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Abstract

Despite advances in blood-based screening tests for colorectal cancer (CRC), most existing
assays focus on DNA-based biomarkers, which predominantly reflect tumor-derived frag-
ments released at later disease stages. In contrast, whole-blood transcriptomic profiling
can capture systemic immune responses and tumor–host interactions, offering a comple-
mentary strategy for earlier disease detection. However, clinically validated whole-blood
transcriptomic signatures remain limited. Here, we investigated a whole-blood RNA-based
biomarker discovery strategy by integrating multi-cohort transcriptomic resources. Public
GEO datasets (GSE164191 and GSE11545) were harmonized and analyzed, yielding 956
differentially expressed genes (DEGs). Multi-layer biological filtering incorporating PPI
networks, transcription factors, CRC-related GWAS variants, whole-blood eQTL signals,
DigSeE, and CoReCG disease associations refined these to 375 high-confidence transcripts
(WB-PADs). In parallel, RNA-seq analysis of a Korean cohort (10 CRC vs. 10 controls)
identified 217 DEGs (WB-K). Cross-dataset convergence highlighted seven overlapping
transcripts, and five candidates (DLG5, CD177, SH2D1B, NQO2, and KRT73) were selected
for validation. RT-qPCR in an independent clinical cohort (106 CRC and 123 healthy con-
trols) confirmed four transcripts with significant discriminatory ability. A multivariable
logistic regression model derived from the five-transcript signature achieved an AUC of
0.952 (95% CI 0.884–1.000), with sensitivities of 0.889 and 0.667 at fixed specificities of 90%
and 95%, respectively, demonstrating strong applicability for screening-relevant thresholds.
Notably, the model retained high accuracy in early-stage CRC (Stage I–II: AUC 0.929,
95% CI 0.868–0.989). Overall, this study provides a robust analytic framework for repro-
ducible whole-blood RNA biomarker discovery and establishes a multi-gene signature
with promising translational potential for minimally invasive and early CRC detection.
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1. Introduction
Liquid biopsy has emerged as a promising platform for non-invasive cancer diag-

nostics, enabling real-time monitoring of tumor dynamics. In colorectal cancer (CRC),
most blood-based studies have focused on circulating tumor DNA (ctDNA), methylation
markers, or circulating tumor cells (CTCs) [1,2]. While these assays provide valuable tumor-
specific information, they primarily reflect tumor-derived fragments released at later stages
of disease, limiting their sensitivity for early detection. In contrast, RNA-based profiling
captures dynamic transcriptional activity from both tumor cells and the host immune
system [3]. This complementary information may reveal systemic immune responses and
tumor–host interactions that precede detectable DNA release, offering opportunities for
earlier CRC detection.

RNA molecules exhibit remarkable structural and functional diversity. Six major types
have been identified, including messenger RNAs (mRNAs), microRNAs (miRNAs), long
non-coding RNAs (lncRNAs), circular RNAs (circRNAs), transfer RNA-derived fragments
(tRFs), and PIWI-interacting RNAs (piRNAs). Recent studies have shown that each class
plays distinct roles in tumorigenesis, immune modulation, and cancer progression. For
instance, miRNAs and lncRNAs serve as crucial post-transcriptional regulators, while cir-
cRNAs often function as competing endogenous RNAs that modulate miRNA availability.
These RNA species have therefore emerged as promising liquid biopsy biomarkers for
colorectal cancer diagnosis and monitoring.

CRC progression is influenced not only by tumor-intrinsic alterations but also by
extensive immune remodeling. Chronic inflammation is a well-recognized driver of car-
cinogenesis, with innate immune cells playing pivotal roles. Tumor-associated neutrophils
promote angiogenesis and immunosuppression, while macrophages frequently acquire
M2-like phenotypes that facilitate tumor progression and metastasis. Although these events
occur within the tumor microenvironment, systemic alterations can also be observed in
the circulation, such as elevated neutrophil-to-lymphocyte ratios and altered monocyte
subsets [4]. These systemic signatures suggest that whole-blood transcriptomic profiling
may provide a peripheral view of tumor–host interactions and immune remodeling. Unlike
ctDNA assays, which primarily detect tumor-derived fragments released at later stages of
disease, whole-blood transcriptomic profiling captures dynamic immune and inflammatory
responses that emerge during early tumor–host interactions. Moreover, compared with
PBMC-based assays that exclude granulocytes and platelets, whole-blood RNA encom-
passes all circulating cell types, thereby providing a more comprehensive view of systemic
immune remodeling.

Peripheral blood can be analyzed in several formats, including plasma, serum, periph-
eral blood mononuclear cells (PBMCs), and whole blood (WB). Unlike plasma cfRNA or
PBMC RNA, WB integrates signals across all leukocyte subsets, together with erythrocytes,
platelets, and plasma components. WB transcriptomic profiling therefore offers a more
comprehensive representation of systemic immune activity and may increase the likelihood
of detecting clinically relevant RNA signatures [5].

Several studies have investigated WB-derived RNA as a source of cancer biomarkers.
Park et al. identified ten tumor-associated circulating transcripts (TACTs) with diagnostic
value in breast cancer [6]. Han et al. applied the same panel to CRC and reported promising,
but inconsistent, performance across markers [7]. Kim et al. further examined WB RNA
expression along the adenoma–carcinoma sequence (ACS), identifying IFI27, DEFA4, MPO,
and CD177 as stage-associated transcripts [8]. Collectively, these studies indicate the
feasibility of WB transcriptomic analysis, while also highlighting the need for systematic
strategies to identify and validate CRC-specific signatures across independent cohorts.
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In the present study, an integrative framework was developed to reduce cohort-specific
bias and to enhance the reproducibility of biomarker discovery. Public whole-blood tran-
scriptome datasets were combined with newly generated RNA-seq data from Korean
clinical samples, followed by independent RT-qPCR validation. Candidate transcripts were
further evaluated against multiple CRC-related resources—including hub gene networks,
transcription factors, GWAS, eQTL, DigSeE, and CoReCG—to ensure biological relevance.
This multi-layer validation strategy increased confidence that the selected transcripts are ro-
bustly associated with CRC pathogenesis and provides a basis for developing non-invasive
multi-marker panels for early detection and disease monitoring in CRC. We hypothesized
that whole-blood transcriptomic profiling can capture immune-related transcriptional al-
terations reflecting tumor–host interactions, which may precede detectable tumor DNA
release. This study aimed to integrate multi-cohort transcriptomic data to identify robust
circulating RNA signatures associated with colorectal cancer.

