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Essential mechanisms of herbal 
compounds are precisely identified 
and thoroughly analyzed. 
Rigorous evaluation of consistency 
across various network pharmacology 
databases is conducted. 
The choice of database is shown to 
significantly impact the 
understanding of known 
mechanisms. 
Advanced analytical techniques are 
demonstrated to be crucial for 
elucidating key mechanisms. 
The therapeutic potential of specific 
herbs in treating prostate cancer is 
validated in vitro and in vivo. 
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Introduction: Network pharmacology has gained significant traction as a tool for identifying the mecha-
nisms and therapeutic effects of herbal medicines. However, despite the usefulness of these approaches, 
their diversity underscores the critical need for a systematic evaluation to ensure consistency and relia-
bility. 
Objectives: We aimed to evaluate the network pharmacological analyses, focusing on identifying the 
mechanisms and therapeutic effects of herbal medicines. 
Methods: We employed a comprehensive approach involving systematic data retrieval, network con-
struction, and analysis. Herbal compounds and their targets were meticulously extracted from five dis-
tinct network pharmacology databases to ensure extensive coverage and high data reliability. 
Advanced network-based methods were used to identify key herbal targets and predict therapeutic 
effects, thereby enriching the depth and breadth of the analysis. Experimental validation was performed 
on prostate cancer models to substantiate the computational predictions.
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Results: The results of the recapitulating task for known herbal ingredient targets revealed distinct pat-
terns in performance and coverage based on network construction and aggregation methods. We per-
formed the same analysis to identify herbal targets and found that network centrality, path counts, 
and downweighted path counts had their own pros and cons. By comparing network-based methods, 
we found that considering the impact on the multiscale interactome yielded the highest accuracy in dis-
criminating known therapeutic effects. Using optimal conditions, we successfully identified new indica-
tions for herbal medicines and validated these findings through follow-up in vitro and in vivo 
experiments. 
Conclusion: This study presents the first comprehensive and critical evaluation of the current network 
pharmacology analyses in the field of herbal medicine and provides valuable guidance for continued 
advances in the elucidation of the mechanisms and therapeutic effects.
© 2024 Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).
 

Introduction 

Herbal medicine, a common intervention in traditional Asian 
medicine, is used to treat a wide spectrum of diseases and patho-
logical symptoms. Beyond its historical applications, it serves as 
a valuable source for novel drug discovery, demonstrating its 
potential in combating conditions such as COVID-19 and cancer 
[1,2,3,4]. However, despite their rich history and potential, the 
application of herbal medicines is often based on empirical knowl-
edge, and many of their mechanisms remain elusive. One of the 
primary reasons for this limitation is their complex nature, com-
prising multiple compounds that act on multiple targets [5,6].  To
address this complexity, researchers have adopted a network phar-
macology approach that explores the relationship between drugs 
and diseases within the context of a biological network [7,8]. Con-
sequently, network pharmacology (NP), by elucidating intricate 
interactions and mechanisms, has become a pivotal tool in this 
field, witnessing exponential growth in research over the past 
decade. 

Recent studies have sought to elucidate the mechanisms of 
action of herbal medicines using NP. Lee et al. delved into method-
ological trends in this analysis, identifying dominant databases 
(DBs) and observing their evolution over time [9]. Zhang et al. pro-
vided a comprehensive summary of the tools and DBs specifically 
employed for NP studies, including a comparison of the general 
statistics of herbal medicines across DBs [10]. Wang et al. show-
cased a method crafted by their research team for such analyses 
and detailed its progression over the years [11]. Despite these 
efforts, the practical utility of these analyses remains undeter-
mined due to a lack of quantitative evaluation of the methods used 
for network pharmacological analyses. Without a standardized 
approach, the results from different studies can manifest signifi-
cant variances, thereby causing inconsistencies in conclusions 
and potential misinterpretations in the application of herbal med-
icines. This highlights the pressing need for a systematic assess-
ment of NP methods specific to herbal medicine research. 

In this study, we systematically evaluated network pharmaco-
logical analyses of herbal medicines, focusing on their mechanisms 
and therapeutic effects. Here, we describe the characteristics of 
network construction methods across various DBs and their appli-
cations in deciphering their mechanisms and therapeutic effects. 
Subsequently, we evaluated the consistency of these network con-
struction methods to assess the potential disparities in the repre-
sentation of herbal ingredients and their target information 
across different DBs. Our analysis then explored the capacity to 
recapitulate the known targets of herbal medicines according to 
data sources and methods. We comprehensively assessed which 
network-based approaches were beneficial for classifying both 
the known and undiscovered therapeutic effects of herbal medi-
cines. Finally, experimental validation was conducted on prostate 
cancer, which emerged as a prioritized result with therapeutic 
800
importance. This study sheds light on the current state of network 
pharmacological analysis techniques and their relevance to herbal 
medicine. 
Methods 

Herb-compound-target network construction 

Data retrieval of herbal compounds and their corresponding 
target information was performed using five representative NP-
DBs: TCMSP [12], TCM-mesh [13], BATMAN-TCM [14], SymMap 
[15], and HERB [16]. For TCMSP, TCM-mesh, and BATMAN-TCM, 
data were directly retrieved from each DB using the available 
resources provided. The HERB database provides both mining data 
from other databases and known therapeutic effect data. In this 
study, we used the mining data from HERB, which will be referred 
to as HERB (mining), while the known therapeutic effect data will 
be discussed in subsequent sections. For SymMap and HERB, com-
pound information for herbs and target information for com-
pounds were obtained using API calls in combination with 
Python’s ‘‘requests” module based on a cross-reference ID table 
organized by individual entities. 

An ID mapping process was then conducted on the assembled 
dataset to ensure consistency in the herb, compound, and target 
nomenclature across diverse data sources. Herbal names were 
mapped based on the cross-ID table provided by the HERB DB. This 
process was initially curated by the first author and further vali-
dated through a comprehensive review by the corresponding 
author, both of whom are licensed Korean medicine doctors with 
PhDs in herbal prescription. Subsequently, the compounds and tar-
gets were mapped to PubChem Compound IDs (CIDs) and Entrez 
Gene IDs using cross-reference ID tables from each database and 
the NCBI Gene DB, respectively. In the subsequent stages of analy-
sis, only the data that were successfully mapped with these IDs 
(CIDs for compounds and Entrez Gene IDs for targets) were uti-
lized. This strategy ensured the use of a consistent identification 
system across all data used in subsequent analyses. 

Multiscale interactome 

The multiscale interactome is a network of interactions among 
proteins, between proteins and biological functions, and among 
biological functions themselves. The multiscale interactome used 
in this study was obtained from the data built by Ruiz et al. [17]. 
For protein–protein interactions (PPIs), they assembled 387,626 
physical interactions between 17,660 proteins from seven major 
databases, including the Biological General Repository for Interac-
tion Datasets, Database of Interacting Proteins, and Human Refer-
ence Protein Interactome Mapping Project. For protein-biological 
function interactions, they compiled 34,777 associations between

http://creativecommons.org/licenses/by/4.0/
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7,993 proteins and 6,387 biological functions from the Gene Ontol-
ogy (human version). For biological-biological functional interac-
tions, they constructed a hierarchy of biological functions 
consisting of 22,545 associations and 9,798 biological functions. 

