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HIGHLIGHTS

« Essential mechanisms of herbal
compounds are precisely identified
and thoroughly analyzed.

« Rigorous evaluation of consistency
across various network pharmacology
databases is conducted.

« The choice of database is shown to
significantly impact the
understanding of known
mechanisms.

« Advanced analytical techniques are
demonstrated to be crucial for
elucidating key mechanisms.

« The therapeutic potential of specific
herbs in treating prostate cancer is
validated in vitro and in vivo.

ARTICLE INFO

Article history:

Received 5 July 2024

Revised 5 December 2024
Accepted 24 December 2024
Available online 25 December 2024

Keywords:

Network pharmacology
Herbal medicine
Comprehensive evaluation
Therapeutic mechanisms

GRAPHICAL ABSTRACT

Network pharmacology DB Network analytical techniques Predicting therapeutic effects

. P
- R

Herb-compound-target association >
H

Network Pharmacology L Protein overlap  NetWork  yiytiscale
Database oo [ proximity interactome
(TCMSP, BATMAN-TCM, [ = . <Performance evaluation>
TCM-mesh, SymMap, HERB) [ = SR e "

PPlanalysis  Pathcount analysis
<Consistency analysis>
- <Recapitulating test>

Experimental validation
(in vivo and in vitro model)

Comp g
associations associations o

ABSTRACT

Introduction: Network pharmacology has gained significant traction as a tool for identifying the mecha-
nisms and therapeutic effects of herbal medicines. However, despite the usefulness of these approaches,
their diversity underscores the critical need for a systematic evaluation to ensure consistency and relia-
bility.

Objectives: We aimed to evaluate the network pharmacological analyses, focusing on identifying the
mechanisms and therapeutic effects of herbal medicines.

Methods: We employed a comprehensive approach involving systematic data retrieval, network con-
struction, and analysis. Herbal compounds and their targets were meticulously extracted from five dis-
tinct network pharmacology databases to ensure extensive coverage and high data reliability.
Advanced network-based methods were used to identify key herbal targets and predict therapeutic
effects, thereby enriching the depth and breadth of the analysis. Experimental validation was performed
on prostate cancer models to substantiate the computational predictions.

* Corresponding authors at: School of Korean Medicine, Gachon University, Seongnam 13110, Republic of Korea.
E-mail addresses: ywk@dongguk.ac.kr (Y.W. Kim), eopchang@gachon.ac.kr (C.-E. Kim).

! These authors contributed equally to this work.

https://doi.org/10.1016/j.jare.2024.12.040

2090-1232/© 2024 Published by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jare.2024.12.040&domain=pdf
https://doi.org/10.1016/j.jare.2024.12.040
http://creativecommons.org/licenses/by/4.0/
mailto:ywk@dongguk.ac.kr
mailto:eopchang@gachon.ac.kr
https://doi.org/10.1016/j.jare.2024.12.040
http://www.sciencedirect.com/science/journal/20901232
http://www.elsevier.com/locate/jare

W.-Y. Lee, K.-I. Park, S.-B. Bak et al.

Journal of Advanced Research 76 (2025) 799-815

Results: The results of the recapitulating task for known herbal ingredient targets revealed distinct pat-
terns in performance and coverage based on network construction and aggregation methods. We per-
formed the same analysis to identify herbal targets and found that network centrality, path counts,
and downweighted path counts had their own pros and cons. By comparing network-based methods,
we found that considering the impact on the multiscale interactome yielded the highest accuracy in dis-
criminating known therapeutic effects. Using optimal conditions, we successfully identified new indica-
tions for herbal medicines and validated these findings through follow-up in vitro and in vivo

experiments.

Conclusion: This study presents the first comprehensive and critical evaluation of the current network
pharmacology analyses in the field of herbal medicine and provides valuable guidance for continued
advances in the elucidation of the mechanisms and therapeutic effects.

© 2024 Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Herbal medicine, a common intervention in traditional Asian
medicine, is used to treat a wide spectrum of diseases and patho-
logical symptoms. Beyond its historical applications, it serves as
a valuable source for novel drug discovery, demonstrating its
potential in combating conditions such as COVID-19 and cancer
[1,2,3,4]. However, despite their rich history and potential, the
application of herbal medicines is often based on empirical knowl-
edge, and many of their mechanisms remain elusive. One of the
primary reasons for this limitation is their complex nature, com-
prising multiple compounds that act on multiple targets [5,6]. To
address this complexity, researchers have adopted a network phar-
macology approach that explores the relationship between drugs
and diseases within the context of a biological network [7,8]. Con-
sequently, network pharmacology (NP), by elucidating intricate
interactions and mechanisms, has become a pivotal tool in this
field, witnessing exponential growth in research over the past
decade.

Recent studies have sought to elucidate the mechanisms of
action of herbal medicines using NP. Lee et al. delved into method-
ological trends in this analysis, identifying dominant databases
(DBs) and observing their evolution over time [9]. Zhang et al. pro-
vided a comprehensive summary of the tools and DBs specifically
employed for NP studies, including a comparison of the general
statistics of herbal medicines across DBs [10]. Wang et al. show-
cased a method crafted by their research team for such analyses
and detailed its progression over the years [11]. Despite these
efforts, the practical utility of these analyses remains undeter-
mined due to a lack of quantitative evaluation of the methods used
for network pharmacological analyses. Without a standardized
approach, the results from different studies can manifest signifi-
cant variances, thereby causing inconsistencies in conclusions
and potential misinterpretations in the application of herbal med-
icines. This highlights the pressing need for a systematic assess-
ment of NP methods specific to herbal medicine research.

In this study, we systematically evaluated network pharmaco-
logical analyses of herbal medicines, focusing on their mechanisms
and therapeutic effects. Here, we describe the characteristics of
network construction methods across various DBs and their appli-
cations in deciphering their mechanisms and therapeutic effects.
Subsequently, we evaluated the consistency of these network con-
struction methods to assess the potential disparities in the repre-
sentation of herbal ingredients and their target information
across different DBs. Our analysis then explored the capacity to
recapitulate the known targets of herbal medicines according to
data sources and methods. We comprehensively assessed which
network-based approaches were beneficial for classifying both
the known and undiscovered therapeutic effects of herbal medi-
cines. Finally, experimental validation was conducted on prostate
cancer, which emerged as a prioritized result with therapeutic
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importance. This study sheds light on the current state of network
pharmacological analysis techniques and their relevance to herbal
medicine.

Methods
Herb-compound-target network construction

Data retrieval of herbal compounds and their corresponding
target information was performed using five representative NP-
DBs: TCMSP [12], TCM-mesh [13], BATMAN-TCM |[14], SymMap
[15], and HERB [16]. For TCMSP, TCM-mesh, and BATMAN-TCM,
data were directly retrieved from each DB using the available
resources provided. The HERB database provides both mining data
from other databases and known therapeutic effect data. In this
study, we used the mining data from HERB, which will be referred
to as HERB (mining), while the known therapeutic effect data will
be discussed in subsequent sections. For SymMap and HERB, com-
pound information for herbs and target information for com-
pounds were obtained using API calls in combination with
Python’s “requests” module based on a cross-reference ID table
organized by individual entities.

