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A B S T R A C T

Solving the eigenvalue problem is particularly important in almost all fields of science and
engineering. With the development of quantum computers, multiple algorithms have been
proposed for this purpose. However, such methods are usually only applicable to matrices
of specific types, such as unitary or Hermitian matrices. The quantum annealer of the D-
Wave, a quantum computer, returns the minimum value of the quadratic unconstrained binary
optimization (QUBO) model. Thus, quantum annealers can be leveraged to solve arbitrary
eigenvalue problems by formulating corresponding QUBO models. In this paper, we propose
two higher-order unconstrained optimization (HUBO) formulations to solve eigenvalue problems
involving 𝑛× 𝑛 general matrices. In addition, we use a formula to reduce the order and convert
the HUBO model into a QUBO model. Further, by using a quantum approximate optimization
algorithm, this method can be extended to a gate-model quantum computer.

1. Introduction

Solving the eigenvalue problem is crucial to numerical analysis. Solutions for these problems play prominent roles in engineering,
hysics, chemistry, computer science, and economics. In classic computers, eigenvalues and eigenvectors are primarily used for
ingular value decomposition (SVD), pseudo-inverse calculation, and principal component analysis (PCA). Several studies have
ttempted to implement classical quantum algorithms to solve general eigenvalue problems. For example, quantum solution methods
ave been proposed to solve the wave equation [1], boundary-value problems [2], and linear initial-value differential equations [3].
n addition, a quantum phase estimation (QPE) method was proposed to identify the eigenvalues of a unitary matrix. QPE is based
n Shor’s algorithm [4], which can perform prime factorization in polynomial time. Likewise, several studies have demonstrated
hat quantum computing is incomparably faster than classical computing in certain fields [3,5–7]. Research on quantum algorithms
as progressed naturally, even in the context of solving eigenvalue problems. Nevertheless, these algorithms are only applicable to
igenvalue problems under certain conditions. For example, the eigenvalues of unitary [8], Hermitian [5,9], and diagonalizable
atrices [7] can be estimated using such methods. Several studies have yielded notable results regarding the identification of

igenvalues and eigenvectors of symmetric matrices. In [10,11], the ground state change problem was mapped to the Ising and
uadratic unconstrained binary optimization (QUBO) problems, respectively. The authors also proposed a quantum annealing
igensolver for complex symmetric matrices using constrained real values in QUBOs. In [12], an algorithm was proposed that
inimizes the corresponding Rayleigh quotient via iterative descent and computes the eigenpairs of a symmetric matrix. Moreover,
ultiple studies have attempted to compute the eigenvalues of non-Hermitian and non-unitary matrices [13,14]. However, to the

est of our knowledge, there does not exist a method for computing the eigenvalues of a general matrix using a quantum computer.
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The quantum computer, D-Wave quantum annealer, is capable of solving combinatorial optimization problems by identifying

olutions that minimize the following cost (energy) function.

𝑓 (𝑞) = 𝑞𝑇𝑄𝑞 (1)

where 𝑄 denotes an upper matrix, 𝑞 = (𝑞1,… , 𝑞𝑁 )𝑇 , and 𝑞𝑖 denote binary variables. In the case of 𝑞𝑖 ∈ {−1, 1}, the aforementioned
equation represents the so-called Ising model; and in the case of 𝑞𝑖 ∈ {0, 1}, represents the QUBO model. As the Ising and QUBO
models are convertible into each other, we focus solely on the QUBO model. Because 𝑞2𝑖 = 𝑞𝑖, the cost function can be reformulated
as follows:

𝑓 (𝑞) =
𝑁
∑

𝑖=1
𝑄𝑖,𝑖𝑞𝑖 +

𝑁
∑

𝑖<𝑗
𝑄𝑖,𝑗𝑞𝑖𝑞𝑗 , (2)

where 𝑄𝑖,𝑖 denotes diagonal terms and 𝑄𝑖,𝑗 denotes off-diagonal terms. In principle, if we can formulate the objective function as a
QUBO model, its minimum value can be obtained and a solution to the objective function can be identified.

In this study, we propose two higher-order unconstrained optimization (HUBO) models that can be converted into QUBO models.
Both HUBO models are based on the following approach. First, a linear least-squares problem of the eigenvalue problem is used.
Then, the binary representation of the solutions is set and it is input into the linear least-squares problem. Then, terms higher than
the cubic expression are generated, and the model including these terms is called the HUBO model. Because the D-Wave quantum
annealer can only solve QUBO or Ising models with linear and quadratic terms, its degree is reduced to be less than that of a
quadratic expression using Eq. (15). Finally, the two representation methods for the solutions are presented and two HUBO models
are created to solve the eigenvalue problem. Additionally, the Python code to create HUBO models that can be used in the D-Wave
simulator is provided.

