

Received: May 26, 2025

Accepted: Sep 8, 2025

Published online: Oct 10, 2025

Address for Correspondence:

Yu-Jin Paek, MD, PhD

Department of Family Medicine and Health Promotion Center, Hallym University
Sacred Heart Hospital, 22 Gwanpyeong-ro
170-beon-gil, Dongan-gu, Anyang 14068,
Republic of Korea.
Email: noliaa@naver.com

Hyeon-Jeong Lee, PhD

Division of Healthcare Research, National Evidence-based Healthcare Collaborating Agency, 400 Neungdong-ro, Gwangjin-gu, Seoul 04933, Republic of Korea.
Email: leehj@neca.re.kr

*Yoo-Bin Seo and Haine Lee contributed equally to this work.

© 2025 The Korean Academy of Medical Sciences.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (<https://creativecommons.org/licenses/by-nc/4.0/>) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ORCID IDs

Yoo-Bin Seo

<https://orcid.org/0000-0001-8116-1110>

Haine Lee

<https://orcid.org/0000-0002-9643-1176>

Korean Clinical Practice Guideline of Korean Society for Research on Nicotine and Tobacco (KSRNT) and National Evidence-based Healthcare Collaborating Agency (NECA) on Treatment of Tobacco Use 2024

Yoo-Bin Seo ,^{1*} Haine Lee ,^{2*} Yu-Jin Paek ,³ Hyeon-Jeong Lee ,²
Cheol Min Lee ,^{4,5} Eon Sook Lee ,⁶ Heejin Kimm ,⁷ Hye-Ji An ,³
Eun-Jung Bae ,⁸ Ji Soo Kim ,^{5,9} Sungwon Roh ,¹⁰ Yoo Suk An ,¹¹
Sang-Ho Jo ,¹² Seo Young Kang ,¹³ Yun Hee Kim ,¹⁴ Kyung Hyun Suh ,¹⁵
Sang Hwa Shin ,¹⁶ Jin-Kyoung Oh ,¹⁷ Dong Won Park ,¹⁸ Kiheon Lee ,^{5,9}
Hye Seon Kang ,¹⁹ Wonyoung Jung ,²⁰ Hyeon Jeong Lim ,⁷ Miyoung Choi ,²
Jimin Kim ,² Hyo-Weon Suh ,² Jinyoung Chang ,² Hwa Yeong Oh ,² and
Soo Young Kim ,²⁰

¹Department of Family Medicine, Wonkwang University Sanbon Hospital, Gunpo, Korea

²Division of Healthcare Research, National Evidence-based Healthcare Collaborating Agency, Seoul, Korea

³Department of Family Medicine and Health Promotion Center, Hallym University Sacred Heart Hospital, Anyang, Korea

⁴Department of Family Medicine, Seoul National University Hospital Healthcare System, Gangnam Center, Seoul, Korea

⁵Department of Family Medicine, College of Medicine, Seoul National University, Seoul, Korea

⁶Department of Family Medicine, Inje University, Ilsan Paik Hospital, Goyang, Korea

⁷Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea

⁸Department of Nursing, Catholic University of Pusan, Busan, Korea

⁹Department of Family Medicine, Seoul National University Bundang Hospital, Seongnam, Korea

¹⁰Department of Psychiatry, Hanyang University Hospital, Seoul, Korea

¹¹Department of Psychiatry, Seoul National University Hospital, Seoul, Korea

¹²Division of Cardiology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea

¹³Department of Family Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Korea

¹⁴Department of Nursing, Pukyong National University, Busan, Korea

¹⁵Department of Counseling Psychology, Sahmyook University, Seoul, Korea

¹⁶Korea Health Promotion Institute, Seoul, Korea

¹⁷National Cancer Center, Goyang, Korea

¹⁸Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea

¹⁹Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

²⁰Department of Family Medicine, Kangdong Sacred Heart Hospital, Hallym University Hospital, Seoul, Korea

ABSTRACT

Tobacco use is a leading cause of preventable death, disease, and disability worldwide. Thus, smoking cessation is a critical public health intervention globally. This clinical practice guideline was developed to provide recommendations on pharmacological and

Yu-Jin Paek <https://orcid.org/0000-0001-9573-8849>
Hyeon-Jeong Lee <https://orcid.org/0000-0002-0822-2420>
Cheol Min Lee <https://orcid.org/0000-0001-8652-4355>
Eon Sook Lee <https://orcid.org/0000-0002-6148-2512>
Heejin Kimm <https://orcid.org/0000-0003-4526-0570>
Hye-Ji An <https://orcid.org/0009-0000-6983-401X>
Eun-Jung Bae <https://orcid.org/0000-0002-2189-5355>
Ji Soo Kim <https://orcid.org/0000-0002-1363-0840>
Sungwon Roh <https://orcid.org/0000-0003-4557-3542>
Yoo Suk An <https://orcid.org/0000-0003-4548-0653>
Sang-Ho Jo <https://orcid.org/0000-0002-2063-1542>
Seo Young Kang <https://orcid.org/0000-0002-7177-7816>
Yun Hee Kim <https://orcid.org/0000-0002-4497-569X>
Kyung Hyun Suh <https://orcid.org/0000-0002-0012-3786>
Sang Hwa Shin <https://orcid.org/0009-0000-4579-8747>
Jin-Kyoung Oh <https://orcid.org/0000-0001-9331-3054>
Dong Won Park <https://orcid.org/0000-0002-4538-6045>
Kiheon Lee <https://orcid.org/0000-0002-7139-2342>
Hye Seon Kang <https://orcid.org/0000-0002-2096-7679>
Wonyoung Jung <https://orcid.org/0000-0003-4749-4637>
Hyeon Jeong Lim <https://orcid.org/0009-0008-6953-1084>
Miyoung Choi <https://orcid.org/0000-0002-2424-9965>
Jimin Kim <https://orcid.org/0000-0001-7375-4274>
Hyo-Weon Suh <https://orcid.org/0000-0003-1745-1628>
Jinyoung Chang <https://orcid.org/0000-0002-0441-0061>
Hwa Yeong Oh <https://orcid.org/0000-0002-0612-8027>
Soo Young Kim <https://orcid.org/0000-0002-3205-9408>

non-pharmacological treatments for smoking cessation, tailored strategies for smoking cessation in special populations, and interventions for users of electronic cigarettes and multiple tobacco products. Thirty key questions and corresponding evidence-based recommendations were derived from systematic reviews, meta-analyses, and de novo development. A multidisciplinary panel of experts participated in the development of this guideline, incorporating evaluation of evidence quality, benefit–risk balance, patient values and preferences, resource use, and feasibility in the development process. This guideline reflects the latest research on smoking cessation treatments and provides practical and adaptable strategies for clinical and policy implementation. In addition, this guideline is expected to support healthcare providers in improving cessation success rates and contribute to the reduction of smoking-related morbidity and mortality rates in Korea. This guideline will be updated periodically in response to emerging evidence and clinical needs.