An ID mapping process was then conducted on the assembled
dataset to ensure consistency in the herb, compound, and target
nomenclature across diverse data sources. Herbal names were
mapped based on the cross-ID table provided by the HERB DB. This
process was initially curated by the first author and further vali-
dated through a comprehensive review by the corresponding
author, both of whom are licensed Korean medicine doctors with
PhDs in herbal prescription. Subsequently, the compounds and tar-
gets were mapped to PubChem Compound IDs (CIDs) and Entrez
Gene IDs using cross-reference ID tables from each database and
the NCBI Gene DB, respectively. In the subsequent stages of analy-
sis, only the data that were successfully mapped with these IDs
(CIDs for compounds and Entrez Gene IDs for targets) were uti-
lized. This strategy ensured the use of a consistent identification
system across all data used in subsequent analyses.

Multiscale interactome

The multiscale interactome is a network of interactions among
proteins, between proteins and biological functions, and among
biological functions themselves. The multiscale interactome used
in this study was obtained from the data built by Ruiz et al. [17].
For protein-protein interactions (PPIs), they assembled 387,626
physical interactions between 17,660 proteins from seven major
databases, including the Biological General Repository for Interac-
tion Datasets, Database of Interacting Proteins, and Human Refer-
ence Protein Interactome Mapping Project. For protein-biological
function interactions, they compiled 34,777 associations between
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7,993 proteins and 6,387 biological functions from the Gene Ontol-
ogy (human version). For biological-biological functional interac-
tions, they constructed a hierarchy of biological functions
consisting of 22,545 associations and 9,798 biological functions.

Known targets and therapeutic effects of herbs and compounds

The known targets and therapeutic effects of herbs and com-
pounds were identified using the HERB DB. The known targets
are referred to as HERB (paper) in this study. This DB provides
manually curated data on known targets and therapeutic effects
associated with herbs and herbal compounds. During data extrac-
tion, we retrieved reference IDs from the HERB DB, which con-
tained data related to known targets and therapeutic effects. The
Python “requests” module was employed to retrieve references
sequentially [18]. This allowed the collation of information per-
taining to experimentally validated targets, denoted as ’paper-
mined target genes’ and 'paper-mined diseases’. The same proce-
dure was performed to retrieve related proteins from the obtained
disease list. After data extraction, our data comprised 2,403
compound-target interactions (CTIs) between 219 compounds
and 875 targets, 256 herb-target interactions between 36 herbs
and 182 targets, and 267,924 disease-protein associations between
320 diseases and 8,777 proteins.

Evaluation of NP-DB consistency

The consistency among NP-DBs was evaluated using the recall
metric. Recall is a measure designed to assess the uncommonness
of the observed similarities. Specifically, for NP-DBs consistency
analysis, a recall metric was used to evaluate the similarity of the
same herbs or compounds across different DBs compared with
the similarity within each DB [19]. This can be determined by cal-
culating the proportion of similarity values in a reference distribu-
tion that is lower than the similarity value of the same object
measured in another DB. The reference distribution is composed
of Pearson’s correlation distribution for all entities in the DB whose
similarity to a particular object is to be measured. Pearson’s corre-
lation coefficient was calculated using one-hot encoding vectors to
indicate the presence or absence of herbal compounds and their
interactions with target compounds. High recall values correspond
to higher-than-expected similarity values, providing an assess-
ment of how well a particular pair of herbs or compounds matches
relative to an appropriate null distribution.

Identifying key targets of herbs

Network centrality, simple path count (PC), and degree-
weighted pathcount (DWPC) are commonly used methods for
identify key targets of herbs. Network centrality, also called topo-
logical analysis, refers to the calculation of each target’s centrality
in a subnetwork built based on PPIs between targets in a particular
herb [20,21]. Entities exhibiting high centrality are usually consid-
ered key targets. Network centrality measures typically include
degree, betweenness, and closeness centralities. Degree centrality
quantifies the number of direct connections maintained by a node
within a network. Betweenness centrality estimates the extent to
which a node functions as a bridge or broker in a network. Close-
ness centrality measures the proximity of a node to all other nodes
within the network. Centrality measures were calculated using the
following equations.

Degreecentrality(v) = deg(v)

where v denotes a specific node and deg(v) represents the
number of edges connected to node v.

801

Journal of Advanced Research 76 (2025) 799-815

O-st(v)
sEvAt gy

Betweennesscentrality(v) =

where s and t refer to nodes in the network distinct from v, oy
denotes the number of shortest paths from node s to node t, and
o« (v) denotes the number of shortest paths from node s to node t
that pass-through node v.

1

>d(u, v)’

where u indicates a node in the network and d(u, v) signifies the
shortest path distance from node v to node u.

PC refers to the number of paths of a specified metapath
between the source and target nodes. However, PC does not adjust
to the extent of graph connectivity along the path. Paths traversing
high-degree nodes account for a large portion of PC, even though
high-degree nodes often represent biologically broad or vague
entities with limited informativeness. Consequently, relying solely
on PC may lead to skewed interpretations, potentially overlooking
specific and biologically relevant interactions owing to the domi-
nance of high-degree nodes.

The DWPC algorithm mitigates the overrepresentation of high-
degree nodes in PC calculations, thereby addressing the potential
limitation of the PC method [22]. The DWPC algorithm originally
downweights each path between a source and target node by cal-
culating the path degree product (PDP) as follows:

Closenesscentrality(v)

1. Extracting all metaedge-specific degrees along the path (Dpam),
where each edge contributing to the path adds two degrees.

2. Raise each degree to the negative w power, where w > 0 and
serves as the damping exponent.

3. Multiplying all exponentiated degrees to generate the PDP.

In this method, we separated the damping parameter w into
two distinct parameters, wyc and wcr, which apply to degrees pre-
sent in the herb-compound path and compound-target path,
respectively. Consequently, when raising each degree to a negative
power, we employed wyc for degrees along the herb-compound
path and wcr for degrees along the compound-target path. The
modified PDP and DWPC values were calculated as follows:

PDP(path) = [ dy™ = J[ dg,

drc €Dparnyye der €Dpagn gy

where Dy, and Dpen, refer to the paths between the herb-
compound pair and compound-target pair, dyc and d denote
the node degrees of Dy, and Dpgng, and wyc and wer refer to
the damping parameters of Dy, and Dpam,,, respectively.

DWPC(h,t)= Y PDP(path),

pathePaths(h,t)

where h refers to the herb, t denotes the target, and Paths(h, t) refer
to the paths between h and t.

This modification allowed us to adjust the weighting of each
path type individually, thereby providing a more precise represen-
tation of the network structure.

Network-based methods for identifying therapeutic effects

Three network-based approaches were employed to predict the
therapeutic effects of the herbal compounds and herbs: protein
overlap, network proximity, and multiscale interactome. Protein
overlap is based on the idea that ingredients with overlapping tar-
gets and disease-related proteins are likely to exert therapeutic
effects. This can be calculated using the Jaccard Similarity between
the set of drug targets T and the set of disease proteins S:
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Network proximity is based on the principle that the closer the
targets of a compound are to disease proteins in a human PPI net-
work, the more likely it is that the compound will affect the disease
phenotype [23]. It is obtained by calculating the relative score of
the shortest path length between the drug and disease based on
the reference distribution. Let T be the set of drug targets and S
be the set of disease proteins, where t € T and s € S represent
the individual targets and proteins, respectively. d(s, t) denotes
the shortest path length between nodes s and t in a network. Net-
work proximity first computes the average closest distance, d.(s, t),
between disease-associated proteins and ingredient targets as
follows:

1 .
d.(S,T) = mztdmmsesd(s, t).