2. Methods

2.1. The linear least-squares problem

Given a matrix 𝐴 ∈ R𝑛×𝑛, a column vector of variables, 𝑥⃗ ∈ R𝑛, and a real number 𝜆 ∈ R, the linear least-squares problem is to
find 𝜆 and 𝑥⃗ satisfying 𝐴𝑥⃗ = 𝜆𝑥⃗. Thus, it can be formulated as follows:

arg min
𝜆,𝑥⃗

‖𝐴𝑥⃗ − 𝜆𝑥⃗‖ = 0 (3)

To solve Eq. (3), let us begin by writing out 𝐴𝑥⃗ − 𝜆𝑥⃗:

𝐴𝑥⃗ − 𝜆𝑥⃗ =

⎛

⎜

⎜

⎜

⎜

⎝

𝑎1,1 𝑎1,2 ⋯ 𝑎1,𝑛
𝑎2,1 𝑎2,2 ⋯ 𝑎2,𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑛,1 𝑎𝑛,2 ⋯ 𝑎𝑛,𝑛

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝑥1
𝑥2
⋮
𝑥𝑛

⎞

⎟

⎟

⎟

⎟

⎠

− 𝜆

⎛

⎜

⎜

⎜

⎜

⎝

𝑥1
𝑥2
⋮
𝑥𝑛

⎞

⎟

⎟

⎟

⎟

⎠

(4)

Taking the 2-norm square of the resultant vector in Eq. (4), we obtain the following:

‖𝐴𝑥⃗ − 𝜆𝑥⃗‖22 = 𝑥⃗𝑇𝐴𝑇𝐴𝑥⃗ − 𝜆𝑥⃗𝑇𝐴𝑥⃗ − 𝜆𝑥⃗𝑇𝐴𝑇 𝑥⃗ + 𝜆2𝑥⃗𝑇 𝑥⃗ (5)

= 𝑥⃗𝑇𝐴𝑇𝐴𝑥⃗ − 2𝜆𝑥⃗𝑇𝐴𝑥⃗ + 𝜆2𝑥⃗𝑇 𝑥⃗ (6)

Because 𝑥⃗𝑇𝐴𝑥⃗ is scalar and 𝑥⃗𝑇𝐴𝑥⃗ = (𝑥⃗𝑇𝐴𝑥⃗)𝑇 = 𝑥⃗𝑇𝐴𝑇 (𝑥⃗𝑇 )𝑇 = 𝑥⃗𝑇𝐴𝑇 𝑥⃗, Eq. (5) is represented by Eq. (6).

2.2. HUBO model 1

While solving the binary least-squares problem, each 𝑥𝑖 is represented by a combination of qubits 𝑞𝑖,𝑙 ∈ {0, 1}. As per the work
by O’Malley and Vesselinov [15], the radix 2 representation of the positive real value, 𝜆, is given by

𝜆 ≈
𝑚
∑

𝑙=−𝑚
2𝑙𝑞+𝑙 −

𝑚
∑

𝑙=−𝑚
2𝑙𝑞−𝑙 (7)

where the positive integer, 𝑙, denotes the number of digits of 𝜆 and the negative integer, 𝑙, denotes the number of digits of fractional
terms. We can now represent a large real value, 𝑥𝑖, as follows:

𝑥𝑖 ≈
𝑚
∑

𝑙=0
2𝑙𝑞+𝑖,𝑙 −

𝑚
∑

𝑙=0
2𝑙𝑞−𝑖,𝑙 . (8)

Both positive and negative numbers are represented using 𝑞+𝑖,𝑙 and 𝑞−𝑖,𝑙. Note that this representation can take the same value
corresponding to different binary combinations. Since the eigenvector appears in the form of a straight line passing through the
origin, we can express it in the form of an integer in which the minimum value appears in quantum annealers, as given by Eq. (8).
2
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To derive a HUBO model, we insert Eqs. (7) and (8) into Eq. (6). This yields the summation terms of the first term in Eq. (6),
s indicated below:

𝑥⃗𝑇𝐴𝑇𝐴𝑥⃗ =
𝑛
∑

𝑘=1

{ 𝑛
∑

𝑖=1
(𝑎𝑘,𝑖𝑥𝑖)2 + 2

∑

𝑖<𝑗
𝑎𝑘,𝑖𝑎𝑘,𝑗𝑥𝑖𝑥𝑗

}

(9)

Eq. (9) can be calculated as follows:
𝑛
∑

𝑘=1

𝑛
∑

𝑖=1
(𝑎𝑘,𝑖𝑥𝑖)2 ≈

𝑛
∑

𝑘=1

𝑛
∑

𝑖=1

𝑚
∑

𝑙=0
𝑎2𝑘,𝑖2

2𝑙
(

𝑞+𝑖,𝑙 + 𝑞−𝑖,𝑙
)

