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Evaluating diagnostic accuracy

of large language models in
neuroradiology cases using image
inputs from JAMA neurology and
JAMA clinical challenges

Ahmed Albagshi%’, Ji Su Ko%2%7, Chong Hyun Suh'*’, Pae Sun Suh?, Woo Hyun Shim'*,
Hwon Heo*, Chang-Yun Woo® & Hyungjun Park®

This study assesses the diagnostic performance of six LLMs —GPT-4v, GPT-40, Gemini 1.5 Pro, Gemini
1.5 Flash, Claude 3.0, and Claude 3.5—on complex neurology cases from JAMA Neurology and JAMA,
focusing on theirimage interpretation abilities. We selected 56 radiology cases from JAMA Neurology
and JAMA (from May 2015 to April 2024), rephrasing the text and reshuffling multiple-choice answer.
Each LLM processed four input types: original quiz with images, rephrased text with images, rephrased
text only, and images only. Model performance was compared with three neuroradiologists, and
consistency was assessed across five repetitions using Fleiss’ kappa. In the image-only condition,
LLMs answered six specific questions regarding modality, sequence, contrast, plane, anatomical,

and pathologic locations, and their accuracy was evaluated. Claude 3.5 achieved the highest accuracy
(80.4%) on original image and text inputs. The accuracy using the rephrased quiz text with image
ranged from 62.5% (35/56) to 76.8% (43/56). The accuracy using the rephrased quiz text only ranged
from 51.8% (29/56) to 76.8% (43/56). LLMs performed on par with first-year fellows (71.4% [40/56])
but surpassed junior faculty (51.8% [29/56]) and second-year fellows (48.2% [27/56]). All LLMs showed
almost similar results across the five repetitions (0.860-1.000). In image-only tasks, LLM accuracy

in identifying pathologic locations ranged from 21.5% (28/130) to 63.1% (82/130). LLMs exhibit
strong diagnostic performance with clinical text, yet their ability to interpret complex radiologic
images independently is limited. Further refinement in image analysis is essential for these models to
integrate fully into radiologic workflows.
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Abbreviations

GPT-4 Generative pretrained transformer 4
GPT-40  GPT-4 omni

GPT-4v GPT-4 turbo with vision

LLM Large language model

The rapid advancement of large language models (LLMs) has greatly expanded their capabilities, moving beyond
natural language processing tasks to specialized domains like healthcare and radiology'. Among these models,

1Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College
of Medicine, Seoul, Republic of Korea. Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan
University School of Medicine, Seoul, Republic of Korea. 3Department of Radiology, Research Institute of
Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul,
Republic of Korea. “Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence
Science and Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea. *Department of Internal
Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. ®Department
of Pulmonology, Shihwa Medical Center, Siheung, Republic of Korea. ’Ahmed Albagshi and Ji Su Ko contributed
equally to this work. email: chonghyunsuh@amc.seoul.kr

Scientific Reports|  (2025) 15:43027 | https://doi.org/10.1038/s41598-025-06458-z nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-06458-z&domain=pdf&date_stamp=2025-11-27

www.nature.com/scientificreports/

multimodal LLMs, such as OpenAls generative pretrained transformer 4 (GPT-4), Google’s Gemini, and
Anthropic’s Claude, are capable of processing both textual and visual inputs and have demonstrated significant
potential in interpreting complex language, contextual information, and even medical data, positioning them as
valuable tools for diagnostic assistance and clinical decision-making?~’. There is an increasing interest in how
these models can interpret medical images and offer clinical insights, particularly in radiology, where precise
image analysis is critical®®.

Despite these advances, current literature shows that while LLMs perform well on text-based medical cases,
they often struggle with tasks requiring visual interpretation, such as identifying specific lesion locations or
analyzing complex imaging findings**!°. In the field of neuroradiology imaging, comparisons of accuracy
between LLMs and neuroradiologists have shown that LLMs did not demonstrate significantly superior
diagnostic capabilities compared to humans®!!. These limitations raise concerns about their ability to replicate
the nuanced reasoning that neuroradiologists apply when diagnosing from imaging data. Furthermore, much
of the existing research evaluates LLMs using publicly available datasets, which poses a risk of data leakage and
may result in an overestimation of the models” diagnostic accuracy!.

