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Recent systematic reviews have raised concerns about the quality of reporting in studies evaluating the accuracy of large
language models (LLMs) in medical applications. Incomplete and inconsistent reporting hampers the ability of reviewers
and readers to assess study methodology, interpret results, and evaluate reproducibility. To address this issue, the MInimum
reporting items for CLear Evaluation of Accuracy Reports of Large Language Models in healthcare (MI-CLEAR-LLM) checklist
was developed. This article presents an extensively updated version. While the original version focused on proprietary LLMs
accessed via web-based chatbot interfaces, the updated checklist incorporates considerations relevant to application
programming interfaces and self-managed models, typically based on open-source LLMs. As before, the revised MI-CLEAR-
LLM focuses on reporting practices specific to LLM accuracy evaluations: specifically, the reporting of how LLMs are
specified, accessed, adapted, and applied in testing, with special attention to methodological factors that influence
outputs. The checklist includes essential items across categories such as model identification, access mode, input data type,
adaptation strategy, prompt optimization, prompt execution, stochasticity management, and test data independence. This
article also presents reporting examples from the literature. Adoption of the updated MI-CLEAR-LLM can help ensure
transparency in reporting and enable more accurate and meaningful evaluation of studies.
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INTRODUCTION

Since the launch of ChatGPT, large language models (LLMs)
have generated widespread interest for their potential use
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across diverse healthcare tasks [1,2]. Naturally, a growing
number of studies have evaluated the accuracy of LLMs in
medical applications. However, recent systematic reviews
have raised concerns about the quality of reporting in
these studies, including those published in top-tier journals
[3-5]. Inconsistent and incomplete reporting hampers

the ability of the reviewers and readers to evaluate the
methodology and results of the studies, as well as to assess
the reproducibility of the findings.

To address this issue, the MInimum reporting items for
CLear Evaluation of Accuracy Reports of Large Language
Models in healthcare (MI-CLEAR-LLM) checklist was
developed to provide a minimal set of essential items for
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transparent reporting of clinical studies evaluating LLM
accuracy in healthcare applications [6]. The original version
of MI-CLEAR-LLM primarily targeted studies using proprietary
LLMs accessed via web-based chatbot interfaces (e.g.,
ChatGPT). Since its publication, however, an increasing
number of studies have adopted application programming
interfaces (APIs) [7] and self-managed LLMs (typically
based on open-source models such as LLaMA or DeepSeek),
prompting updates to reflect these developments. As

with the original version, the updated MI-CLEAR-LLM
focuses on key reporting considerations specific to LLM
accuracy studies: specifically, the reporting of how LLMs
are specified, accessed, adapted, and applied in testing,
with particular attention to methodological elements

that influence model outputs. To assist researchers, this
article also provides examples from the published literature
illustrating how these items have been reported.

A few broader reporting guidelines have recently emerged
to support studies involving LLMs in healthcare [8-10].
These frameworks cover the full structure of research
manuscripts, from title to conclusions, and also tend to
include general items applicable to all types of clinical
artificial intelligence research. In contrast, as noted above,
MI-CLEAR-LLM complements such frameworks by more
narrowly and practically addressing critical elements related
to the selection and use of LLMs in research studies, which
are areas under-addressed in wider-scope guidelines.

MINIMUM REPORTING ITEMS

The minimum items for transparent reporting are outlined
in Table 1, which comprises eight item categories, each
containing multiple specific elements. While prompt
optimization is technically a subcategory of adaptation
strategies, it is presented here as a separate category
because it currently represents the most frequently used
approach and warrants particular attention. Researchers
are encouraged to clearly report as many relevant items as
possible. Some items may not be applicable depending on
the study context and design. Detailed explanations of each
item are provided in the subsequent ELABORATION section.

ELABORATION
Model Identification

LLM performance may vary across model variations and
versions; therefore, it is essential to clearly identify the
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specific model under investigation. At a minimum, studies
should report the model’'s name, version (ideally, including
minor version details), developer, and whether it utilizes
proprietary or open-source models.