A schematic overview of the experimental design and multi-cohort analytical work-
flow is presented in Figure 1.

 

Figure 1. Graphical summary of the integrative analysis and clinical validation workflow.

2. Results
2.1. Selection and Preprocessing of GEO Whole-Blood Datasets

Peripheral blood gene expression datasets were retrieved from the Gene Expression
Omnibus (GEO) database by searching with the keywords ‘Colorectal cancer’ and ‘Blood’.
By manual inspection, dataset filtration was carried out based on two criteria: (1) transcrip-
tome data from whole-blood samples and (2) availability of comparisons between CRC
patients before any treatment and healthy controls. GSE164191 and GSE11545 datasets
satisfying the above criteria were used to identify CRC-related genes. GSE164191 is a
blood transcript data set containing 59 colorectal cancer samples and 62 normal controls.
GSE11545 contains numerous cancer patient samples, among which we selected 9 colorectal
cancer patient blood samples and 9 normal control group blood samples for analysis.

The GSE164191 dataset initially contained 54,700 probes. To minimize noise and
false positives, 30% of probes with the lowest standard deviation across samples, and an
additional 30% of probes with the lowest mean expression values among the remaining,
were excluded. Similarly, from the 32,878 probes in GSE11545, 10% of low-variance probes
and 10% of the remaining low-expression probes were removed. After filtering and anno-
tation (Entrez ID), a total of 13,797 and 13,321 genes were retained from GSE164191 and
GSE11545, respectively.

A total of 8966 genes were shared between the two datasets. To correct for inter-study
variation, batch effects were normalized using the ComBat method, which combines a
linear modeling framework with an empirical Bayesian approach. Principal component
analysis (PCA) demonstrated a substantial reduction in platform-driven separation after
correction (Figure S1). The two batch-corrected datasets were subsequently integrated to
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construct a comprehensive transcriptomic dataset derived from CRC-related whole-blood
samples, encompassing expression profiles for 8966 genes. This integrated dataset was
hereafter referred to as the WB dataset. Based on differential expression analysis, a total of
956 differentially expressed genes (DEGs) were identified between the CRC and control
groups, applying a false discovery rate (FDR)-adjusted p-value < 0.05 and an absolute log2
fold-change (|log2FC|) > 0.5.

2.2. Construction of the WB-PADs Dataset

To identify robust and biologically relevant whole-blood (WB) transcripts associated
with colorectal cancer (CRC), a multi-layer filtering strategy was applied to the 956 DEGs
obtained from the integrated WB dataset. The rationale of this step was to prioritize
genes supported by independent lines of biological or clinical evidence—such as protein
interaction networks, transcriptional regulation, genetic associations, and curated CRC
databases—thereby increasing confidence that the selected transcripts are functional and
disease-relevant rather than dataset-specific artifacts.

First, a protein–protein interaction (PPI) network was constructed using the STRING
database to capture genes with central roles in molecular signaling networks. A total of
956 DEGs were projected onto the network, and 132 genes with more than 10 connections
(nodes) were identified as hub genes, designated as the WB-Hub dataset.

Next, to determine key transcriptional regulators, DEGs were cross-referenced with the
Human Transcription Factors (TFs) Database (http://humantfs.ccbr.utoronto.ca/index.php
(accessed on 1 May 2023)), which contains 1639 confirmed and 1126 predicted TFs. The
intersection between the DEG list and the TF database identified 127 genes, forming the
WB-TF dataset.

To incorporate genetic susceptibility evidence, the GWAS Catalog was queried using
the term “colorectal cancer,” yielding 124 summary-level entries encompassing 3793 CRC
patients and 410,350 healthy individuals. After harmonization, 15,281 SNPs corresponding
to 1592 genes were retrieved. Intersection with the DEG list identified 53 overlapping
transcripts, designated as the WB-GWAS dataset (Figure 2a).

Gene regulation at the transcriptional level was also evaluated using cis-expression
quantitative trait loci (cis-eQTL) data from the eQTLGen Consortium (https://www.
eqtlgen.org (accessed on 1 April 2023)), comprising association data for 31,684 genes
in whole blood. Genes with Bonferroni-adjusted p-values < 0.05 and |Z| > 1.15 were
retained (1289 genes). Intersection with the 956 DEGs yielded 194 overlapping transcripts,
constituting the WB-eQTL dataset (Figure 2b).

To confirm disease-specific associations, two curated CRC gene databases were addi-
tionally examined. The DigSeE database identified 8866 genes linked to “colorectal cancer”
through literature text mining, of which 2350 mutation-associated genes were selected.
Intersection analysis revealed 48 overlapping DEGs, defined as the WB-DigSeE dataset. The
CoReCG database, which includes 2056 experimentally validated CRC-associated genes
from 2486 publications, was also intersected with the DEGs, resulting in 97 overlapping
genes designated as the WB-CoReCG dataset.