Next, a reference distance distribution is constructed using the
values of d.(S,T) when S and T are randomly permuted into 1000
sets of proteins that match the size and degrees of the original dis-
ease proteins and targets in the network. Finally, the relative score
is computed by taking the z-score of d.(s, t) with respect to the ref-
erence distribution:

Cde—p (5T

Za. = 6. (S.T)

where W, (S,T) and ,4.(S,T) denote the mean and standard
deviation of the reference distribution, respectively.

Multiscale interactome models compare the impact of drug
treatment and disease perturbation on a network that integrates
interactions between proteins and biological functions [17]. It pre-
dicts the disease association of drugs and natural products by cal-
culating the diffusion profile re RY' and then measures the
correlation distance between them. A diffusion profile is computed
through a matrix formulation with a power iteration as follows:

(k+1) __ _ (k) (k)
D = (1 —o)s + or M+sz€]:rj ),
J

where r® denotes the diffusion profiles at k-th state, & denotes
the probability of the walker continuing its walk at a given step
rather than restarting, s € R denotes a restart vector that sets
the probability that the walker will jump to each node after a
restart, and M denotes a biased transition matrix derived from a
directed multiscale interactome and set of scalar weights that
encode the relative likelihood.

These procedures are repeated until the convergence of the
power iteration computation is as follows:

It —r )y > e,

where ¢ denotes the tolerance parameter and was set to
1 x 107%, which is the same value as that in the previous study
[17].

The correlation distance of drug and disease diffusion profile is
calculated as follows:

I = r@) || (1@ — r@)]],

where r(c) and r(d) denote the diffusion profiles of the drug and
disease, respectively.
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Performance measure

Performance evaluation was conducted under two main scenar-
ios within our study. First, we assessed whether the predicted tar-
gets of herbs or compounds derived from network construction
and analyses corresponded to the known targets. Second, it was
used to evaluate the predictive performance of known therapeutic
effects based on the targets of herbs or compounds using various
methods.

The choice of the evaluation metric depended on the nature of
the predicted outcomes. For binary predictions (i.e., the interaction
between targets and herbs/compounds or predictions based on the
percentile threshold of network centrality or PC), we used metrics
such as the Matthews Correlation Coefficient (MCC), precision, cov-
erage, and recall. These values were calculated using the following
formulae:

(TP x TN — FP x FN)
/(IP+ FP) x (TP + FN) x (IN + FP) x (IN + FN)’

MCC =

P

Precision = TP L FP’

P

Coverage = TP FN’

_mw
TP+ FN

where TP represents true positives, TN represents true negatives, FP
represents false positives, and FN represents false negatives.

For continuous predictions (i.e., predictions about known herbs
based on DWPC or prediction scores for the therapeutic effects of
known herbs/compounds), performance was evaluated using the
Area Under the Receiver Operating Characteristic curve (AUROC)
and Area Under the Precision-Recall curve (AUPR). These metrics
provide an overall measure of prediction performance, balancing
the trade-off between sensitivity and specificity for AUROC and
precision and recall for AUPR.

Recall =

Chemicals and reagents

Anti-Bcl-2, anti-Bax, anti-Cdk2, anti-Cdk6, anti-p19, anti-p21,
and anti-p27 antibodies were purchased from Santa Cruz Biotech-
nology (Dallas, TX). Anti-Mcl-1, anti-caspase-3, anti-PARP, anti-
STAT3, anti-Cyclin D1, and anti-p-actin were purchased from Cell
Signaling Technology (Danvers, MA). HRP-conjugated anti-rabbit
IgG and anti-mouse IgG antibodies were acquired from Enzo Life
Sciences (Farmingdale, NY). 3-(4,5-dimethylthiazol-2-yl)-2,5-diph
enyl-tetrazolium bromide (MTT) and crystal violet solution were
purchased from Sigma-Aldrich (St. Louis, MO). Annexin V/propid-
ium iodide was purchased from BD Bioscience (San Jose, CA). Puer-
ariae Radix (PR), Lithospermum Erythrorhizon (LE), and Granati
Fructus (GF) are medicinal herbs certified by the Korea FDA and
were sourced froman hGMP facility (Nonglim Saengyak, Seoul,
KOREA). The extracts of these herbs were prepared according to
previously described methods [24].

Cell lines and cell culture

PC3 and LNCap cells (obtained from the American Type Culture
Collection, Rockville, MD) were cultured in RPMI 1640 medium
supplemented with 10% fetal bovine serum, 50 pg/mL strepto-
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mycin, and 50 units/mL penicillin. The cells were cultured at 37 °C
with 5% CO, in a humidified atmosphere.

Animal housing and xenograft experiments

Six-week-old male BALB/c nude mice (18-20 g) were purchased
from Samtako Inc. (Osan, Republic of Korea). Mice were housed at
22 + 3 °C and 54% + 5% relative humidity conditions in a 12/12h
light and dark-controlled room (light: 7:00-19:00h, dark: 19:00-
7:00h). The mice were provided ad libitum access to rodent food
and water. All experimental animal procedures were approved by
the Gyeongsang National University Institutional Animal Care
and Use Committee (GNU-240228-M0048) and conducted in
accordance with the guidelines of the National Institutes of Health
(NIH publication).

PC3 cells were grown to 80% confluence and harvested for xeno-
graft experiments. The cells were resuspended in phosphate-
buffered saline at a concentration of 2 x 107 cells/ml. Each mouse,
aged 7 weeks, was subcutaneously injected with 1 mL of the cell
suspension on the left side. The mice were grouped and allowed
for the tumors to grow to a target volume of 200 mm?>. Upon reach-
ing 200 mm> tumor volume, the drug group was orally adminis-
tered PR, LE, and GF at doses of 500 and 1500 mg/kg/body
weight three times a week for 15 days. Each control group was
orally administered with (vehicle) and the positive control group
was intraperitoneally injected with 8 mg/kg/day doxorubicin three
times a week. Tumor growth and inhibition were measured daily
using digital calipers. Tumor volume was calculated using the fol-
lowing formula: tumor volume (mm?) = tumor diameter x short
diameter2/2. At the end of the animal experiment (15 days), the
mice were sacrificed, and the tumors were dissected.

Cell proliferation/viability assay

PC3 and LNCaP cells were cultured in a 48-well plate at a den-
sity of 5 x 10> cells per well for 24h. Subsequently, PR, LE, and FPG
were each treated at various concentrations for 24, 48, and 72h.
Following the incubation period, MTT treatment was conducted
for 2 h at 37 °C. After incubation, the medium was removed, and
300 pL of DMSO was added to each well to dissolve the formazan
crystals. Absorbance was determined at 570 nm using an ELISA
microplate reader (Agilent Technologies, Santa Clara, California).

Clonogenic assay

PC3 and LNCaP cells were plated in a 6-well plate at a density of
1 x 103 cells per well and treated with PR, LE, or FPG for 24h. Sub-
sequently, the medium was replaced with drug-free medium, and
the cells were cultured for an additional 8 days. After an 8-day
incubation period, the medium was suctioned, and the cells were
fixed with 4% formalin. The fixed cells were stained with 1% crystal
violet solution and air-dried at room temperature.