In this study, we aim to address these limitations by evaluating the diagnostic accuracy of multimodal
LLMs using independent, rephrased cases from JAMA Neurology and JAMA. By creating a test dataset that is
independent of the models’ training data, we seek to minimize bias and provide a more accurate assessment of the
LLMs ability to diagnose and interpret complex radiologic images. Additionally, we compare the performance of
these models against that of neuroradiologists to evaluate whether LLMs can simulate the diagnostic reasoning
required in clinical radiology practice. Furthermore, we sought to evaluate the models’ ability to interpret
radiologic images and their underlying reasoning processes when analyzing visual data. Through these analysis,
we aim to provide insights into the current capabilities of LLMs and identify areas where further improvements
are needed to integrate these models effectively into radiologic workflows.

Materials and methods
This retrospective study did not include patient data; therefore, institutional review board approval was waived.

Case selection from JAMA neurology and JAMA clinical challenges and rephrased quizzes
generation

Clinical challenges quizzes from JAMA Neurology and JAMA (https://jamanetwork.com/collections/44038/cli
nical-challeng) was searched in July 5th 2024, and only the neurology cases with radiologic images (CT, MRI,
angiography and nuclear medicine) were included in this study. Consequently, 56 cases from May 2015 to April
2024 were studied.

To avoid the dependence of the LLMs on the training data as the study investigating the ability of the LLMs
to generate an autonomous reasonable clinical diagnoses!>!?, the quizzes text were rephrased using different
words or word orders without changing their original meanings, and the multiple choices were rearranged
in randomly generated by GPT-40 (Supplementary material). The rephrased quizzes were reviewed by an
experienced diagnostic neuroradiologist (C.H.S. with experience of 13 years in radiology) to ensure relevance
and consistency. A flow chat of the study design is depicted in Fig. 1. The rephrased quiz text and the sources of
the questions have been summarized in the Supplementary Table.

Using LLM for answering quizzes

The study implemented six LLMs: GPT-4 Turbo with Vision (GPT-4v) (version gpt-4 turbo-2024-04-09) and
GPT-4 Omni (GPT-40) (version gpt-40-2024-05-13) by OpenAI, Gemini 1.5 Pro and Gemini 1.5 Flash by Google
DeepMind, Claude 3.0 (version claude-3-opus 20240229) and Claude 3.5 (version claude-3-5-sonnet 20240620)
by Anthropic. The six LLMs were accessed between July 27th and 31st, 2024. All LLMs were assessed using three
different temperatures—a parameter that affects the randomness and diversity of LLMs’ response, as higher
temperatures lead to generate more diverse responses, whereas lower temperatures make more deterministic
outputs; temperature 0 (T0), 0.5 (T0.5), and 1 (T1)!>!3. In addition, the quizzes answering processed five time
each in different session to each LLMs to assess repeatability of the responses, and out of the five responses, the
initial attempt was chosen for the analysis'*.

In this study four input methods were processed by the six LLMs including: (1) the original quizzes, (2)
rephrased quizzes, (3) only rephrased text quizzes, and (4) only image quizzes. The LLMs were challenged to
solve the original quizzes at first, and the rephrased quizzes in a separate session to study the impact of the
dependence of the LLMs on the training data. In addition, to evaluate the impact of the radiologic images on
the LLMs attempts, they were asked to solve the rephrased quizzes without images. Prompts were instructing to
answer the clinical challenge quizzes by choosing the most correct answer of the multiple choices. Prompts also
clarified that the quizzes were not for medical purpose to avoid the refusal of the LLMs to respond. The prompt
engineering and running LLMs were conducted by a neuroscientist (W.H.S.). as follows:

Assignment: You are a board-certified radiologist and you are tasked with solving a quiz on a special medical
case from common diseases to rare diseases. Patients’ clinical information and imaging data will be provided
for analysis; however, the availability of the patient’s basic demographic details (age, gender, symptoms) is
not guaranteed. The purpose of this assignment is not to provide medical advice or diagnosis. This is a purely
educational scenario designed for virtual learning situations, aimed at facilitating analysis and educational
discussions. You need to answer the question provided by selecting the option with the highest possibility from
the multiple choices listed below.

You need to answer the question provided by selecting the option with the highest possibility from the
multiple choices listed below. Please select the correct answer by typing the letter that corresponds to one of the
provided options. Each option is labeled with a letter (A, B, C, D, etc.) for your reference.
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Clinical challenges quizzes from JAMA Neurology and
JAMA between May 2015 and April 2024 (n=56)
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Fig. 1. Flow chart of the study.