+
𝑛
∑

𝑘=1

𝑛
∑

𝑖=1

∑

𝑙1<𝑙2

𝑎2𝑘,𝑖2
𝑙1+𝑙2+1

(

𝑞+𝑖,𝑙1𝑞
+
𝑖,𝑙2

+ 𝑞−𝑖,𝑙1𝑞
−
𝑖,𝑙2

)

(10)

𝑛
∑

𝑘=1

∑

𝑖<𝑗
2𝑎𝑘,𝑖𝑎𝑘,𝑗𝑥𝑖𝑥𝑗 ≈

𝑛
∑

𝑘=1

∑

𝑖<𝑗

𝑚
∑

𝑙1=0

𝑚
∑

𝑙2=0
2𝑙1+𝑙2+1𝑎𝑘,𝑖𝑎𝑘,𝑗

(

𝑞+𝑖,𝑙1𝑞
+
𝑗,𝑙2

+ 𝑞−𝑖,𝑙1𝑞
−
𝑗,𝑙2

− 𝑞+𝑖,𝑙1𝑞
−
𝑗,𝑙2

− 𝑞−𝑖,𝑙1𝑞
+
𝑗,𝑙2

)

(11)

In Eq. (10), the first summation represents linear terms and the second summation represents quadratic terms. Moreover, Eq. (11)
is part of the quadratic terms in the HUBO model.

The HUBO form of the second term in Eq. (6) can be obtained as follows:

− 2𝜆𝑥⃗𝑇𝐴𝑥⃗ = −2𝜆
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑎𝑖,𝑗𝑥𝑖𝑥𝑗 (12)

≈
∑𝑛

𝑘=1
∑𝑚

𝑙=−𝑚
∑𝑚

𝑙1=0
2𝑙+2𝑙1+1𝑎𝑘,𝑘

(

𝑞−𝑙 𝑞
+
𝑘,𝑙1

+ 𝑞−𝑙 𝑞
−
𝑘,𝑙1

− 𝑞+𝑙 𝑞
+
𝑘,𝑙1

− 𝑞+𝑙 𝑞
−
𝑘,𝑙1

)

+
∑𝑛

𝑘=1
∑𝑚

𝑙=−𝑚
∑

0≤𝑙1<𝑙2≤𝑚 2𝑙+𝑙1+𝑙2+2𝑎𝑘,𝑘
(

𝑞−𝑙 𝑞
+
𝑘,𝑙1

𝑞+𝑘,𝑙2 + 𝑞−𝑙 𝑞
−
𝑘,𝑙1

𝑞−𝑘,𝑙2 − 𝑞+𝑙 𝑞
+
𝑘,𝑙1

𝑞+𝑘,𝑙2 − 𝑞+𝑙 𝑞
−
𝑘,𝑙1

𝑞−𝑘,𝑙2

)

+
∑

1≤𝑘,𝑖≤𝑛,
𝑘≠𝑖

∑𝑚
𝑙=−𝑚

∑𝑚
𝑙1=0

∑𝑚
𝑙2=0

2𝑙+𝑙1+𝑙2+1𝑎𝑘,𝑖
(

𝑞+𝑙 𝑞
+
𝑖,𝑙1

𝑞−𝑘,𝑙2 + 𝑞+𝑙 𝑞
−
𝑖,𝑙1

𝑞+𝑘,𝑙2 − 𝑞+𝑙 𝑞
+
𝑖,𝑙1

𝑞+𝑘,𝑙2 − 𝑞+𝑙 𝑞
−
𝑖,𝑙1

𝑞−𝑘,𝑙2

− 𝑞−𝑙 𝑞
+
𝑖,𝑙1

𝑞−𝑘,𝑙2 − 𝑞−𝑙 𝑞
−
𝑖,𝑙1

𝑞+𝑘,𝑙2 + 𝑞−𝑙 𝑞
+
𝑖,𝑙1

𝑞+𝑘,𝑙2 + 𝑞−𝑙 𝑞
−
𝑖,𝑙1

𝑞−𝑘,𝑙2

)

(13)

he expansion of Eq. (12) contains part of the quadratic and cubic terms when 𝑘 = 𝑖, and comprises solely part of the cubic terms
hen 𝑘 ≠ 𝑖 in our HUBO model.