Flow cytometry

PC3 and LNCaP cells were plated in a 6-well plate at a density of
1 x 10° cells per well for 24h. Subsequently, PR, LE, and FPG were
administered to the cells at specified concentrations for 72h, fol-
lowed by cell harvesting using trypsin. The cells were stained with
Annexin V/propidium iodide (BD Biosciences, San Jose, CA) accord-
ing to the manufacturer’s instructions. The stained cells were
assessed using an Accuri C6 flow cytometer (Accuri Cytometers
Inc., Ann Arbor, MI) and 10,000 events were recorded.
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Immunoblot analysis

PC3 and LNCaP cells were plated in a 600 dish at a concentra-
tion of 3 x 10° cells. Subsequently, PR, LE, and FPG were adminis-
tered at specified concentrations for 72h. Cell lysates were
prepared using RIPA buffer at 4 °C, and protein quantification of
the lysates was performed using a BCA assay kit (Thermo Fisher
Scientific Inc., Waltham, MA). The quantified proteins were sepa-
rated by sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis and subsequently transferred onto a PVDF membrane. After
sequentially attaching primary and secondary antibodies to the
transferred membrane, chemiluminescent signals were captured
using a ChemiDoc image analyzer (Vilber Lourmat, France).

Scratch wound healing assay

PC3 and LNCaP cells were incubated in a 24-well plate until
they reached approximately 90% confluency. Subsequently, a
wound (a mono line) was created by scratching the surface using
a 200 pL pipette tip. The process of co-culturing cells with PR, LE,
or FPG at specified concentrations for 72h was observed using an
automated microscope (BioTek Lionheart, Winooski, VT).

Statistical analysis

Statistical analyses of in vitro and in vivo experiments were per-
formed by checking the normal distribution of the data and consid-
ering the number of groups under investigation. For two-sample
evaluations, normality was assessed using the Shapiro-Wilk test.
Subsequently, a two-tailed Student’s t-test was conducted for pair-
wise comparison of groups exhibiting a normal distribution,
whereas the Mann-Whitney U test was used when the normality
assumption was not met. Similarly, for comparisons involving mul-
tiple groups, normality was first examined using the Shapiro-Wilk
test. Datasets conforming to a normal distribution were then ana-
lyzed using one-way ANOVA coupled with Dunnett’s test; in
instances where normality was not observed, the Kruskal-Wallis
ANOVA with Dunn’s post hoc test was applied. In cases where
the effects of different treatments and their interactions were eval-
uated, two-way ANOVA was employed. This method accounted for
the variability between different treatment groups and the interac-
tion effects of combined treatments. The criteria for establishing
statistical significance were set at p < 0.05 or p < 0.01.

Results
Overview of network construction and analysis

NP-DBs are primary resources for constructing networks of her-
bal medicines. They offer comprehensive information about the
compounds and targets of herbal medicines, enabling researchers
to build networks of specific herbal medicines. In this section, we
summarize the network construction and analysis methods pro-
vided by representative NP-DBs: TCMSP, BATMAN-TCM, TCM-
Mesh, SymMap, and HERB (Table 1. These DBs facilitate NP analysis
of individual herbs, which many researchers have utilized and
cited in their studies. These DBs also provide raw files or APIs, facil-
itating large-scale analyses.

Network pharmacological analysis of herbal medicines usually
begins with the construction of herb-compound networks. Most
NP-DBs contain ingredient information from databases such as
TCMID [25] and TCM-ID (Table 1). NP-DBs typically assign a unique
ID to each compound and provide the corresponding PubChem CID.
This aids researchers in identifying the properties of compounds
and mapping additional information for subsequent analyses.
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Table 1
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Description, statistics, and methods of representative databases that provide network pharmacological analysis for herbal medicines. H-C: herb-compound associations, C-T:

compound-target associations. *Prediction method.

Name (published year) Description Statistics Methods Website (PMID)
H-C C-T

TCMSP (2014) A system pharmacology platform that 499 herbs, 29,384 Literature search Drugbank, HIT, and tcmsp-e.com/
provides information on ingredients, ingredients, 3,311 SysDT* tcmsp.php
targets, and diseases of herbal targets (24735618)
medicines.

BATMAN-TCM (2016) A bioinformatics analysis tool for 8,159 herbs, 25,210 TCMID DrugBank, KEGG, TTD, bionet.ncpsb.
molecular mechanisms of TCM ingredients, 14,298 and Similarity score* org.cn/batman-

targets tcm
(26879404)
TCM-mesh (2017) A system for providing network 6,235 herbs, 383,840 TCMID STITCH bionet.ncpsb.

pharmacological analysis for TCM

targets

SymMap (2019) An integrative database of TCM

enhanced by symptom mapping

targets

HERB (2021) A high-throughput experiment- and
reference-guided database of TCM

targets

ingredients, 14,298
698 herbs, 25,975
ingredients, 20,965

7,263 herbs, 28,212
ingredients, 12,933

org.cn/batman-

tcm
(28588237)
TCMID, TCMSP, and TCM-  HIT, TCMSP, HPO, symmap.org
ID DrugBank, and NCBI (30380087)
databases
SymMap, TCMID 2.0, SymMap, HIT, TCMSP, herb.ac.cn
TCMSP 2.3, and TCM-ID and TCMID (33264402)

et al.

Notably, TCMSP offers data on drug-likeness (DL) and predicted
oral bioavailability (OB) of compounds, enhancing the ability to
screen potential bioactive compounds [26]. Approximately one-
third of the pertinent studies employed compounds surpassing
the suggested thresholds (i.e., drug-likeness and oral bioavailabil-
ity above 0.18 and 0.3, respectively) for their analyses [27,28].
These thresholds were used to maximize bioactive compound
extraction while maintaining a manageable number of candidates
[29]. This information was integrated into SymMap and HERB for a
comprehensive overview of herbal medicine bioavailability.

The subsequent phase of network construction involved identi-
fying the targets of compounds found in the herbal medicines
(Fig. 1A). The sources of target information for herbal compounds
can be broadly categorized into two primary types: experimentally
validated and predicted. Databases such as the Herbal Ingredient
Target [30,31] and DrugBank [32] are typically employed to gather
experimentally validated targets; they house information curated
manually from the literature based on in vitro or biochemical
experimental results. However, a potential limitation of this
approach is the sparse nature of data on these experimentally val-
idated targets. Relying solely on these targets limits the scope of
herbal medicine analysis. Thus, NP-DBs provide predictive target
information for herbal medicine components using various meth-
ods. For instance, Yu et al. proposed the SysDT model [33] to fore-
cast CTIs using both known and unknown compound-target
associations alongside protein and compound descriptors. TCIMSP
uses this model to predict the targets of Chinese medicinal ingredi-
ents. Liu et al. introduced a CTI prediction technique based on com-
pound and target similarity scores [34]. BATMAN-TCM employs
this method to identify the targets of herbal medicinal ingredients.
TCM-Mesh curates the target data of herbal medicine components
by incorporating information from STITCH [35], which aggregates
scores from various sources, including experiments, predictions,
DB consultations, and text mining.

