learning in the field.

Prompt Execution
A clear description of how queries (prompts) were 

executed is essential, as this directly affects the 
reproducibility of LLM responses. If a chatbot interface 
was used, further clarification is needed on whether all 
questions were entered simultaneously or submitted 
sequentially over the course of a dialogue. For API-
based use, an explicit statement on whether queries were 
submitted as independent calls or as part of a constructed 
dialogue enhances transparency. When an API or local 
deployment was used, providing the entire experiment 
script as supplementary materials is encouraged, since it 
transparently conveys not only the prompt text but also the 
execution-specific settings including hyperparameters as 
well as exact model name and version. 

Stochasticity Management
Unlike traditional AI models that produce consistent 

outputs for given inputs through deterministic operations, 
LLMs can generate different responses even when prompted 
repeatedly with the exact same input. This phenomenon, 
known as stochasticity, arises from inherent random 
elements in the way LLMs generate outputs [12,25]. 
For example, when an LLM generates a response to the 
prompt, “The most likely diagnosis is...,” in the context 
of a patient presenting with fever, cough, and shortness 
of breath, it predicts the next word based on learned 
probabilities. It might assign different probabilities to 
words like “pneumonia,” “COVID-19,” or “pneumothorax.” 
Rather than always selecting the most probable word, the 
model introduces a degree of randomness. As a result, while 
probability remains the dominant factor, a less likely word 
may occasionally be chosen, and the output can vary from 
one attempt to another.

The level of randomness in an LLM’s behavior can be 
adjusted. A key parameter is temperature, which controls 
how closely the model follows the highest-probability 
output. Lower temperature values (approaching zero) make 
the model more deterministic, producing more consistent 
responses across attempts, whereas higher values increase 
variability [25].

Given this inherent variability, researchers should clearly 
report how stochasticity was managed in their study. This 
includes describing relevant technical settings [26]—

particularly the temperature value used—and specifying 
whether a single query or multiple querying attempts were 
made for each input. If repeated querying was employed, 
the number of attempts should be reported, along with an 
explanation of how multiple responses were synthesized 
for analysis—such as accepting any correct answer across 
attempts, using the response from the first attempt, 
calculating an average score, or applying a majority vote. 
The rationale for these choices should be provided. In 
addition, where applicable, authors should assess the 
consistency of responses across attempts, as this informs 
the reliability of the model’s performance under repeated 
conditions [27].

Test Data Independence
Clarification on the independence of test data from 

both the foundational model’s training data and any data 
used for model adaptation is essential. Even in non-
parametric adaptation—whether through prompt design, 
example selection, or retrieval strategy—researchers often 
use a small dataset to iteratively refine and optimize 
the adaptation setup. If any data were used during this 
process, it is essential to clearly describe the nature of 
those data, separately from the description of the dataset 
used for model testing, as would be expected in any well-
documented AI study involving data use [28].

Any overlap between datasets used for model adaptation 
and testing or between the foundational model’s training 
data and test data can result in data leakage, which 
may lead to an overestimation of the LLM’s performance. 
Moreover, the issue of data independence extends beyond 
direct data duplication. If individuals involved in model 
adaptation were not blinded to the test data, researchers 
familiar with the test set may inadvertently craft prompts 
or select examples that favor performance on that test. This 
can result in indirect leakage, even when the same data are 
not reused. Clarifying whether such blinding was maintained 
is therefore recommended.

Additionally, because LLMs are typically trained on 
massive datasets collected through extensive scraping 
of online sources, including publicly available internet 
content, there is a risk that test data obtained from such 
sources—for example, online question banks or items from 
a medical journal—may have been included in the model’s 
original training set, introducing a risk of unintentional 
data leakage [12,29]. If test data were sourced from the 
internet, the exact origin (including URLs), accessibility 
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status, and whether copies may exist elsewhere online 
should be clearly reported.

REPORTING EXAMPLES FROM THE LITERATURE

The following examples illustrate how the reporting 
elements have been addressed in recent studies. Quotations 
italicized are taken directly from the original sources, with 
ellipses (...) used to indicate omitted text for brevity.