Proprietary LLMs—particularly those accessed via
web-based chatbot interfaces—are typically updated on
an ongoing bhasis, so users may not have full visibility
into recent updates [11,12]. For instance, an interface
advertising “gpt-40” may actually be running any of
the available minor versions (referred to as snapshots),
such as gpt-40-2024-05-13, gpt-40-2024-08-06, or gpt-
40-2024-11-20, without notice [13]. In such cases,
documenting the exact date of model access and query
execution enhances transparency.

For open-source models self-managed through local
deployments, additional identification details become
particularly important. Beyond the base model name and
version, authors should specify any modifications made to
the model architecture or configuration files, the source
of the model weights (e.qg., official repository, third-party
implementation), and the specific commit hash or release
tag when available. This level of detail is essential for
reproducibility, as even minor differences in implementation
or weight initialization can affect model behavior.

If feasible, authors are encouraged to share the specific
model used in a study in an executable form by uploading it
to a public online repository and providing a URL link. This
enhances transparency and reproducibility and may enable
others to replicate or build upon the study using the same
model configuration. Additionally, when known, the cutoff
date of the model’s training data should be reported, as it
shows the scope and currency of the model’s knowledge base.

Model Access Mode

LLMs can be accessed through various modes, including
web-based chatbot interfaces (e.g., ChatGPT), APIs (e.g.,
OpenAI API for GPT models) [7], and self-managed local
deployment. Each access mode has distinct characteristics
that may influence model performance (Table 2).
Therefore, the specific access mode used in a study should
be clearly stated.

Early studies evaluating the accuracy of LLMs in
healthcare often used proprietary web-based chatbot
interfaces due to their ease of use [14-16]. However,
this access mode has notable limitations (Table 2). For
instance, proprietary chatbot interfaces typically offer
limited customization—such as minimal or no control
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Table 1. Minimum items for the transparent reporting of clinical studies that present the performance of LLMs
Checklist item category Details Yes/No/NA
Model identification * Model name, version (ideally, including minor version details), and developer
» Whether the model is proprietary or open-source
* For proprietary LLMs: date of access and query execution
* For self-managed open-source models: modifications to the base model, the source of model
weights, and the commit hash or release tag when available
« If feasible, sharing of the specific model used, along with a public repository URL
* When known, cutoff date of training data

Access mode * Access method: web-based chatbot, API, or self-managed local deployment
* Rationale for chosen access mode
* Disclosure of any system-level features beyond the LLM itself (e.g., system prompts,
intersession memory) when known
* For self-managed local deployment, key computational environment details such as
(GPU type and memory)
Input data type « Sufficient details on the type and format of data used with, or as part of, input prompts for
LLM evaluation, to enable replication
Adaptation strategy used e« Specification of the adaptation method(s) used, including a clear statement on whether model
weights were altered (e.g., fine-tuning) or not (e.g., prompt optimization, RAG)
* Use of precise terminology for non-parametric adaptation, e.g., “adaptation data” or “prompt
development data” rather than ambiguous terms like “fine-tuning” or “training” data
* Provision of a detailed methodological description of the adaptation process
(extended details can be included in supplementary materials, if space is limited)
Prompt optimization * Steps taken to create the prompts
procedures * Rationale behind selecting specific wording over alternatives (e.g., standard terminology,
guideline alignment)
* Specification of any deliberate prompting strategies used (e.g., chain-of-thought, reflection,
instruction, few-shot)
* Full, directly executable (i.e., copy-paste ready) text of representative prompts and, if feasible,
a complete record of the prompts used as supplementary materials
» Summary of the prompt optimization process, such as the number of iterations and interim
versions of prompts (as supplementary materials, if space is limited)
Prompt execution setup * Specific query submission configuration, such as:
- For chatbot interface use: whether all questions were entered simultaneously or submitted
sequentially over the course of a dialogue
- For API use: whether queries were submitted as independent calls or as part of a constructed
dialogue (e.g., including prior exchanges in the input)
« If feasible, the entire experiment script used for prompt execution as supplementary materials
Stochasticity management e Settings of technical parameters, such as the temperature, that modify the level of randomness
* Number of querying attempts made
* Method for synthesizing multiple responses (e.g., majority vote, average score, at least one
correct answer across attempts), and the rationale behind it
* Analysis of the reliability of the LLM outputs across multiple attempts
Independence of test data < Clear disclosure of any overlap between test data and either training or adaptation data
* Specification of the nature and source of data used for model adaptation and test
* For test data sourced online: exact URLs, accessibility, and potential prior exposure within the
model’s training corpus

