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ARTICLE INFO ABSTRACT

Keywords: Solving the eigenvalue problem is particularly important in almost all fields of science and
HUBO engineering. With the development of quantum computers, multiple algorithms have been
Eigenvalue

proposed for this purpose. However, such methods are usually only applicable to matrices
of specific types, such as unitary or Hermitian matrices. The quantum annealer of the D-
Wave, a quantum computer, returns the minimum value of the quadratic unconstrained binary
optimization (QUBO) model. Thus, quantum annealers can be leveraged to solve arbitrary
eigenvalue problems by formulating corresponding QUBO models. In this paper, we propose
two higher-order unconstrained optimization (HUBO) formulations to solve eigenvalue problems
involving nx n general matrices. In addition, we use a formula to reduce the order and convert
the HUBO model into a QUBO model. Further, by using a quantum approximate optimization
algorithm, this method can be extended to a gate-model quantum computer.

Eigenvector
Quantum annealing
Quantum computing

1. Introduction

Solving the eigenvalue problem is crucial to numerical analysis. Solutions for these problems play prominent roles in engineering,
physics, chemistry, computer science, and economics. In classic computers, eigenvalues and eigenvectors are primarily used for
singular value decomposition (SVD), pseudo-inverse calculation, and principal component analysis (PCA). Several studies have
attempted to implement classical quantum algorithms to solve general eigenvalue problems. For example, quantum solution methods
have been proposed to solve the wave equation [1], boundary-value problems [2], and linear initial-value differential equations [3].
In addition, a quantum phase estimation (QPE) method was proposed to identify the eigenvalues of a unitary matrix. QPE is based
on Shor’s algorithm [4], which can perform prime factorization in polynomial time. Likewise, several studies have demonstrated
that quantum computing is incomparably faster than classical computing in certain fields [3,5-7]. Research on quantum algorithms
has progressed naturally, even in the context of solving eigenvalue problems. Nevertheless, these algorithms are only applicable to
eigenvalue problems under certain conditions. For example, the eigenvalues of unitary [8], Hermitian [5,9], and diagonalizable
matrices [7] can be estimated using such methods. Several studies have yielded notable results regarding the identification of
eigenvalues and eigenvectors of symmetric matrices. In [10,11], the ground state change problem was mapped to the Ising and
quadratic unconstrained binary optimization (QUBO) problems, respectively. The authors also proposed a quantum annealing
eigensolver for complex symmetric matrices using constrained real values in QUBOs. In [12], an algorithm was proposed that
minimizes the corresponding Rayleigh quotient via iterative descent and computes the eigenpairs of a symmetric matrix. Moreover,
multiple studies have attempted to compute the eigenvalues of non-Hermitian and non-unitary matrices [13,14]. However, to the
best of our knowledge, there does not exist a method for computing the eigenvalues of a general matrix using a quantum computer.
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The quantum computer, D-Wave quantum annealer, is capable of solving combinatorial optimization problems by identifying
solutions that minimize the following cost (energy) function.

f@=a"0q @

where Q denotes an upper matrix, § = (q;,...,qy)", and g; denote binary variables. In the case of ¢; € {1, 1}, the aforementioned
equation represents the so-called Ising model; and in the case of ¢; € {0, 1}, represents the QUBO model. As the Ising and QUBO
models are convertible into each other, we focus solely on the QUBO model. Because q[Z = g;, the cost function can be reformulated
as follows:

N N

f(@= Z 0,49, + Z 0,449 )
i=1 i<j

where Q;; denotes diagonal terms and Q; ; denotes off-diagonal terms. In principle, if we can formulate the objective function as a

QUBO model, its minimum value can be obtained and a solution to the objective function can be identified.

In this study, we propose two higher-order unconstrained optimization (HUBO) models that can be converted into QUBO models.
Both HUBO models are based on the following approach. First, a linear least-squares problem of the eigenvalue problem is used.
Then, the binary representation of the solutions is set and it is input into the linear least-squares problem. Then, terms higher than
the cubic expression are generated, and the model including these terms is called the HUBO model. Because the D-Wave quantum
annealer can only solve QUBO or Ising models with linear and quadratic terms, its degree is reduced to be less than that of a
quadratic expression using Eq. (15). Finally, the two representation methods for the solutions are presented and two HUBO models
are created to solve the eigenvalue problem. Additionally, the Python code to create HUBO models that can be used in the D-Wave
simulator is provided.