The constructed network was analyzed to uncover the key
mechanisms of action of the herbs. To identify key targets,
researchers often construct protein-protein interaction (PPI) sub-
networks by mapping herbal medicine targets onto the global PPI
network (Fig. 1B). Within these target-specific PPI subnetworks,
network centrality analysis is performed to identify hub nodes that
play central and significant roles in the network structure, assum-
ing these are key targets of herbal medicines [36]. Typically,
researchers measure various properties such as degree centrality,
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closeness centrality, and betweenness centrality, which indicate
the importance of nodes in a network. Targets exhibiting centrality
values above certain thresholds are usually considered key targets.
PC analysis, similar to degree analysis, assumes that targets with
overlapping interactions with ingredients are likely to be key tar-
gets [37,38]. This analysis allows for the consideration of the
cumulative effects of herbal compounds on the targets. It computes
the number of PCs from the herbs to the targets and selects those
where the number exceeds a certain threshold, such as the median
value. However, a potential limitation is treating all path counts
(PCs) equally, regardless of whether they originate from common
ingredients or those with numerous targets. High-degree nodes
often represent biologically general or nonspecific entities, offering
limited specific information [22]. Therefore, downweighting PCs
associated with high-degree nodes can refine the analysis, poten-
tially leading to a more accurate understanding of key
mechanisms.

Network-based approaches also play a crucial role in leveraging
the identified herbal targets to identify the therapeutic effects of
herbal medicines. The principal or promising approaches among
the network-based methods include protein overlap, network
proximity, and multiscale interactome approaches (Fig. 1C). Pro-
tein overlap is based on the hypothesis that herbal medicines that
share targets in specific diseases exhibit therapeutic efficacy [39].
Network proximity hypothesizes that herbal medicines with tar-
gets close to the disease proteins in the network exert therapeutic
effects [23]. Network proximity employs z-scores to quantify the
relative closeness of herbal targets to diseased proteins by compar-
ing the observed distances with the distribution of distances from
randomly selected proteins. The multiscale interactome refers to a
network consisting of physical interactions between proteins and a
hierarchy of biological functions [17]. One study found that simu-
lating the propagation of a compound or disease on a multiscale
interactome demonstrated state-of-the-art performance in pre-
dicting therapeutic effects and uncovered key mechanisms. Using
this framework, Bak et al. successfully identified the active com-
pounds in Bupleuri Radix and their key mechanisms against oxida-
tive liver injury [40].

Consistency analysis across NP-DBs

We explored the characteristics and discrepancies of the ingre-
dients and target information within the NP-DBs. We first mea-
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sured the MCC values between known targets and those available
in each DB, building on the herb and herbal ingredient analyses
described in the previous section. Our analysis focused on 42 com-
monly used herbs in the East Asian region, each containing at least
three ingredients, along with 36 herbal ingredients for which tar-
get information is available in all NP-DBs. This selection criterion
aimed to analyze herbal medicines commonly used in practice,
addressing issues related to their practical utilization. We com-
pared the number of ingredients per herb across selected DBs
and found that the average number of ingredients per herb was
129.6 (Fig. 2A). Specifically, SymMap and HERB had higher counts,
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whereas BATMAN-TCM, TCM-Mesh, and HIT had fewer ingredi-
ents. We also identified 80 common ingredients across all DBs,
whereas 903 ingredients were unique to specific DBs (Supplemen-
tary Fig. 1). To assess the impact of these frequency discrepancies,
we performed consistency analysis by calculating the relative
ranking of correlations for the same herb across different DBs. This
analysis presupposes that if ingredient information consistently
appears across DBs for a specific herb, there should be a higher cor-
relation in the ingredient information for that herb than for differ-
ent herbs in separate DBs. We found that, notably, the only
exceptions were all pairs involving the HIT DB; for all other pairs,
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the recall rate exceeded 90% in 10 out of 15 DB pairs. This suggests
that the differences in herbal ingredient information across DBs
may have a limited impact.

We further explored whether a similar pattern existed in the
target information for the selected ingredients. We counted the
number of targets in the ingredients and found that even for the
same ingredient groups, the number of targets varied significantly
between DBs (Fig. 2B). Although only 189 targets were consistently
identified across all DBs, specific DBs offered up to 1,662 unique
targets (Supplementary Fig. 2). For quantitative assessment, we
performed a consistency analysis by computing the relative rank-
ings of correlations between ingredients across pairs of DBs. Nota-
bly, we observed low correlation values for the same ingredients
across different DB pairs. Our recall analysis showed that, even
when performing the same analysis, none of the DB pairs had a
recall rate exceeding 90%. This indicates that the target information
for the same ingredient can diverge, depending on the DB used for
the analysis. Our findings highlight the urgent need for a compre-
hensive, large-scale analysis of NP-DBs.

Impact of NP-DBs on recapitulating known mechanisms

To evaluate the effectiveness of the target information provided
by the NP-DBs, we conducted a recapitulation task focused on the
known targets of herbs and their ingredients. Therefore, we
grouped all ingredient-target and herb-target associations into
known and unknown associations. Notably, the density of known
associations was low (1.3% for ingredient-target and 3.8% for
herb-target), and unknown associations also contained potentially
positive samples. Although these conditions pose obstacles to
accurate performance evaluation, they still provide valuable
insights into the characteristics of the information source and anal-
ysis method.

We first measured MCC values between known targets and
those available in each DB, based on the herb and herbal ingredient
analyses described in the previous section. All DBs outperformed
the chance level, with the TCM-Mesh achieving the highest score
of 0.14 (Fig. 3A, upper panel). We also measured the coverage of
each DB to predict ingredients with known targets. On average,
the DBs achieved a coverage of 0.40, with HERB and SymMap nota-
bly standing out at 0.83 and 0.50, respectively. These findings indi-
cated that the reliability and coverage of herbal compounds
exhibited unique patterns across different DBs.

We further analyzed the changes in recapitulation performance
based on the combinations and aggregation methods across the
NP-DBs (Fig. 3B, upper panel). Initially, we found that intersecting
the target information from TCM-Mesh and HERB yielded the high-
est precision score (0.278). Among combinations with coverage
greater than 0.5, uniting data from TCMSP, TCM-Mesh, SymMap,
and HERB showed the best performance, with an MCC of 0.07.
We observed minimal changes in performance when comparing
union and intersection methods for aggregating target information,
with all cases having an MCC of 0.06. However, when using the
intersection method, we observed increased precision at the
expense of reduced coverage, whereas the union approach yielded
the opposite result. As the number of combined platforms
increased, we observed a more pronounced tradeoff relationship
between the MCC value and coverage.

We extended the analysis to evaluate the performance of each
NP-DB and their combinations in recapitulating known target
information at the herb level. Our results demonstrated that all
DBs maintained coverage exceeding half, while achieving a perfor-
mance that surpassed chance level (Fig. 3A, lower panel). Specifi-
cally, the highest coverage and MCC values were observed when
HERB was used. In contrast, TCMSP displayed the lowest values
for both metrics. Like our findings at the ingredient level, we
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observed a tradeoff between precision and recall based on the
aggregation method used for NP-DBs at the herb level (Fig. 3B,
lower panel). Overall, our results highlighted that the methods
and combination strategies employed to construct networks for
herbal medicines can significantly influence both predictive perfor-
mance and coverage.

Influence of analytical techniques on recapitulating known
mechanisms

We then assessed how network analysis techniques influenced
the recapitulation performance of known mechanisms in herbal
targets. Initially, we explored whether PPI network analysis of
the herbal targets could help elucidating these mechanisms. Sub-
networks were constructed with targets from each DB as nodes
and known PPIs forming the edges. Subsequently, three types of
network centrality (degree, betweenness, and closeness) were
measured for each node. We then evaluated the recapitulating per-
formance while varying the percentile thresholds for network cen-
trality, classifying targets as “known” when they exceeded the
threshold, and “unknown” otherwise. The results indicated that
as the centrality score increased, the MCC values generally
decreased across most DBs. This trend was particularly evident
for BATMAN-TCM, TCM-Mesh, and HERB. However, SymMap and
TCMSP showed tendencies for increased MCC values within certain
centrality thresholds (0.4-0.8). Our findings indicate that the ben-
efits of using network centrality analysis in target protein net-
works vary depending on the specific conditions and DB,
suggesting that this approach may not always be the most effective
for identifying core herbal targets.