Question: {symptom_text}

Output Format (JSON).
{
“answer”: “Enter the number of the option you believe is correct’,

»_

“reason”: “Explain why you think this option is the correct answer”.

1}

Additionally, the LLMs were challenged by the image only quizzes and were asked to answer six questions: (1)
what is the type of the medical imaging? (2) What is the specific imaging sequence? (3) Is the study contrast
enhanced? (4) What is the image plane? (5) What part of the body is imaged? (6) Where is the location of
the abnormal findings?, The LLMs temperature was adjusted on temperature 1 (T1) when they were tasked to
answer these questions”.

Evaluations

To evaluate the accuracy of human readers, three board-certified, neuroradiologists were involved in answering
the quizzes. One junior faculty neuroradiologist (P.S.S.), one second-year neuroradiology fellow (J.S.K.), and
one first-year neuroradiology fellow (A.A.), answered the quizzes using the same rephrased texts with images
provided to LLMs. All human readers were unaware that the cases were from the clinical challenges quizzes
from JAMA Neurology and JAMA. They were otherwise thoroughly informed on the quiz-answering guidelines:
(1) Prohibited to search the internet or textbooks while answering cases. (2) Completed the session without
breaks. (3) Time taken to answer each case was recorded. After completing the quiz, it was confirmed that none
of the human readers had previous experience clinical challenges quizzes from JAMA Neurology and JAMA.
A relatively experienced neuroradiologist not involved in answering the cases (C.H.S.) checked whether the
answers of the human readers and LLMs were correct.

Statistical analysis

Accuracy of the LLMs then analyzed by selecting the initial attempt, which considered representative among
the five repetitions. For each quiz case, accuracy was defined as the proportion of cases in which the LLMs first
response selected the correct multiple-choice option. The ground truth answer for each quiz was based on the
official answer provided by the JAMA Clinical Challenge. For image-only tasks, in which LLMs were asked to
answer six predefined questions (e.g., imaging modality, sequence, contrast, etc.), correctness was adjudicated
by a senior neuroradiologist (C.H.S.) with extensive experience in both radiologic interpretation and prior LLM
assessments. Each of the six answers per case was independently evaluated as correct or incorrect.

First, comparing the accuracy of the attempt using different temperature was done across the first three input
methods (the original quizzes, rephrased quizzes and only rephrased text quizzes) using generalized estimating
equations to account for observations within subjects. Additionally, differences in accuracy across brain disease
sub-sections (genetic disease, autoimmune/inflammation/infection, metabolic disease, neurodegeneration,
tumor, and vascular disease) for each model were analyzed using the Chi-squared test.
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Second, accuracy of four LLMs (GPT-4v, GPT-40, Gemini 1.5 Pro, and Claude 3.5) and three human readers
was compared using generalized estimating equations with the exchangeable working correlation structure.
In addition, post-hoc pairwise comparisons were conducted if the overall comparison showed statistical
significance and LLMs with the highest accuracy using the rephrased text with images were compared with
the results of the human readers. A p-value of <0.017 was considered statistically significant after applying the
Bonferroni correction for multiple comparisons (comparing with three human readers and the highest accuracy
LLM) in the post-hoc analysis.

Third, the generated responses after five repetitions were assessed and compared to evaluate stochasticity
of LLMs using Fleiss’ kappa statistics. A k-value>0.8 indicated almost perfect agreement, whereas 0.61-0.80,
0.41-0.60, 0.21-0.40, < 0.20 indicated substantial, moderate, fair, and poor agreement, respectivelyls.

Fourth, comparing the accuracy of LLMs for image only analysis were conducted using generalized estimating
equations. Statistical analysis was performed using SPSS (version 27.0 for Windows; IBM Corp.) and R version
4.4.0 (https://www.r-project.org).

Results

Clinical challenges quizzes from JAMA neurology and JAMA

A total of 56 clinical challenge quiz neurology cases were included in this study, all of which contain radiological
images of various regions: brain (n=34), spine (n=4), head and neck (n=4), and multiple areas (n=14).
The sub-sections within the brain region were as follows: genetic disease (6/34), autoimmune/inflammation/
infection (8/34), metabolic disease (5/34), neurodegeneration (5/34), tumor (9/34), and vascular disease (1/34).
The images were obtained using different modalities, including MRI (n=36), CT (n=2), both MRI and CT
(n=4), MRI and radiographs (n=1), MRI and angiography (n=1), MRI and clinical photos (#=10), MRI and
pathological slides (n=1), and nuclear medicine studies (n=1).