Keywords: Tobacco; Tobacco Use Disorder; Smoking Cessation; Practice Guideline

INTRODUCTION

Tobacco use remains a major modifiable risk factor for preventable mortality, morbidity, and disability worldwide. It is causally linked to a wide range of diseases, affecting nearly every organ system. In addition, it is a leading contributor to conditions such as lung, esophageal, and pancreatic cancers, cardiovascular disease, chronic respiratory diseases, and diabetes.¹ Smoking cessation yields both immediate and long-term health benefits, with greater gains observed when cessation is achieved at a younger age.² In Korea, the socioeconomic cost of smoking in 2019 was estimated to exceed 12 trillion KRW,³ underscoring the public health and economic burden of tobacco use. Recognizing the global importance of tobacco control, the World Health Organization (WHO) adopted the WHO Framework Convention on Tobacco Control (FCTC) in 2005, with 182 countries participating as of 2023. Korea signed the FCTC in 2003 and has implemented a range of tobacco control policies since then. As a result, the smoking rate among Korean adult men declined from 66.3% in 1998 to 30.0% in 2022.⁴ However, the decline has plateaued since 2008, and the smoking rate among adult women has shown little change over the past two decades. Notably, the recent introduction of novel tobacco products, including liquid-based and heated tobacco products (HTPs), has contributed to increased usage among adolescents and adults. The overall tobacco use rate, including these new products, now exceeds that of conventional cigarette smoking.⁵

Due to nicotine dependence, manifesting as tolerance, withdrawal, and craving, achievement of smoking cessation through willpower alone is difficult. Therefore, as with other chronic conditions such as hypertension or diabetes, smoking requires long-term management supported with clinical interventions and social support systems. This clinical practice guideline was developed to offer evidence-based recommendations for the treatment of tobacco use tailored to the Korean context. The main objective of this guideline is to provide standardized, evidence-based treatment recommendations that healthcare professionals can apply when treating individuals who smoke. This guideline targets a broad range of users, including adult cigarette smokers, users of electronic cigarettes and HTPs, individuals with pulmonary tuberculosis, those diagnosed with lung cancer, and patients preparing for elective surgery. In addition, this practice guideline accounts for factors such as smoker preferences, treatment feasibility, costs, and health equity. By offering tailored strategies for high-risk groups and addressing emerging forms of tobacco use, this guideline is expected

Funding

This study was funded by National Evidence-based Healthcare Collaborating Agency (NECA) (Grant number NA23-013, NA24-002).

Disclosure

Yu-Jin Paek reported past non-financial COIs, including a previous leadership role and publications, and financial COI related to research funding received over three years ago. Sungwon Roh reported a non-financial COI related to publications. Kiheon Lee reported past non-financial and financial COIs, including publications and research funding received more than three years prior. All reported COIs were reviewed and judged not to have influenced the development process. Other authors have no potential conflicts of interest to disclose.

to support clinical decision-making, enhance the effectiveness of cessation programs, and inform future policy and research directions.

GUIDELINE DEVELOPMENT PROCESS

Guideline development group (GDG)

This clinical practice guideline for smoking cessation was developed through a systematic, evidence-based process divided into three stages: planning, development, and finalization. In the planning stage, the GDG was formed, and conflict of interest (COI) management procedures were established. The GDG included experts on smoking cessation, public health professionals, and methodologists, and was organized into the following subcommittees: the steering committee, working group, advisory committee, and COI committee (Fig. 1).

The steering committee was co-chaired by a principal investigator from the Korean Society for Research on Nicotine and Tobacco (KSRNT) and the National Evidence-based Healthcare Collaborating Agency (NECA). The committee included multidisciplinary experts on guideline development and their responsibilities encompassed setting

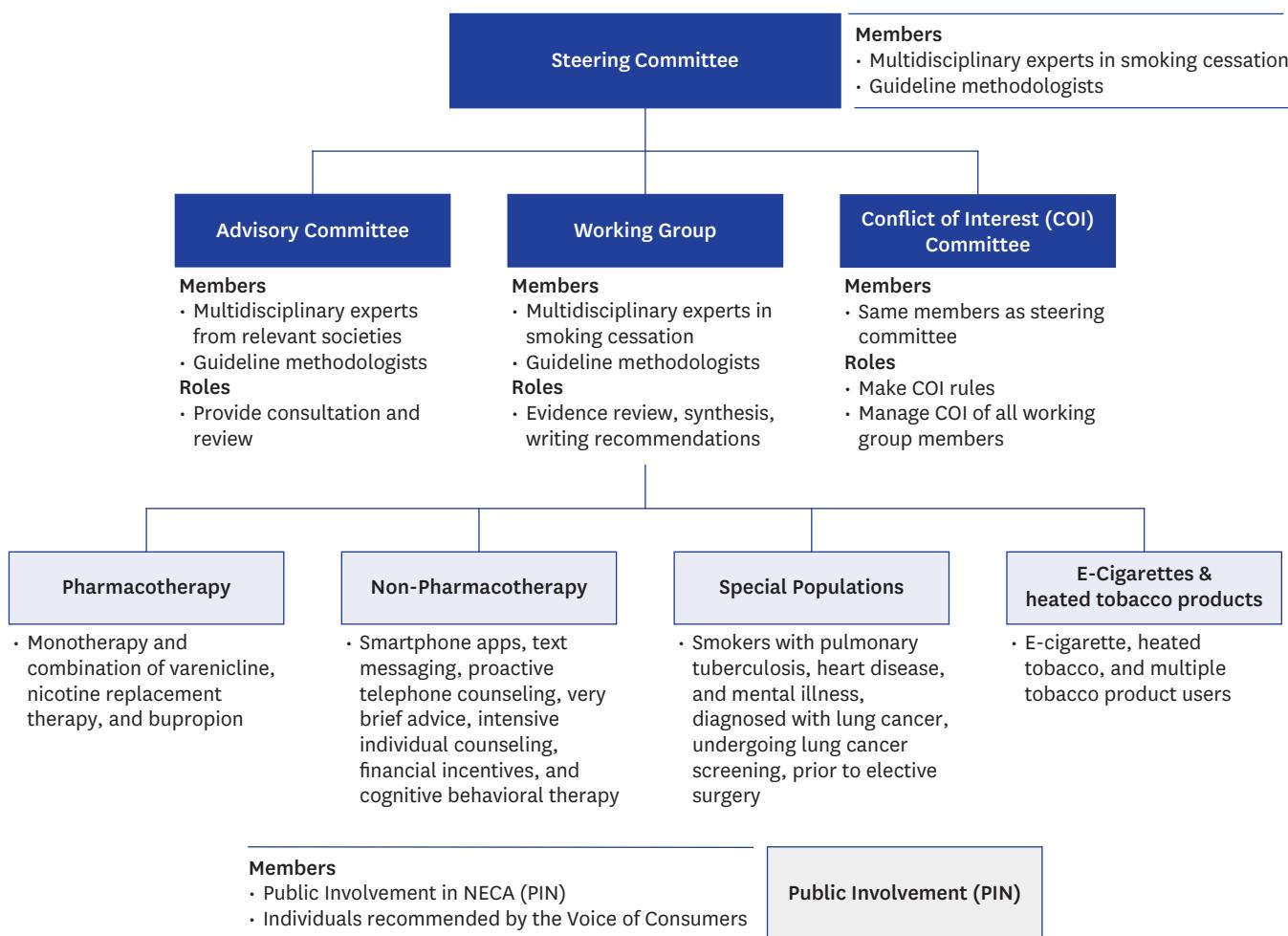


Fig. 1. Guideline development group.