Next, we focused on variations in performance for recapitulat-
ing herbal targets based on path count (PC) percentile thresholds.
Initially, we observed a continuous decline in the MCC value start-
ing from a PC threshold of 0.5 (Fig. 4B). However, precision exhib-
ited a slight increase within the 0.5-0.8 threshold range, while
recall consistently decreased. Furthermore, we investigated how
downweighting PCs, particularly those involving high-degree
nodes, influenced the elucidation of key herbal targets. Using the
DWPC algorithm, we performed the same analysis across a wide
range of thresholds for the weight of the herb-ingredient path
(wyc) and ingredient-target path (wcr). We found that, as both
the wyc and wcr thresholds increased, the AUROC values also gen-
erally increased (Fig. 4C). Specifically, our findings indicated that,
except for the TCM-Mesh for wyc and TCMSP for wer, employing
the DWPC algorithm to downweight PCs generally contributed to
performance enhancement across most DBs (Supplementary
Fig. 3). By exploring various combinations of weighting parame-
ters, we determined the optimal performance when wyc and wer
values were 1 and 0.4, respectively. By leveraging the optimal con-
ditions, we determined the DWPC percentile threshold to recapit-
ulate known herbal targets. Computing the DWPC percentiles for
the selected herbal targets and assessing the MCC for each thresh-
old revealed that the 40% DWPC threshold consistently yielded the
highest MCC values (Fig. 4D). These findings suggest that the her-
bal mechanisms can be identified more accurately by carefully
considering the weight of the PC.

Evaluating the predictive performance of network models in
therapeutic effects

We further evaluated the utility of various network-based
approaches to identify the therapeutic effects of herbal medicines.
Three commonly used or potentially applicable methods, protein
overlap, network proximity, and multiscale interactome, were con-
sidered. Using these methods, we calculated scores for all possible
pairs of herbal ingredients and diseases, as well as those for herbs
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combination methods and the number of platforms used in the combination.

and diseases (Fig. 5A). We then performed a discrimination task
using these scores to distinguish between the known and unknown
associations. Notably, similar to our previous tasks, the density of
known disease associations was quite low; therefore, the perfor-
mance in this context might have been underestimated compared
with real-world scenarios. Nonetheless, this approach was valuable
for comparing the characteristics of each prediction method.

We found that all network-based approaches outperformed
chance level performances for both herbal ingredient-disease and
herb-disease pairs (Fig. 5B). The protein overlap method yielded
satisfactory AUROC and AUPR values. However, using this
approach, only approximately one-third of the herbal medicine-
disease pairs yielded similarity scores greater than zero, leaving
the majority of pairs unprioritized owing to a score of zero. This
suggests that the protein overlap method may be limited in scope
for discerning the therapeutic effects of herbal medicines and their
ingredients. We also observed that the network proximity method
produced lower AUROC and AUPR values compared to the other
methods, suggesting that considering only closeness within a sim-
ple PPI network may not be sufficient for discerning therapeutic
effects. In contrast, the multiscale interactome method outper-
formed the other methods both AUROC and AUPR. This highlights
the importance of considering PPIs and their relationships with
biological functions when determining the therapeutic effects of
herbal medicines.

We analyzed performance distribution based on a combination
of platforms and prediction methods (Fig. 5C). In most combina-
tions, we confirmed that the performance surpassed chance level.
Using known targets led to superior predictive outcomes for both
the herbs and herbal ingredients. This suggests that, when suffi-
cient data are available, relying solely on validated information is
beneficial. However, the other methods exhibited substantial per-
formance. HERB-multiscale interactome combination yielded the
best performance for herbal ingredients, whereas SymMap-multi-
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scale interactome combination was the most effective for herbs.
Overall, these findings underscore that the predictive accuracy of
the therapeutic effects of herbal medicines can vary based on the
combination of network methods employed.

Case study on determining the therapeutic effects of herbs

We sought to validate whether the identified optimal datasets
and conditions could help predicting the therapeutic effects of
herbs in various diseases. Using the multiscale interactome
approach on the paper target, which showed the highest perfor-
mance in predicting therapeutic effects, we prioritized the rela-
tionship between herbs and diseases. We discovered that nearly
half (4 out of 10) of the prioritized herb-disease associations had
already been reported (Table 2)). Furthermore, we explored
whether the unreported associations among the prioritized results
could indicate the potential therapeutic effects of the herbs. We
chose to focus on prostate neoplasm because it is both a top-
predicted result and a disease of significant therapeutic impor-
tance, with a rising prevalence and global impact. Given its rele-
vance, we explored the potential treatments and mechanisms of
prostate cancer in detail. We confirmed that PR and LE showed
high correlation scores with prostate cancer, along with GF, which
is included in the top 10 rankings, without any reported evidence.
Despite their high rankings, these components have not yet been
reported in literature, indicating a unique opportunity to uncover
new therapeutic effects and mechanisms.

To assess the in vivo anticancer efficacy of herbal extracts, we
used a PC3 xenograft mouse model (Fig. 6A). Tumor volumes and
body weights were measured daily to evaluate the effects of herbal
extracts on tumor growth and overall health. We found that high
doses of PR, LE, and GF significantly suppressed tumor growth
compared to the control group (Fig. 6A, upper panel). Tumor vol-
umes were measured daily using a digital caliper, and the data
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conditions.

showed a clear reduction in tumor size in mice treated with high
doses of the herbal extracts. Fig. 6A (lower panel) shows represen-
tative images of tumors from each treatment group, demonstrating
visual differences in tumor size. Body weight changes were moni-
tored daily and expressed as percentages relative to day 1 (Fig. 6A,
middle panel). High doses of PR, LE, and GF mitigated body weight
loss typically associated with tumor progression. These results sug-
gest that the herbal extracts not only inhibited tumor growth but
also supported overall health and body weight in treated mice. Sta-
tistical analysis confirmed significant differences between treat-
ment groups. These findings highlight the therapeutic potential
of PR, LE, and GF in treating prostate cancer, as they significantly

reduced tumor growth and supported body weight in a PC3 xeno-
graft mouse model after oral administration.

To verify the in vitro anticancer effects of PR, LE, and GF on pros-
tate cancer cell lines, we performed a series of assays. The MTT
assay revealed a dose- and time-dependent decrease in cell viabil-
ity in PC3 and LNCaP cells, most notably at 72 h and 3,000 pg/mL
(Fig. 6B). A colony-forming assay showed that treatment with
these herbs inhibited clonogenic growth, indicating their long-
term effects on cell survival (Fig. 7A). Flow cytometry with Annexin
V/PI staining demonstrated that PR, LE, and GF significantly
increased apoptosis rates in PC3 and LNCaP cells compared to con-
trols (Fig. 7B). Western blot analysis confirmed these findings,
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Fig. 5. Distribution of prediction performance for herbal compounds (upper figure) and herbs (lower figure) based on databases and prediction methods. (A)
Schematic representation of the tasks for determining therapeutic effects and evaluations of network-based prediction methods. (B) Performance curves of network-based
prediction methods for known therapeutic effects. (C) Distribution by platform and prediction method for known therapeutic effects. Overlap: protein overlap; proximity:
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targets. Both datasets are provided by the HERB database.