LLM = large language model, NA = not applicable, URL = uniform resource locator, API = application programming interface, GPU =
graphics processing unit, RAG = retrieval-augmented generation
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Table 2. Comparison of typical access modes for LLMs

Park et al.

Web-based chatbot interface

Characteristi
aracteristic (e.g., ChatGPT)

API access to proprietary LLMs
(e.g., OpenAl API for GPT models)

Local deployment
(e.g., open-source models such as LLaMA)

Ease of use Very easy; no programming skills

needed scripting

Customization &  Minimal; predefined settings

Requires basic programming or

High, including control over
hyperparameters (e.g.,
temperature), output format (e.g.,

Requires advanced technical skills for setup
and use

Very high: full control, also including
fine-tuning through additional training on
domain-specific data

JSON), and integration with
external data sources (e.g., RAG)

control
Behavior May include opaque features
transparency (e.g., intersession memory, behavior

system-level prompts)
Batch processing  Not supported or limited
Data security Data sent to external servers
Cost Often free or subscription-based

scale

Transparent and controllable

Supported; suitable for automation
Data sent to external servers
Token-based; can become costly at

Fully transparent; all components user-
controlled

Fully supported; customizable workflows

Data remains local; highest level of security

Minimal usage cost after setup; requires
hardware resources

LLM = large language model, GPT = generative pretrained transformer, API = application programming interface, JSON = JavaScript object

notation, RAG = retrieval-augmented generation

over hyperparameters like temperature (which influences
response randomness, or stochasticity)—and usually lack
the ability to integrate with external data sources (e.g.,
through retrieval-augmented generation [RAG] [17,18]).
Proprietary chatbot interfaces may involve opaque system-
level features beyond the LLM itself, such as intersession
memory or hidden system prompts, which often include
elements designed to personalize responses for individual
users. These system-level features can be updated
dynamically and without notice. They can introduce user-
specific variability and undermine the reproducibility of
results. Therefore, the system-level features should be
reported when known.

A key characteristic of chatbot interfaces is the use of
contextual memory within a chat session. Multiple user
queries and the model’s responses in a chat session are
linked together, and the model’s answer to a given query is
influenced by the preceding exchanges within the session.
In contrast, API access treats each query as an independent
call, meaning the response to one question is unaffected
by previous interactions, unless the user deliberately
constructs a chat session by including prior exchanges in
the input [7]. Thus, unless the task evaluated in a study
inherently involves sequential dialogue (e.g., evaluation
of an LLM simulating a patient interview), web-based
chatbot interfaces are generally not ideal for evaluating
LLM accuracy. For example, when assessing an LLM’s
performance in answering standalone medical questions—
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such as case-based quiz items from medical journals
[14,19] or generating differential diagnoses based on
structured clinical vignettes (e.g., a set of history, physical
examination, and laboratory results) [20]—API access, with
each question submitted as a separate API call, is more
appropriate. This approach ensures that each question is
handled independently and minimizes sources of variability.

Self-managed local deployment involves researchers
deploying and controlling the model infrastructure
themselves, typically using open-source models. This mode
offers maximal transparency, flexibility, and data privacy
protection by processing data locally without transmission
to external servers—particularly important when handling
sensitive patient information. However, self-managed local
deployment requires significant computational resources
and technical expertise. For self-managed local deployment,
we recommend researchers report key computational
environment details such as hardware specifications (e.g.,
graphics processing unit type and memory), processing
time when feasible, and other relevant infrastructure
requirements. This documentation promotes reproducibility
and provides valuable evidence for assessing practical
feasibility in clinical settings.