Known targets and therapeutic effects of herbs and compounds 

The known targets and therapeutic effects of herbs and com-
pounds were identified using the HERB DB. The known targets 
are referred to as HERB (paper) in this study. This DB provides 
manually curated data on known targets and therapeutic effects 
associated with herbs and herbal compounds. During data extrac-
tion, we retrieved reference IDs from the HERB DB, which con-
tained data related to known targets and therapeutic effects. The 
Python ‘‘requests” module was employed to retrieve references 
sequentially [18]. This allowed the collation of information per-
taining to experimentally validated targets, denoted as ’paper-
mined target genes’ and ’paper-mined diseases’. The same proce-
dure was performed to retrieve related proteins from the obtained 
disease list. After data extraction, our data comprised 2,403 
compound-target interactions (CTIs) between 219 compounds 
and 875 targets, 256 herb-target interactions between 36 herbs 
and 182 targets, and 267,924 disease-protein associations between 
320 diseases and 8,777 proteins. 

Evaluation of NP-DB consistency 

The consistency among NP-DBs was evaluated using the recall 
metric. Recall is a measure designed to assess the uncommonness 
of the observed similarities. Specifically, for NP-DBs consistency 
analysis, a recall metric was used to evaluate the similarity of the 
same herbs or compounds across different DBs compared with 
the similarity within each DB [19]. This can be determined by cal-
culating the proportion of similarity values in a reference distribu-
tion that is lower than the similarity value of the same object 
measured in another DB. The reference distribution is composed 
of Pearson’s correlation distribution for all entities in the DB whose 
similarity to a particular object is to be measured. Pearson’s corre-
lation coefficient was calculated using one-hot encoding vectors to 
indicate the presence or absence of herbal compounds and their 
interactions with target compounds. High recall values correspond 
to higher-than-expected similarity values, providing an assess-
ment of how well a particular pair of herbs or compounds matches 
relative to an appropriate null distribution. 

Identifying key targets of herbs 

Network centrality, simple path count (PC), and degree-
weighted pathcount (DWPC) are commonly used methods for 
identify key targets of herbs. Network centrality, also called topo-
logical analysis, refers to the calculation of each target’s centrality 
in a subnetwork built based on PPIs between targets in a particular 
herb [20,21]. Entities exhibiting high centrality are usually consid-
ered key targets. Network centrality measures typically include 
degree, betweenness, and closeness centralities. Degree centrality 
quantifies the number of direct connections maintained by a node 
within a network. Betweenness centrality estimates the extent to 
which a node functions as a bridge or broker in a network. Close-
ness centrality measures the proximity of a node to all other nodes 
within the network. Centrality measures were calculated using the 
following equations. 

Degreecentrality v deg v 

where denotes a specific node and represents the 
number of edges connected to node 

v deg v 
v . 
801
Betweennesscentrality v
s–v–t 

rst v 
rst 

where and refer to nodes in the network distinct from v, 
denotes the number of shortest paths from node s to node t, and 

denotes the number of shortest paths from node to node 
that pass-through node 

Closenesscentrality v 1 

ud u v 

where u indicates a node in the network and signifies the 
shortest path distance from node v to node u. 

PC refers to the number of paths of a specified metapath 
between the source and target nodes. However, PC does not adjust 
to the extent of graph connectivity along the path. Paths traversing 
high-degree nodes account for a large portion of PC, even though 
high-degree nodes often represent biologically broad or vague 
entities with limited informativeness. Consequently, relying solely 
on PC may lead to skewed interpretations, potentially overlooking 
specific and biologically relevant interactions owing to the domi-
nance of high-degree nodes. 

The DWPC algorithm mitigates the overrepresentation of high-
degree nodes in PC calculations, thereby addressing the potential 
limitation of the PC method [22]. The DWPC algorithm originally 
downweights each path between a source and target node by cal-
culating the path degree product (PDP) as follows: 

1. Extracting all metaedge-specific degrees along the path , 
where each edge contributing to the path adds two degrees. 

2. Raise each degree to the negative power, where and 
serves as the damping exponent. 

3. Multiplying all exponentiated degrees to generate the PDP. 

In this method, we separated the damping parameter w into 
two distinct parameters, and which apply to degrees pre-
sent in the herb-compound path and compound-target path, 
respectively. Consequently, when raising each degree to a negative 
power, we employed for degrees along the herb-compound 
path and for degrees along the compound-target path. The 
modified PDP and DWPC values were calculated as follows: 

PDP path 
dHC DpathHC 

d wHC 
HC 

dCT DpathCT 

d wCT 
CT 

where and refer to the paths between the herb-
compound pair and compound-target pair, and denote 
the node degrees of and and and refer to 
the damping parameters of and respectively. 

DWPC h t 
path Paths h t 

PDP path 

where refers to the herb, denotes the target, and refer 
to the paths between h and 

This modification allowed us to adjust the weighting of each 
path type individually, thereby providing a more precise represen-
tation of the network structure. 

Network-based methods for identifying therapeutic effects 

Three network-based approaches were employed to predict the 
therapeutic effects of the herbal compounds and herbs: protein 
overlap, network proximity, and multiscale interactome. Protein 
overlap is based on the idea that ingredients with overlapping tar-
gets and disease-related proteins are likely to exert therapeutic 
effects. This can be calculated using the Jaccard Similarity between 
the set of drug targets T and the set of disease proteins S:

s t rst 

s t rst v 
v . 

d u v 

(Dpath)

w w 0 

wHC wCT , 

wHC 

wCT 

DpathHC DpathCT 

dHC dCT 

wHC wCT DpathHC DpathCT , 
DpathHC DpathCT , 

h t Paths h t 
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T S 
T S 

Network proximity is based on the principle that the closer the 
targets of a compound are to disease proteins in a human PPI net-
work, the more likely it is that the compound will affect the disease 
phenotype [23]. It is obtained by calculating the relative score of 
the shortest path length between the drug and disease based on 
the reference distribution. Let T be the set of drug targets and S 
be the set of disease proteins, where t T and s S represent 
the individual targets and proteins, respectively. d(s, t) denotes 
the shortest path length between nodes s and t in a network. Net-
work proximity first computes the average closest distance
between disease-associated proteins and ingredient targets as 
follows: 

dc S T 
1 
T t T 

mins Sd  s  t

Next, a reference distance distribution is constructed using the 
values of when S and T are randomly permuted into 1000 
sets of proteins that match the size and degrees of the original dis-
ease proteins and targets in the network. Finally, the relative score 
is computed by taking the z-score of with respect to the ref-
erence distribution: 

Zdc 

dc ldc S T 
rdc S T 

where and denote the mean and standard 
deviation of the reference distribution, respectively. 

Multiscale interactome models compare the impact of drug 
treatment and disease perturbation on a network that integrates 
interactions between proteins and biological functions [17]. It pre-
dicts the disease association of drugs and natural products by cal-
culating the diffusion profile and then measures the 
correlation distance between them. A diffusion profile is computed 
through a matrix formulation with a power iteration as follows: 

r k 1 1 a s a r k M s 
j J 

r k j 

where denotes the diffusion profiles at k-th state denotes 
the probability of the walker continuing its walk at a given step 
rather than restarting denotes a restart vector that sets 
the probability that the walker will jump to each node after a 
restart, and denotes a biased transition matrix derived from a 
directed multiscale interactome and set of scalar weights that 
encode the relative likelihood. 

These procedures are repeated until the convergence of the 
power iteration computation is as follows: 

r k 1 r k 1 e 

where denotes the tolerance parameter and was set to 
which is the same value as that in the previous study 

[17]. 
The correlation distance of drug and disease diffusion profile is 

calculated as follows: 

1 
r c r c r d r d 

r c r c 2 r d r d 2 

where r(c) and r(d) denote the diffusion profiles of the drug and 
disease, respectively. 