Table 2

Prioritized herb-indication pairs based on known herb targets and their reported evidence.
Herb ID Disease ID Herb name (latin name) Disease name Reported evidence (PMID)
herb007244 HBDIS001721 Petiolus trachycarpi Acute Promyelocytic Leukemia
herb000960 HBDIS005061 Vinegar Cocaine-Related Disorders .
herb003658 HBDIS002540 Herba ephedrae Pulmonary Fibrosis 21,565,143
herb003354 HBDIS002687 Melia azedarach Schizophrenia
herb000960 HBDIS002070 Vinegar Neoplasm Metastasis .
herb003658 HBDIS000265 Herba ephedrae Asthma 36,215,828
herb005069 HBDIS002488 Granati fructus Prostatic Neoplasms .
herb005017 HBDIS002028 Rhizoma zingiberis recens Myocarditis 33,628,715
herb000960 HBDIS001615 Vinegar Kidney Calculi 31,202,812
herb001239 HBDIS000372 Erigeron breviscapus Bone neoplasms

showing that the expression of anti-apoptotic proteins Bcl-2 and
Mcl-1 decreased, while markers of apoptosis, such as cleaved PARP
and the B form of STAT3, increased after treatment with PR, LE, and
GF. Notably, the cleaved form of caspase 3, a key executor of apop-
tosis, was upregulated, especially in LNCaP cells treated with these
herbs (Fig. 7C and E). These assays collectively demonstrated the
multifaceted anticancer activity of PR, LE, and GF, showcasing their
ability to reduce cell viability, inhibit proliferation, and induce sig-
nificant apoptosis.
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We further explored the effects of PR, LE, and GF on cell cycle
progression and metastasis. Western blot analysis indicated that
PR and LE significantly downregulated the expression of Cyclin
D1 and Cdk6 and inhibited Cdk2 expression, whereas GF had sim-
ilar effects with specificity for LNCaP cells. Upregulation of Cdk
inhibitors p19, p21, and p27 by these herbs further highlighted
their influence on cell cycle regulation (Fig. 7D and E). Additionally,
a wound healing assay demonstrated that PR, LE, and GF effectively
hindered cell migration in both PC3 and LNCaP cells, with PR
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Fig. 6. Effects of predicted herbs on tumor growth in prostate cancers in vivo and in vitro. A. Effects of on tumor size in PC-3 xenograft mouse model. Tumor growth
(upper panel), body weight changes (middle panel) and the representation of xenograft tumor size reduction (lower panel) in a PC-3 xenograft mouse model. Tumor volumes
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xenograft). PR, Puerariae Radix; LE, Lithospermum Erythrorhizon; GF, Granati Fructus; Xeno, xenograft control; DOX, doxorubicin. B. Cell viability measured using MTT assay in
PC3 and LNCaP cells treated with PR, LE, and GF at the indicated concentrations and times (comparison with control, * p < 0.05, ** p < 0.01).

811



W.-Y. Lee, K.-I. Park, S.-B. Bak et al. Journal of Advanced Research 76 (2025) 799-815

A B
PR

“{07% 8.5%

PC3
PC3

a e
& 45.8% 45.0%

S A S P g1 23 A S B g2

FL3 Propidium lodide
LNCaP

LNCaP

2 R e Rt

FL1 Annexin V FITC

C E

5
PARP Pc3_LNCaP PC3 LNCaF PC3 LNCaF € Cleaved PARP Mc-1  CyclinD1  Cdké
Cleaved PARP |*™=*=||— =| |*=*=|| — =] |*=*=||—= 2 41 . 1.5
Pl e | e e == = Y )
Pro-Caspase 3 [« s |[ = —] |___"__“___"__I g , . " . .
b T
cacs:},%as\éeg | e | I | |-" —”—-" -l %1 0.5
T e e | e e | e s
Statd [= Jl==—]=_1- —l[= ][] @ 0- 0
Stat3 [ ——l|==]] == —ll==| s - + - + - + =+ PR
—actinl "._—” "——“__-"_._l g ] .
-+ -+ -+ -+ - o+ -+ _%4 15
PR LE GF é’ -
[s}
D T
PC3 LNCaP PC3 LNCaP PC3 LNCaP -
CyclinD1 [==—J|— J|—=—ll— J[= J[—=1 k-
cdké | — || =——] |l==ll—— |==ll——] « + LE
S e | I i | S | ) | = 5
Y e | e f e | e e [ | £
2l I | e | I | | | | £
e e | || e | e | e | | g -
N = = === ===
-+ - + - + - + -+ -+ 3
(]
PR LE GF z
2 - 4+ - 4+ - 4+ - + GF
Con PR LE GF
100
80
™ ™
Q 60 L
c Y e .
§ 20 g’é ## am
$$ $$
= 0
©
C
=}
S 100
= 80 o
S m
o 60 . S
zZ Z
- 40 i -
20 *ok Ty X ';
. $5 e s’; A

Oh 12h 24h 36h 48h 60h 72h

Fig. 7. The effects of predicted herbs on cell proliferation, migration and apoptosis in PC3 and LNCaP cells. A. Colony formation assay: Cells treated with PR, LE, and GF at
3,000 pg/ml for 72 h were stained with Annexin V/PI to categorize the cell population into viable, apoptotic, late apoptotic, and necrotic cells (The representative bands are the
results of experiments repeated at least four times). B. Flow cytometry analysis: Cells treated with PR, LE, and GF at 3,000 pg/ml for 72 h were stained with Annexin V/PI to
categorize the cell population into viable, apoptotic, late apoptotic, and necrotic cells. C. Immunoblotting analysis of apoptosis-related proteins in cells treated with PR, LE, and
GF at 3,000 pg/ml for 72 h. D. Inmunoblotting analysis of cell cycle-related proteins in cells treated with PR, LE, and GF at 3,000 pig/ml for 72 h. E. Statistical analysis of protein
of interest. (*p < 0.05, **p < 0.01 vs. control). F. Scratch wound healing assay: Cells were treated with PR, LE, and GF at 3,000 pig/ml for 72 h, and real-time imaging of scratch
confluence was conducted (scale bar = 1,000 pm). The data represent the percentage change in scratch gap (*p < 0.05, **p < 0.01 PR; #p < 0.05, ##p < 0.01 LE; p < 0.01 GF vs.
control). PR, Puerariae Radix; LE, Lithospermum Erythrorhizon; GF, Granati Fructus.  g1p



W.-Y. Lee, K.-I. Park, S.-B. Bak et al.

showing a notable reduction in migration as early as 12 h in LNCaP
cells and 24 h in PC3 cells (Fig. 7F). Overall, our results indicate that
the potent anticancer properties of PR, LE, and GF are mediated by
their effects on cell migration and modulation of cell cycle-related
proteins.

Discussion

Our critical evaluation serves as a cornerstone for understand-
ing current NP analysis of herbal medicine, focusing on underlying
mechanisms and therapeutic effects. Initially, we outlined the net-
work construction process, highlighting the diverse DBs used for
compound identification, target prediction, and key analytical tools
to discern herbal mechanisms and therapeutic roles. Our explora-
tory analysis revealed high consistency in ingredient information
across herbal medicine DBs, yet significant disparities in target
information, emphasizing the need for a thorough evaluation. In
our recapitulation task, the performance and coverage patterns
were significantly influenced by the choice of NP-DBs, their combi-
nation methods, and analysis techniques such as network central-
ity and weighted PC. Further analysis of the therapeutic effects
highlighted the multiscale interactome method as particularly
effective, especially when combined with data sources such as
HERB and SymMap. Our case study on prostate cancer reinforced
these findings, confirming the potential of our approach to uncover
novel therapeutic effects in real-world scenarios.