Input Data Type

Authors should clearly specify the type of data used
with, or as part of, the input prompts to evaluate the
LLM. Common examples include structured or unstructured
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electronic health record data as text (such as radiology
reports, clinical notes, or lab results) as well as medical
images. Sufficient detail on the data type and format should
be provided to enable replication by readers.

Model Adaptation

Studies often employ various model adaptation strategies
to improve LLM performance for specific tasks or domains
under investigation. These strategies generally fall into two
fundamentally different categories [21,22]:

* Non-parametric approaches, which do not alter the
model’s internal parameters (i.e., weights), such as prompt
optimization or integration with external knowledge via
RAG or web search tools.

* Parametric approaches, which do modify the model’s
parameters—most commonly through fine-tuning through
additional model training using domain-specific datasets.

It is important to clearly distinguish between these
two types of adaptation. Parametric adaptation leads to
permanent changes in the model itself, whereas non-
parametric methods affect performance only within the
specific study setup. Because the latter does not alter
the model’s weights, their effects are not inherently
reproducible unless the same adaptation procedures are
applied prior to model use.

Despite their fundamental differences, these approaches
are sometimes described in the literature without clear
distinction, using terms such as “fine-tuning” or “training”
in a broader, less precise sense. As technical jargon, these
terms specifically refer to the process of modifying a
model’s parameters using additional training data. Using
these terms more generally to refer to any procedure
intended to refine model performance can create confusion.
Precise terminology is essential for clear communication.
For instance, the term “training data” is sometimes used by
authors to refer to data used in non-parametric adaptation.
However, this can be misleading, as the small amount of
data used for prompt development or retrieval setup is
fundamentally different from the training data used in
traditional machine learning pipeline. To promote clarity, it
is preferable to use more specific terms such as “adaptation
data” or “prompt development data.”

Study reports should describe the adaptation strategy in
specific terms and provide sufficient methodological detail.
If space is limited, such information can be included in
supplementary materials.

kjronline.org https://doi.org/10.3348/kjr.2025.1522

Korean Journal of Radiology

Prompt Optimization

Prompt optimization, including various forms of prompt
engineering, currently appears to be the most frequently
used adaptation strategy to improve model performance
in clinical studies evaluating LLMs and warrants careful
attention.

Thorough documentation of both the methods used and
the rationale behind prompt design is essential. Even small
changes in prompt wording—such as replacing a single
word—can result in substantial variation in the model’s
outputs, a phenomenon known as prompt brittleness
[12,23]. For example, in a radiology study, the difference
between phrasing a task as “Calculate the LI-RADS category”
versus “Determine the LI-RADS category,” though subtle,
resulted in substantially different model outputs [24]. When
applicable, authors should explain the rationale for specific
word choices, such as the use of standardized terminology
or alignment with terms from clinical guidelines.

If more deliberate prompting strategies beyond basic
prompt phrasing were used, these should be explicitly
described. Common examples include chain-of-thought
prompting, which guides the model to reason step by step;
reflection prompting, which encourages the model to critique
or revise its own responses; instruction prompting, which
provides clear task directives; and few-shot prompting, which
demonstrates task structure by including a few examples in
the input prompt for in-context learning [21].

Given the sensitivity of LLM outputs to prompt
formulation, complete transparency is essential. Authors
should provide the full, exact text of representative prompts
in a form that is directly executable (i.e., copy-paste ready)
by readers. This also includes any custom instructions, if
applicable (e.g., “You are an experienced physician...”).
This level of detail is critical to ensure both reproducibility
and accurate interpretation of study findings.

If feasible, it is even better if authors provide a complete
record of the prompts used, such as in the form of the
entire experiment script, as supplementary materials, to
further support reproducibility. Additionally, it is encouraged
to provide a summary of the prompt optimization process,
such as the number of iterations or testing rounds involved
and interim versions of prompts as supplementary materials.
Reporting unsuccessful prompt variations or optimization
attempts can be valuable. When certain prompt formulations
or strategies were tested but did not yield satisfactory
results, documenting these negative results—including
the rationale for abandonment—can prevent others

r
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from repeating ineffective approaches and contribute to
collective learning in the field.