Collectively, these analyses generated six evidence-based subsets—WB-Hub, WB-
TF, WB-GWAS, WB-eQTL, WB-DigSeE, and WB-CoReCG (Table 1). Integration of these
complementary datasets yielded a total of 440 distinct transcripts, representing a refined and
biologically supported set of CRC-related genes. These were subsequently consolidated into
the WB-PADs dataset for further expression-based filtering and cross-validation, referred
to as the publicly available dataset (PAD) candidate grouping (Table 1).

http://humantfs.ccbr.utoronto.ca/index.php
https://www.eqtlgen.org
https://www.eqtlgen.org
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Figure 2. Identification and filtering of CRC-related circulating transcripts from publicly available
datasets. (a) Manhattan plot of GWAS dataset showing 15,281 CRC-associated SNPs (p < 0.001). (b) Z-
score distribution from eQTL dataset; transcripts with Z > 1.15 were retained. (c–h) Volcano plots
showing differentially expressed transcripts (red: upregulated; blue: downregulated) in CRC across
six datasets: (c) WB-Hub, (d) WB-TF, (e) WB-GWAS, (f) WB-eQTL, (g) WB-DigSeE, and (h) WB-CoReCG.
(i) MA plot of WB-PADs dataset; transcripts with average expression > 6 were retained as biomarker
candidates. Grey dots represent transcripts with low average expression (average expression < 6).

Table 1. Summary of DEGs Derived from Six Public Datasets Used to Construct the WB-PADs dataset.

No. Dataset
Up-Regulated

Genes
Down-Regulated

Genes Total

1 WB-Hub 45 87 132
2 WB-TF 24 103 127
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Table 1. Cont.

No. Dataset
Up-Regulated

Genes
Down-Regulated

Genes Total

3 WB-GWAS 11 42 53
4 WB-eQTL 43 151 194
5 WB-DigSeE 21 27 48
6 WB-CoReCG 33 64 97

An additional filtering step was then applied to ensure consistent detectability across
clinical samples. Based on average expression levels visualized in the MA plot, transcripts
with low abundance (mean expression < 6) were excluded. This threshold minimized the
risk of technical dropout in qPCR validation and improved reliability for clinical applica-
tion. After this filtering, 375 high-confidence transcripts remained, collectively designated
as the WB-PADs dataset, which was subsequently used for cross-comparison and clinical
validation studies (Figure 2c–i). Functional enrichment analysis of the 375 PAD genes
revealed significant involvement in biological processes associated with tumor–immune
interactions. GO biological process terms were highly enriched in cilia assembly, small
GTPase-mediated signal transduction, and metabolic remodeling, indicating potential dys-
regulation of epithelial integrity and intracellular communication in CRC. GO molecular
function categories highlighted phosphatase and O-methyltransferase activity, reflecting
altered post-translational and metabolic regulatory mechanisms. GO cellular compo-
nent enrichment suggested localization to post-synaptic regions, clathrin-coated vesicles,
and Golgi-associated structures, supporting disruption of vesicle transport and signaling
machinery during CRC progression. KEGG pathway analysis further demonstrated enrich-
ment in cell adhesion molecules (CAMs), hematopoietic cell lineage, cellular senescence,
and platinum-drug resistance, collectively indicating that these PAD genes capture both
immune remodeling and therapeutic response-related transcriptional alterations in whole
blood from CRC patients (Figure S2).

2.3. Construction of the WB-K Dataset

To determine whether the CRC-associated transcripts identified from public datasets
were reproducible across different populations and sequencing platforms, independent
RNA sequencing was performed using whole-blood samples collected from a Korean
clinical cohort (10 CRC patients and 10 healthy controls, Table 2). This analysis aimed
to verify that candidate biomarkers were not confined to a specific study population
or experimental batch, thereby supporting the identification of biologically robust and
population-independent markers.

Table 2. Demographic and clinical characteristics of participants in the WB-K RNA-seq cohort.

Characteristics Healthy Control, n (%) Colorectal Cancer, n (%)

Age (SD) 54.0 (7.6) 46.8 (8.1)
Gender (%)

Male 5 (50.0) 5 (50.0)
Female 5 (50.0) 5 (50.0)

Differential gene expression analysis was performed using criteria consistent with
those applied to the WB-PADs dataset (|log2FC| > 0.5, p < 0.05, and mean expression > 6)
to ensure methodological comparability and facilitate cross-validation between datasets.
Using these thresholds, a total of 217 differentially expressed transcripts were identified
and designated as the WB-K dataset (Figure 3). These transcripts represent CRC-associated
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expression changes observed in an independent Korean cohort and were subsequently
used for integrative comparison with the WB-PADs dataset to identify reproducible, high-
confidence circulating RNA biomarkers.

 

(b) (a) 

Figure 3. Transcript selection from the WB-K dataset. (a) Volcano plot showing differentially
expressed transcripts (|log2FC| > 0.5, p < 0.05) in CRC vs. HC samples from the WB-K dataset (red:
upregulated; blue: downregulated). (b) MA plot of differentially expressed genes in the discovery
whole-blood RNA-seq cohort. Genes that met the predefined detectability and effect-size thresholds
(mean expression > 6 and |log2FC| > 0.5) are shown in blue, indicating candidate transcripts suitable
for clinical validation. Transcripts below these thresholds are shown in light gray. Red dashed lines
indicate the cutoff values applied for detectability (vertical line at mean expression = 6) and minimum
effect size (horizontal lines at log2FC = ±0.5).

2.4. Selection of Candidate Genes for Clinical Validation

To identify reproducible circulating transcripts consistently associated with CRC
across independent datasets, an intersection analysis was performed between the WB-PADs
and WB-K datasets. This cross-comparison aimed to pinpoint genes that demonstrated
concordant differential expression patterns in both publicly available and Korean cohort-
derived data, thereby increasing biological robustness and reducing dataset-specific bias.

The intersection yielded seven overlapping genes: ADAMTS1, DLG5, CD177, SH2D1B,
NQO2, KRT73, and SLC26A8. The expression fold changes in these genes were visualized
in a scatter plot, where the x-axis represented fold change in the WB-K dataset and the
y-axis represented fold change in the WB-PADs dataset (Figure 4). The intersection at (0, 0)
denoted no expression change relative to controls.

Among the seven overlapping genes, CD177 and NQO2 showed consistent upregula-
tion, whereas DLG5, SH2D1B, and KRT73 were consistently downregulated across both
datasets. In contrast, ADAMTS1 and SLC26A8 exhibited discordant expression patterns
between datasets and were therefore excluded from subsequent validation.