LLM Identification: Minor Versions and Knowledge 
Cutoff Dates

“For pilot testing, we selected several established 
open-weight models from the LMSYS Chatbot Arena LLM 
Leaderboard:
• ‌�Microsoft: Phi-3-mini, Phi-3-medium (both with October 

2023 knowledge cut-offs)
• Mistral AI: Mistral-7B-v0.3 (undisclosed cut-off)
• ‌�Meta: Llama-3-8b-instruct (March 2023 cut-off), Llama-3-

70b-instruct (December 2023 cut-off)
• ‌�Google: Gemma-2-9b-it, Gemma-2-27b-it (undisclosed cut-

offs).” [30]

LLM Identification: Access Dates
“The artificial intelligence models used in this study were 

LLMs with vision capabilities: GPT-4V, GPT-4o, Gemini, and 
Claude. The four LLMs were accessed between April 29 and 
May 15, 2024.” [31]

Knowledge Cutoff Dates and Access Modes
“Responses for each case were collected using the chat web 

interfaces of OpenAI’s OpenAI o1 (knowledge cutoff: October 
2023), GPT-4o (knowledge cutoff: October 2023), and GPT-4 
(knowledge cutoff: December 2023)... Responses were recorded 
using the application programming interfaces for Google’s 
Gemini 1.5 Pro and Gemini 1.5 Flash (knowledge cutoff: 
August 2024), and Meta’s Llama 3.2-90B-Vision and Llama 
3.2-11B-Vision (knowledge cutoff: December 2023).” [32]

Access via API and Query Independence From Prior 
Interactions

“Since the software uses the OpenAI API, the experiments 
for this study were also conducted using the API. In addition, 
using the API eliminated the bias that could result from 
ChatGPT’s ability to reference previous requests.” [33]

Self-Managed Model Deployment and Computational 
Environment

“Running the Llama 3.2-11B-Vision model requires a high-
end graphics processing unit (GPU) with at least 22 GB 
of GPU memory for efficient inference, whereas the Llama 
3.2-90B-Vision model requires at least 180 GB of GPU memory 
to accommodate its full parameter set. For this study, a 
single 80-GB GPU Nvidia A100 was used for the 11B model, 
and three 80-GB Nvidia A100 GPUs were used for the 90B 
model through distributed inference using the HuggingFace 
application programming interface.” [32]

Input Data Types
Text—“All cases in this study were based on actual 

patients and included information available on initial 
diagnostic evaluation, such as history, physical examination, 
and laboratory test results... A representative example is 
included in eTable 1 in Supplement 2.” [20]

Image and text—“The case vignettes were captured as 
screenshots with a size of 1285 x 768 pixels, whereas the 
corresponding questions were documented separately in text 
files.” [32]

Image and image capture of text—“Patient history, 
original images, and figure legends (without imaging 
findings) were extracted from PDF files of published cases 
and used as input images... There were two sets of input 
images. The first image set was composed of extracted 
original images acquired with various imaging modalities, 
including radiography, US, CT, MRI, fluoroscopy, digital 
subtraction angiography, bone scintigraphy, and PET/CT. 
The second image set was composed of captured images of 
text from the Diagnosis Please cases, which were the patient 
history and figure legends.” [34]

Prompt Optimization as an Adaptation Strategy
“There are 3 ways to prompt engineering: Zero-shot, One-

shot, and Few-shot. In the Zero-shot prompting method, 
the model is given natural language instructions without 
examples or demonstrations. In the One-shot prompting 
method, the model is provided instructions using a single 
example... The model was provided with 2 examples in the 
Few-shot prompting method. Details of the instructions and 
examples used in this study are provided in Supplementary 
Table 1.” [33]

RAG as an Adaptation Strategy
“Additional details regarding the prompt format, reference 
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standard process, and LLM settings are provided in Appendix 
S1... Appendix S1: The above process was then performed 
with RAG integration added, using the embedding models 
RadSearch and GTE-large. In this evaluation, RadSearch 
was given the report finding description as a search query 
and retrieved the most similar full report (n=1). This report 
was then added to the LLM input as context to assist the 
LLM in providing the correct diagnosis for the report finding 
description.” [35]