Prompt Execution

A clear description of how queries (prompts) were
executed is essential, as this directly affects the
reproducibility of LLM responses. If a chatbot interface
was used, further clarification is needed on whether all
questions were entered simultaneously or submitted
sequentially over the course of a dialogue. For API-
based use, an explicit statement on whether queries were
submitted as independent calls or as part of a constructed
dialogue enhances transparency. When an API or local
deployment was used, providing the entire experiment
script as supplementary materials is encouraged, since it
transparently conveys not only the prompt text but also the
execution-specific settings including hyperparameters as
well as exact model name and version.

Stochasticity Management

Unlike traditional AI models that produce consistent
outputs for given inputs through deterministic operations,
LLMs can generate different responses even when prompted
repeatedly with the exact same input. This phenomenon,
known as stochasticity, arises from inherent random
elements in the way LLMs generate outputs [12,25].

For example, when an LLM generates a response to the
prompt, “The most likely diagnosis is...,” in the context
of a patient presenting with fever, cough, and shortness
of breath, it predicts the next word based on learned
probabilities. It might assign different probabilities to
words like “pneumonia,” “COVID-19,” or “pneumothorax.”
Rather than always selecting the most probable word, the
model introduces a degree of randomness. As a result, while
probability remains the dominant factor, a less likely word
may occasionally be chosen, and the output can vary from
one attempt to another.

The level of randomness in an LLM’s behavior can be
adjusted. A key parameter is temperature, which controls
how closely the model follows the highest-probability
output. Lower temperature values (approaching zero) make
the model more deterministic, producing more consistent
responses across attempts, whereas higher values increase
variability [25].

Given this inherent variability, researchers should clearly
report how stochasticity was managed in their study. This
includes describing relevant technical settings [26]—
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particularly the temperature value used—and specifying
whether a single query or multiple querying attempts were
made for each input. If repeated querying was employed,
the number of attempts should be reported, along with an
explanation of how multiple responses were synthesized
for analysis—such as accepting any correct answer across
attempts, using the response from the first attempt,
calculating an average score, or applying a majority vote.
The rationale for these choices should be provided. In
addition, where applicable, authors should assess the
consistency of responses across attempts, as this informs
the reliability of the model’s performance under repeated
conditions [27].

Test Data Independence

Clarification on the independence of test data from
both the foundational model’s training data and any data
used for model adaptation is essential. Even in non-
parametric adaptation—whether through prompt design,
example selection, or retrieval strategy—researchers often
use a small dataset to iteratively refine and optimize
the adaptation setup. If any data were used during this
process, it is essential to clearly describe the nature of
those data, separately from the description of the dataset
used for model testing, as would be expected in any well-
documented AI study involving data use [28].

Any overlap between datasets used for model adaptation
and testing or between the foundational model’s training
data and test data can result in data leakage, which
may lead to an overestimation of the LLM’s performance.
Moreover, the issue of data independence extends beyond
direct data duplication. If individuals involved in model
adaptation were not blinded to the test data, researchers
familiar with the test set may inadvertently craft prompts
or select examples that favor performance on that test. This
can result in indirect leakage, even when the same data are
not reused. Clarifying whether such blinding was maintained
is therefore recommended.

Additionally, because LLMs are typically trained on
massive datasets collected through extensive scraping
of online sources, including publicly available internet
content, there is a risk that test data obtained from such
sources—for example, online question banks or items from
a medical journal—may have been included in the model’s
original training set, introducing a risk of unintentional
data leakage [12,29]. If test data were sourced from the
internet, the exact origin (including URLs), accessibility
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status, and whether copies may exist elsewhere online
should be clearly reported.