Consequently, five genes—DLG5, CD177, SH2D1B, NQO2, and KRT73—were selected
as robust and reproducible candidates for clinical validation (Table 3). Notably, CD177
encodes a neutrophil surface glycoprotein involved in innate immune activation, while
NQO2 is associated with redox homeostasis, both of which are crucial in the inflammatory
tumor microenvironment. DLG5 and KRT73 are structural and epithelial-associated genes
potentially linked to epithelial–mesenchymal transition (EMT), and SH2D1B encodes an
immune adaptor protein that modulates lymphocyte signaling. The biological relevance of
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these genes supports their potential utility as non-invasive circulating biomarkers for CRC
potential diagnostic relevance.

Figure 4. Scatter plot comparing fold changes of overlapping genes between the WB-PADs and WB-K
datasets. Each point represents one gene, with the x- and y-axes indicating log2 fold changes relative
to healthy controls in the WB-PADs and WB-K datasets, respectively. The intersecting dashed lines at
(0, 0) denote the reference threshold where no expression change is observed. Genes plotted in blue
exhibit consistently regulated patterns across datasets (either up- or down-regulated), reinforcing
their reproducibility for subsequent validation. In contrast, ADAMTS1 and SLC26A8 (gray dots)
demonstrate discordant trends.

Table 3. Five candidate genes showing consistent differential expression patterns in both WB-PADs
and WB-K datasets.

Gene Symbol
log2FC p-Value

WB Dataset WB-K Dataset WB Dataset WB-K Dataset

DLG5 −0.59 −0.63 0.0005 0.007
CD177 1.09 1.34 0.00001 0.03

SH2D1B −0.58 −0.86 0.000001 0.01
NQO2 0.57 0.77 0.000002 0.01
KRT73 −0.76 −1.00 0.0001 0.001

2.5. Clinical Validation of Five Circulating Transcripts Using RT-qPCR

To confirm whether the candidate transcripts identified through integrative transcrip-
tomic analysis were reproducibly detectable and clinically relevant in a larger independent
cohort, reverse transcription quantitative polymerase chain reaction (RT-qPCR) was per-
formed. This validation aimed to verify that the selected transcripts (DLG5, CD177, SH2D1B,
NQO2, and KRT73) could serve as robust circulating biomarkers capable of distinguishing
CRC patients from healthy individuals in a real-world clinical setting.

Whole-blood RNA samples from 229 participants—including 106 CRC patients and
123 healthy controls (HCs)—were analyzed using the same normalization and quantifi-
cation strategy applied in previous experiments (Figure 5). Among the five transcripts,
DLG5, CD177, SH2D1B, and NQO2 showed significantly increased expression in CRC
samples compared with controls (unpaired t-test, p < 0.05). In contrast, KRT73 exhibited
a downward trend in expression among CRC patients, although this difference did not
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reach statistical significance (p > 0.05). A detailed summary of cross-dataset consistency in
expression trends for these five transcripts is provided in Supplementary Table S3.

Figure 5. Expression levels of five candidate transcripts in healthy controls and colorectal cancer
(CRC) patients. Scatter plots depict the relative expression of DLG5, CD177, SH2D1B, NQO2, and
KRT73 as measured by RT-qPCR in whole-blood samples from healthy controls and CRC patients.
Red bars indicate the median and interquartile range. Four transcripts (DLG5, CD177, SH2D1B, and
NQO2) showed significantly increased expression in CRC compared to HCs, while KRT73 exhibited
a non-significant downward trend. Statistical significance was determined using unpaired t-tests.
p < 0.05 (*), p < 0.0001 (****) and ns = not significant.

These findings provide independent clinical evidence supporting the diagnostic po-
tential of the four upregulated transcripts—DLG5, CD177, SH2D1B, and NQO2—as blood-
based RNA biomarkers for CRC detection. The overall expression trends were consistent
with those observed in the discovery datasets, reinforcing their reproducibility and transla-
tional applicability for non-invasive CRC diagnosis.

2.6. Diagnostic Model Establishment and Performance Evaluation

To determine the clinical diagnostic value of the five-gene signature, logistic regression-
based classifiers were developed using RT-qPCR expression data from whole-blood samples.
After adjusting for age and sex, the multivariable LR-5gene model demonstrated strong
diagnostic accuracy, achieving an AUC of 0.952 (95% CI 0.884–1.000) with sensitivities
of 0.889 and 0.667 at fixed specificities of 90% and 95%, respectively (Figure 6A). These
findings highlight the robustness of the transcriptomic signature independent of demo-
graphic confounders. To further confirm that demographic variables did not introduce
bias into model training, age and sex distributions were compared between the training
and validation cohorts within each diagnostic group. As summarized in Supplementary
Table S1, no significant differences were observed in age or sex composition, indicating that
the clinical characteristics of the two cohorts were comparable and unlikely to affect the
model’s generalizability.

Given the importance of early detection for improving patient prognosis, stage-
stratified classification was further performed. The model maintained high performance in
early-stage (Stage I–II) CRC, yielding an AUC of 0.929 (95% CI 0.868–0.989) (Figure 6B),
supporting its suitability for population screening. Performance remained acceptable
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for advanced CRC (Stage III–IV) with an AUC of 0.821 (95% CI 0.590–1.000) (Figure 6C),
confirming diagnostic utility across diverse disease stages.

 

Figure 6. Diagnostic performance of the LR-5gene classifier in the RT-qPCR cohort. (A) Overall CRC
vs. control discrimination with Elastic Net-tuned logistic regression. (B) Early-stage (Stage I–II) CRC
vs. control. (C) Late-stage (Stage III–IV) CRC vs. control. Dashed line: random classifier. AUC values
include 95% CI. Sensitivity values correspond to specificity = 90% and 95%.

Furthermore, to assess cross-cohort robustness, the five-gene logistic regression model
was externally evaluated using the independent whole-blood RNA-seq dataset GSE164191.
The classifier achieved an AUC of 0.797 (95% CI 0.718–0.877) with clinically relevant
sensitivity at high-specificity thresholds, supporting the generalizability of the whole-blood
RNA signature beyond the Korean cohort (Figure S3).