2. Methods
2.1. The linear least-squares problem

Given a matrix A € R™", a column vector of variables, X € R”, and a real number 1 € R, the linear least-squares problem is to
find A and X satisfying AX = AX. Thus, it can be formulated as follows:

argmin ||AX — AX|| =0 3)
A%

To solve Eq. (3), let us begin by writing out AX — AX:

L I R W | B3 X1

. - a a a X X

AX—ax ="t R - afte @
a1 ayn Apn )\ Xn Xn

Taking the 2-norm square of the resultant vector in Eq. (4), we obtain the following:
1A% - 2%|I3 = 3T AT A% — 437 A% — AXTATR + 22573 (5)
=XTAT AR — 2437 AR + 22373 (6)

Because X7 AX is scalar and X7 A% = (XT AX)T = ¥T ATRT)T = T AT, Eq. (5) is represented by Eq. (6).
2.2. HUBO model 1

While solving the binary least-squares problem, each x; is represented by a combination of qubits ¢;, € {0,1}. As per the work
by O’Malley and Vesselinov [15], the radix 2 representation of the positive real value, 4, is given by
m m
An Yy 2lgf - Y g o
I=—m I=—m
where the positive integer, /, denotes the number of digits of A and the negative integer, /, denotes the number of digits of fractional
terms. We can now represent a large real value, x;, as follows:
m m
X; & 21‘1:?1 - z 21451. (€))
=0 1=0
Both positive and negative numbers are represented using g/, and ¢7,. Note that this representation can take the same value
corresponding to different binary combinations. Since the eigenvector appears in the form of a straight line passing through the
origin, we can express it in the form of an integer in which the minimum value appears in quantum annealers, as given by Eq. (8).



K. Jun and H. Lee Results in Control and Optimization 11 (2023) 100222

To derive a HUBO model, we insert Egs. (7) and (8) into Eq. (6). This yields the summation terms of the first term in Eq. (6),
as indicated below:

)?TATAi = Z {Z(aklx ) +2Zaklakj } ©)

i<j

Eq. (9) can be calculated as follows:

n n m n n
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In Eq. (10), the first summation represents linear terms and the second summation represents quadratic terms. Moreover, Eq. (11)
is part of the quadratic terms in the HUBO model.
The HUBO form of the second term in Eq. (6) can be obtained as follows:

—2A§TAx——2/1220 XX (12)

i=1 j=

~ m 14211 +1 -+ A R
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(13)

: m moom s+l (o - 4o b kb k4o
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The expansion of Eq. (12) contains part of the quadratic and cubic terms when k = i, and comprises solely part of the cubic terms

when k # i in our HUBO model.
The HUBO form of the third term in Eq. (6) can be obtained as follows:

n m m
2T 242, 4+ + - - - -
AXX ~ Z { Z Z 2 (qllquz T, T 99, T qllqk.lz)
11=0 1,=0
m
2+l i+l 4+ k + - - -+ -
+ Z Z 2 <qllqk,12qk,l3 T4 Aty Aty T U D, I, T qk.lzqk,l3)
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14)

b B T T P S
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[1=0 —m<ly<l3<m

L+l +H3++2 (4 4+
+ Z Z 2T (qllqlzqk ngk I +qllql,qk13‘1k Iy +q[1q12qk 13‘1/( 1 9,9, 90,9, 14)}
—m<ly<ly<m 0<l3<ly<m
The above equation consists of quadratic, cubic, and quartic terms. To reformulate a non-quadratic (higher-degree) polynomial
into Ising/QUBO form, terms of the form, axyz, where a is a real number, are substituted with one of the following quadratic
terms [16]:

axvz = aw(x+y+z-2), a<0 1s)
rE= a{lwx+y+z-1D)+&xy+yz+zx)—(x+y+2)+1}, a>0

For all x, y, z € {0, 1}, axyz can be transformed into a combination of linear and quadratic terms by adding a new qubit w to every
cubic term. Similarly, Eq. (15) can be applied twice to convert quartic terms into QUBO formulations. Eq. (6) takes the minimum
value, 0, when the variables, scalar 4, and vector X, satisfy the eigenvalue and eigenvector in the HUBO form. Therefore, the first
HUBO model for the eigenvalues and eigenvectors is obtained by summing Egs. (10), (11), (13), and (14), and the first QUBO model
is obtained via polynomial reduction using the minimum selection given by Eq. (15).