, dc s t , 

dc S T 

dc s t 

ldc S T rdc S T 
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M 

e 
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Performance measure

Performance evaluation was conducted under two main scenar-
ios within our study. First, we assessed whether the predicted tar-
gets of herbs or compounds derived from network construction 
and analyses corresponded to the known targets. Second, it was 
used to evaluate the predictive performance of known therapeutic 
effects based on the targets of herbs or compounds using various 
methods. 

The choice of the evaluation metric depended on the nature of 
the predicted outcomes. For binary predictions (i.e., the interaction 
between targets and herbs/compounds or predictions based on the 
percentile threshold of network centrality or PC), we used metrics 
such as the Matthews Correlation Coefficient (MCC), precision, cov-
erage, and recall. These values were calculated using the following 
formulae: 

MCC 
TP TN FP FN 

TP FP TP FN TN FP TN FN 

Precision 
TP 

TP FP 

Coverage TP 
TP FN 

Recall 
TP 

TP FN 

where TP represents true positives, TN represents true negatives, FP 
represents false positives, and FN represents false negatives. 

For continuous predictions (i.e., predictions about known herbs 
based on DWPC or prediction scores for the therapeutic effects of 
known herbs/compounds), performance was evaluated using the 
Area Under the Receiver Operating Characteristic curve (AUROC) 
and Area Under the Precision-Recall curve (AUPR). These metrics 
provide an overall measure of prediction performance, balancing 
the trade-off between sensitivity and specificity for AUROC and 
precision and recall for AUPR. 
Chemicals and reagents 

Anti-Bcl-2, anti-Bax, anti-Cdk2, anti-Cdk6, anti-p19, anti-p21, 
and anti-p27 antibodies were purchased from Santa Cruz Biotech-
nology (Dallas, TX). Anti-Mcl-1, anti-caspase-3, anti-PARP, anti-
STAT3, anti-Cyclin D1, and anti-b-actin were purchased from Cell 
Signaling Technology (Danvers, MA). HRP-conjugated anti-rabbit 
IgG and anti-mouse IgG antibodies were acquired from Enzo Life 
Sciences (Farmingdale, NY). 3-(4,5-dimethylthiazol-2-yl)-2,5-diph 
enyl-tetrazolium bromide (MTT) and crystal violet solution were 
purchased from Sigma-Aldrich (St. Louis, MO). Annexin V/propid-
ium iodide was purchased from BD Bioscience (San Jose, CA). Puer-
ariae Radix (PR), Lithospermum Erythrorhizon (LE), and Granati 
Fructus (GF) are medicinal herbs certified by the Korea FDA and 
were sourced from an hGMP facility (Nonglim Saengyak, Seoul, 
KOREA). The extracts of these herbs were prepared according to 
previously described methods [24]. 
Cell lines and cell culture 

PC3 and LNCap cells (obtained from the American Type Culture 
Collection, Rockville, MD) were cultured in RPMI 1640 medium 
supplemented with 10% fetal bovine serum, 50 lg/mL strepto-
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mycin, and 50 units/mL penicillin. The cells were cultured at 37 °C 
with 5% CO2 in a humidified atmosphere. 
Animal housing and xenograft experiments 

Six-week-old male BALB/c nude mice (18–20 g) were purchased 
from Samtako Inc. (Osan, Republic of Korea). Mice were housed at 
22 ± 3 °C and 54% ± 5% relative humidity conditions in a 12/12h 
light and dark-controlled room (light: 7:00–19:00h, dark: 19:00– 
7:00h). The mice were provided ad libitum access to rodent food 
and water. All experimental animal procedures were approved by 
the Gyeongsang National University Institutional Animal Care 
and Use Committee (GNU-240228-M0048) and conducted in 
accordance with the guidelines of the National Institutes of Health 
(NIH publication). 

PC3 cells were grown to 80% confluence and harvested for xeno-
graft experiments. The cells were resuspended in phosphate-
buffered saline at a concentration of 2 107 cells/ml. Each mouse, 
aged 7 weeks, was subcutaneously injected with 1 mL of the cell 
suspension on the left side. The mice were grouped and allowed 
for the tumors to grow to a target volume of 200 mm3 . Upon reach-
ing 200 mm3 tumor volume, the drug group was orally adminis-
tered PR, LE, and GF at doses of 500 and 1500 mg/kg/body 
weight three times a week for 15 days. Each control group was 
orally administered with (vehicle) and the positive control group 
was intraperitoneally injected with 8 mg/kg/day doxorubicin three 
times a week. Tumor growth and inhibition were measured daily 
using digital calipers. Tumor volume was calculated using the fol-
lowing formula: tumor volume (mm3 ) = tumor diameter short 
diameter2/2. At the end of the animal experiment (15 days), the 
mice were sacrificed, and the tumors were dissected. 
Cell proliferation/viability assay 

PC3 and LNCaP cells were cultured in a 48-well plate at a den-
sity of 5 103 cells per well for 24h. Subsequently, PR, LE, and FPG 
were each treated at various concentrations for 24, 48, and 72h. 
Following the incubation period, MTT treatment was conducted 
for 2 h at 37 °C. After incubation, the medium was removed, and 
300 lL of DMSO was added to each well to dissolve the formazan 
crystals. Absorbance was determined at 570 nm using an ELISA 
microplate reader (Agilent Technologies, Santa Clara, California). 
Clonogenic assay 

PC3 and LNCaP cells were plated in a 6-well plate at a density of 
1 103 cells per well and treated with PR, LE, or FPG for 24h. Sub-
sequently, the medium was replaced with drug-free medium, and 
the cells were cultured for an additional 8 days. After an 8-day 
incubation period, the medium was suctioned, and the cells were 
fixed with 4% formalin. The fixed cells were stained with 1% crystal 
violet solution and air-dried at room temperature. 
Flow cytometry 

PC3 and LNCaP cells were plated in a 6-well plate at a density of 
1 105 cells per well for 24h. Subsequently, PR, LE, and FPG were 
administered to the cells at specified concentrations for 72h, fol-
lowed by cell harvesting using trypsin. The cells were stained with 
Annexin V/propidium iodide (BD Biosciences, San Jose, CA) accord-
ing to the manufacturer’s instructions. The stained cells were 
assessed using an Accuri C6 flow cytometer (Accuri Cytometers 
Inc., Ann Arbor, MI) and 10,000 events were recorded. 
803
Immunoblot analysis 

PC3 and LNCaP cells were plated in a 60Ø dish at a concentra-
tion of 3 105 cells. Subsequently, PR, LE, and FPG were adminis-
tered at specified concentrations for 72h. Cell lysates were 
prepared using RIPA buffer at 4 °C, and protein quantification of 
the lysates was performed using a BCA assay kit (Thermo Fisher 
Scientific Inc., Waltham, MA). The quantified proteins were sepa-
rated by sodium dodecyl sulfate–polyacrylamide gel electrophore-
sis and subsequently transferred onto a PVDF membrane. After 
sequentially attaching primary and secondary antibodies to the 
transferred membrane, chemiluminescent signals were captured 
using a ChemiDoc image analyzer (Vilber Lourmat, France). 

Scratch wound healing assay 

PC3 and LNCaP cells were incubated in a 24-well plate until 
they reached approximately 90% confluency. Subsequently, a 
wound (a mono line) was created by scratching the surface using 
a 200 lL pipette tip. The process of co-culturing cells with PR, LE, 
or FPG at specified concentrations for 72h was observed using an 
automated microscope (BioTek Lionheart, Winooski, VT). 