Accuracy of LLMs according to the input types

At first, the accuracy of the six LLMs has been compared after using three input types: (1) Original quiz text with
image, (2) Rephrased quiz text with image, (3) Rephrased quiz text only. The accuracy range using the original
quiz text with image from 51.8% (29/56) to 80.4% (45/56). The highest accuracy of 80.4% was the result of
Claude 3.5 (TO0, T0.5 and T1). The accuracy using the rephrased quiz text with image ranged from 62.5% (35/56)
to 76.8% (43/56). The highest accuracy of 76.8% was the result of Claude 3.5 (T0, T0.5 and T1). There was no
significant difference in the accuracy among different temperature settings in each LLM. For all LLM models and
all temperature settings, there were no significant differences in accuracy across the brain disease sub-sections
for the original quizzes, rephrased quizzes, and only rephrased text quizzes.

Then, the accuracy between using rephrased quiz text with image and rephrased quiz text only was compared.
The accuracy using the rephrased quiz text only ranged from 51.8% (29/56) to 76.8% (43/56), and the highest
accuracy 76.8% was achieved by Claude 3.5 (T0, T0.5 and T1). There was no statistically significant in the
accuracy using the rephrased quiz text only, except for Gemini Flash. The accuracy of LLMs according to input
types and temperatures is shown in Table 1. An example of inaccurate interpretation following rephrasing is
shown in Fig. 2.

Accuracy of LLMs and human readers for rephrased texts with images

The accuracy of the three human readers was compared with the LLMs that achieved the highest accuracy using
rephrased texts with images, Claude 3.5, GPT-4v, GPT-40 and Gemini 1.5 Pro, using the generalized estimating
equations. Accuracy of the junior faculty 51.8% (29/56), was lower than the accuracy of the LLMs (P <.001 after
Bonferroni correction) which is statistically significant. The accuracy of the second year clinical fellow 48.2%
(27/56), was lower than the accuracy of the LLMs (P<.001 after Bonferroni correction) which is statistically
significant. However, the accuracy of the first year clinical fellow was 71.4% (40/56), which was not significantly
different from that of the LLMs. The comparison among the accuracy of all LLMs and human readers was also
of no statistical significance (P=.017 after Bonferroni correction). The accuracy of LLMs and human readers for
rephrased texts with images is shown in Fig. 3; Table 2.

Stochasticity of LLMs

Stochasticity was assessed by the use of Fleiss’ kappa (Table 3). All LLMs showed almost similar results across
the five repetitions (GPT-4v: 0.919-0.990, GPT-40: 0.860-0.976, Gemini 1.5 Pro: 0.891-0.985, Gemini Flash:
0.950-1.000, Claude 3.0: 0.905-1.000, Claude 3.5: 0.990-1.000). The highest k-value was 1.000, achieved by
Gemini Flash (T0 and 0.5), Claude 3.0 (T0) and Claude 3.5 (T0). The k-values increased as temperature settings
decreased in all LLMs.

Accuracy of LLMs for image only analysis

The accuracy of the six LLMs using the image only quizzes was compared regarding six different questions
about: (1) the modality, (2) the sequence, (3) the contrast administration, (4) the image plane, (5) the anatomical
location, and (6) the pathologic location, using the generalized estimating equations. The accuracy of LLMs
for image only analysis is shown in Fig. 4; Table 4. The accuracy range regarding the modality was from 80.0%
(104/130) to 96.2% (125/130). The highest accuracy of 96.2% was achieved by Claude 3.5 (T1). The accuracy
range regarding the sequence was from 23.8% (31/130) to 81.5% (106/130) and the highest accuracy of 81.5%
was achieved by GPT-4v (T1). In addition, the accuracy range regarding the contrast administration was from
45.4% (59/130) to 90.8% (118/130), with highest accuracy of 90.8% was achieved by GPT-4v (T1). The accuracy
range regarding the image plane was from 50.8% (66/130) to 98.5% (128/130), with highest accuracy of 98.5%
achieved by GPT-4v (T1). In addition, the accuracy range regarding the anatomical location was from 53.1%
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Original quiz | Rephrased quiz | Rephrased quiz
text with image | text with image | text only P-value® | P-value®