The HUBO form of the third term in Eq. (6) can be obtained as follows:

𝜆2𝑥⃗𝑇 𝑥⃗ ≈
𝑛
∑

𝑘=1

{ 𝑚
∑

𝑙1=0

𝑚
∑

𝑙2=0
22𝑙1+2𝑙2

(

𝑞+𝑙1𝑞
+
𝑘,𝑙2

+ 𝑞+𝑙1𝑞
−
𝑘,𝑙2

+ 𝑞−𝑙1𝑞
+
𝑘,𝑙2

+ 𝑞−𝑙1𝑞
−
𝑘,𝑙2

)

+
𝑚
∑

𝑙1=−𝑚

∑

0≤𝑙2<𝑙3≤𝑚
22𝑙1+𝑙2+𝑙3+1

(

𝑞+𝑙1𝑞
+
𝑘,𝑙2

𝑞+𝑘,𝑙3 + 𝑞+𝑙1𝑞
−
𝑘,𝑙2

𝑞−𝑘,𝑙3 + 𝑞−𝑙1𝑞
+
𝑘,𝑙2

𝑞+𝑘,𝑙3 + 𝑞−𝑙1𝑞
−
𝑘,𝑙2

𝑞−𝑘,𝑙3

)

+
𝑚
∑

𝑙1=0

∑

−𝑚≤𝑙2<𝑙3≤𝑚
22𝑙1+𝑙2+𝑙3+1

(

𝑞+𝑘,𝑙1𝑞
+
𝑙2
𝑞+𝑙3 + 𝑞+𝑘,𝑙1𝑞

−
𝑙2
𝑞−𝑙3 + 𝑞−𝑘,𝑙1𝑞

+
𝑙2
𝑞+𝑙3 + 𝑞−𝑘,𝑙1𝑞

−
𝑙2
𝑞−𝑙3

)

+
∑

−𝑚≤𝑙1<𝑙2≤𝑚

∑

0≤𝑙3<𝑙4≤𝑚
2𝑙1+𝑙2+𝑙3+𝑙4+2

(

𝑞+𝑙1𝑞
+
𝑙2
𝑞+𝑘,𝑙3𝑞

+
𝑘,𝑙4

+ 𝑞+𝑙1𝑞
+
𝑙2
𝑞−𝑘,𝑙3𝑞

−
𝑘,𝑙4

+ 𝑞−𝑙1𝑞
−
𝑙2
𝑞+𝑘,𝑙3𝑞

+
𝑘,𝑙4

+ 𝑞−𝑙1𝑞
−
𝑙2
𝑞−𝑘,𝑙3𝑞

−
𝑘,𝑙4

)

}

(14)

The above equation consists of quadratic, cubic, and quartic terms. To reformulate a non-quadratic (higher-degree) polynomial
into Ising/QUBO form, terms of the form, 𝑎𝑥𝑦𝑧, where 𝑎 is a real number, are substituted with one of the following quadratic
terms [16]:

𝑎𝑥𝑦𝑧 =
{

𝑎𝑤 (𝑥 + 𝑦 + 𝑧 − 2) , 𝑎 < 0
𝑎 {𝑤 (𝑥 + 𝑦 + 𝑧 − 1) + (𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥) − (𝑥 + 𝑦 + 𝑧) + 1} , 𝑎 > 0

(15)

For all 𝑥, 𝑦, 𝑧 ∈ {0, 1}, 𝑎𝑥𝑦𝑧 can be transformed into a combination of linear and quadratic terms by adding a new qubit 𝑤 to every
cubic term. Similarly, Eq. (15) can be applied twice to convert quartic terms into QUBO formulations. Eq. (6) takes the minimum
value, 0, when the variables, scalar 𝜆, and vector 𝑥⃗, satisfy the eigenvalue and eigenvector in the HUBO form. Therefore, the first
HUBO model for the eigenvalues and eigenvectors is obtained by summing Eqs. (10), (11), (13), and (14), and the first QUBO model
is obtained via polynomial reduction using the minimum selection given by Eq. (15).

2.3. HUBO model 2

To reduce the number of qubits used in Eqs. (7) and (8), the following new approximations of 𝜆 and 𝑥𝑖 are introduced:

𝜆 ≈ −2𝑚+1𝑞− +
𝑚
∑

𝑙=−𝑚
2𝑙𝑞+𝑙 (16)

𝑥𝑖 ≈ −2𝑚+1𝑞−𝑖 +
𝑚
∑

𝑙=0
2𝑙𝑞+𝑖,𝑙 (17)
3
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To derive the HUBO model, we insert Eqs. (16) and (17) into Eq. (6). Using the calculation rules utilized previously, we obtain the
right-hand side term in Eq. (6). The first term in Eq. (6) can be obtained by adding the following two equations:

𝑛
∑

𝑘=1

𝑛
∑

𝑖=1

(

𝑎𝑘,𝑖𝑥𝑖
)2 ≈

𝑛
∑

𝑘=1

𝑛
∑

𝑖=1
𝑎2𝑘,𝑖

{

22𝑚+2𝑞−𝑖 +
𝑚
∑

𝑙=0

(

22𝑙 − 2𝑙+𝑚+2𝑞−𝑖
)

𝑞+𝑖,𝑙 +
∑

0≤𝑙1<𝑙2≤𝑚
2𝑙1+𝑙2+1𝑞+𝑖,𝑙1𝑞

+
𝑖,𝑙2

}

(18)