Author Contributions

Conceptualization: Paek YJ, Lee HJ, Lee CM. Data curation: Lee H, Lee HJ, Choi M, Kim J, Suh HW, Chang J, Oh HY. Formal analysis: Lee H, Paek YJ, Lee HJ, Choi M, Kim J, Suh HW, Chang J, Oh HY. Funding acquisition: Paek YJ, Lee CM. Investigation: Seo Y, Lee H, Paek YJ, Lee HJ, Lee CM, Lee ES, Kimm H, An HJ, Bae EJ, Kim JS, Roh S, An YS, Jo SH, Kang SY, Kim YH, Suh KH, Shin SH, Oh JK, Park DW, Lee K, Kang HS, Jung W, Lim HJ, Suh HW, Chang J, Oh HY, Kim SY. Methodology: Kim SY. Project administration: Paek YJ, Lee HJ, Lee CM. Supervision: Paek YJ, Lee HJ, Lee CM, Choi M, Kim SY. Writing - original draft: Seo Y, Lee H. Writing - review & editing: Seo Y, Lee H, Paek YJ, Lee HJ.

development principles, defining the scope of the guidelines, prioritizing clinical questions, and drafting recommendations. Monthly meetings were conducted to review the progress of each committee and discuss issues. The working group was divided into four subcommittees: pharmacotherapy, non-pharmacotherapy, special populations, and e-cigarettes and HTPs. Each subcommittee consisted of smoking cessation experts from KSRNT, methodologists from NECA, and participants from tobacco control organizations such as the Korea Health Promotion Institute. The members included professionals in disciplines such as medicine, public health, nursing, and psychology. The working group collaborated with NECA researchers to conduct literature searches, select studies, perform quality assessment, extract and synthesize data, and assess certainty of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. The COI committee, which comprised the same members in the steering committee, managed the COI status of all working group members. All members of the working group initially submitted their COI declarations before guideline development and updated them during the development process. The COI levels were categorized as 'No-COI,' 'Low,' 'Moderate,' or 'High.' When a COI was declared, the committee determined the appropriateness of involvement based on these categories (**Supplementary Table 1**). The advisory committee consisted of multidisciplinary experts nominated by the steering committee. They provided guidance on the content and methodology of this guideline and reviewed the draft recommendations.

The external review committee, which was separate from the GDG and composed of experts recommended by academic societies or the steering committee, reviewed the individual recommendations, as well as the entire guideline. Members of Public Involvement in NECA (PIN) reviewed and commented on the plain-language version of the guideline. PIN was established in 2018 as an independent group of 100 representatives, including patients, caregivers, and policymakers, who support evidence-based decision making.

Development of the guideline

The guideline was developed using the GRADE ADOLOPMENT framework, which supports the adoption, adaptation, or de novo development of recommendations. We formulated clinical questions, conducted systematic reviews, and evaluated the strength of recommendations using GRADE. The Evidence-to-Decision (EtD) framework was used to structure the final recommendations.

This guideline was developed to support healthcare professionals working in various clinical and public health settings. It was designed to target not only users of conventional cigarettes, HTPs, and e-cigarettes, but also special populations such as pregnant women and individuals with lung or cardiovascular diseases. The scope of this guideline was determined based on the PIPOH (Population, Interventions, Professionals, Outcomes, Healthcare setting) framework. Detailed elements of the framework are presented in **Supplementary Table 2**. The key questions were refined using the PICO (Population, Intervention, Comparator, Outcome) framework. Topics relevant to smoking cessation but not formally framed as clinical questions were described narratively. Outcomes were classified as "critical," "important but not critical," or "of limited importance" based on the GRADE methodology.⁶

To enhance efficiency, existing systematic reviews were initially identified for the formulation of all pharmacotherapy and most non-pharmacotherapy questions using the Cochrane Library and Epistemonikos. Review quality was assessed using A MeaSurement Tool to Assess

systematic Reviews 2 (AMSTAR 2). When existing systematic reviews were not available, the working group conducted de novo systematic reviews. The PubMed, EMBASE, Cochrane Library, and Korean (KoreaMed, KMBASE) databases were searched for identification of relevant studies. In addition, a manual search was conducted for further identification of updated research. The inclusion/exclusion criteria for the selection of studies were based on the PICO framework. Studies that were not published in English or Korean, had no available full-text, or were only available as abstracts were excluded. Risk of bias was assessed using the Cochrane Risk of Bias (ROB) tool for randomized controlled trials (RCTs) and the Risk of Bias Assessment Tool for Non-randomized Studies 2.0.⁷ For consistency, ROB 1.0 was used if applied in previous reviews, whereas the ROB 2.0 tool was used for de novo systematic reviews.^{8,9} Two reviewers independently assessed each study, and any discrepancies were resolved through discussion. Covidence software was used to streamline the process.¹⁰ The characteristics and outcomes of each study were extracted using internally developed forms. The results were synthesized narratively or through meta-analysis depending on the type of data. Heterogeneity was addressed using a random-effects model and subgroup analyses, and publication bias was assessed. Meta-analyses were conducted using Review Manager (RevMan) version 5.4,¹¹ and additional analyses were performed using R 4.2.2¹² and STATA 18.0.¹³

Certainty of evidence was assessed using the GRADE methodology (**Supplementary Table 3**). For each recommendation, the certainty of evidence was summarized in a Summary of Findings table, which included outcomes rated as 'critical' or 'important,' with effect estimates, number of studies/participants, and downgrade reasons noted in footnotes. The GRADE EtD framework was used to determine the strength and direction of recommendations. Seven key EtD criteria were selected by the steering committee: risk-benefit balance, certainty of evidence, patient values and preferences, resource requirements, acceptability, feasibility, and equity. Additionally, the committee considered factors such as risk-benefit balance, population preferences, implementation barriers and facilitators, alternative options, cost and resource use, and alignment with international guidelines. Based on these factors, the committee determined the direction of each recommendation, either for or against. In addition, the strength of each recommendation was classified as either strong or conditional. In some cases, strong recommendations were made despite the certainty of evidence being low or moderate, and even when acceptability or feasibility were judged as "probably acceptable" or "probably feasible." This is consistent with the GRADE framework, which allows strong recommendations when the overall balance of the EtD criteria, including substantial desirable effects, minimal harms, and patient values, clearly supports the intervention despite the presence of some residual uncertainty. The GRADE definitions are summarized in **Supplementary Table 4**.

Each working group conducted a peer review of the draft recommendations, which was followed by a secondary review conducted by the steering committee. Consensus was reached based on a two-thirds agreement through voting. If consensus was not achieved, a re-vote was held.

Finalization

The external review committee reviewed the necessity, appropriateness, methodology, rationality, feasibility of dissemination, and implementation of the developed clinical practice guideline. Comments and levels of agreement were reviewed by the working group and steering committee to decide whether the feedback should be incorporated into the guideline.

Endorsement of the clinical practice guideline was requested from academic societies and institutions, including the Korean Academy of Family Medicine, the Korean Academy of Tuberculosis and Respiratory Diseases, the Korean Society of Cardiology, and the National Tobacco Control Center. The guideline booklet will be disseminated to national agencies, including the Ministry of Health and Welfare, the National Health Insurance Service, the Korea Disease Control and Prevention Agency, and the National Cancer Center. Approval of the guideline is under review by the Clinical Practice Guideline Committee of the Korean Academy of Medical Sciences. Several tools were developed to support the dissemination and implementation of this guideline, including a pharmacotherapy algorithm, the 5As and 5Rs frameworks, and the Korean version of the Fagerström Test for Nicotine Dependence. To improve accessibility for those who are trying to quit smoking, the recommendations were translated into plain language under the title ‘Smoking Cessation Guideline for Tobacco Product Users,’ and pictograms were included to illustrate each recommendation.

This guideline will be reviewed every five years to determine whether revisions are needed. The guideline will be fully or partially updated depending on the situation at the time of review. New evidence will be evaluated and integrated with existing results, and the certainty of evidence and strength of recommendations will be updated.

RECOMMENDATIONS

Clinical questions and corresponding recommendations were developed across four major areas: pharmacological treatment, non-pharmacological treatment, special populations, and users of e-cigarettes and HTPs. A summary of these recommendations is presented in **Table 1**.

Pharmacotherapy

The U.S. Food and Drug Administration has approved three pharmacological treatments for smoking cessation: nicotine replacement therapy (NRT), varenicline, and sustained-release bupropion. Although cytisine is prescribed in Europe and Canada, it has not yet been approved in the United States or Korea. This guideline addresses the use of pharmacotherapy for smoking cessation, including monotherapy and combination therapies that include varenicline, NRT, or bupropion. Based on these recommendations, the Korean Clinical Practice Guideline for Tobacco Cessation (2023),¹⁴ and expert consensus from the development group, a pharmacotherapy algorithm was developed to support clinical decision-making. The overall treatment flow is illustrated in the figure below (**Fig. 2**).