Fine-Tuning as an Adaptation Strategy
“The data set for fine-tuning was obtained from the 

following three sources: medical instruction sets (from 
medical books, guidelines, case reports, and knowledge 
graphs), radiology reports, and innocuous public instruction 
sets. A total of 800 radiology reports were sampled for fine-
tuning, which were balanced based on radiologic modality 
and anatomic site. The data for fine-tuning were pairs of 
instructions and corresponding outputs. Instructions are 
inputs that prompt the model to produce specific outputs, 
usually describing specific tasks in natural language. GPT-4 
(OpenAI) was used to automatically extract instructions and 
outputs from medical text (Appendix S1) and for radiologists 
to manually create instructions and outputs for radiology 
reports. The instructions and outputs were extended by 
the Self-Instruct and Evol-Instruct methods... To fine-tune 
the model using instruction learning, the instructions was 
preprocessed (Appendix S1). First, duplicates were removed 
based on their similarity with a deduplication threshold 
of 0.95. Second, the instruction-following difficulty was 
calculated to select data samples with the potential to 
enhance LLM instruction tuning. Pretraining and fine-tuning 
were run on a Linux platform (Ubuntu 20.04; Canonical) with 
eight graphics processing units (GPUs) (A800; NVIDIA).” [36]

Stochasticity Management via Deterministic Settings
“The temperature hyperparameter controls this randomness, 

with a high temperature adding more randomness. For this 
analysis, Vicuna outputs were obtained using a temperature 
setting of 0, thus removing the randomness.” [37]

“Model inference was performed using the Transformers 
library (v4.43) and Python (v3.10.14). Model responses were 
constrained to JSON format to facilitate evaluation. Greedy 
search decoding was applied to ensure deterministic output. 
Due to VRAM constraints, quantization was applied using the 
bitsandbytes library: 4-bit for Llama-3-70b-instruct and 8-bit 
for Gemma-2-27b-it.” [30]

Stochasticity Management via Repeated Queries
“Considering the inherent stochasticity in responses... 

each test question was presented to ChatGPT three times in 
three distinct sessions. The results from the initial session 
of ChatGPT analysis for each academic year were used for 
the main analysis. The consistency of ChatGPT’s responses 
across three separate sessions was analyzed using the Fleiss’ 
kappa.” [38]

“The majority vote of the three runs at the default 
temperature setting of 0.7 was determined and compared 
with the output of Vicuna with a temperature setting of 0.” 
[37]

“We computed the average risk score from the five 
iterations for each subject and then calculated the AUROC 
for this average risk score... We determined the coefficient of 
variation (CV) for the iterations per subject and calculated 
the average CV across all subjects to quantify the variability 
of the GPT-based risk score.” [39]

“The LLMs were tasked with providing three differential 
diagnoses, repeated five times at temperatures 0, 0.5, and 
1... The result correct if the generated diagnoses included the 
final diagnosis after five repetitions.” [34]

Test Data Independence
“Three radiologists generated 160 fictitious free-text liver 

MRI reports... Of these, 20 were used for prompt engineering, 
and 140 formed the internal test cohort. Seventy-two genuine 
reports, authored by 17 radiologists were collected and de-
identified for the external test cohort.” [40]

“A radiologist with experience in prompt engineering 
performed manual refinement of the prompts... Only the 
prompt development set was used for this process, ensuring 
that the internal validation and test sets remained unseen to 
prevent data leakage.” [30]

“Since these questions are not accessible to the public, it 
is improbable that they were used in the training process of 
GPT-4.” [38]

CONCLUSION

Careful attention to the considerations outlined in this 
article can help ensure transparency in reporting and 
enable more accurate and meaningful evaluation of studies 
assessing LLM performance in healthcare applications. 
As MI-CLEAR-LLM specifically addresses the reporting of 
how LLMs are specified, accessed, adapted, and applied in 
testing, we also encourage researchers to consult recently 
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published, more comprehensive reporting guidelines for 
LLM-related studies [8-10].
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