𝑛
∑

𝑘=1

∑

𝑖<𝑗
𝑎𝑘,𝑖𝑎𝑘,𝑗𝑥𝑖𝑥𝑗 ≈

𝑛
∑

𝑘=1

∑

𝑖<𝑗
𝑎𝑘,𝑖𝑎𝑘,𝑗

{

22𝑚+3𝑞−𝑖 𝑞
−
𝑗 −

𝑚
∑

𝑙=0
2𝑙+𝑚+2

(

𝑞−𝑖 𝑞
+
𝑗,𝑙 + 𝑞−𝑗 𝑞

+
𝑖,𝑙

)

+
𝑚
∑

𝑙1=0

𝑚
∑

𝑙2=0
2𝑙1+𝑙2+1𝑞+𝑖,𝑙1𝑞

+
𝑗,𝑙2

}

(19)

The HUBO form of the second term in Eq. (6) can be obtained as follows:

− 2𝜆𝑥⃗𝑇𝐴𝑥⃗ = −2𝜆
𝑛
∑

𝑘=1

𝑛
∑

𝑖=1
𝑎𝑘,i𝑥𝑖𝑥𝑘 (20)

≈
∑𝑛

𝑘=1 𝑎𝑘,𝑘
(

23𝑚+4𝑞−𝑞−𝑘 +
∑𝑚

𝑙1=0
22𝑙1+𝑚+2𝑞−𝑞+𝑘,𝑙1 −

∑𝑚
𝑙=−𝑚 2𝑙+2𝑚+3𝑞+𝑙 𝑞

−
𝑘 −

∑𝑚
𝑙=−𝑚

∑𝑚
𝑙1=0

2𝑙+2𝑙1+1𝑞+𝑙 𝑞
+
𝑘,𝑙1

)

+
∑𝑛

𝑘=1 𝑎𝑘,𝑘
(

−
∑𝑚

𝑙1=0
2𝑙1+2𝑚+4𝑞−𝑞−𝑘 𝑞

+
𝑘,𝑙1

+
∑𝑚

𝑙=−𝑚
∑𝑚

𝑙1=0
2𝑙+𝑙1+𝑚+3𝑞+𝑙 𝑞

−
𝑘 𝑞

+
𝑘,𝑙1

+
∑

0≤𝑙1<𝑙2≤𝑚 2𝑙1+𝑙2+𝑚+2𝑞−𝑞+𝑘,𝑙1𝑞
+
𝑘,𝑙2

−
∑𝑚

𝑙=−𝑚
∑

0≤𝑙1<𝑙2≤𝑚 2𝑙+𝑙1+𝑙2+1𝑞+𝑙 𝑞
+
𝑘,𝑙1

𝑞+𝑘,𝑙2

)

+
∑

1≤𝑘,𝑖≤𝑛,𝑘≠𝑖 𝑎𝑘,𝑖
[{

23𝑚+4𝑞−𝑞−𝑖 𝑞
−
𝑘 −

∑𝑚
𝑙=0 2

𝑙+2𝑚+3
(

𝑞−𝑞−𝑖 𝑞
+
𝑘,𝑙 + 𝑞−𝑞−𝑘 𝑞

+
𝑖,𝑙

)

+
∑𝑚

𝑙1=0
∑𝑚

𝑙2=0
2𝑙1+𝑙2+𝑚+2𝑞−𝑞+𝑖,𝑙1𝑞

+
𝑘,𝑙2

}

+
∑𝑚

𝑙3=−m

{

−2𝑙3+2𝑚+3𝑞+𝑙3𝑞
−
𝑖 𝑞

−
𝑘 +

∑𝑚
𝑙=0 2

𝑙+𝑚+𝑙3+2
(

𝑞−𝑖 𝑞
+
𝑙3
𝑞+𝑘,𝑙 + 𝑞−𝑘 𝑞

+
𝑙3
𝑞+𝑖,𝑙

)

−
∑𝑚

𝑙1=0
∑𝑚

𝑙2=0
2𝑙1+𝑙2+𝑙3+1𝑞+𝑙3𝑞

+
𝑖,𝑙1

𝑞+𝑘,𝑙2

}]

(21)

he HUBO form of the third term in Eq. (6) can be obtained as follows:

𝜆2𝑥⃗𝑇 𝑥⃗ ≈
𝑛
∑

𝑘=1

(

24𝑚+4𝑞−𝑞−𝑘 +
𝑚
∑

𝑙=−𝑚
22𝑙+2𝑚+2𝑞+𝑙 𝑞

−
𝑘 +

𝑚
∑

𝑙=0
22𝑙+2𝑚+2𝑞−𝑞+𝑘,𝑙 +

𝑚
∑

𝑙=−𝑚

𝑚
∑

𝑙3=0
22𝑙+2𝑙3𝑞+𝑙 𝑞

+
𝑘,𝑙3

)