Compared to placebo, is varenicline effective for smoking cessation?

Recommendation: We recommend varenicline as a first-line pharmacotherapy option for smoking cessation. (Certainty of evidence: High; Grade of recommendation: A)

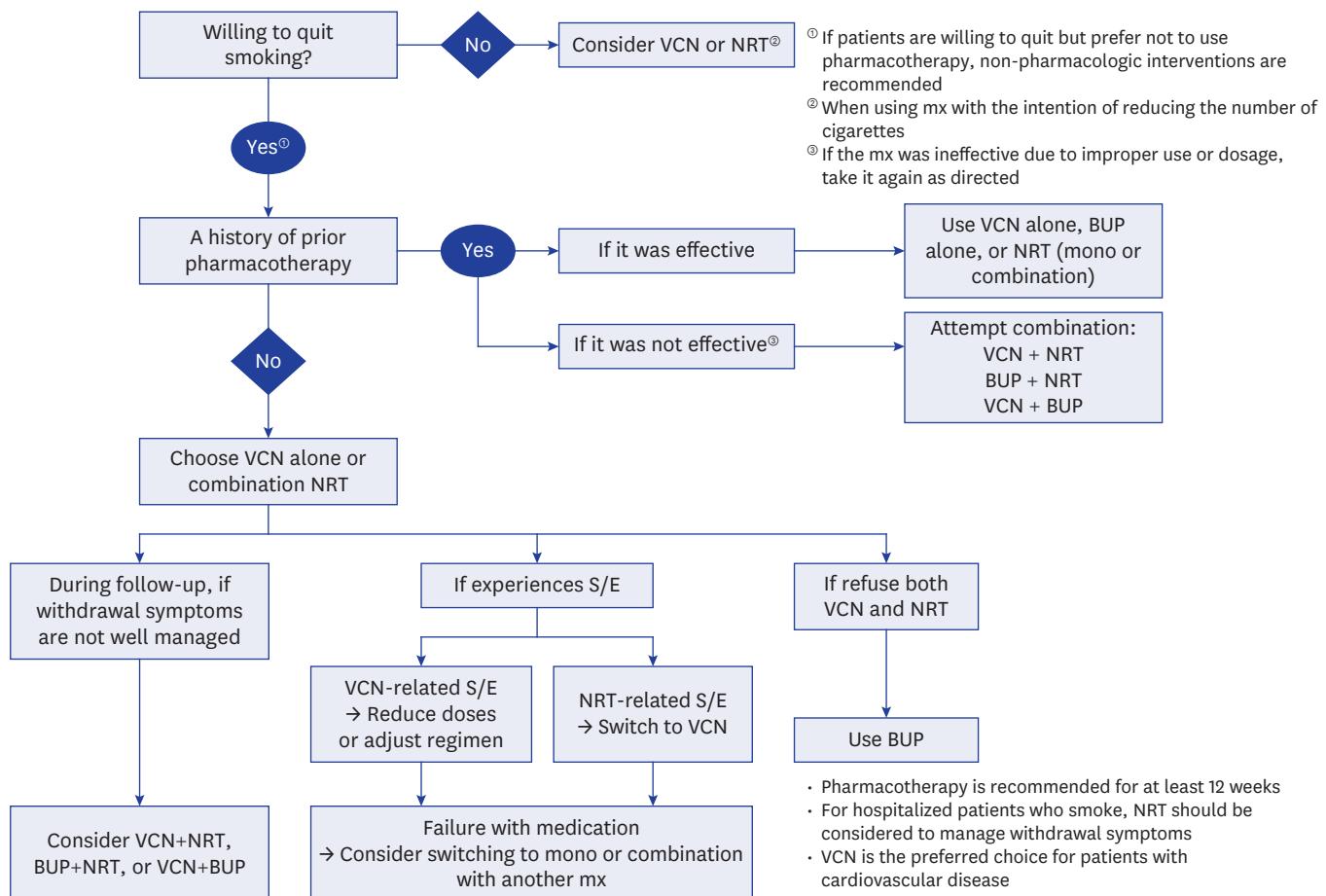
The systematic review by Livingstone-Banks et al.¹⁵ was assessed using the AMSTAR2 tool, rated as “high” quality, and included for data synthesis. Forty RCTs that aligned with the PICO-SD criteria were selected from the systematic review,¹⁶⁻⁵⁵ and two more RCTs were added after an updated search.^{56,57} The participants of these studies included general adult smokers (n = 23), patients with psychiatric conditions (n = 5), patients with pulmonary disease (n = 3), cardiovascular disease (n = 2), and other populations (n = 9). The results

Table 1. Summary of recommendations for tobacco use treatment

Clinical questions	Recommendations	CoE	GoR
Pharmacotherapy for smoking cessation			
1. Varenicline	We recommend varenicline as a first-line pharmacotherapy option for smoking cessation.	High	A
2. NRT vs. Varenicline	We suggest considering combination NRT as a first-line pharmacotherapy option for smoking cessation.	Moderate	B
Clinical considerations			
3. NRT	- It can be considered when varenicline is ineffective or causes side effects.	High	A
4. Bupropion	We recommend NRT as a first-line pharmacotherapy option for smoking cessation.	High	A
5. Varenicline + Bupropion vs. Varenicline	We recommend bupropion as a first-line pharmacotherapy option for smoking cessation.	High	A
	We suggest considering combination therapy with varenicline and bupropion as an option for smoking cessation.	Moderate	B
Clinical considerations			
6. Combination NRT vs. NRT monotherapy	- Combination therapy may be beneficial for smokers, including those who previously failed to quit smoking using varenicline monotherapy. However, it should be carefully considered based on the individual's characteristics and preferences.	High	A
7. NRT + bupropion vs. Bupropion only or NRT only	We recommend combination NRT rather than monotherapy for smoking cessation.	Moderate	B
Clinical considerations			
	- Combination therapy with NRT and bupropion can be considered for smokers who failed to achieve smoking cessation with NRT or bupropion monotherapy.		
Non-pharmacotherapy for smoking cessation			
1. Smartphone app	We recommend the use of a smartphone app in addition to existing smoking cessation treatments for smokers.	Moderate	A
Clinical considerations			
	- There is no significant difference in smoking cessation success rates between smartphone app interventions alone and standard smoking cessation support services. However, when combined with pharmacotherapy or behavioral therapies such as face-to-face counseling or text messaging, smartphone apps significantly improve smoking cessation outcomes, making such combined interventions beneficial.		
	- A subgroup analysis based on the type of app service (chat-based, activity-based) incorporated into a smoking cessation app-integrated intervention showed that chat-based apps (messaging, chat) are effective for smoking cessation. Therefore, the type of app service should be considered when implementing a smoking cessation app-integrated intervention.		
2. Text message	We recommend providing personalized text messages for smoking cessation.	High	A
Clinical considerations			
	- The provision of text messages alone enhances smoking cessation success; however, combining text messages with face-to-face counseling, telephone counseling, or pharmacotherapy significantly improves smoking cessation outcomes. This suggests that a variety of smoking cessation interventions could be combined effectively.		
3. Proactive telephone counseling	We recommend proactive telephone counseling for smoking cessation.	High	A
4. Very brief advice	We recommend providing very brief advice for smoking cessation.	High	A
Clinical considerations			
	- Very brief advice is defined as advice delivered by healthcare professionals between 30 seconds and 3 minutes per encounter, simply telling the smokers to quit, regardless of whether the harms of smoking are discussed or not.		
5. Intensive individual counseling	We recommend intensive individual counseling for smoking cessation.	High	A
6. Cognitive behavioral therapy	We suggest considering cognitive behavioral therapy for smoking cessation.	Moderate	B
Clinical considerations			
	- Cognitive behavioral therapy may provide additional benefits when combined with pharmacotherapy. In addition, its effects may be more pronounced in smokers with smoking-related diseases.		
7. Financial incentives	We suggest considering the provision of financial incentives for smoking cessation.	High	B
	We recommend offering financial incentives for smoking cessation in pregnant smokers.	High	A
Clinical considerations			
	- Financial incentives for smoking cessation should not be provided as a standalone treatment, but in combination with other smoking cessation interventions, such as pharmacotherapy and non-pharmacological therapies.		
	- Pregnancy is a contraindication for smoking cessation medications. However, NRT may be considered when its benefits are deemed to outweigh the risks of smoking.		