GPT-4v
TO | 62.5% (35/56) 64.3% (36/56) 67.9% (38/56) 0.763 0.313
T0.5 | 64.3% (36/56) 62.5% (35/56) 67.9% (38/56) 0.739 0.173
Tl | 66.1% (37/56) 67.9% (38/56) 66.1% (37/56) 0.763 0.313
GPT-40
TO | 75.0% (42/56) 67.9% (38/56) 62.5% (35/56) 0.150 0.251
T0.5 | 76.8% (43/56) 67.9% (38/56) 62.5% (35/56) 0.051 0.313
T1 | 75.0% (42/56) 66.1% (37/56) 66.1% (37/56) 0.124 1.000

Gemini 1.5 pro
TO | 58.9% (33/56) 64.3% (36/56) 62.5% (35/56) 0.489 0.763
T0.5 | 57.1% (32/56) 64.3% (36/56) 62.5% (35/56) 0.342 0.763
T1 | 58.9% (33/56) 66.1% (37/56) 64.3% (36/56) 0.391 0.739

Gemini Flash
TO 53.6% (30/56) 64.3% (36/56) 51.8% (29/56) 0.027 0.005
TO.5 | 51.8% (29/56) | 64.3% (36/56) | 51.8% (29/56) | 0.014 | 0.005
T1 55.4% (31/56) 64.3% (36/56) 53.6% (30/56) 0.051 0.010
Claude 3.0
TO | 75.0% (42/56) | 73.2% (41/56) | 69.6% (39/56) | 0.654 | 0.478
TO0.5 | 73.2% (41/56) 69.6% (39/56) 75.0% (42/56) 0.411 0.563
T1 75.0% (42/56) 75.0% (42/56) 67.9% (38/56) 1.000 0.199
Claude 3.5
TO 80.4% (45/56) 76.8% (43/56) 76.8% (43/56) 0.313 1.000
TO0.5 | 80.4% (45/56) 76.8% (43/56) 76.8% (43/56) 0.313 1.000
T1 80.4% (45/56) 76.8% (43/56) 76.8% (43/56) 0.313 1.000

Table 1. Accuracy of LLMs according to the input types. GPT-4v, GPT-4 turbo with vision, GPT-40, GPT-4
omni, LLM, large language model, TO, temperature 0, T0.5, temperature 0.5, T1, temperature 1. Differences
in accuracy were calculated using the generalized estimating equations. 2P-value for comparison between the
original and rephrased quiz composed of texts and images. ®P-value for comparison between the rephrased
quiz composed of texts and images and rephrased quiz with texts only. P<.05 was considered statistically
significant. Significance value bold (P < .05).

(69/130) to 97.7% (127/130), with the highest accuracy of 97.7% was achieved by Claude 3.5 (T1). The accuracy
range regarding the pathologic location was from 21.5% (28/130) to 63.1% (82/130), and the highest accuracy of
63.1% was achieved by Claude 3.5 (T1),

Discussion

In our study, we assessed the diagnostic accuracy of LLMs across a range of neurology cases from JAMA
Neurology and JAMA, involving radiologic images, and compared their performance to that of neuroradiologists.
Our findings demonstrate that the best-performing LLMs, particularly Claude 3.5, achieved relatively high
accuracy (up to 80.4%) when provided with original image and text inputs. Notably, the LLMs demonstrated
similar accuracy when provided with either rephrased text with images or rephrased text only, indicating that
the models were capable of solving the clinical challenges based primarily on text inputs. When compared
with neuroradiologists, the LLMs performed at a similar level as first-year clinical fellow, while outperforming
junior faculty and second-year clinical fellow in some cases. While LLMs like Claude 3.5 and GPT-4v achieved
high accuracy in identifying imaging modalities and anatomical locations, their ability to interpret pathologic
locations from images alone was less satisfactory.