2.3. HUBO model 2
To reduce the number of qubits used in Egs. (7) and (8), the following new approximations of 4 and x; are introduced:

m
Am 2"y 4 z 2]ql+ (16)

I=—m

m
X; —2"‘+1qi_ + 2 21q:[ a7
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To derive the HUBO model, we insert Egs. (16) and (17) into Eq. (6). Using the calculation rules utilized previously, we obtain the
right-hand side term in Eq. (6). The first term in Eq. (6) can be obtained by adding the following two equations:

non m
Z 2 ak,X, Z Z {22m+2qi— + Z (221 _ 21+m+2qi—) q:’rl + Z 211+lz+lql 4 ]2} (18)

k=1 i=1 1=0 0<l <l <m
n n m

2m+3 - — I+m+2 (- + -+ I,+lz+l + +
3 Faannn, = 3 R, | 200 - R (v anay) v 3 A 4, (19)
k=1 i<j k=1 i<j 1=0 11=01,=0

The HUBO form of the second term in Eq. (6) can be obtained as follows:

n n
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The HUBO form of the third term in Eq. (6) can be obtained as follows:
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Therefore, our second HUBO model for the eigenvalues and eigenvectors is obtained by summing Egs. (18), (19), (21), and (22),
and our second QUBO model can be obtained via polynomial reduction using the minimum selection given by Eq. (15).

2.4. HUBO model for complex variables

To solve the eigenvalue problem when 4 and x; are complex numbers, the following parameters are used:

m m
An Y 2Ngh -t —+i< D 2’2ql';—2'"+1q2_> (23)

ly=—m ly=—m
m m
I+ m+l — " I+ m+l —
Z 2hgh -2 qj’1+z< Z 227, 2 12> (24)
ly=—m ly=—m

Complex numbers comprise real and imaginary parts. By substituting Egs. (23) and (24) into Eq. (6), the QUBO formulations
corresponding to the real and imaginary parts, respectively, are obtained. The final QUBO model can then be obtained by adding
the two QUBO formulations. However, when an imaginary number is used, twice as many qubits are required compared to the case
of a real number—therefore, qubit variables of as small a size as possible should be used.

3. Implementation and results

This section outlines the implementation process and presents the simulator results corresponding to certain examples.
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3.1. Steps of the implementation process

The following list describes the process of determining variables that satisfy AX = AX for a 2 x 2 matrix A with x;,4 €
{-3,-2,....3}L

(1) The number of qubits and the combination form of the qubits are set to represent one variable. Because all variables, x,, x,,
and 4, take integral values between —3 and 3, each variable can be represented using two positive and negative qubits, as
follows:

x) x) 91 +24, — g3 — 244 41 +24, —q3 — 244
A =1 = A =(q9 + 2910 — 911 — 2412) (25)
[xz] [xz] [‘15 + 246 — 47 — 243 ’ oA g5 + 245 — 47 — 245

(2) ||AX - A?cll% is calculated and the QUBO matrix, Q M, satisfying the following condition is identified.

q1
1A% = 4312 = [910, -+ ap] OM | %2 (26)

q12

(3) The global minimum energy of the QUBO matrix, QM, is estimated using a D-Wave’s gpu solver.
(4) The solution pairs (g;, g,. ..., q;,) obtained from the simulator are converted into the variables x,, x,, and 4.

The code for calculating the QUBO matrix is provided in Appendix A, and the pseudocode can be easily obtained from our code.
3.2. Results

This section presents the eigenvalues and eigenvectors of five matrices calculated using D-Wave’s qpu solver by following the
proposed method. Table 1 presents a comparison between the mathematically calculated results and those obtained using the D-
Wave’s gpu solver. The “mathematical results” column presents the mathematically calculated eigenvalues and eigenvectors of a
given matrix. Following the aforementioned steps, we determine the number of qubits used to represent one variable. Each number
of logical qubits and ranges are presented in the column “Used qubit number and range”. If we set the qubit number used for a
variable to be 4 and x, is expressed as ¢, +2¢, — g3 — 24, the range of x, is [-3, 3]. Therefore, this variable expression method yields
only the eigenvalue 1 and elements of the eigenvector X lying in the range [—3,3]. By increasing the number of qubits, the range
can be expanded. For instance, if x; is expressed as g; + 2, +4q3 — g, — 245 — 444, x; is a value in the range [—7,7]. For this reason,
considering higher numbers of qubits yields larger eigenvalues and eigenvectors using the D-Wave’s gpu solver. In this study, five
HUBO models are proposed to solve eigenvalue problems. Different form of polynomial reduction is performed on the cubic and
quartic terms of Egs. (13), (14), (21), and (22) depending on the sign of the coefficients [17]. Because the eigenvalues and ;CIT may
be positive, negative, or 0, we can assume that gt~ of each variable is zero in Eqgs. (7) and (8), respectively. The eigenvalue and
eigenvector of the actual matrix can be obtained based on the qubit variable that evaluates the minimum value of the HUBO model
to 0.