+
𝑛
∑

𝑘=1

[

∑

−𝑚≤𝑙1<𝑙2≤𝑚

(

2𝑙1+𝑙2+2𝑚+3𝑞−𝑘 𝑞
+
𝑙1
𝑞+𝑙2 +

𝑚
∑

𝑙=0
22𝑙+𝑙1+𝑙2+1𝑞+𝑘,𝑙𝑞

+
𝑙1
𝑞+𝑙2

)

−
𝑚
∑

𝑙=−𝑚
2𝑙+3𝑚+4𝑞−𝑘 𝑞

−𝑞+𝑙

]

+
𝑛
∑

𝑘=1

[

∑

0≤𝑙1<𝑙2≤𝑚

(

2𝑙1+𝑙2+2𝑚+3𝑞−𝑞+𝑘,𝑙1𝑞
+
𝑘,𝑙2

+
𝑚
∑

𝑙=−𝑚
22𝑙+𝑙1+𝑙2+1𝑞+𝑙 𝑞

+
𝑘,𝑙1

𝑞+𝑘,𝑙2

)

−
𝑚
∑

𝑙=0
2𝑙+3𝑚+4𝑞−𝑘 𝑞

−𝑞+𝑘,𝑙

]

−
𝑛
∑

𝑘=1

𝑚
∑

𝑙=−𝑚

𝑚
∑

𝑙3=0

(

2𝑙+2𝑙3+𝑚+2𝑞+𝑘,𝑙3𝑞
−𝑞+𝑙 + 22𝑙+𝑙3+𝑚+2𝑞+𝑙 𝑞

−
𝑘 𝑞

+
𝑘,𝑙3

− 2𝑙+𝑙3+2𝑚+4𝑞−𝑞+𝑙 𝑞
−
𝑘 𝑞

+
𝑘,𝑙3

)

−
𝑛
∑

𝑘=1

[

∑

−𝑚≤𝑙1<𝑙2≤𝑚

( 𝑚
∑

𝑙=0
2𝑙+𝑙1+𝑙2+𝑚+3𝑞−𝑘 𝑞

+
𝑘,𝑙𝑞

+
𝑙1
𝑞+𝑙2

)

+
∑

0≤𝑙1<𝑙2≤𝑚

( 𝑚
∑

𝑙=−𝑚
2𝑙+𝑙1+𝑙2+𝑚+3𝑞−𝑞+𝑙 𝑞

+
𝑘,𝑙1

𝑞+𝑘,𝑙2

)

+
∑

−𝑚≤𝑙1<𝑙2≤𝑚

(

∑

0≤𝑙4<𝑙5≤𝑚
2𝑙1+𝑙2+𝑙4+𝑙5+2𝑞+𝑙1𝑞

+
𝑙2
𝑞+𝑘,𝑙4𝑞

+
𝑘,𝑙5

)]

(22)

herefore, our second HUBO model for the eigenvalues and eigenvectors is obtained by summing Eqs. (18), (19), (21), and (22),
nd our second QUBO model can be obtained via polynomial reduction using the minimum selection given by Eq. (15).

.4. HUBO model for complex variables

To solve the eigenvalue problem when 𝜆 and 𝑥𝑗 are complex numbers, the following parameters are used:

𝜆 ≈
𝑚
∑

𝑙1=−𝑚
2𝑙1𝑞+𝑙1 − 2𝑚+1𝑞−1 + 𝑖

( 𝑚
∑

𝑙2=−𝑚
2𝑙2𝑞+𝑙2 − 2𝑚+1𝑞−2

)

(23)

𝑥𝑗 ≈
𝑚
∑

𝑙1=−𝑚
2𝑙1𝑞+𝑗,𝑙1 − 2𝑚+1𝑞−𝑗,1 + 𝑖

( 𝑚
∑

𝑙2=−𝑚
2𝑙2𝑞+𝑗,𝑙2 − 2𝑚+1𝑞−𝑗,2

)

(24)

omplex numbers comprise real and imaginary parts. By substituting Eqs. (23) and (24) into Eq. (6), the QUBO formulations
orresponding to the real and imaginary parts, respectively, are obtained. The final QUBO model can then be obtained by adding
he two QUBO formulations. However, when an imaginary number is used, twice as many qubits are required compared to the case
f a real number—therefore, qubit variables of as small a size as possible should be used.

. Implementation and results
This section outlines the implementation process and presents the simulator results corresponding to certain examples.
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3.1. Steps of the implementation process

The following list describes the process of determining variables that satisfy 𝐴𝑥⃗ = 𝜆𝑥⃗ for a 2 × 2 matrix 𝐴 with 𝑥𝑖, 𝜆 ∈
{−3,−2,… , 3}.