Statistical analysis 

Statistical analyses of in vitro and in vivo experiments were per-
formed by checking the normal distribution of the data and consid-
ering the number of groups under investigation. For two-sample 
evaluations, normality was assessed using the Shapiro–Wilk test. 
Subsequently, a two-tailed Student’s t-test was conducted for pair-
wise comparison of groups exhibiting a normal distribution, 
whereas the Mann–Whitney U test was used when the normality 
assumption was not met. Similarly, for comparisons involving mul-
tiple groups, normality was first examined using the Shapiro–Wilk 
test. Datasets conforming to a normal distribution were then ana-
lyzed using one-way ANOVA coupled with Dunnett’s test; in 
instances where normality was not observed, the Kruskal–Wallis 
ANOVA with Dunn’s post hoc test was applied. In cases where 
the effects of different treatments and their interactions were eval-
uated, two-way ANOVA was employed. This method accounted for 
the variability between different treatment groups and the interac-
tion effects of combined treatments. The criteria for establishing 
statistical significance were set at p < 0.05 or p < 0.01. 

Results 

Overview of network construction and analysis 

NP-DBs are primary resources for constructing networks of her-
bal medicines. They offer comprehensive information about the 
compounds and targets of herbal medicines, enabling researchers 
to build networks of specific herbal medicines. In this section, we 
summarize the network construction and analysis methods pro-
vided by representative NP-DBs: TCMSP, BATMAN-TCM, TCM-
Mesh, SymMap, and HERB (Table 1. These DBs facilitate NP analysis 
of individual herbs, which many researchers have utilized and 
cited in their studies. These DBs also provide raw files or APIs, facil-
itating large-scale analyses.

Network pharmacological analysis of herbal medicines usually 
begins with the construction of herb-compound networks. Most 
NP-DBs contain ingredient information from databases such as 
TCMID [25] and TCM-ID (Table 1). NP-DBs typically assign a unique 
ID to each compound and provide the corresponding PubChem CID. 
This aids researchers in identifying the properties of compounds 
and mapping additional information for subsequent analyses.

move_t0005
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Table 1 
Description, statistics, and methods of representative databases that provide network pharmacological analysis for herbal medicines. H-C: herb-compound associations, C-T: 
compound-target associations. *Prediction method. 

Name (published year) Description Statistics Methods Website (PMID) 

H-C C-T 

A system pharmacology platform that 
provides information on ingredients, 
targets, and diseases of herbal 
medicines. 

499 herbs, 29,384 
ingredients, 3,311 
targets 

Drugbank, HIT, and 
SysDT* 

TCMSP (2014) Literature search tcmsp-e.com/ 
tcmsp.php 
(24735618) 

8,159 herbs, 25,210 
ingredients, 14,298 
targets 

BATMAN-TCM (2016) A bioinformatics analysis tool for 
molecular mechanisms of TCM 

TCMID DrugBank, KEGG, TTD, 
and Similarity score* 

bionet.ncpsb. 
org.cn/batman-
tcm 
(26879404) 

6,235 herbs, 383,840 
ingredients, 14,298 
targets 

TCM-mesh (2017) A system for providing network 
pharmacological analysis for TCM 

TCMID STITCH bionet.ncpsb. 
org.cn/batman-
tcm 
(28588237) 

698 herbs, 25,975 
ingredients, 20,965 
targets 

HIT, TCMSP, HPO, 
DrugBank, and NCBI 
databases 

TCMID, TCMSP, and TCM-
ID 

SymMap (2019) An integrative database of TCM 
enhanced by symptom mapping 

symmap.org 
(30380087) 

7,263 herbs, 28,212 
ingredients, 12,933 
targets 

SymMap, TCMID 2.0, 
TCMSP 2.3, and TCM-ID 
et al. 

HERB (2021) A high-throughput experiment- and 
reference-guided database of TCM 

SymMap, HIT, TCMSP, 
and TCMID 

herb.ac.cn 
(33264402)
Notably, TCMSP offers data on drug-likeness (DL) and predicted 
oral bioavailability (OB) of compounds, enhancing the ability to 
screen potential bioactive compounds [26]. Approximately one-
third of the pertinent studies employed compounds surpassing 
the suggested thresholds (i.e., drug-likeness and oral bioavailabil-
ity above 0.18 and 0.3, respectively) for their analyses [27,28]. 
These thresholds were used to maximize bioactive compound 
extraction while maintaining a manageable number of candidates 
[29]. This information was integrated into SymMap and HERB for a 
comprehensive overview of herbal medicine bioavailability. 

The subsequent phase of network construction involved identi-
fying the targets of compounds found in the herbal medicines 
(Fig. 1A). The sources of target information for herbal compounds 
can be broadly categorized into two primary types: experimentally 
validated and predicted. Databases such as the Herbal Ingredient 
Target [30,31] and DrugBank [32] are typically employed to gather 
experimentally validated targets; they house information curated 
manually from the literature based on in vitro or biochemical 
experimental results. However, a potential limitation of this 
approach is the sparse nature of data on these experimentally val-
idated targets. Relying solely on these targets limits the scope of 
herbal medicine analysis. Thus, NP-DBs provide predictive target 
information for herbal medicine components using various meth-
ods. For instance, Yu et al. proposed the SysDT model [33] to fore-
cast CTIs using both known and unknown compound-target 
associations alongside protein and compound descriptors. TCMSP 
uses this model to predict the targets of Chinese medicinal ingredi-
ents. Liu et al. introduced a CTI prediction technique based on com-
pound and target similarity scores [34]. BATMAN-TCM employs 
this method to identify the targets of herbal medicinal ingredients. 
TCM-Mesh curates the target data of herbal medicine components 
by incorporating information from STITCH [35], which aggregates 
scores from various sources, including experiments, predictions, 
DB consultations, and text mining.

The constructed network was analyzed to uncover the key 
mechanisms of action of the herbs. To identify key targets, 
researchers often construct protein–protein interaction (PPI) sub-
networks by mapping herbal medicine targets onto the global PPI 
network (Fig. 1B). Within these target-specific PPI subnetworks, 
network centrality analysis is performed to identify hub nodes that 
play central and significant roles in the network structure, assum-
ing these are key targets of herbal medicines [36]. Typically, 
researchers measure various properties such as degree centrality, 
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closeness centrality, and betweenness centrality, which indicate 
the importance of nodes in a network. Targets exhibiting centrality 
values above certain thresholds are usually considered key targets. 
PC analysis, similar to degree analysis, assumes that targets with 
overlapping interactions with ingredients are likely to be key tar-
gets [37,38]. This analysis allows for the consideration of the 
cumulative effects of herbal compounds on the targets. It computes 
the number of PCs from the herbs to the targets and selects those 
where the number exceeds a certain threshold, such as the median 
value. However, a potential limitation is treating all path counts 
(PCs) equally, regardless of whether they originate from common 
ingredients or those with numerous targets. High-degree nodes 
often represent biologically general or nonspecific entities, offering 
limited specific information [22]. Therefore, downweighting PCs 
associated with high-degree nodes can refine the analysis, poten-
tially leading to a more accurate understanding of key 
mechanisms. 

Network-based approaches also play a crucial role in leveraging 
the identified herbal targets to identify the therapeutic effects of 
herbal medicines. The principal or promising approaches among 
the network-based methods include protein overlap, network 
proximity, and multiscale interactome approaches (Fig. 1C). Pro-
tein overlap is based on the hypothesis that herbal medicines that 
share targets in specific diseases exhibit therapeutic efficacy [39]. 
Network proximity hypothesizes that herbal medicines with tar-
gets close to the disease proteins in the network exert therapeutic 
effects [23]. Network proximity employs z-scores to quantify the 
relative closeness of herbal targets to diseased proteins by compar-
ing the observed distances with the distribution of distances from 
randomly selected proteins. The multiscale interactome refers to a 
network consisting of physical interactions between proteins and a 
hierarchy of biological functions [17]. One study found that simu-
lating the propagation of a compound or disease on a multiscale 
interactome demonstrated state-of-the-art performance in pre-
dicting therapeutic effects and uncovered key mechanisms. Using 
this framework, Bak et al. successfully identified the active com-
pounds in Bupleuri Radix and their key mechanisms against oxida-
tive liver injury [40]. 