Collectively, these results demonstrate that the five-gene panel offers high diagnostic
accuracy in real-world clinical blood samples and shows particular promise for minimally
invasive early CRC detection. Additionally, comparative ROC performance metrics for
both individual genes and the multigene model are summarized in Supplementary Table S2
to further illustrate the additive predictive value of the combined signature. Although our
model achieved high AUC values in both discovery and validation cohorts, these results
should be interpreted cautiously. The 5-gene panel remains in the pre-clinical discovery
stage, and head-to-head evaluation against FIT or other established diagnostic tools, as
well as validation across diverse ethnic populations, will be essential future steps prior to
clinical translation.

3. Discussion
While colonoscopy remains the diagnostic gold standard for colorectal cancer (CRC),

its invasiveness and the resulting low compliance highlight the need for complementary,
non-invasive approaches. Stool-based assays such as the fecal immunochemical test (FIT)
and multitarget DNA tests offer alternatives, yet their sensitivity for adenomas and early-
stage CRC remains limited. Liquid biopsy has therefore emerged as a promising tool for
cancer diagnostics, with most CRC studies focusing on circulating tumor DNA (ctDNA)
or circulating tumor cells (CTCs) [1,9]. However, these markers primarily capture tumor-
derived fragments released at later disease stages, limiting their effectiveness for early
detection [10,11].
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In contrast, blood-based RNA profiling enables the detection of dynamic transcrip-
tional changes arising not only from tumor cells but also from immune and stromal compo-
nents, thereby reflecting early systemic responses to tumor development [3,9].

In this study, a reproducible five-gene signature (DLG5, CD177, SH2D1B, NQO2, and
KRT73) was identified from whole-blood RNA that distinguished CRC patients from healthy
controls. By integrating multiple GEO datasets with an independent Korean RNA-seq
cohort and validating results through RT-qPCR in clinical samples, we established a multi-
layered discovery framework that enhanced both biological relevance and reproducibility.
The integration of functional annotation resources—such as transcription factor, eQTL,
GWAS, and disease-gene databases—further minimized false positives and ensured that
the selected genes were mechanistically linked to CRC pathogenesis.

A distinguishing aspect of this study is the use of whole blood rather than plasma
or peripheral blood mononuclear cells (PBMCs). Previous transcriptomic studies have
primarily analyzed PBMCs, which contain lymphocytes, monocytes, NK cells, and den-
dritic cells but exclude granulocytes and other myeloid-derived populations [5]. These
excluded cell types, particularly neutrophils and macrophage precursors, play central
roles in tumor-associated inflammation [4]. Whole-blood RNA encompasses the full leuko-
cyte spectrum as well as platelets and erythrocyte-derived transcripts [12], providing a
more comprehensive representation of the systemic immune landscape. This broader
coverage likely explains why immune-related genes such as CD177, SH2D1B, and NQO2
were identified here but have been underrepresented in PBMC-based or cfRNA studies.
Unlike PBMCs, whole-blood RNA encompasses transcripts derived from granulocytes,
platelets, and erythroid precursors, which participate in systemic immune and metabolic
reprogramming during tumor development. Therefore, analyzing total blood RNA allows
for a more comprehensive view of host–tumor crosstalk. Thus, our findings underscore
the methodological advantage of whole-blood transcriptomics in capturing the complex
interplay between tumor and host immunity in CRC.

Among the identified transcripts, CD177, NQO2, and KRT73 displayed consistent ex-
pression across discovery and validation platforms. CD177, a neutrophil activation marker,
was strongly upregulated, consistent with elevated neutrophil-to-lymphocyte ratios and
proinflammatory signatures reported in CRC [12–14]. NQO2, involved in cellular redox reg-
ulation, was similarly upregulated, suggesting a compensatory response to oxidative stress
in tumor-bearing individuals [15,16]. Conversely, KRT73, associated with epithelial differ-
entiation, showed a downregulation trend, potentially reflecting epithelial–mesenchymal
transition (EMT) and loss of epithelial polarity during tumor progression [17,18].

Notably, DLG5 and SH2D1B exhibited opposite expression trends between RNA-seq
discovery and RT-qPCR validation, suggesting context-dependent or cell-specific regulation.
DLG5, a scaffold protein essential for epithelial integrity, may be suppressed in tumor tissues
but upregulated in circulation through inflammation-induced signaling pathways such as
NF-κB and MAPK activation [19,20]. SH2D1B, encoding the adaptor protein EAT-2 that
modulates SLAM-family signaling in NK and T cells, could be dynamically expressed
depending on immune activation status. Alternatively, these discrepancies may reflect
technical factors such as primer specificity, isoform coverage, or differences in the cellular
composition of bulk versus targeted assays [21]. To acknowledge potential interpretation
differences across transcriptomic platforms, we note that gene expression values were
derived from log2(CPM)-scaled RNA-seq datasets and log2-normalized probe intensities
in microarray datasets. Although a common mean expression >6 threshold was applied
to ensure strong biological detectability and reliable downstream qPCR validation, we
recognize that technical scale discrepancies could contribute to minor variations in fold-
change magnitude and direction across cohorts. Therefore, the biological convergence of
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expression patterns across datasets, rather than exact numeric equivalence, informed the
prioritization of clinically measurable biomarkers in this study. Together, these findings
suggest that whole-blood RNA integrates signals from multiple cellular sources, reflecting
both steady-state and reactive transcriptional programs within the host–tumor interface.
Given the modest sample size of the WB-K cohort, the nominal p-value thresholds applied
in this dataset may increase the risk of false-positive detection. However, as WB-K was not
relied upon as a standalone discovery source and candidate genes were selected only when
reproducible across independent datasets, the risk was mitigated. Even so, this statistical
limitation should be validated in future studies with larger external discovery cohorts.