(1) The number of qubits and the combination form of the qubits are set to represent one variable. Because all variables, 𝑥1, 𝑥2,
and 𝜆, take integral values between −3 and 3, each variable can be represented using two positive and negative qubits, as
follows:

𝐴
[

𝑥1
𝑥2

]

= 𝜆
[

𝑥1
𝑥2

]

⟹ 𝐴
[

𝑞1 + 2𝑞2 − 𝑞3 − 2𝑞4
𝑞5 + 2𝑞6 − 𝑞7 − 2𝑞8

]

= (𝑞9 + 2𝑞10 − 𝑞11 − 2𝑞12)
[

𝑞1 + 2𝑞2 − 𝑞3 − 2𝑞4
𝑞5 + 2𝑞6 − 𝑞7 − 2𝑞8

]

(25)

(2) ‖𝐴𝑥⃗ − 𝜆𝑥⃗‖22 is calculated and the QUBO matrix, 𝑄𝑀 , satisfying the following condition is identified.

‖𝐴𝑥⃗ − 𝜆𝑥⃗‖22 =
[

𝑞1𝑞2 ⋯ 𝑞12
]

𝑄𝑀

⎡

⎢

⎢

⎢

⎢

⎣

𝑞1
𝑞2
⋮
𝑞12

⎤

⎥

⎥

⎥

⎥

⎦

(26)

(3) The global minimum energy of the QUBO matrix, 𝑄𝑀 , is estimated using a D-Wave’s qpu solver.
(4) The solution pairs (𝑞1, 𝑞2,… , 𝑞12) obtained from the simulator are converted into the variables 𝑥1, 𝑥2, and 𝜆.

he code for calculating the QUBO matrix is provided in Appendix A, and the pseudocode can be easily obtained from our code.

.2. Results

This section presents the eigenvalues and eigenvectors of five matrices calculated using D-Wave’s qpu solver by following the
roposed method. Table 1 presents a comparison between the mathematically calculated results and those obtained using the D-
ave’s qpu solver. The ‘‘mathematical results’’ column presents the mathematically calculated eigenvalues and eigenvectors of a

iven matrix. Following the aforementioned steps, we determine the number of qubits used to represent one variable. Each number
f logical qubits and ranges are presented in the column ‘‘Used qubit number and range’’. If we set the qubit number used for a
ariable to be 4 and 𝑥1 is expressed as 𝑞1 +2𝑞2 − 𝑞3 −2𝑞4, the range of 𝑥1 is [−3, 3]. Therefore, this variable expression method yields
nly the eigenvalue 𝜆 and elements of the eigenvector 𝑥⃗ lying in the range [−3, 3]. By increasing the number of qubits, the range
an be expanded. For instance, if 𝑥1 is expressed as 𝑞1 + 2𝑞2 + 4𝑞3 − 𝑞4 − 2𝑞5 − 4𝑞6, 𝑥1 is a value in the range [−7, 7]. For this reason,
onsidering higher numbers of qubits yields larger eigenvalues and eigenvectors using the D-Wave’s qpu solver. In this study, five
UBO models are proposed to solve eigenvalue problems. Different form of polynomial reduction is performed on the cubic and
uartic terms of Eqs. (13), (14), (21), and (22) depending on the sign of the coefficients [17]. Because the eigenvalues and 𝑥⃗𝑖⃗ may
e positive, negative, or 0, we can assume that 𝑞+𝑞− of each variable is zero in Eqs. (7) and (8), respectively. The eigenvalue and
igenvector of the actual matrix can be obtained based on the qubit variable that evaluates the minimum value of the HUBO model
o 0.

. Discussion

Fifteen couplers are used for each qubit of D-Wave’s Advantage, while the number is only two or three for IBM Quantum. Thus,
he D-Wave system is selected to test the proposed QUBO model for the solution of the eigenvalue problem. D-Wave’s Advantage
uantum annealer involves over 5000 qubits and over 35,000 couplers; thus, up to 180 logical qubits can be used. In turn, the size
f the QUBO matrix can be as large as 180 × 180. The size of the QUBO matrix is expressed as the product of the representable
ange for the variables, 𝑥𝑖 and 𝜆, and the size of matrix, 𝐴, as given by Eq. (26). For example, if 𝑥𝑖 is expressed at a 30-bit level
sing qubits, the corresponding maximum size of a computable matrix is 5 × 5. This problem originates from the lack of couplers
ecause connectivity is required between all qubits when all coefficients of the QUBO matrix, which is an upper triangular matrix,
re not 0. Therefore, solution of the eigenvalue problem for large matrices remains difficult even with quantum annealers.