Consistency analysis across NP-DBs 

We explored the characteristics and discrepancies of the ingre-
dients and target information within the NP-DBs. We first mea-
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sured the MCC values between known targets and those available 
in each DB, building on the herb and herbal ingredient analyses 
described in the previous section. Our analysis focused on 42 com-
monly used herbs in the East Asian region, each containing at least 
three ingredients, along with 36 herbal ingredients for which tar-
get information is available in all NP-DBs. This selection criterion 
aimed to analyze herbal medicines commonly used in practice, 
addressing issues related to their practical utilization. We com-
pared the number of ingredients per herb across selected DBs 
and found that the average number of ingredients per herb was 
129.6 (Fig. 2A). Specifically, SymMap and HERB had higher counts,
Fig. 1. Analytical techniques utilized in network pharmacology analysis. (A) Compou
approach predicts interactions using vectors formed by concatenating the features of com
by ensembling scores derived from heterogeneous sources. Similarity score utilizes the 
target pairs. (B) Herb-target association identification. Network centrality identifies k
closeness, and/or betweenness and selecting those surpassing a specific threshold. Pathco
number of paths from an herb to that target. Degree-weighted path count downweights t
compounds with multiple targets (compound-target degree, dCT). The example on the rig
within the box, using parameters wHc= 0.5 and wCT=  1.  (C) Compound-disease prediction m
disease-related targets. Network proximity calculates the relative distance between 
interactome measures the influence of disease or herb/compound targets on the multis
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whereas BATMAN-TCM, TCM-Mesh, and HIT had fewer ingredi-
ents. We also identified 80 common ingredients across all DBs, 
whereas 903 ingredients were unique to specific DBs (Supplemen-
tary Fig. 1). To assess the impact of these frequency discrepancies, 
we performed consistency analysis by calculating the relative 
ranking of correlations for the same herb across different DBs. This 
analysis presupposes that if ingredient information consistently 
appears across DBs for a specific herb, there should be a higher cor-
relation in the ingredient information for that herb than for differ-
ent herbs in separate DBs. We found that, notably, the only 
exceptions were all pairs involving the HIT DB; for all other pairs,
nd-target prediction methods in network pharmacology database. Chemogenomic 
pounds and their targets. Ensemble approach relies on a combined score computed 
maximum likelihood ratio based on various similarity scores for query compound-
ey targets within the target network by evaluating node percentiles for degree, 
unt threshold designates key targets based on the presence of a specified or greater 
he pathcount for compounds found in many herbs (herb-compound degree, dHC) and 
ht panel illustrates the computation of DWPC values for herb-target pairs enclosed 
ethods. Protein overlap calculates the overlapping targets between herb targets and 

herb targets and disease-related targets in protein–protein networks. Multiscale 
cale interactome and then calculates the distance between them.
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Fig. 2. Characteristics and consistency of information across various network pharmacology databases. Herb-compound (upper figure) and compound-target (lower 
figure) characteristics by database. In each subfigure: the left panel displays the distribution of associations by database; the central panel highlights frequently occurring 
entities within the associations; and the right panel shows a correlation heatmap of herbs or ingredients between database pairs (lower triangle), paired with a distribution 
plot for recall percentiles (upper triangle). Within each correlation heatmap, the diagonal line represents the correlation values for the ingredients of identical herbs and the 
target information of the ingredients between the database pairs. Each distribution plot indicates the proportion of samples that achieved a recall value of 95% or higher.
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the recall rate exceeded 90% in 10 out of 15 DB pairs. This suggests 
that the differences in herbal ingredient information across DBs 
may have a limited impact.

We further explored whether a similar pattern existed in the 
target information for the selected ingredients. We counted the 
number of targets in the ingredients and found that even for the 
same ingredient groups, the number of targets varied significantly 
between DBs (Fig. 2B). Although only 189 targets were consistently 
identified across all DBs, specific DBs offered up to 1,662 unique 
targets (Supplementary Fig. 2). For quantitative assessment, we 
performed a consistency analysis by computing the relative rank-
ings of correlations between ingredients across pairs of DBs. Nota-
bly, we observed low correlation values for the same ingredients 
across different DB pairs. Our recall analysis showed that, even 
when performing the same analysis, none of the DB pairs had a 
recall rate exceeding 90%. This indicates that the target information 
for the same ingredient can diverge, depending on the DB used for 
the analysis. Our findings highlight the urgent need for a compre-
hensive, large-scale analysis of NP-DBs. 

Impact of NP-DBs on recapitulating known mechanisms 

To evaluate the effectiveness of the target information provided 
by the NP-DBs, we conducted a recapitulation task focused on the 
known targets of herbs and their ingredients. Therefore, we 
grouped all ingredient-target and herb-target associations into 
known and unknown associations. Notably, the density of known 
associations was low (1.3% for ingredient-target and 3.8% for 
herb-target), and unknown associations also contained potentially 
positive samples. Although these conditions pose obstacles to 
accurate performance evaluation, they still provide valuable 
insights into the characteristics of the information source and anal-
ysis method. 

We first measured MCC values between known targets and 
those available in each DB, based on the herb and herbal ingredient 
analyses described in the previous section. All DBs outperformed 
the chance level, with the TCM-Mesh achieving the highest score 
of 0.14 (Fig. 3A, upper panel). We also measured the coverage of 
each DB to predict ingredients with known targets. On average, 
the DBs achieved a coverage of 0.40, with HERB and SymMap nota-
bly standing out at 0.83 and 0.50, respectively. These findings indi-
cated that the reliability and coverage of herbal compounds 
exhibited unique patterns across different DBs.

We further analyzed the changes in recapitulation performance 
based on the combinations and aggregation methods across the 
NP-DBs (Fig. 3B, upper panel). Initially, we found that intersecting 
the target information from TCM-Mesh and HERB yielded the high-
est precision score (0.278). Among combinations with coverage 
greater than 0.5, uniting data from TCMSP, TCM-Mesh, SymMap, 
and HERB showed the best performance, with an MCC of 0.07. 
We observed minimal changes in performance when comparing 
union and intersection methods for aggregating target information, 
with all cases having an MCC of 0.06. However, when using the 
intersection method, we observed increased precision at the 
expense of reduced coverage, whereas the union approach yielded 
the opposite result. As the number of combined platforms 
increased, we observed a more pronounced tradeoff relationship 
between the MCC value and coverage. 

We extended the analysis to evaluate the performance of each 
NP-DB and their combinations in recapitulating known target 
information at the herb level. Our results demonstrated that all 
DBs maintained coverage exceeding half, while achieving a perfor-
mance that surpassed chance level (Fig. 3A, lower panel). Specifi-
cally, the highest coverage and MCC values were observed when 
HERB was used. In contrast, TCMSP displayed the lowest values 
for both metrics. Like our findings at the ingredient level, we 
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observed a tradeoff between precision and recall based on the 
aggregation method used for NP-DBs at the herb level (Fig. 3B, 
lower panel). Overall, our results highlighted that the methods 
and combination strategies employed to construct networks for 
herbal medicines can significantly influence both predictive perfor-
mance and coverage. 