Although DLG5 and SH2D1B were downregulated in both public RNA-seq cohorts,
their expression appeared upregulated in our clinical qPCR validation. This discrepancy
may arise from several biological and technical factors. First, whole-blood RNA expression
is strongly influenced by cellular composition, particularly the relative abundance of
circulating immune subpopulations. Changes in neutrophil or NK-cell proportions between
datasets could alter the predominant cellular source of each transcript, thereby affecting
its direction of change when measured at the bulk-blood level. Second, platform-specific
detection differences—including probe/primer target region selection, isoform coverage,
and 3′ end quantification biases in qPCR—may capture different transcript variants or
post-transcriptional regulation effects. Third, CRC patients recruited at different disease
states or physiological conditions (e.g., inflammatory responses associated with tumor
progression) may also contribute to heterogeneous expression patterns.

Despite this direction inconsistency, both DLG5 and SH2D1B demonstrated statisti-
cally significant discriminatory power when assessed individually and provided essential
complementary information that improved the performance of the multigene logistic
model. Importantly, the three genes with full directional reproducibility across cohorts
(CD177, NQO2, and KRT73) constitute the most stable core of the panel, while DLG5
and SH2D1B enhance model sensitivity and classification efficiency when integrated in a
combined signature. Future work using cell-type-resolved transcriptomics and isoform-
specific assays will be necessary to further clarify the mechanistic underpinnings of these
gene-level differences.

To further clarify the cellular origins of these biomarkers, we referenced established
whole-blood expression atlases. CD177 and FCGR1A strongly point toward neutrophils,
monocytes, and T/B-lymphocyte involvement, highlighting the dominant contribution
of circulating immune effector populations. Meanwhile, DLG5 and SH2D1B, despite
showing discordant directionality between discovery and validation datasets, map to
epithelial–immune interaction pathways and NK/T-cell signaling, respectively. There-
fore, these discrepancies likely reflect context-dependent immune activation rather than
technical artifacts.

To align this interpretation with diagnostic performance, we emphasize that CD177,
NQO2, and KRT73 demonstrated the most stable cross-platform consistency, while
DLG5 and SH2D1B were retained due to their additive contribution to multigene
classifier performance.

From a clinical benchmarking perspective, unlike plasma-based SEPT9 methylation
assays—which primarily detect tumor-derived DNA shedding at later disease stages—
our whole-blood RNA signature captures early immunometabolic disturbance, enabling
enhanced discrimination of Stage I–II CRC. This advantage directly addresses a critical
unmet need in population-based CRC screening.

Collectively, the five-gene panel identified in this study reflects both tumor-intrinsic
and immune-mediated alterations, suggesting its potential application in early CRC poten-
tial diagnostic relevance. The use of whole blood as a diagnostic matrix also offers practical
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and biological advantages: it requires minimal preprocessing, preserves RNA integrity
across all circulating cell types, and captures early immunometabolic shifts associated with
tumorigenesis. While whole-blood transcriptome profiling enables practical and minimally
invasive detection, the cellular sources of circulating RNA remain diverse, including leuko-
cytes, platelets, and erythrocyte-derived vesicles. Therefore, the transcriptional changes
observed in this study cannot be assigned to a specific immune-cell population at this stage.
Future investigation incorporating cell-type deconvolution or sorted-cell RNA-seq will be
required to elucidate the mechanistic origin of these biomarkers. Moreover, the integrative
analytical approach—combining public transcriptome resources, functional annotation, and
clinical validation—demonstrates a scalable model for developing population-independent,
blood-based RNA diagnostics.

From a translational perspective, incorporating such transcriptomic signatures into
diagnostic models may enhance clinical utility. In future work, we plan to apply supervised
machine-learning algorithms—such as logistic regression, random forest, and gradient
boosting—to optimize feature selection and construct predictive panels supported by multi-
layer biological evidence. This strategy will enable quantitative weighting of molecular
predictors and improve diagnostic performance, stage discrimination, and reproducibility
across diverse populations. Furthermore, integrating longitudinal samples and treatment-
response data may clarify whether the five-gene pathway provides value for real-time
monitoring and early detection in high-risk cohorts.

In summary, whole-blood RNA profiling provides a holistic view of systemic tran-
scriptional alterations in CRC, bridging tumor biology and host immune responses. The
identified five-gene signature—representing epithelial, immune, and metabolic processes—
illustrates the potential of whole-blood transcriptomics as a minimally invasive, clinically
actionable platform for CRC detection and disease monitoring.

4. Materials and Methods
4.1. Public Dataset Selection and Processing

Two independent whole-blood transcriptome datasets were retrieved from the Gene
Expression Omnibus (GEO) database by searching with the keywords “colorectal cancer”
and “blood.” Datasets were included if they met the following criteria: (1) transcriptome
data derived from whole-blood samples, and (2) availability of untreated CRC samples
and healthy controls for comparison. Based on these criteria, two datasets were selected:
(1) GSE164191 (RNA sequencing, Illumina HiSeq 2500, San Diego, CA, USA), comprising
59 CRC and 62 normal blood samples, and (2) GSE11545 (microarray, Affymetrix Human
Genome U133 Plus 2.0 Array, Thermo Fisher Scientific, Waltham, MA, USA), from which
9 CRC and 9 control samples were selected for analysis.

Because these datasets were generated on different platforms (RNA-seq and microar-
ray), direct comparison required normalization and batch-effect correction. After probe-
level filtering, low-variance and low-expression features were excluded, and expression
values were mapped to Entrez gene IDs. Batch effects were subsequently corrected using
the ComBat method, which applies an empirical Bayesian framework to harmonize expres-
sion profiles across studies. Following this preprocessing, the two datasets were integrated
to generate a unified whole-blood (WB) dataset for downstream differential expression
analysis. To visually assess the effectiveness of batch correction, principal component anal-
ysis (PCA) was conducted before and after applying ComBat. As shown in Supplementary
Figure S1, CRC and control samples remained biologically separable after correction, while
the dataset-specific bias observed prior to ComBat was markedly reduced. These results
confirm that batch harmonization successfully improved cross-platform comparability.
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The integrated WB dataset was used to perform differential expression analysis be-
tween CRC and normal controls. A total of 956 differentially expressed genes (DEGs) were
identified, which were considered CRC-associated transcripts for subsequent analyses.