REPORTING EXAMPLES FROM THE LITERATURE

The following examples illustrate how the reporting
elements have been addressed in recent studies. Quotations
italicized are taken directly from the original sources, with
ellipses (...) used to indicate omitted text for brevity.

LLM Identification: Minor Versions and Knowledge

Cutoff Dates
“For pilot testing, we selected several established

open-weight models from the LMSYS Chatbot Arena LLM

Leaderboard:

* Microsoft: Phi-3-mini, Phi-3-medium (both with October
2023 knowledge cut-offs)

* Mistral AI: Mistral-7B-v0.3 (undisclosed cut-off)

* Meta: Llama-3-8b-instruct (March 2023 cut-off), Llama-3-
70b-instruct (December 2023 cut-off)

* Google: Gemma-2-9b-it, Gemma-2-27b-it (undisclosed cut-
offs).” [30]

LLM Identification: Access Dates

“The artificial intelligence models used in this study were
LLMs with vision capabilities: GPT-4V, GPT-40, Gemini, and
Claude. The four LLMs were accessed between April 29 and
May 15, 2024.” [31]

Knowledge Cutoff Dates and Access Modes

“Responses for each case were collected using the chat web
interfaces of OpenAI's OpenAI o1 (knowledge cutoff: October
2023), GPT-40 (knowledge cutoff: October 2023), and GPT-4
(knowledge cutoff: December 2023)... Responses were recorded
using the application programming interfaces for Google’s
Gemini 1.5 Pro and Gemini 1.5 Flash (knowledge cutoff:
August 2024), and Meta’s Llama 3.2-90B-Vision and Llama
3.2-11B-Vision (knowledge cutoff: December 2023).” [32]

Access via API and Query Independence From Prior
Interactions

“Since the software uses the OpenAI API, the experiments
for this study were also conducted using the API. In addition,
using the API eliminated the bias that could result from
ChatGPT’s ability to reference previous requests.” [33]

kjronline.org https://doi.org/10.3348/kjr.2025.1522
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Self-Managed Model Deployment and Computational
Environment

“Running the Llama 3.2-11B-Vision model requires a high-
end graphics processing unit (GPU) with at least 22 GB
of GPU memotry for efficient inference, whereas the Llama
3.2-90B-Vision model requires at least 180 GB of GPU memory
to accommodate its full parameter set. For this study, a
single 80-GB GPU Nvidia A100 was used for the 11B model,
and three 80-GB Nvidia A100 GPUs were used for the 90B
model through distributed inference using the HuggingFace
application programming interface.” [32]

Input Data Types

Text— “All cases in this study were based on actual
patients and included information available on initial
diagnostic evaluation, such as history, physical examination,
and laboratory test results... A representative example is
included in eTable 1 in Supplement 2.” [20]

Image and text—“The case vignettes were captured as
screenshots with a size of 1285 x 768 pixels, whereas the
corresponding questions were documented separately in text
files.” [32]

Image and image capture of text— “Patient history,
original images, and figure legends (without imaging
findings) were extracted from PDF files of published cases
and used as input images... There were two sets of input
images. The first image set was composed of extracted
original images acquired with various imaging modalities,
including radiography, US, CT, MRI, fluoroscopy, digital
subtraction angiography, bone scintigraphy, and PET/CT.

The second image set was composed of captured images of
text from the Diagnosis Please cases, which were the patient
history and figure legends.” [34]

Prompt Optimization as an Adaptation Strategy

“There are 3 ways to prompt engineering: Zero-shot, One-
shot, and Few-shot. In the Zero-shot prompting method,
the model is given natural language instructions without
examples or demonstrations. In the One-shot prompting
method, the model is provided instructions using a single
example... The model was provided with 2 examples in the
Few-shot prompting method. Details of the instructions and
examples used in this study are provided in Supplementary
Table 1.” [33]

RAG as an Adaptation Strategy
“Additional details regarding the prompt format, reference
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standard process, and LLM settings are provided in Appendix
S1... Appendix S1: The above process was then performed
with RAG integration added, using the embedding models
RadSearch and GTE-large. In this evaluation, RadSearch

was given the report finding description as a search query
and retrieved the most similar full report (n=1). This report
was then added to the LLM input as context to assist the
LLM in providing the correct diagnosis for the report finding
description.” [35]