4. Discussion

Fifteen couplers are used for each qubit of D-Wave’s Advantage, while the number is only two or three for IBM Quantum. Thus,
the D-Wave system is selected to test the proposed QUBO model for the solution of the eigenvalue problem. D-Wave’s Advantage
quantum annealer involves over 5000 qubits and over 35,000 couplers; thus, up to 180 logical qubits can be used. In turn, the size
of the QUBO matrix can be as large as 180 x 180. The size of the QUBO matrix is expressed as the product of the representable
range for the variables, x; and 4, and the size of matrix, A, as given by Eq. (26). For example, if x; is expressed at a 30-bit level
using qubits, the corresponding maximum size of a computable matrix is 5 x 5. This problem originates from the lack of couplers
because connectivity is required between all qubits when all coefficients of the QUBO matrix, which is an upper triangular matrix,
are not 0. Therefore, solution of the eigenvalue problem for large matrices remains difficult even with quantum annealers.

The proposed algorithm estimates the number of cases where the variables for AX = iX can be expressed in qubits. However,
the actual obtainment of these useless cases does not matter. The QUBO model for the eigenvalue problem includes the case in
which all x; and A are zero. Because quantum annealers take several microseconds to calculate the optimization problem once,
the total number of cases can be obtained via multiple annealing. However, when the number of logical qubits used exceeds 100,
identification of the optimization solution becomes difficult, even after 500,000 shots. In particular, we focus on D-Wave’s hybrid
solver, which can utilize one million logical qubits. It can identify an exact solution in just a single annealing step, even thousands of
QUBO matrices are required to be calculated. As the constraint conditions can be set by the user, we can eliminate useless solutions
in which all variables are zero. A hybrid solver uses a combination of a quantum annealer and classical computer to determine the
minimum for a given QUBO matrix. Computation using a hybrid solver takes longer than that using a quantum annealer alone;
however, the hybrid solver provided by the D-Wave system is sufficiently accurate to be used with general matrices. Quantum
annealers and classical computers can be used together to solve eigenvalue problems for large matrices.



K. Jun and H. Lee Results in Control and Optimization 11 (2023) 100222

Table 1
Comparison between eigenvalues and eigenvectors obtained using the D-Wave’s qpu solver and those obtained via mathematical
calculation.
Matrix Mathematical result Used qubit D-Wave’s gpu solver result
Eigenvalue Eigenvector number and range (X, X5, A) OF (x|, X5, X3, 4)
a=|' 0 A =1 =l acenr 4 qubits (1,2, 1,(=1, =2, 1)
“l-a 3 L= = o 4
Ay =3 x= [(s) (sER) [-3, 3] (0, +1, 3),(0, £2, 3),(0, %3, 3)
A= [1 _42] h=2 x= [‘tz’ (teR) 4 qubits 2, -1,2),(-2,1,2)
Ay =3 x= [_S (s€R) [-3, 3] (£1, F1, 3),(x2, ¥2, 3),(£3, 73, 3)
6 qubits (+k, Fk, 3)
A:[_Ss _25] A=y =-3 x:[_tt](reR) [-7,7] for k={1,2,...,7}
3t
A =3 x=|-3t| (t€R) 6 qubits (3,-3,7,3),(-3,3,-7,3)
| 7
5 2 0 0
A=|2 5 0 Ay =6 x=|0|(s€R) [-7,7] 0, 0, £k, 6), (xk, £k, £k, 7)
-3 4 6 s
[w
=1 x=|w| (w € R) for k={1,2,...,7}
| w
[
A=h=-2 x=|-t|(t€eR) 6 qubits (xk, Fk, 0, =2), (0, 0, +/, =2)
10
1 3 0 [0
A=|(3 1 0 A =A==2 x=|0]| (s € R) [-7,7] (xk, £k, 1, =2), (£k, £k, =1, =2)
0 0 -2 s
[w
Ay =4 x=|w|(w€ER) (+k, +k, 0, 4) for k, I ={1,2,...,7}
0
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