4.2. PAD Filtering and Cross-Dataset Validation

DEGs identified from the integrated WB dataset (FDR < 0.05, |log2FC| > 0.5) were
evaluated against multiple CRC-related resources to prioritize biologically supported can-
didates. DEGs were projected onto the STRING PPI network, and hub genes were defined
as nodes with degree >10. Transcription factor-associated genes were obtained from the
Human TFs database. CRC-associated variants were collected from the GWAS Catalog (sig-
nificance threshold: p < 0.001) and mapped to genes; whole-blood cis-eQTLs were retrieved
from the eQTLGen Consortium (Bonferroni-adjusted p < 0.05, |Z| > 1.15). Disease-gene as-
sociations were cross-checked using DigSeE and CoReCG. Genes supported by at least one
of these resources were retained; additionally, we required mean expression ≥6 (MA-plot)
to ensure detectability in clinical specimens. The resulting set was termed WB-PADs. Can-
didates consistently differentially expressed in both WB-PADs and the Korean RNA-seq
cohort (WB-K) were considered for RT-qPCR validation. A detectability filter of mean
expression >6 was applied consistently across platforms to ensure reliable transcript mea-
surement in blood. For RNA-seq datasets, expression values refer to log2(CPM) after TMM
normalization, whereas microarray datasets reflect log2-normalized probe intensities.

4.3. Generation of the WB-K Dataset Through Whole-Blood RNA Sequencing and Differential
Expression Analysis

Whole-blood RNA sequencing (RNA-seq) was performed to identify novel CRC-
associated transcripts specific to the Korean population. Total RNA was extracted from
10 colorectal cancer (CRC) and 10 healthy control (HC) samples collected in Tempus™
Blood RNA Tubes (Thermo Fisher Scientific, Waltham, MA, USA). RNA concentration
was measured using Quant-iT RiboGreen (Invitrogen, Carlsbad, CA, USA), and RNA
integrity was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA). Only samples with RNA integrity number (RIN) ≥7.0 were used for
library preparation.

RNA sequencing and differential expression analysis were conducted by Macrogen Inc.
(Seoul, Republic of Korea). RNA libraries were prepared using TruSeq Stranded Total RNA
with Ribo-Zero Globin Kit (Illumina, San Diego, CA, USA) following the manufacturer’s
protocol. Briefly, rRNA was depleted from total RNA, and the remaining RNA was
fragmented and reverse-transcribed into first-strand cDNA using SuperScript II reverse
transcriptase (Invitrogen) and random primers. Second-strand synthesis was performed
using DNA Polymerase I, RNase H, and dUTP, followed by end repair, 3′ adenylation,
adapter ligation, and PCR amplification to generate the final cDNA library. Libraries
were quantified using the KAPA Library Quantification Kit (KAPA Biosystems, Basel,
Switzerland) and evaluated with the D1000 ScreenTape System (Agilent Technologies).

Sequencing was performed on an Illumina NovaSeq 6000 platform to generate 150-bp
paired-end reads. Raw reads underwent quality control using FastQC, adapter trimming
with Trimmomatic, and alignment to the human reference genome (GRCh38) using HISAT2
(version 2.1.0). Transcript assembly was performed using StringTie (version 2.1.3b) to
reconstruct transcript models and estimate expression levels. Gene-level counts were
obtained using featureCounts, and normalization and differential expression analysis were
conducted with DESeq2 in R (version 4.4.2).

Differentially expressed genes (DEGs) between CRC and HC groups were defined by
the criteria |log2 fold change| > 0.5, p < 0.05, and mean normalized expression >6. Based
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on these thresholds, 217 transcripts were identified and designated as the WB-K dataset for
downstream integration and validation analyses.

4.4. Cross-Dataset Integration and Visualization

Overlap between WB-PADs and WB-K datasets was identified using the dplyr (version
1.1.4) and VennDiagram packages (version 1.7.3) in R(version 4.4.2). Scatter and correlation
plots comparing fold changes were generated using ggplot2 (version 3.5.1). Volcano and
MA plots were produced using EnhancedVolcano (version 1.20.0) to visualize differential
expression patterns and average transcript abundance.

4.5. Patient Cohorts

CRC samples were obtained from the Department of Gastroenterology, Severance Hos-
pital, Seoul, Republic of Korea (IRB No. 4-2017-0148). HC samples were collected during
routine health screening at Wonju Severance Christian Hospital (IRB No. CR319115). The
inclusion criteria for patients included histological confirmation of CRC based on colonoscopy
and histological results with dysplasia grade level, villous component protein, and size and
number of polyps, according to the European Society of Gastrointestinal Endoscopy (ESGE).
The exclusion criteria included prior CRC resection or evidence of hereditary colorectal cancer
syndrome. The staging criteria for patients with CRC from stages I to IV followed the guide-
lines set forth by the ESGE. This classification was based on the widely accepted TNM staging
system, ensuring consistency with the ESGE standards for accurate patient stratification and
treatment planning. The HC group included individuals with no significant findings after
colonoscopy and no other cancers. Informed consent was obtained from all the participants.
The clinicopathologic characteristics of participants are summarized in Table 4.

Table 4. Clinicopathologic characteristics of study participants.

Characteristics Healthy Control, n (%) Colorectal Cancer, n (%)

Age, y (SD) 63.2 (11.2) 48.9 (9.8)
Gender, n (%)

Male 60 (59.4) 64 (57.7)
Female 41 (40.6) 47 (42.3)

4.6. Clinical Samples and RNA Extraction

Blood samples were collected by venipuncture into 3 mL Tempus™ Blood RNA Tubes
as a secondary or subsequent draw to avoid epithelial contamination. Tubes were vortexed
for 10 s to ensure complete mixing with 6 mL stabilizing reagent and stored upright at
room temperature (18–25 ◦C) for up to 5 days before processing, or refrigerated (2–8 ◦C) or
frozen (−20 ◦C) as needed.