Previous studies have evaluated LLMs using open-source cases from widely accessible medical journals,
which may lead to data leakage and overestimate the models’ performance due to familiarity with the training
data®>>1216_ To mitigate this, we employed rephrased text versions of the JAMA Neurology and JAMA clinical
challenges. By rephrasing the quiz texts and reshuffling multiple-choice answers, we ensured the independence
of our test data, making our evaluation of the models more robust and unbiased. This adds significant value to
our study, as it truly challenges the LLMs’ ability to generate clinical diagnoses without relying on pre-exposed
material. To further assess the effect of modifying textual inputs, we compared model accuracy using both
the original quiz texts and their rephrased counterparts. Except for Gemini Flash, there was no statistically
significant difference in accuracy between the original and rephrased inputs for any of the LLMs, which may
reflect variations in processing strategies across different model architectures. These findings suggest that LLMs
possess capabilities beyond simple keyword matching, demonstrating an ability to identify and integrate essential
elements of clinical scenarios, thereby enhancing their credibility as tools capable of adapting to the diverse and
variable clinical descriptions encountered across institutions and clinicians in real-world practice!”.
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Q. An adolescent boy presented with cognitive and behavioral changes,
headaches, and progressively worsening weakness of the left arm and leg. The
patient was subsequently ad d to our hospital for further evaluation.
Sixteen months earlier, the patient was admitted to a hospital for weakness of
the left fingers and mild spasticity of the left lower extremity. Magnetic
resonance imaging (MRI) at the time revealed a suspicious lesion in the right
basal ganglia (Figure, A). In addition, carotid and intracranial angiography
revealed no abnormalities (not shown). Slight weakness in the left lower

Q. A teenage boy exhibited changes in cognition and behavior, headaches, and

extremity was detected 3 months later. ISR increasing weakness in his left arm and leg, leading to his admission to our

y_ hospital for further investigation. Sixteen months prior, he had been

Eanglia without mass effect (Figuze, B). Atrophy of the right cerebral] hospitalized for weakness in his left fingers and mild spasticity in his left lower

[F o ot S G e e v ) (el o) limb. MRI scans from that time are shown in Figures A and B. Carotid and
There was no history of tumors elsewhere, and his family history was :> :Strf':?‘“la;a:ig';’gt{ﬂlp};)l’ :l:mb“\la ’no :b?‘:j"“ﬂml“ Three months later, slight

unremarkable. Neurological examination revealed distal left hemiparesis, left %T‘hem was no history of

facial palsy, and decreased pinprick sensation in his left face and extremities. Rephrasing tumors, and his family history was unremarkable. Neurological examination

revealed distal left hemiparesis, left facial palsy, and reduced pinprick

Human chorionic gonadotropin S .
g P! sensation in his left face and limbs.

(HCG) levels in both serum and cerebrospinal fluid (CSF) were normal. A

sav disclos 1 i N HCG levels in
g}:né);;dssl?z disclosed normal pituitary function. WHAT IS YOUR both serum and CSF were normal, and a hormone assay indicated normal

pituitary function. What is your diagnosis?
A. Glioma

B. Infarction

C. Germinoma
D. Demyelination

A. Infarction

B. Demyelination
C. Germinoma
D. Glioma

Claude 3.5 (T1)’s answer: C (correct) Claude 3.5 (T1)’s answer: D (incorrect)

Fig. 2. An example of inaccurate interpretation following rephrasing by Claude 3.5 with temperature 1. This
radiologic quiz is created based on a JAMA neurology case?, featuring an adolescent boy presenting with
cognitive and behavioral changes. The correct diagnosis is “Germinoma”. In the rephrased version, descriptions
of the imaging findings were somewhat condensed, resulting in Claude 3.5 providing an incorrect answer. The
lesion location is indicated by yellow highlights, and the imaging findings are marked by green highlights for

clarity.
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Fig. 3. Accuracy of LLMs and human readers for rephrased texts with images. LLM = Large language model.
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76.8% 67.9% | 66.1% ) . )
(43/56) (38/56) | (37/56) | 66-1% (37/56) | 51.8% (29/56) | 48.2% (27/56) | 71.4% (40/56) | 0.017 | <0.001 | <0.001 | 0.362

Total

Table 2. Accuracy of LLMs and human readers for rephrased texts with images using generalized estimating
equations. Comparison of accuracy between LLMs and human readers was evaluated using generalized
estimating equations. GPT-4v, GPT-4 turbo with vision, GPT-40, GPT-4 omni, LLM, large language model.
*P-value for comparison among all LLMs and human readers, **P-value for comparison with a junior faculty
and the highest accuracy among LLMs, TP-value for comparison with second year clinical fellow and the
highest accuracy among LLMs, *P-value for comparison with first year clinical fellow and the highest accuracy
among LLMs. For ""P-value, "P-value, and *P-value, P<.017 was considered statistically significant following
Bonferroni correction for multiple comparisons in the post-hoc analysis. Significance value bold (P < .017).