(continued to the next page)

Table 1. (Continued) Summary of recommendations for tobacco use treatment


Clinical questions	Recommendations	CoE	GoR
Special population			
1. Smokers with pulmonary tuberculosis	We recommend smoking cessation treatment for smokers with pulmonary tuberculosis.	High	A
2. Smokers diagnosed with lung cancer	We recommend smoking cessation to current smokers diagnosed with lung cancer to reduce mortality.	Low	A
3. Smokers undergoing lung cancer screening	We recommend active smoking cessation counseling and pharmacotherapy for smokers undergoing lung cancer screening.	Low	A
Clinical Considerations			
4. Smokers undergoing elective surgery	- Research indicates insufficient evidence to support the effectiveness of low-dose chest CT screening alone in increasing smoking cessation rates.	Moderate	A
5. Smokers with heart disease.	We recommend varenicline as a first-line pharmacotherapy option for smoking cessation in smokers with heart disease.	Low	A
	We suggest considering NRT for smoking cessation in smokers with heart disease.	Low	B
	We suggest considering bupropion for smoking cessation in smokers with heart disease.	Moderate	B
Clinical Consideration			
6. Smokers with mental illness	- Varenicline is recommended as a first-line treatment for smoking cessation in smokers with heart disease. However, NRT or bupropion may be considered if side effects occur or based on the smoker's preference.	Moderate	A
E-cigarettes and heated tobacco products			
1. E-cigarette users	We recommend both pharmacological and non-pharmacological interventions for quitting e-cigarettes.	Moderate	A
2. Heated tobacco product users	We recommend both pharmacological and non-pharmacological interventions for quitting heated tobacco products.	Good Practice Statement	
3. Multiple tobacco product users	We recommend both pharmacological and non-pharmacological interventions for complete cessation of all tobacco products among multiple tobacco product users.	Low	A
Clinical considerations			
	- Pharmacological and non-pharmacological interventions for smoking cessation can be applied to help quit e-cigarettes and multiple tobacco product use.		
	- Based on research, effective interventions for e-cigarette cessation include varenicline and counseling, as well as tailored interactive text messages. For cessation of multiple tobacco products, effective interventions include varenicline, a combination of varenicline/bupropion + NRT + behavioral support, tailored interactive text messages, use of a smoking cessation app based on acceptance and commitment therapy, and smoking cessation booklets for dual users. However, additional research is needed to determine the efficacy of other interventions.		
	- For e-cigarettes, relapse to combustible cigarettes upon cessation should be avoided.		

A: strong recommendation; B: conditional recommendation.

CoE = certainty of evidence, GoR = grade of recommendation, NRT = nicotine replacement therapy.

of the studies indicated that varenicline significantly increased smoking cessation success rates at six months compared to placebo (relative risk [RR], 2.24; 95% confidence interval [CI], 1.95–2.58). The incidence of serious adverse events associated with varenicline was slightly higher than that for placebo; however, the difference was not statistically significant (RR, 1.16; 95% CI, 0.95–1.40) (Supplementary Table 5-1).

Varenicline significantly increases smoking cessation rates but may cause side effects such as insomnia, abnormal dreams, and nausea. Although patient preference has not been directly assessed in any previous study, healthcare providers should inform patients about the benefits and risks of the therapy. Barriers to implementation of this therapy include treatment duration and side effects, which may discourage some users; however, its strong efficacy remains a key motivator. For patients who cannot tolerate varenicline, alternatives

Fig. 2. Pharmacotherapy algorithm for smoking cessation.
 VCN = varenicline, NRT = nicotine replacement therapy, BUP = bupropion, S/E = side effect, mx = medication.

such as NRT, bupropion, behavioral counseling, cognitive behavioral therapy (CBT), and mindfulness-based interventions should be considered based on individual needs and previous cessation attempts.

Compared to varenicline, is combination NRT effective for smoking cessation?

Recommendation: We suggest considering combination NRT as a first-line pharmacotherapy option for smoking cessation. (Certainty of evidence: Moderate; Grade of recommendation: B)

Clinical considerations

It can be considered when varenicline is ineffective or causes side effects.

The systematic review conducted by Livingstone-Banks et al.,¹⁵ which was assigned a “high” AMSTAR2 rating, included five RCTs that met the PICO-SD criteria.^{20,44,58-60} Participants of the selected studies included general adult smokers (n = 3), smokers with medical or psychiatric conditions (n = 1), and methadone-treated smokers (n = 1). The combination

NRT regimens evaluated in the studies included patch + lozenge (n = 2), patch + gum (n = 2), and patch + gum or inhaler (n = 1). No significant difference in smoking cessation success at six months (RR, 0.95; 95% CI, 0.73–1.22) or serious adverse events (RR, 1.16; 95% CI, 0.66–2.03) was observed between combination NRT and varenicline groups (Supplementary Table 5-2).

The benefits and risks of combination NRT compared to varenicline suggest no critical advantage of one over the other, making the choice dependent on side effects, administration convenience, and patient preference. Although no study has been conducted to directly examine patient preferences, combination NRT is associated with fewer gastrointestinal side effects and abnormal dreams than varenicline. However, practical challenges, such as the need for multiple NRT forms and additional costs (as insurance covers only one form), potentially limit the use of this therapy and emphasize the need for shared decision-making prior its initiation. Moreover, physicians' preference for prescribing oral medications, the focus of NHIS smoking cessation programs on varenicline, and the limited availability of combination NRT in public health centers further hinder its use. Policy advocacy for expanded insurance coverage to include combination NRT formulations and establishment of cost-sharing programs could improve accessibility and address these barriers to the use of combination NRT. Despite its comparable efficacy and the lower risk of nausea and abnormal dreams, increasing physician awareness and promoting combination NRT as an alternative when varenicline causes side effects are essential.

Compared to placebo, is NRT effective for smoking cessation?

Recommendation: We recommend NRT as a first-line pharmacotherapy option for smoking cessation. (Certainty of evidence: High; Grade of recommendation: A)

The systematic reviews conducted by Hartmann-Boyce et al.⁶¹ and Lindson et al.⁶² were rated as "high" quality using the AMSTAR2 tool and were included in for data synthesis. A total of 83 RCTs that met the PICO-SD criteria were selected from the systematic reviews.^{16,33,61,63-141} Five additional RCTs were identified to incorporate recent evidence,¹⁴²⁻¹⁴⁶ resulting in a final selection of 88 studies. The results of the analyses indicated that at six months or longer, NRT achieved significantly higher smoking cessation success rates than placebo (RR, 1.64; 95% CI, 1.53–1.77) (Supplementary Table 5-3). Analysis of the results according to formulation revealed that all types of NRT achieved significantly higher cessation rates than placebo, with nicotine patches (RR, 1.63; 95% CI, 1.48–1.79) and gum (RR, 1.51; 95% CI, 1.32–1.72) demonstrating notable effectiveness. Additionally, nicotine oral spray (RR, 2.48; 95% CI, 1.24–4.94), inhalers (RR, 1.85; 95% CI, 1.32–2.60), nasal sprays (RR, 1.97; 95% CI, 1.44–2.70), and lozenges (RR, 1.98; 95% CI, 1.53–2.55) were all more effective than placebo in promoting smoking cessation. Regarding serious adverse events, two studies reported no occurrences in either the NRT or placebo groups.