Fine-Tuning as an Adaptation Strategy

“The data set for fine-tuning was obtained from the
following three sources: medical instruction sets (from
medical books, guidelines, case reports, and knowledge
graphs), radiology reports, and innocuous public instruction
sets. A total of 800 radiology reports were sampled for fine-
tuning, which were balanced based on radiologic modality
and anatomic site. The data for fine-tuning were pairs of
instructions and corresponding outputs. Instructions are
inputs that prompt the model to produce specific outputs,
usually describing specific tasks in natural language. GPT-4
(OpenAI) was used to automatically extract instructions and
outputs from medical text (Appendix S1) and for radiologists
to manually create instructions and outputs for radiology
reports. The instructions and outputs were extended by
the Self-Instruct and Evol-Instruct methods... To fine-tune
the model using instruction learning, the instructions was
preprocessed (Appendix S1). First, duplicates were removed
based on their similarity with a deduplication threshold
of 0.95. Second, the instruction-following difficulty was
calculated to select data samples with the potential to
enhance LLM instruction tuning. Pretraining and fine-tuning
were run on a Linux platform (Ubuntu 20.04; Canonical) with
eight graphics processing units (GPUs) (A800; NVIDIA).” [36]

Stochasticity Management via Deterministic Settings

“The temperature hyperparameter controls this randomness,
with a high temperature adding more randomness. For this
analysis, Vicuna outputs were obtained using a temperature
setting of 0, thus removing the randomness.” [37]

“Model inference was performed using the Transformers
library (v4.43) and Python (v3.10.14). Model responses were
constrained to JSON format to facilitate evaluation. Greedy
search decoding was applied to ensure deterministic output.
Due to VRAM constraints, quantization was applied using the
bitsandbytes library: 4-bit for Llama-3-70b-instruct and 8-bit
for Gemma-2-27b-it.” [30]
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Stochasticity Management via Repeated Queries

“Considering the inherent stochasticity in responses...
each test question was presented to ChatGPT three times in
three distinct sessions. The results from the initial session
of ChatGPT analysis for each academic year were used for
the main analysis. The consistency of ChatGPT’s responses
across three separate sessions was analyzed using the Fleiss’
kappa.” [38]

“The majority vote of the three runs at the default
temperature setting of 0.7 was determined and compared
with the output of Vicuna with a temperature setting of 0.”
[37]

“We computed the average risk score from the five
iterations for each subject and then calculated the AUROC
for this average risk score... We determined the coefficient of
variation (CV) for the iterations per subject and calculated
the average CV across all subjects to quantify the variability
of the GPT-based risk score.” [39]

“The LLMs were tasked with providing three differential
diagnoses, repeated five times at temperatures 0, 0.5, and
1... The result correct if the generated diagnoses included the
final diagnosis after five repetitions.” [34]

Test Data Independence

“Three radiologists generated 160 fictitious free-text liver
MRI reports... Of these, 20 were used for prompt engineering,
and 140 formed the internal test cohort. Seventy-two genuine
reports, authored by 17 radiologists were collected and de-
identified for the external test cohort.” [40]

“A radiologist with experience in prompt engineering
performed manual refinement of the prompts... Only the
prompt development set was used for this process, ensuring
that the internal validation and test sets remained unseen to
prevent data leakage.” [30]

“Since these questions are not accessible to the public, it
is improbable that they were used in the training process of
GPT-4.” [38]

CONCLUSION

Careful attention to the considerations outlined in this
article can help ensure transparency in reporting and
enable more accurate and meaningful evaluation of studies
assessing LLM performance in healthcare applications.

As MI-CLEAR-LLM specifically addresses the reporting of
how LLMs are specified, accessed, adapted, and applied in
testing, we also encourage researchers to consult recently
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published, more comprehensive reporting guidelines for
LLM-related studies [8-10].
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