Influence of analytical techniques on recapitulating known 
mechanisms 

We then assessed how network analysis techniques influenced 
the recapitulation performance of known mechanisms in herbal 
targets. Initially, we explored whether PPI network analysis of 
the herbal targets could help elucidating these mechanisms. Sub-
networks were constructed with targets from each DB as nodes 
and known PPIs forming the edges. Subsequently, three types of 
network centrality (degree, betweenness, and closeness) were 
measured for each node. We then evaluated the recapitulating per-
formance while varying the percentile thresholds for network cen-
trality, classifying targets as ‘‘known” when they exceeded the 
threshold, and ‘‘unknown” otherwise. The results indicated that 
as the centrality score increased, the MCC values generally 
decreased across most DBs. This trend was particularly evident 
for BATMAN-TCM, TCM-Mesh, and HERB. However, SymMap and 
TCMSP showed tendencies for increased MCC values within certain 
centrality thresholds (0.4–0.8). Our findings indicate that the ben-
efits of using network centrality analysis in target protein net-
works vary depending on the specific conditions and DB, 
suggesting that this approach may not always be the most effective 
for identifying core herbal targets. 

Next, we focused on variations in performance for recapitulat-
ing herbal targets based on path count (PC) percentile thresholds. 
Initially, we observed a continuous decline in the MCC value start-
ing from a PC threshold of 0.5 (Fig. 4B). However, precision exhib-
ited a slight increase within the 0.5–0.8 threshold range, while 
recall consistently decreased. Furthermore, we investigated how 
downweighting PCs, particularly those involving high-degree 
nodes, influenced the elucidation of key herbal targets. Using the 
DWPC algorithm, we performed the same analysis across a wide 
range of thresholds for the weight of the herb-ingredient path 

and ingredient-target path . We found that, as both 
the and thresholds increased, the AUROC values also gen-
erally increased (Fig. 4C). Specifically, our findings indicated that, 
except for the TCM-Mesh for and TCMSP for employing 
the DWPC algorithm to downweight PCs generally contributed to 
performance enhancement across most DBs (Supplementary 
Fig. 3). By exploring various combinations of weighting parame-
ters, we determined the optimal performance when and 
values were 1 and 0.4, respectively. By leveraging the optimal con-
ditions, we determined the DWPC percentile threshold to recapit-
ulate known herbal targets. Computing the DWPC percentiles for 
the selected herbal targets and assessing the MCC for each thresh-
old revealed that the 40% DWPC threshold consistently yielded the 
highest MCC values (Fig. 4D). These findings suggest that the her-
bal mechanisms can be identified more accurately by carefully 
considering the weight of the PC.

Evaluating the predictive performance of network models in 
therapeutic effects 

We further evaluated the utility of various network-based 
approaches to identify the therapeutic effects of herbal medicines. 
Three commonly used or potentially applicable methods, protein 
overlap, network proximity, and multiscale interactome, were con-
sidered. Using these methods, we calculated scores for all possible 
pairs of herbal ingredients and diseases, as well as those for herbs

(wHC) (wCT)
wHC wCT 
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Fig. 3. Recapitulation performance for herbal compounds (upper figure) and herbs (lower figure) across different databases and combinations. (A) Distribution of 
recapitulating performance and coverage for known targets in compounds and herbs by database. (B) Distribution of performance in rediscovering known targets by platform 
combination methods and the number of platforms used in the combination.
and diseases (Fig. 5A). We then performed a discrimination task 
using these scores to distinguish between the known and unknown 
associations. Notably, similar to our previous tasks, the density of 
known disease associations was quite low; therefore, the perfor-
mance in this context might have been underestimated compared 
with real-world scenarios. Nonetheless, this approach was valuable 
for comparing the characteristics of each prediction method.

We found that all network-based approaches outperformed 
chance level performances for both herbal ingredient-disease and 
herb-disease pairs (Fig. 5B). The protein overlap method yielded 
satisfactory AUROC and AUPR values. However, using this 
approach, only approximately one-third of the herbal medicine-
disease pairs yielded similarity scores greater than zero, leaving 
the majority of pairs unprioritized owing to a score of zero. This 
suggests that the protein overlap method may be limited in scope 
for discerning the therapeutic effects of herbal medicines and their 
ingredients. We also observed that the network proximity method 
produced lower AUROC and AUPR values compared to the other 
methods, suggesting that considering only closeness within a sim-
ple PPI network may not be sufficient for discerning therapeutic 
effects. In contrast, the multiscale interactome method outper-
formed the other methods both AUROC and AUPR. This highlights 
the importance of considering PPIs and their relationships with 
biological functions when determining the therapeutic effects of 
herbal medicines. 

We analyzed performance distribution based on a combination 
of platforms and prediction methods (Fig. 5C). In most combina-
tions, we confirmed that the performance surpassed chance level. 
Using known targets led to superior predictive outcomes for both 
the herbs and herbal ingredients. This suggests that, when suffi-
cient data are available, relying solely on validated information is 
beneficial. However, the other methods exhibited substantial per-
formance. HERB–multiscale interactome combination yielded the 
best performance for herbal ingredients, whereas SymMap–multi-
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scale interactome combination was the most effective for herbs. 
Overall, these findings underscore that the predictive accuracy of 
the therapeutic effects of herbal medicines can vary based on the 
combination of network methods employed. 

Case study on determining the therapeutic effects of herbs 

We sought to validate whether the identified optimal datasets 
and conditions could help predicting the therapeutic effects of 
herbs in various diseases. Using the multiscale interactome 
approach on the paper target, which showed the highest perfor-
mance in predicting therapeutic effects, we prioritized the rela-
tionship between herbs and diseases. We discovered that nearly 
half (4 out of 10) of the prioritized herb-disease associations had 
already been reported (Table 2)). Furthermore, we explored 
whether the unreported associations among the prioritized results 
could indicate the potential therapeutic effects of the herbs. We 
chose to focus on prostate neoplasm because it is both a top-
predicted result and a disease of significant therapeutic impor-
tance, with a rising prevalence and global impact. Given its rele-
vance, we explored the potential treatments and mechanisms of 
prostate cancer in detail. We confirmed that PR and LE showed 
high correlation scores with prostate cancer, along with GF, which 
is included in the top 10 rankings, without any reported evidence. 
Despite their high rankings, these components have not yet been 
reported in literature, indicating a unique opportunity to uncover 
new therapeutic effects and mechanisms.

To assess the in vivo anticancer efficacy of herbal extracts, we 
used a PC3 xenograft mouse model (Fig. 6A). Tumor volumes and 
body weights were measured daily to evaluate the effects of herbal 
extracts on tumor growth and overall health. We found that high 
doses of PR, LE, and GF significantly suppressed tumor growth 
compared to the control group (Fig. 6A, upper panel). Tumor vol-
umes were measured daily using a digital caliper, and the data
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Fig. 4. Performance distribution of herb-target associations based on network analysis methods. (A) Performance changes based on PPI network analysis of herb targets. 
Each plot represents the Matthews correlation coefficient value for herb-target pairs exceeding a given centrality percentile threshold for known herb targets. (B) 
Performance distribution according to path count percentile. Each plot displays the distribution of the Matthews correlation coefficient, precision, and recall between herb-
target pairs exceeding a specified path count percentile threshold and known herb-target pairs. (C) Performance variation based on downweighting of the herb-compound-
target network. The left plot depicts the AUROC value between the path count and known herb-target pairs as and vary. The right heatmap illustrates the average 
AUROC values for potential combinations of the downweighting parameters. (D) Performance variation according to downweighted path count percentile based on optimal 
conditions.

wHC wCT 
showed a clear reduction in tumor size in mice treated with high 
doses of the herbal extracts. Fig. 6A (lower panel) shows represen-
tative images of tumors from each treatment group, demonstrating 
visual differences in tumor size. Body weight changes were moni-
tored daily and expressed as percentages relative to day 1 (Fig. 6A, 
middle panel). High doses of PR, LE, and GF mitigated body weight 
loss typically associated with tumor progression. These results sug-
gest that the herbal extracts not only inhibited tumor growth but 
also supported overall health and body weight in treated mice. Sta-
tistical analysis confirmed significant differences between treat-
ment groups. These findings highlight the therapeutic potential 
of PR, LE, and GF in treating prostate cancer, as they significantly 
809
reduced tumor growth and supported body weight in a PC3 xeno-
graft mouse model after oral administration.