The benefits of NRT for adult smokers generally outweigh its risks; however, caution should be applied for individuals who had recent acute cardiovascular events due to potential sympathetic stimulation. NRT significantly improves smoking cessation success rates compared to placebo; however, it may cause mild side effects such as nausea, sleep disturbances, and skin reactions from patches. NRT can be purchased independently as an over-the-counter medication or accessed through public smoking cessation programs, with

financial support available for one formulation through the NHIS smoking cessation support program. However, use of self-purchased NRT often lacks proper follow-up. In addition, its multiple formulations require complex explanations, which may discourage physicians from actively recommending it. Despite these barriers, the accessibility, mild side effect profile, and formulation variety of NRT make it a viable smoking cessation option.

Compared to placebo, is bupropion effective for smoking cessation?

Recommendation: We recommend bupropion as a first-line pharmacotherapy option for smoking cessation. (Certainty of evidence: High; Grade of recommendation: A)

A systematic review conducted by Hajizadeh et al.¹⁴⁷ was assessed using the AMSTAR2 tool, rated as “high” quality, and included in the analysis. Forty-two RCTs that met the PICO-SD criteria were selected from the systematic review.^{16,23,29,31,39,47,104,117,142,148-180} The results showed that bupropion significantly increased smoking cessation success rates at six months or longer compared to placebo (RR, 1.57; 95% CI, 1.42–1.73). However, there was no statistically significant difference in the incidence of serious adverse events between bupropion and placebo (RR, 1.09; 95% CI, 0.84–1.42) (Supplementary Table 5-4).

Bupropion provides significant benefits for smoking cessation, with risks that are generally manageable in the general smoking population. However, it is contraindicated for individuals with seizure disorders or those prone to neuropsychiatric side effects, such as insomnia. Given its efficacy, healthcare providers should weigh its benefits against potential risks and ensure patients are well-informed before prescribing. Although bupropion effectively reduces withdrawal symptoms and may alleviate smoking-related depressive symptoms, it requires physician consultation and gradual dose escalation, which may limit accessibility compared to over-the-counter options. Implementation of streamlined prescription protocols, telemedicine consultations for follow-up visits, and enhanced training for primary care physicians on bupropion management could be beneficial for addressing these barriers. Alternative approaches include dose adjustment for insomnia management or switching to varenicline or behavioral interventions if the medication is needed. Despite the additional costs of bupropion, national smoking cessation programs offer substantial reimbursement, making it a cost-effective option for many patients.

Compared to varenicline monotherapy, is combination therapy with varenicline and bupropion effective for smoking cessation?

Recommendation: We suggest considering combination therapy with varenicline and bupropion as an option for smoking cessation. (Certainty of evidence: Moderate; Grade of recommendation: B)

Clinical considerations

Combination therapy may be beneficial for smokers, including those who previously failed to quit smoking using varenicline monotherapy. However, it should be carefully considered based on the individual's characteristics and preferences.

The systematic review conducted by Hajizadeh et al.¹⁴⁷ was rated as “high” quality based on the AMSTAR2 assessment. Four RCTs that met the PICO-SD criteria were selected from the review for analysis.^{22,181-183} The results indicated that the combination therapy group (varenicline + bupropion) showed higher six-month smoking cessation success rate than the varenicline monotherapy group; however, the difference was not statistically significant (RR, 1.21; 95% CI, 0.95–1.55). Similarly, there was no statistically significant difference in the incidence of serious adverse events between the two groups (RR, 1.22; 95% CI, 0.61–2.44) (**Supplementary Table 5-5**).

Combination therapy may be beneficial for individuals who have a history of depression or failed to achieve smoking cessation on varenicline monotherapy. The potential risks of the therapy do not appear to be critical in certain patients. However, its use should be considered based on individual characteristics and preferences. Barriers to implementation include concerns regarding drug interactions, increased costs, and adherence challenges due to regimen complexity. However, combination therapy may provide a personalized approach for motivated individuals. Expanding insurance coverage could facilitate broader use.

Is combination NRT more effective than NRT monotherapy for smoking cessation?

Recommendation: We recommend combination NRT rather than monotherapy for smoking cessation. (*Certainty of evidence: High; Grade of recommendation: A*)

The systematic review conducted by Theodoulou et al.¹⁸⁴ was assessed using the AMSTAR2 tool, rated as “high” quality, and included in the analysis. An additional literature search was conducted to ensure the inclusion of the most up-to-date evidence, resulting in the selection of 16 RCTs.^{58,108,117,185-198} The results showed that combination NRT group showed significantly increased smoking cessation success rates at six months or longer compared to the NRT monotherapy group (RR, 1.26; 95% CI, 1.15–1.39). Regarding serious adverse events, no statistically significant difference was observed between the combination NRT and NRT monotherapy groups (RR, 3.27; 95% CI, 0.28–38.66) (**Supplementary Table 5-6**).

The benefits of combination NRT outweigh its risks, as it significantly improves smoking cessation success rates compared to monotherapy, with nausea being the only adverse event reported at a higher rate. In addition, existing evidence suggests no significant differences in serious adverse events, sleep disturbances, depression, or cardiovascular issues between combination NRT and NRT monotherapy. Barriers to implementation of combination NRT include limited financial coverage, complex guidance requirements, and the need for clinic visits. However, combination NRT stabilizes nicotine levels and effectively reduces cravings, making it a strong option for managing withdrawal symptoms. Although it incurs higher costs, its superior cessation success rates may reduce long-term healthcare expenses. Expanding reimbursement policies to cover combination NRT formulations and developing patient assistance programs could help overcome these financial barriers.

NRT + bupropion vs. Bupropion only or NRT only

- 1) Is combination therapy with NRT and bupropion more effective for smoking cessation than bupropion monotherapy?
- 2) Is combination therapy with NRT and bupropion more effective for smoking cessation than NRT monotherapy?

Recommendation: We suggest considering combination therapy with NRT and bupropion as an option for smoking cessation. (Certainty of evidence: Moderate; Grade of recommendation: B)

Clinical considerations

Combination therapy with NRT and bupropion can be considered for smokers who failed to achieve smoking cessation with NRT or bupropion monotherapy.

Seven RCTs were selected from previous systematic reviews and an updated literature search to compare NRT + bupropion combination therapy vs. bupropion monotherapy.^{104,117,142,169,197,199,200} The results indicated that the NRT and bupropion combination group showed a higher six-month smoking cessation success rate than the bupropion monotherapy group; however, the difference between the two groups was not statistically significant (RR, 1.15; 95% CI, 0.91-1.46). Regarding serious adverse events, a meta-analysis of two studies showed no statistically significant difference between the combination therapy and monotherapy groups (RR, 0.33; 95% CI, 0.03-3.17) (Supplementary Table 5-7). Fourteen RCTs were selected from previous systematic reviews and an updated literature search to compare NRT + bupropion combination therapy vs. NRT monotherapy.^{104,117,142,197,199-208} The results showed that the NRT and bupropion combination group showed a higher six-month smoking cessation success rate than the NRT monotherapy group; however, the difference between the two groups was not statistically significant (RR, 1.18; 95% CI, 0.95-1.47). Subgroup analyses conducted according to NRT formulation revealed no statistically significant differences between groups. In addition, no significant difference in adverse events was observed between groups (RR, 1.01; 95% CI, 0.24-4.19) (Supplementary Table 5-8).

The analysis showed no significant difference in smoking cessation rates between combination therapy and monotherapy; however, nausea, sleep disturbances, and dry mouth were reported more frequently with use of the combination therapy. Given the added inconvenience, cost, and potential side effects, combination therapy should be considered primarily for individuals with high nicotine dependence or repeated quit failures. Barriers to implementation of NRT + bupropion combination therapy include preference for single-agent therapy among physicians, additional counseling requirements, and lack of financial support for combination therapy in Korea's smoking cessation program. However, combination therapy may be beneficial for smokers who experience withdrawal symptoms or depression during smoking cessation.