The proposed algorithm estimates the number of cases where the variables for 𝐴𝑥⃗ = 𝜆𝑥⃗ can be expressed in qubits. However,
he actual obtainment of these useless cases does not matter. The QUBO model for the eigenvalue problem includes the case in
hich all 𝑥𝑖 and 𝜆 are zero. Because quantum annealers take several microseconds to calculate the optimization problem once,

he total number of cases can be obtained via multiple annealing. However, when the number of logical qubits used exceeds 100,
dentification of the optimization solution becomes difficult, even after 500,000 shots. In particular, we focus on D-Wave’s hybrid
olver, which can utilize one million logical qubits. It can identify an exact solution in just a single annealing step, even thousands of
UBO matrices are required to be calculated. As the constraint conditions can be set by the user, we can eliminate useless solutions

n which all variables are zero. A hybrid solver uses a combination of a quantum annealer and classical computer to determine the
inimum for a given QUBO matrix. Computation using a hybrid solver takes longer than that using a quantum annealer alone;
owever, the hybrid solver provided by the D-Wave system is sufficiently accurate to be used with general matrices. Quantum
nnealers and classical computers can be used together to solve eigenvalue problems for large matrices.
5
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s

Table 1
Comparison between eigenvalues and eigenvectors obtained using the D-Wave’s qpu solver and those obtained via mathematical
calculation.

Matrix Mathematical result Used qubit D-Wave’s qpu solver result

Eigenvalue Eigenvector number and range (𝑥1 , 𝑥2 , 𝜆) or (𝑥1 , 𝑥2 , 𝑥3 , 𝜆)

𝐴 =
[

1 0
−4 3

]

𝜆1 = 1 𝑥 =
[

𝑡
2𝑡

]

(𝑡 ∈ 𝑅) 4 qubits (1, 2, 1), (−1, −2, 1)

𝜆2 = 3 𝑥 =
[

0
𝑠

]

(𝑠 ∈ 𝑅) [−3, 3] (0, ±1, 3), (0, ±2, 3), (0, ±3, 3)

𝐴 =
[

1 −2
1 4

]

𝜆1 = 2 𝑥 =
[

−2𝑡
𝑡

]

(𝑡 ∈ 𝑅) 4 qubits (2, −1, 2), (−2, 1, 2)

𝜆2 = 3 𝑥 =
[

−𝑠
𝑠

]

(𝑠 ∈ 𝑅) [−3, 3] (±1, ∓1, 3), (±2, ∓2, 3), (±3, ∓3, 3)

6 qubits (±𝑘, ∓𝑘, 3)

𝐴 =
[

−8 −5
5 2

]

𝜆1 = 𝜆2 = −3 𝑥 =
[

−𝑡
𝑡

]

(𝑡 ∈ 𝑅) [−7, 7] for 𝑘 = {1, 2, … , 7}

𝜆1 = 3 𝑥 =
⎡

⎢

⎢

⎣

3𝑡
−3𝑡
7𝑡

⎤

⎥

⎥

⎦

(𝑡 ∈ 𝑅) 6 qubits (3, −3, 7, 3), (−3, 3, −7, 3)

𝐴 =
⎡

⎢

⎢

⎣

5 2 0
2 5 0
−3 4 6

⎤

⎥

⎥

⎦

𝜆2 = 6 𝑥 =
⎡

⎢

⎢

⎣

0
0
𝑠

⎤

⎥

⎥

⎦

(𝑠 ∈ 𝑅) [−7, 7] (0, 0, ±𝑘, 6), (±𝑘, ±𝑘, ±𝑘, 7)

𝜆3 = 7 𝑥 =
⎡

⎢

⎢

⎣

𝑤
𝑤
𝑤

⎤

⎥

⎥

⎦

(𝑤 ∈ 𝑅) for 𝑘 = {1, 2, … , 7}

𝜆1 = 𝜆2 = −2 𝑥 =
⎡

⎢

⎢

⎣

𝑡
−𝑡
0

⎤

⎥

⎥

⎦

(𝑡 ∈ 𝑅) 6 qubits (±𝑘, ∓𝑘, 0, −2), (0, 0, ±𝑙, −2)

𝐴 =
⎡

⎢

⎢

⎣

1 3 0
3 1 0
0 0 −2

⎤

⎥

⎥

⎦

𝜆1 = 𝜆2 = −2 𝑥 =
⎡

⎢

⎢

⎣

0
0
𝑠

⎤

⎥

⎥

⎦

(𝑠 ∈ 𝑅) [−7, 7] (±𝑘, ±𝑘, 𝑙, −2), (±𝑘, ±𝑘, −𝑙, −2)

𝜆3 = 4 𝑥 =
⎡

⎢

⎢

⎣

𝑤
𝑤
0

⎤

⎥

⎥

⎦

(𝑤 ∈ 𝑅) (±𝑘, ±𝑘, 0, 4) for 𝑘, 𝑙 = {1, 2, … , 7}
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