Our analysis focuses on the consistency of NP-DB data, reveal-
ing significant inconsistencies, particularly in ingredient-target
associations (Fig. 2). While herb-ingredient associations were gen-
erally consistent, with recall rates exceeding 90% across most data-
base pairs except those involving HIT, ingredient-target
associations showed marked divergence between databases. HIT
contained very few ingredients per herb (an average of fewer than
five) because it only includes ingredients with experimentally val-
idated targets. These discrepancies likely stem from the intrinsic
characteristics and data curation methods of each database. For
example, SymMap and HERB compile comprehensive herb infor-
mation by incorporating data from existing NP-DBs, whereas
BATMAN-TCM and TCM-Mesh select ingredients based on criteria
such as the availability of PubChem CIDs. In contrast, HIT focuses
solely on experimentally validated targets, resulting in a much
smaller dataset, with an average of fewer than five targets per herb.
This inconsistency poses challenges for researchers, leading to
varying interpretations of an herb’s mechanism of action depend-
ing on the database. Our findings underscore the urgent need for
a standardized approach to data collection and integration in NP-
DBs to improve the reliability of network pharmacology analyses
involving herbal medicines.

We compared various methods for key target identification in
network analysis and recognized that the characteristics of these
methods, according to the assumptions on which they rely, affect
their applicability (Fig. 4). For instance, approaches like protein-
protein interaction (PPI) network analysis, which perform effec-
tively in social networks [41,42], assume that targets centrally
located in the PPI subnetwork are naturally pivotal. However, this
assumption may not hold true in the complex networks of herbal
compounds and their targets, making the efficacy of identifying
key herbal targets elusive. Recent studies have highlighted that
the influence of drugs is more local than global within a network
[23], suggesting that the closeness between drug targets and
disease-related proteins is crucial in determining therapeutic
effects. Therefore, beyond global centrality measures, detailed
investigation into the local relationships between herbal medicines
and diseases within the network is warranted. Similarly, the use of
path counts (PCs) can be limited by the uniform consideration of all
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paths, regardless of whether they originate from common ingredi-
ents or those with extensive target profiles. High-degree nodes
often correspond to biologically general or nonspecific entities,
providing limited specific information [22]. Results from the DWPC
algorithm suggest that downweighting herb-compound and
compound-target paths involving high-degree nodes can elucidate
known mechanisms of herbal medicines more accurately. Differen-
tiating the weights of PCs based on node characteristics—such as
downweighting paths associated with high-degree nodes—could
refine the analysis. Adjusting path weighting in this way may lead
to a more accurate elucidation of key mechanisms, enhancing our
understanding of how herbal medicines exert their therapeutic
effects. Overall, these insights highlight the need for nuanced ana-
lytical techniques that consider the unique properties of herbal
medicine networks to improve key target identification.

To the best of our knowledge, this study represents a pioneering
effort to systematically investigate the therapeutic effects of natu-
ral products (Fig. 5). Historically, the identification of disease treat-
ments through NP has predominantly focused on the measures of
protein overlap and network proximity. These are conducted based
on the assumption that a drug that tends to overlap with a disease
and its proteins will treat that disease, or that a target occupying
an important network position in the relationship between
selected proteins will play a crucial role. However, the applicability
of these foundational beliefs to understand the intricacies of natu-
ral products remains a topic of debate. Our findings suggest that
protein overlap is limited and only effective for a restricted spec-
trum of therapeutic effects. Although network proximity encom-
passes protein relationships within a network, its efficacy often
mirrors random outcomes, suggesting that merely focusing on pro-
tein interactions in natural products may generate misleading con-
clusions. In contrast, our research indicated that evaluating the
effects within a multiscale interactome can provide a more reliable
prediction for identifying therapeutic effects.

To validate the potential of a novel therapeutic approach for
prostate cancer predicted by our research, we conducted in vitro
experiments to confirm its effects. In our study, we confirmed that
the predicted herbs PR, LE, and GF inhibited cell viability, prolifer-
ation, and migration by regulating proteins involved in apoptosis
and cell cycle regulation (Fig. 6). Moreover, we confirmed the
in vivo effects of the predicted herbs on tumor growth inhibition
in nude mice xenografted with PC3 cells (data not shown). PR is
a widely used traditional herb for various conditions such as car-
diovascular diseases, diabetes mellitus, and deafness [43].
Although studies on the anticancer effects of PR in vivo and
in vitro are lacking, the isoflavones present in PR induce apoptosis
and cell cycle arrest in the G2/M phase in breast cancer cells [44].
LE has antioxidant properties [45] and suppresses high-fat diet-
induced obesity [46]. In addition, LE has also been shown to exhibit
anticancer effects by inducing apoptosis and G1 phase arrest in
B16F10 melanoma cells. Additionally, it has shown potential anti-
cancer effects in a C57BL/6 mouse model [47]. GF has demon-
strated anti-inflammatory effects both in vivo and in vitro [48]. It
has therapeutic and preventive effects against various chronic
human diseases, including an atherogenic lipoprotein profile,
imbalanced antioxidative status, and disrupted glucose tolerance
[49]. In line with this, several ingredients have been studied as
anti-cancer agents in clinical trials [50]. Dietary supplements like
saw palmetto and green tea extract have also shown effects on
prostate cancer in randomized controlled trials (RCTs) [51]. Nota-
bly, clinical studies have explored herbal components such as
genistein and daidzein found in PR, as well as vitamin C and cate-
chin present in GF, for their roles in regulating prostate cancer pro-
gression [52,53,54]. These previous and current findings suggest
that the predicted herbs in this study have potential efficacy
against prostate cancer. However, further research, including RCTs,
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is needed to confirm the beneficial effects of PR, LE, and GF on pros-
tate cancer and other human cancers.

This study may contain several limitations that may require fur-
ther evaluation and refinement. First, the known therapeutic
effects analyzed are primarily based on in vivo experiments, sug-
gesting the need for additional clinical studies to validate these
findings in a real-world context. Second, our analysis relied on a
single database for known target and therapeutic effects, which
may introduce bias due to the limited scope and curation criteria
of the database. Lastly, while our computational methods are
robust, they do not fully account for the complex pharmacokinetics
and interactions of multiple compounds within herbal formula-
tions, which could influence therapeutic outcomes. Nevertheless,
this study represents the first systematic analysis and validation
of the therapeutic effects of herbal medicine through network
pharmacology, laying a strong foundation for future research in
this area.

Conclusion

Our study systematically evaluated the methodologies of NP in
herbal medicine and provided essential insights into the mecha-
nisms and therapeutic effects of herbal ingredients. We emphasize
the significance of methodological approaches in network con-
struction and analysis, particularly the advantages of multiscale
interactomes over traditional methods, such as protein overlap
and network proximity. Our empirical validation further affirmed
the potential of NP to identify and substantiate novel therapeutic
effects, as exemplified by its successful application in prostate can-
cer treatment, thereby establishing a precedent for future research
in this promising field.
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