To verify the in vitro anticancer effects of PR, LE, and GF on pros-
tate cancer cell lines, we performed a series of assays. The MTT 
assay revealed a dose- and time-dependent decrease in cell viabil-
ity in PC3 and LNCaP cells, most notably at 72 h and 3,000 lg/mL 
(Fig. 6B). A colony-forming assay showed that treatment with 
these herbs inhibited clonogenic growth, indicating their long-
term effects on cell survival (Fig. 7A). Flow cytometry with Annexin 
V/PI staining demonstrated that PR, LE, and GF significantly 
increased apoptosis rates in PC3 and LNCaP cells compared to con-
trols (Fig. 7B). Western blot analysis confirmed these findings,
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Fig. 5. Distribution of prediction performance for herbal compounds (upper figure) and herbs (lower figure) based on databases and prediction methods.  (A) 
Schematic representation of the tasks for determining therapeutic effects and evaluations of network-based prediction methods. (B) Performance curves of network-based 
prediction methods for known therapeutic effects. (C) Distribution by platform and prediction method for known therapeutic effects. Overlap: protein overlap; proximity: 
network proximity; MSI: multiscale interactome. HERB (mining) represents data integrated from other databases, while HERB (paper) includes experimentally validated 
targets. Both datasets are provided by the HERB database.

Table 2 
Prioritized herb-indication pairs based on known herb targets and their reported evidence. 

Herb ID Disease ID Herb name (latin name) Disease name Reported evidence (PMID) 

herb007244 HBDIS001721 Petiolus trachycarpi Acute Promyelocytic Leukemia . 
herb000960 HBDIS005061 Vinegar Cocaine-Related Disorders . 
herb003658 HBDIS002540 Herba ephedrae Pulmonary Fibrosis 21,565,143 
herb003354 HBDIS002687 Melia azedarach Schizophrenia . 
herb000960 HBDIS002070 Vinegar Neoplasm Metastasis . 
herb003658 HBDIS000265 Herba ephedrae Asthma 36,215,828 
herb005069 HBDIS002488 Granati fructus Prostatic Neoplasms . 
herb005017 HBDIS002028 Rhizoma zingiberis recens Myocarditis 33,628,715 
herb000960 HBDIS001615 Vinegar Kidney Calculi 31,202,812 
herb001239 HBDIS000372 Erigeron breviscapus Bone neoplasms
showing that the expression of anti-apoptotic proteins Bcl-2 and 
Mcl-1 decreased, while markers of apoptosis, such as cleaved PARP 
and the b form of STAT3, increased after treatment with PR, LE, and 
GF. Notably, the cleaved form of caspase 3, a key executor of apop-
tosis, was upregulated, especially in LNCaP cells treated with these 
herbs (Fig. 7C and E). These assays collectively demonstrated the 
multifaceted anticancer activity of PR, LE, and GF, showcasing their 
ability to reduce cell viability, inhibit proliferation, and induce sig-
nificant apoptosis.
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We further explored the effects of PR, LE, and GF on cell cycle 
progression and metastasis. Western blot analysis indicated that 
PR and LE significantly downregulated the expression of Cyclin 
D1 and Cdk6 and inhibited Cdk2 expression, whereas GF had sim-
ilar effects with specificity for LNCaP cells. Upregulation of Cdk 
inhibitors p19, p21, and p27 by these herbs further highlighted 
their influence on cell cycle regulation (Fig. 7D and E). Additionally, 
a wound healing assay demonstrated that PR, LE, and GF effectively 
hindered cell migration in both PC3 and LNCaP cells, with PR
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Fig. 6. Effects of predicted herbs on tumor growth in prostate cancers in vivo and in vitro. A. Effects of on tumor size in PC-3 xenograft mouse model. Tumor growth 
(upper panel), body weight changes (middle panel) and the representation of xenograft tumor size reduction (lower panel) in a PC-3 xenograft mouse model. Tumor volumes 
and body weights were measured daily. Both low doses (500 mg/kg) and high doses (1500 mg/kg) of PR, LE, and GF suppressed tumor growth and reduced body weight loss 
(n > 8). Statistical analysis was performed using Two-way ANOVA with Dunnett’s multiple comparison test (*p < 0.05, **p < 0.01 vs. control; #p < 0.05, ##p < 0.01 vs. 
xenograft). PR, Puerariae Radix; LE, Lithospermum Erythrorhizon; GF, Granati Fructus; Xeno, xenograft control; DOX, doxorubicin. B. Cell viability measured using MTT assay in 
PC3 and LNCaP cells treated with PR, LE, and GF at the indicated concentrations and times (comparison with control, * p < 0.05, ** p < 0.01).
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Fig. 7. The effects of predicted herbs on cell proliferation, migration and apoptosis in PC3 and LNCaP cells. A. Colony formation assay: Cells treated with PR, LE, and GF at 
3,000 lg/ml for 72 h were stained with Annexin V/PI to categorize the cell population into viable, apoptotic, late apoptotic, and necrotic cells (The representative bands are the 
results of experiments repeated at least four times). B. Flow cytometry analysis: Cells treated with PR, LE, and GF at 3,000 lg/ml for 72 h were stained with Annexin V/PI to 
categorize the cell population into viable, apoptotic, late apoptotic, and necrotic cells. C. Immunoblotting analysis of apoptosis-related proteins in cells treated with PR, LE, and 
GF at 3,000 lg/ml for 72 h. D. Immunoblotting analysis of cell cycle-related proteins in cells treated with PR, LE, and GF at 3,000 lg/ml for 72 h. E. Statistical analysis of protein 
of interest. (*p < 0.05, **p < 0.01 vs. control). F. Scratch wound healing assay: Cells were treated with PR, LE, and GF at 3,000 lg/ml for 72 h, and real-time imaging of scratch 
confluence was conducted (scale bar = 1,000 lm). The data represent the percentage change in scratch gap (*p < 0.05, **p < 0.01 PR; #p < 0.05, ##p < 0.01 LE; p < 0.01 GF vs. 
control). PR, Puerariae Radix; LE, Lithospermum Erythrorhizon; GF, Granati Fructus. 812
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showing a notable reduction in migration as early as 12 h in LNCaP 
cells and 24 h in PC3 cells (Fig. 7F). Overall, our results indicate that 
the potent anticancer properties of PR, LE, and GF are mediated by 
their effects on cell migration and modulation of cell cycle-related 
proteins. 
 

Discussion 

Our critical evaluation serves as a cornerstone for understand-
ing current NP analysis of herbal medicine, focusing on underlying 
mechanisms and therapeutic effects. Initially, we outlined the net-
work construction process, highlighting the diverse DBs used for 
compound identification, target prediction, and key analytical tools 
to discern herbal mechanisms and therapeutic roles. Our explora-
tory analysis revealed high consistency in ingredient information 
across herbal medicine DBs, yet significant disparities in target 
information, emphasizing the need for a thorough evaluation. In 
our recapitulation task, the performance and coverage patterns 
were significantly influenced by the choice of NP-DBs, their combi-
nation methods, and analysis techniques such as network central-
ity and weighted PC. Further analysis of the therapeutic effects 
highlighted the multiscale interactome method as particularly 
effective, especially when combined with data sources such as 
HERB and SymMap. Our case study on prostate cancer reinforced 
these findings, confirming the potential of our approach to uncover 
novel therapeutic effects in real-world scenarios. 