Non-pharmacotherapy

Is a smartphone app effective for smoking cessation?

Recommendation: We recommend the use of a smartphone app in addition to existing smoking cessation treatments for smokers. (Certainty of evidence: Moderate; Grade of recommendation: A)

Clinical considerations

- There is no significant difference in smoking cessation success rates between smartphone app interventions alone and standard smoking cessation support services.

However, when combined with pharmacotherapy or behavioral therapies such as face-to-face counseling or text messaging, smartphone apps significantly improve smoking cessation outcomes, making such combined interventions beneficial.

- A subgroup analysis based on the type of app service (chat-based, activity-based) incorporated into a smoking cessation app-integrated intervention showed that chat-based apps (messaging, chat) are effective for smoking cessation. Therefore, the type of app service should be considered when implementing a smoking cessation app-integrated intervention.

Five RCTs were selected from a systematic review conducted by Whittaker et al.²⁰⁹⁻²¹³ In addition, 14 additional RCTs published more recently were identified.²¹⁴⁻²²⁷ Analysis of smoking cessation success rates at six months or longer revealed that the intervention group that received smoking cessation support via a smartphone app showed a significantly higher quit rate than the control group (RR, 1.18; 95% CI, 1.01-1.37). The subgroup analysis revealed no statistically significant difference between the app-only intervention and control groups (RR, 0.98; 95% CI, 0.83-1.15). However, the app-combined intervention group demonstrated a significantly higher cessation success rate than the control group (RR, 1.43; 95% CI, 1.23-1.65) (**Supplementary Table 6-1**).

Smoking cessation apps are accessible to any smoker using a smartphone, regardless of time or location. However, their effective use requires a certain level of digital literacy, including the ability to navigate smartphones and utilize online information. In Korea, many commercially developed apps for smoking cessation are available; however, they vary in quality. Therefore, it is important to promote and enhance the use of evidence-based apps, such as the government-supported app, through continuous service updates and public awareness efforts.

Are text messages effective for smoking cessation?

Recommendation: We recommend providing personalized text messages for smoking cessation. (*Certainty of evidence: High; Grade of recommendation: A*)

Clinical considerations

- The provision of text messages alone enhances smoking cessation success; however, combining text messages with face-to-face counseling, telephone counseling, or pharmacotherapy significantly improves smoking cessation outcomes. This suggests that a variety of smoking cessation interventions could be combined effectively.

Sixteen RCTs were selected from a systematic review conducted by Whittaker et al.,²²⁸⁻²⁴³ and seven additional RCTs were identified in an updated search.²⁴⁴⁻²⁵⁰ The intervention groups were classified into two subgroups based on whether text messaging was provided alone or in combination with other smoking cessation treatments. The text-only intervention group included the participants of 14 studies, who primarily received personalized text messages. The text-combined intervention group included the participants of nine studies who received text messages in addition to pharmacotherapy, in-person counseling, or telephone support. Overall, the text messaging interventions significantly improved smoking cessation success compared to the control intervention (RR, 1.43; 95% CI, 1.18-1.73). Subgroup

analysis showed that both text-only (RR, 1.36; 95% CI, 1.02–1.80) and text-combined interventions (RR, 1.53; 95% CI, 1.18–1.98) were significantly more effective than the control (**Supplementary Table 6-2**).

Text messaging for smoking cessation can be delivered anytime and anywhere. Unlike apps, which require users to engage voluntarily, text messages are passively received, allowing for broader population reach and potentially greater accessibility. However, implementing such services requires a system that can develop personalized messages aligned with each individual's quit schedule, send them automatically, and track performance through message history. As digital environments evolve, the reach and effectiveness of text messaging alone may decline; therefore, it should be integrated as a component within broader interventions such as mobile apps or AI-based programs.

Is proactive telephone counseling effective for smoking cessation?

Recommendation: We recommend proactive telephone counseling for smoking cessation. (*Certainty of evidence: High; Grade of recommendation: A*)

Twenty-nine RCTs were selected from a systematic review conducted by Matkin et al.,²⁵¹⁻²⁷⁹ and two more recent RCTs were added to reflect updated evidence.^{280,281} Analysis of smoking cessation success rates at six months or longer showed that proactive telephone counseling by trained counselors significantly increased quit rates compared to the control interventions (RR, 1.30; 95% CI, 1.17–1.44). Subgroup analyses showed consistent results across different types of controls. Cessation rates were significantly higher in the intervention group than in both the minimal intervention control group (RR, 1.32; 95% CI, 1.15–1.52) and the usual care control group (RR, 1.25; 95% CI, 1.09–1.41). Additionally, telephone counseling without pharmacotherapy demonstrated a significant benefit over control interventions (RR, 1.35; 95% CI, 1.19–1.53), whereas counseling combined with pharmacotherapy showed a non-significant trend toward increased smoking cessation (RR, 1.19; 95% CI, 0.98–1.44) (**Supplementary Table 6-3**).

Proactive telephone counseling offers high accessibility and low barriers to use, making it suitable for the general population. It is particularly effective for individuals who may have difficulty accessing or are reluctant to participate in face-to-face smoking cessation programs, such as women, adolescents, older adults, workers, and people with disabilities. However, users with speech or language impairments may face difficulties using this intervention. In addition, those who prefer pharmacological interventions may exhibit lower acceptance of the intervention. For individuals with communication barriers, alternative formats such as text-based counseling platforms or video consultations with sign language interpretation could enhance accessibility. Proactive referral to telephone counseling as part of follow-up care in clinical smoking cessation programs can help promote its utilization.

Is very brief advice (VBA) effective for smoking cessation?

Recommendation: We recommend providing VBA for smoking cessation. (*Certainty of evidence: High; Grade of recommendation: A*)

Clinical considerations

- Very brief advice is defined as advice delivered by healthcare professionals between 30 seconds and 3 minutes per encounter, simply telling the smokers to quit, regardless of whether the harms of smoking are discussed or not.

Eleven RCTs were included in this analysis, three selected through a systematic search²⁸²⁻²⁸⁴ and eight identified from more recent publications.^{275,285-291} Analysis of smoking cessation success rates at six months or longer showed that the intervention group that received VBA demonstrated a significantly higher quit rate than the control group (RR, 1.36; 95% CI, 1.16-1.59) (Supplementary Table 6-4).

VBA is a low-intensity intervention that can be broadly applied across the general population and may be particularly suitable for individuals who are not yet motivated to quit, as it is associated with a low risk of resistance. Its simplicity and feasibility make it acceptable to both healthcare providers and patients. However, implementation barriers exist when clinicians feel unprepared to deliver cessation advice or fail to perceive a clear link between smoking and the patient's primary condition.²⁹²⁻²⁹⁴ Provision of feedback on cessation outcomes from patients who received VBA may reinforce clinicians' perceived value of the intervention. In addition, a team-based approach may enhance the delivery and sustainability of this intervention in busy clinical settings.

Is intensive individual counseling effective for smoking cessation?

Recommendation: We recommend intensive individual counseling for smoking cessation. (Certainty of Evidence: High; Grade of Recommendation: A)

Forty-four RCTs were selected from a systematic review conducted by Lancaster et al.^{167,268,295-336} In addition, seven more recent RCTs were identified in an updated search,³³⁷⁻³⁴³ yielding a total of 51 RCTs included for data synthesis. Evaluation of smoking cessation success rates at six months or longer indicated that high-intensity individual counseling was associated with significantly higher quit rates than control interventions (RR, 1.47; 95% CI, 1.29-1.67). No serious adverse events were reported in the studies. In addition, subgroup analyses showed consistent benefits of the counseling. High-intensity counseling significantly increased quit rates compared to minimal intervention controls (RR, 1.53; 95% CI, 1.31-1.79) and low-intensity counseling controls (RR, 1.33; 95% CI, 1.06-1.69). Further analysis stratified according to pharmacotherapy use revealed significant effects of high-intensity counseling both in the absence of pharmacotherapy (RR, 1.60; 95% CI, 1.34-1.90) and when pharmacotherapy was used in both the intervention and control groups (RR, 1.29; 95% CI, 1.08-1.54) (Supplementary Table 6-5).