RNA was extracted using a Tempus Spin RNA Isolation Kit (Thermo Fisher Scientific)
following the manufacturer’s protocol. The quality of the isolated RNA was assessed using
an RNA 6000 Nano LabChip with an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA) and a NanoDrop spectrophotometer (Thermo Fisher Scientific).

Complementary DNA (cDNA) was synthesized using a High-Capacity cDNA Reverse
Transcription Kit (Thermo Fisher Scientific). RNA calculated based on the measured concen-
tration was diluted with nuclease-free water to achieve a concentration of 2 µg/14.2 µL. A
mixture was prepared using 10× RT buffer, 25× deoxynucleotide triphosphate (dNTP) mix,
10× RT random primers, and MultiScribeTM Reverse Transcriptase (Invitrogen, Carlsbad,
CA, USA) at a ratio of 10:4:10:5. All reagents were contained in a High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). The total volume of
the reaction mixture was modified according to the number of samples, and 5.8 µL of the



Int. J. Mol. Sci. 2025, 26, 11625 16 of 18

mixture was distributed into each sample. Each sample was mixed thoroughly and briefly
centrifuged to ensure even distribution.

Subsequently, cDNA was synthesized using random hexamers and dNTPs in a thermal
cycler (Bio-Rad Laboratories, Hercules, CA, USA). The reaction was initiated at 25 ◦C for
10 min to allow priming and enzyme activation (Step 1), followed by incubation at 37 ◦C
for 50 min to facilitate reverse transcription (Step 2). Subsequently, the reaction mixture
was heated to 85 ◦C for 5 min to inactivate the reverse transcriptase enzyme (Step 3). All
steps were conducted in accordance with the manufacturer’s instructions.

4.7. Reverse Transcription-Quantitative PCR

Expression levels of candidate genes were quantified using TaqMan® Array Custom
Cards on a QuantStudio™ 7 Pro Real-Time PCR System (Thermo Fisher Scientific). Each
reaction contained 50 µL of TaqMan® Fast Advanced Master Mix and 50 µL of cDNA
template, run in duplicate per sample.

GAPDH served as the internal control. Relative expression was calculated using the
∆∆Ct method:

∆∆Ct =
[
Cttarget,test − Ctref,test

]
−

[
Cttarget,calibrator − Ctref,calibrator

]
Expression fold-changes were expressed as 2−∆∆Ct.

4.8. Protein–Protein Interaction (PPI) Network Analysis

Differentially expressed genes (DEGs) were imported into the STRING database
(version 12.0; https://string-db.org (accessed on 9 September 2025)) to construct a protein–
protein interaction (PPI) network with a confidence score >0.7. The network was visualized
using Cytoscape (version 3.8.2) with the StringApp plugin (version 1.6.0). Topological
parameters were analyzed using the NetworkAnalyzer tool, and hub genes were defined
as nodes with a connectivity degree >10. These hub genes were designated as the WB-Hub
dataset for subsequent integration with other evidence layers.

4.9. Logistic Regression Modeling and External Validation

A multivariable logistic regression classifier was constructed using the standardized
expression of the five selected transcripts (DLG5, CD177, SH2D1B, NQO2, and KRT73).
The model was trained in the RT-qPCR cohort with CRC status as the response variable.
Model performance was evaluated based on ROC curves, AUC with 95% CIs (DeLong),
and sensitivity at fixed specificities of 90% and 95%.

For external validation, the trained model was independently applied to the whole-
blood RNA-seq dataset GSE164191. Expression matrices and clinical metadata were pre-
processed to ensure consistent sample matching, and the same z-score transformation and
linear predictor were used to generate predicted CRC probabilities for ROC analysis.

4.10. Statistical Analysis

Two-group comparisons were performed using unpaired Student’s t-tests in GraphPad
Prism (version 9.0; GraphPad Software, San Diego, CA, USA). Statistical significance was
set at p < 0.05. All plots were generated using ggplot2 in R (version 4.4.2, R Foundation for
Statistical Computing, Vienna, Austria).

5. Conclusions
This study identified and validated a reproducible five-gene panel—DLG5, CD177,

SH2D1B, NQO2, and KRT73—derived from whole-blood RNA, with strong diagnostic rele-
vance for colorectal cancer (CRC). Through the integration of public transcriptome datasets, ge-

https://string-db.org
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nomic annotation resources, and independent Korean clinical cohorts, a robust multi-layered
framework was established for discovering and validating non-invasive CRC biomarkers.

The identified transcripts collectively represent epithelial, immune, and metabolic
pathways, reflecting the dual contribution of tumor biology and systemic host responses.
Notably, the inclusion of neutrophil- and myeloid-associated genes such as CD177,
SH2D1B, and NQO2 underscores the capacity of whole-blood transcriptomics to capture
inflammation-driven molecular alterations that are often missed in plasma or PBMC-based
assays. This highlights the methodological advantage of whole-blood RNA profiling as a
comprehensive platform for monitoring tumor–host interactions.

Compared with traditional invasive procedures such as colonoscopy or the limited
sensitivity of stool-based tests, whole-blood RNA analysis provides a minimally inva-
sive, scalable approach that can enhance early CRC detection and patient compliance.
When integrated with advanced analytic tools such as machine learning-based algorithms,
these transcriptomic signatures hold promise for improving diagnostic accuracy, stage
discrimination, and longitudinal disease monitoring.

Future studies involving larger, multi-center cohorts and single-cell transcriptomic
analyses are warranted to elucidate the cellular origins and biological mechanisms un-
derlying these markers. We also acknowledge that the current sample size, although
clinically validated, remains limited and therefore larger prospective studies will be needed
to confirm the diagnostic robustness and real-world generalizability of this five-gene panel.
Collectively, the findings demonstrate that whole-blood transcriptomic profiling captures
systemic molecular changes associated with CRC and represents a promising foundation
for developing next-generation, RNA-based diagnostic tools for early detection and clinical
management of colorectal cancer.
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