Our analysis focuses on the consistency of NP-DB data, reveal-
ing significant inconsistencies, particularly in ingredient–target 
associations (Fig. 2). While herb–ingredient associations were gen-
erally consistent, with recall rates exceeding 90% across most data-
base pairs except those involving HIT, ingredient–target 
associations showed marked divergence between databases. HIT 
contained very few ingredients per herb (an average of fewer than 
five) because it only includes ingredients with experimentally val-
idated targets. These discrepancies likely stem from the intrinsic 
characteristics and data curation methods of each database. For 
example, SymMap and HERB compile comprehensive herb infor-
mation by incorporating data from existing NP-DBs, whereas 
BATMAN-TCM and TCM-Mesh select ingredients based on criteria 
such as the availability of PubChem CIDs. In contrast, HIT focuses 
solely on experimentally validated targets, resulting in a much 
smaller dataset, with an average of fewer than five targets per herb. 
This inconsistency poses challenges for researchers, leading to 
varying interpretations of an herb’s mechanism of action depend-
ing on the database. Our findings underscore the urgent need for 
a standardized approach to data collection and integration in NP-
DBs to improve the reliability of network pharmacology analyses 
involving herbal medicines. 

We compared various methods for key target identification in 
network analysis and recognized that the characteristics of these 
methods, according to the assumptions on which they rely, affect 
their applicability (Fig. 4). For instance, approaches like protein– 
protein interaction (PPI) network analysis, which perform effec-
tively in social networks [41,42], assume that targets centrally 
located in the PPI subnetwork are naturally pivotal. However, this 
assumption may not hold true in the complex networks of herbal 
compounds and their targets, making the efficacy of identifying 
key herbal targets elusive. Recent studies have highlighted that 
the influence of drugs is more local than global within a network 
[23], suggesting that the closeness between drug targets and 
disease-related proteins is crucial in determining therapeutic 
effects. Therefore, beyond global centrality measures, detailed 
investigation into the local relationships between herbal medicines 
and diseases within the network is warranted. Similarly, the use of 
path counts (PCs) can be limited by the uniform consideration of all 
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paths, regardless of whether they originate from common ingredi-
ents or those with extensive target profiles. High-degree nodes 
often correspond to biologically general or nonspecific entities, 
providing limited specific information [22]. Results from the DWPC 
algorithm suggest that downweighting herb-compound and 
compound-target paths involving high-degree nodes can elucidate 
known mechanisms of herbal medicines more accurately. Differen-
tiating the weights of PCs based on node characteristics—such as 
downweighting paths associated with high-degree nodes—could 
refine the analysis. Adjusting path weighting in this way may lead 
to a more accurate elucidation of key mechanisms, enhancing our 
understanding of how herbal medicines exert their therapeutic 
effects. Overall, these insights highlight the need for nuanced ana-
lytical techniques that consider the unique properties of herbal 
medicine networks to improve key target identification. 

To the best of our knowledge, this study represents a pioneering 
effort to systematically investigate the therapeutic effects of natu-
ral products (Fig. 5). Historically, the identification of disease treat-
ments through NP has predominantly focused on the measures of 
protein overlap and network proximity. These are conducted based 
on the assumption that a drug that tends to overlap with a disease 
and its proteins will treat that disease, or that a target occupying 
an important network position in the relationship between 
selected proteins will play a crucial role. However, the applicability 
of these foundational beliefs to understand the intricacies of natu-
ral products remains a topic of debate. Our findings suggest that 
protein overlap is limited and only effective for a restricted spec-
trum of therapeutic effects. Although network proximity encom-
passes protein relationships within a network, its efficacy often 
mirrors random outcomes, suggesting that merely focusing on pro-
tein interactions in natural products may generate misleading con-
clusions. In contrast, our research indicated that evaluating the 
effects within a multiscale interactome can provide a more reliable 
prediction for identifying therapeutic effects. 

To validate the potential of a novel therapeutic approach for 
prostate cancer predicted by our research, we conducted in vitro 
experiments to confirm its effects. In our study, we confirmed that 
the predicted herbs PR, LE, and GF inhibited cell viability, prolifer-
ation, and migration by regulating proteins involved in apoptosis 
and cell cycle regulation (Fig. 6). Moreover, we confirmed the 
in vivo effects of the predicted herbs on tumor growth inhibition 
in nude mice xenografted with PC3 cells (data not shown). PR is 
a widely used traditional herb for various conditions such as car-
diovascular diseases, diabetes mellitus, and deafness [43]. 
Although studies on the anticancer effects of PR in vivo and 
in vitro are lacking, the isoflavones present in PR induce apoptosis 
and cell cycle arrest in the G2/M phase in breast cancer cells [44]. 
LE has antioxidant properties [45] and suppresses high-fat diet-
induced obesity [46]. In addition, LE has also been shown to exhibit 
anticancer effects by inducing apoptosis and G1 phase arrest in 
B16F10 melanoma cells. Additionally, it has shown potential anti-
cancer effects in a C57BL/6 mouse model [47]. GF has demon-
strated anti-inflammatory effects both in vivo and in vitro [48].  It
has therapeutic and preventive effects against various chronic 
human diseases, including an atherogenic lipoprotein profile, 
imbalanced antioxidative status, and disrupted glucose tolerance 
[49]. In line with this, several ingredients have been studied as 
anti-cancer agents in clinical trials [50]. Dietary supplements like 
saw palmetto and green tea extract have also shown effects on 
prostate cancer in randomized controlled trials (RCTs) [51]. Nota-
bly, clinical studies have explored herbal components such as 
genistein and daidzein found in PR, as well as vitamin C and cate-
chin present in GF, for their roles in regulating prostate cancer pro-
gression [52,53,54]. These previous and current findings suggest 
that the predicted herbs in this study have potential efficacy 
against prostate cancer. However, further research, including RCTs,
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is needed to confirm the beneficial effects of PR, LE, and GF on pros-
tate cancer and other human cancers. 

This study may contain several limitations that may require fur-
ther evaluation and refinement. First, the known therapeutic 
effects analyzed are primarily based on in vivo experiments, sug-
gesting the need for additional clinical studies to validate these 
findings in a real-world context. Second, our analysis relied on a 
single database for known target and therapeutic effects, which 
may introduce bias due to the limited scope and curation criteria 
of the database. Lastly, while our computational methods are 
robust, they do not fully account for the complex pharmacokinetics 
and interactions of multiple compounds within herbal formula-
tions, which could influence therapeutic outcomes. Nevertheless, 
this study represents the first systematic analysis and validation 
of the therapeutic effects of herbal medicine through network 
pharmacology, laying a strong foundation for future research in 
this area. 

Conclusion 

Our study systematically evaluated the methodologies of NP in 
herbal medicine and provided essential insights into the mecha-
nisms and therapeutic effects of herbal ingredients. We emphasize 
the significance of methodological approaches in network con-
struction and analysis, particularly the advantages of multiscale 
interactomes over traditional methods, such as protein overlap 
and network proximity. Our empirical validation further affirmed 
the potential of NP to identify and substantiate novel therapeutic 
effects, as exemplified by its successful application in prostate can-
cer treatment, thereby establishing a precedent for future research 
in this promising field. 
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