Temperature 0 0.990 0.976 0.985 1.000 1.000 1.000
Temperature 0.5 | 0.937 0.927 0.941 1.000 0.935 0.990
Temperature 1 0.919 0.860 0.891 0.950 0.905 0.990

Table 3. Fleiss’ kappa value of LLMs after five repetitions. GPT-4v, GPT-4 turbo with vision, GPT-40, GPT-4
omni, LLM, large language model.
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Fig. 4. Accuracy of LLMs for image only analysis. LLM = Large language model.

Additionally, by utilizing clinical challenge quizzes from JAMA neurology and JAMA, which are peer-
reviewed and specifically designed for education and professional development, our study further increased
the complexity of the LLMS’ tasks. These quizzes closely mimic real-world clinical scenarios, providing not just
imaging data but also critical clinical information such as patient demographics, symptoms, and clinical history.
This setup tests the LLMs’ interpretative abilities, ensuring that their performance is based on their capacity to
synthesize and analyze complex clinical inputs, rather than relying on pre-trained responses.

A notable aspect of our study was the assessment of the stochasticity of LLMs across multiple attempts,
which demonstrated consistent and robust results, particularly in models like Claude 3.5 and GPT-4v (Fleiss’
kappa score: Claude 3.5=0.990-1.000 and GPT-4v =0.919-0.990). The high Fleiss’ kappa scores in repeated trials
indicate that these LLMs could maintain a stable performance across different sessions, which suggests that they
could be reliable tools for clinical decision-making. This consistency is crucial when considering the integration
of Al models into healthcare workflows, where reproducibility of decisions is paramount!%°.
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Gemini 1.5 Pro | Gemini 1.5 Claude 3.5 P-
GPT-4v (T1) | GPT-40 (T1) | (T1) Flash (T1) Claude 3.0 (T1) | (T1) P-value' | P-value” | P-value’ | value*
0, 0, 0
Modality (915;;//“130) ?16i93//0130) 91.5% (119/130) | 80.0% (104/130) | 81.5% (106/130) ?16225//0130) <0001 |0654 |0.002 |0.054
Sequence (811(.)560//01 30) (79243:/“30) 49.2% (64/130) | 34.6% (45/130) | 23.8% (31/130) (719(')23‘;/0130) <0.001 |0.59  |0.136 |<0.001
Contrast 90.8% 76.9% 83.8%
e cation | (118/130) | (loo/t30) | 692% (G0/130) | 45.4% (59/130) | 63.8% (83/130) | (10K 0 | <0.001 |0.046 0136 | 0.003
Image plane (9%?//"1 30) ??6?;/0130) 65.4% (85/130) | 50.8% (66/130) | 70.8% (92/130) ?16225‘;/0130) <0.001 |0.177  |<0.001 |<0.001
N 0, 0, (v
ﬁfc‘ztti";lcal ?féifm) (796;1/"30) 90.0% (117/130) | 53.1% (69/130) | 86.2% (112/130) ?17;//"130) <0001 |0177  |<0.001 |0.003
3 0, 0, 0
ﬁ:‘ct;‘i)};glc ?5151/"30) ‘(16751/"30) 29.2% (38/130) | 37.7% (49/130) | 21.5% (28/130) ZE{‘;O) <0.001 |<0.001 |0.004 |<0.001

Table 4. Accuracy of LLMs for image only analysis. GPT-4v, GPT-4 Turbo with Vision, GPT-40, GPT-4
Omni, LLM, Large language model, T1, temperature 1. *P-value for comparison among all LLMs using the
generalized estimating equations, **P-value for comparison with GPT-4v (T1) and Claude 3.5 (T1), TP-value
for comparison with GPT-40 (T1) and Claude 3.5 (T1), *P-value for comparison with Gemini 1.5 Pro (T1)
and Claude 3.5 (T1). For P-value™, P-value', and P-value®, P<.05 was considered statistically significant.
Significance value bold (P < .05 for *, T, %) .

EIEY

Interestingly, while the LLMs demonstrated strong performance with rephrased text-only inputs, this
strength may actually highlight a limitation in their radiologic interpretative abilities. The fact that these models
performed well without the aid of imaging suggests they are heavily reliant on detailed clinical information
rather than their ability to analyze images?’. This reliance on text alone, while beneficial for processing clinical
information, raises concerns about their ability to independently interpret complex imaging findings—a key
skill required for radiologists. Notably, LLMs demonstrated high accuracy for imaging modality (80.0-96.2%)
and anatomical location identification (53.1-97.7%), but showed substantially lower performance for pathologic
location identification (21.5-63.1%). This disparity suggests that while vision-enabled LLMs are capable of basic
image interpretation and normal anatomical structure recognition, they have marked limitations in precise spatial
localization of subtle pathologic changes?!. These results align with previous studies showing that while LLMs
have improved in understanding radiologic imaging, they still lack the nuanced interpretative skills required for
precise diagnoses and decision-making that human radiologists possess'®?2. While current LLMs demonstrate
strengths in interpreting text-based clinical information, they may benefit from further development in precise
localization tasks requiring complex visual reasoning. Given the importance of accurate pathologic localization
for treatment planning and prognosis prediction in neuroradiology practice, this limitation warrants further
investigation and improvement before broader clinical implementation.

There are several limitations to our study. First, while the human evaluators were neuroradiologists with
expertise in interpreting radiologic images, their relative lack of extensive clinical experience compared to
general neurologists or other clinicians may have influenced their performance, especially given the detailed
clinical information provided in the JAMA case challenges. Future studies should incorporate a broader range of
clinical participants with varying levels of expertise and from diverse practice backgrounds to better contextualize
LLM performance and assess its potential across real-world diagnostic settings. Second, although we created
rephrased quizzes to reduce the chance of data leakage from pre-trained models, we did not assess the impact of
different prompting styles or rephrased inputs on the LLMs’ reasoning processes in greater detail, and the images
themselves were not modified, which introduces a residual risk of potential data leakage within the core design
of the study. However, the LLMs demonstrated diagnostic performance comparable to first-year neuroradiology
fellows and only selectively outperformed more experienced readers, which suggests that their responses likely
reflect genuine clinical reasoning rather than simple recall of training data. If data leakage were the primary
factor, we would have expected them to consistently surpass all human evaluators. Third, the multiple-choice
format, modeled after JAMA quizzes, may have inadvertently inflated the perceived performance of LLMs by
narrowing the diagnostic options and reducing the complexity of decision-making, potentially overestimating
their true diagnostic capabilities in real-world scenarios. Future studies could address this limitation by
incorporating naturalistic narrative cases or longitudinal scenarios to better reflect the complexity of real clinical
workflows. Fourth, our findings reflect the capabilities of LLMs available at the time of the study; however, with
the emergence of newer and potentially more advanced models, such as OpenAT’s “ol pro,” future assessments
may yield different results, underscoring the need for ongoing re-evaluation as the technology evolves. Future
research should focus on developing and continuously benchmarking integrated reasoning systems capable of
processing multimodal inputs to improve diagnostic accuracy in complex clinical scenarios. Fifth, the structured
format of image-only questions (six predefined elements) may have limited the assessment of models’ ability to
perform integrated visual reasoning in more nuanced clinical scenarios. Lastly, due to the nature of the quizzes,
which included a relatively high proportion of rare diseases compared to more common conditions encountered
in general practice, neuroradiologists who were unable to consult the internet or textbooks may have been at a
disadvantage. Furthremore, this selection may not fully reflect the spectrum of complexity, ambiguity, and case
variability encountered in real-world radiologic practice. This also limits the generalizability of the findings to
more frequently encountered disease groups.
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Conclusion

While LLMs demonstrated strong performance in text-based tasks, their ability to independently interpret
radiologic images, particularly in identifying pathologic locations in neuroradiology, remains limited. Further
improvements, particularly in the interpretative analysis of imaging, are needed for these models to become
more fully integrated into clinical workflows.

Data availability

The datasets generated and analyzed during the current study were sourced from “Clinical Challenge” articles
published in JAMA and JAMA Neurology. Because these journals are not open access, the original quiz materials
and figures are not publicly available. However, we independently generated rephrased quiz texts to minimize
data leakage. The rephrased quiz texts and the sources of the questions are summarized in the Supplementary
Table. Researchers with appropriate institutional access to the journals may refer to the original articles.
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