High-intensity individual counseling has been shown to be effective in the general population and in specific populations such as pregnant women, individuals with mental illness, and patients with myocardial infarction. Although high-intensity individual counseling requires longer and more frequent sessions than low-intensity counseling, it yields higher cessation success rates and may be particularly beneficial for smokers who are not receiving pharmacotherapy and rely solely on counseling support.³⁴⁴ Facilitating referrals from

primary, secondary, and tertiary healthcare providers to public health centers or regional smoking cessation support centers can increase access to high-intensity counseling services.

Is CBT effective for smoking cessation?

Recommendation: We suggest considering CBT for smoking cessation. (*Certainty of Evidence: Moderate; Grade of Recommendation: B*)

Clinical considerations

- Cognitive behavioral therapy may provide additional benefits when combined with pharmacotherapy. In addition, its effects may be more pronounced in smokers with smoking-related diseases.

Eleven RCTs selected through a systematic search and screening^{172,330,331,345-352} and five identified through supplementary searches^{332-334,353,354} were included for synthesis. The results of the analyses indicated that adult smokers, CBT significantly increased smoking cessation success rates at six months or longer compared to minimal intervention (RR, 1.52; 95% CI, 1.21-1.92). In addition, subgroup analysis showed that CBT combined with pharmacotherapy significantly improved cessation outcomes (RR, 1.40; 95% CI, 1.03-1.91). CBT alone without pharmacotherapy was similarly effective (RR, 1.73; 95% CI, 1.19-2.50). Further subgroup analysis conducted according to population type showed that CBT was effective for smoking cessation in patients (RR, 1.84; 95% CI, 1.35-2.50) and healthy adults (RR, 1.42; 95% CI, 1.07-1.89) (**Supplementary Table 6-6**).

The effectiveness of CBT may vary depending on the condition and characteristics of the population.³⁵⁵ Patients with underlying diseases may demonstrate stronger motivation to quit, enhancing the impact of the intervention. Development of a standardized CBT program tailored to the severity and risk level of smoking could enable the delivery of more personalized and effective sessions, ultimately promoting smoking cessation among diverse populations.

Financial incentives

- 1) Are financial incentives effective for smoking cessation in adult smokers?
- 2) Are financial incentives effective for smoking cessation in pregnant smokers?

Recommendation

- 1) We suggest considering the provision of financial incentives for smoking cessation. (*Certainty of Evidence: High; Grade of Recommendation: B*)
- 2) We recommend offering financial incentives for smoking cessation in pregnant smokers. (*Certainty of Evidence: High; Grade of Recommendation: A*)

Clinical considerations

- Financial incentives for smoking cessation should not be provided as a standalone treatment, but in combination with other smoking cessation interventions, such as

pharmacotherapy and non-pharmacological therapies.

- Pregnancy is a contraindication for smoking cessation medications. However, NRT may be considered when its benefits are deemed to outweigh the risks of smoking.

Forty RCTs were selected from a systematic review conducted by Notley et al.,^{335,356-395} and nine additional RCTs were identified to reflect updated evidence.³⁹⁶⁻⁴⁰⁴ Subgroup analyses of the general adult population and pregnant smokers were performed. For the general adult population, the pooled analysis of smoking cessation success rates at six months or longer showed that provision of financial incentives significantly increased quit rates compared to no incentive (RR, 1.46; 95% CI, 1.26-1.69) (Supplementary Table 6-7). In pregnant smokers, financial incentives also significantly improved cessation success compared to no incentive (RR, 2.34; 95% CI, 1.73-3.18) (Supplementary Table 6-8).

Financial incentives should not be used as a standalone intervention for smoking cessation but rather as an adjunct to other non-pharmacological and pharmacological treatments. Existing evidence suggests that combining financial incentives with pharmacotherapy may produce synergistic effects, resulting in higher cessation success rates. Financial incentives can serve as a particularly important intervention in pregnant smokers, for whom pharmacological treatments are generally contraindicated. Smoking cessation during pregnancy has both direct and indirect health benefits for the mother and fetus and may contribute to improved maternal health outcomes and reduced healthcare costs.

Special populations

Is smoking cessation treatment effective for smokers with pulmonary tuberculosis?

Recommendation: We recommend smoking cessation treatment for smokers with pulmonary tuberculosis. (Certainty of Evidence: High; Grade of Recommendation: A)

Twelve RCTs were included for the systematic review.^{145,405-415} A meta-analysis of eight studies (three pharmacological intervention groups and six non-pharmacological groups, including one study with two intervention arms) was conducted to analyze smoking cessation outcomes. The results demonstrated significantly higher quit rates in the intervention group than in the control group (RR, 1.31; 95% CI, 1.12-1.54). Four additional studies (two pharmacological and two non-pharmacological) were not included in the meta-analysis. In the studies by Malhotra et al. and Sharma et al., both intervention groups received NRT combined with behavioral counseling and showed higher cessation rates than control groups that received counseling alone (70.2% vs. 46.7%; 47.8% vs. 32.4%, respectively). In addition, Nichter et al.⁴¹³ and Goel et al.⁴⁰⁸ reported that individuals who received non-pharmacological interventions showed higher quit rates than those in the intervention groups (80.2% vs. 57.5%; incidence rate ratio, 1.52; $P < 0.001$). Regarding tuberculosis treatment success rate, data on pooled analysis from three studies showed no significant difference between the intervention and control groups (RR, 1.00; 95% CI, 0.96-1.03). Regarding tuberculosis conversion rate, only the study Dogar et al.⁴⁰⁶ included results on this outcome, indicating no significant difference between groups. Serious adverse events were reported in the same study, with no significant difference between the intervention and control groups (RR, 1.04; 95% CI, 0.79-1.37) (Supplementary Table 7-1).

There is a lack of adequate resources and knowledge in healthcare settings to provide tailored smoking cessation counseling for patients with tuberculosis. This highlights the need for additional support and training to facilitate the provision of personalized smoking cessation counseling for this patient population. Tuberculosis care providers can help address patient-related barriers to quitting smoking during anti-tuberculosis treatment and simultaneously contribute to improved treatment outcomes. Strengthening collaborations between national TB and tobacco control programs within an integrated healthcare system may serve as an important facilitator.

Does smoking cessation reduce mortality in current smokers diagnosed with lung cancer?

Recommendation: We recommend smoking cessation to current smokers diagnosed with lung cancer to reduce mortality. (Certainty of Evidence: Low; Grade of Recommendation: A)

Eighteen studies were initially selected after systematic screening, and six additional studies were identified through supplementary searches, resulting in a total of 24 cohort studies included in the analysis.⁴¹⁶⁻⁴³⁹ All studies included comparison of mortality outcomes between patients with lung cancer who quit smoking at the time of or within one year of diagnosis and those who continued smoking. A meta-analysis of 17 studies that included data on adjusted hazard ratios (HRs) showed that quitting smoking at or shortly after diagnosis significantly reduced mortality risk compared to continued smoking (HR, 0.73; 95% CI, 0.67–0.80) (Supplementary Table 7-2). Subgroup analyses conducted according to cancer type showed similar results (for all lung cancer types combined: HR, 0.82 [95% CI, 0.73–0.93]; for small-cell lung cancer: HR, 0.61 [95% CI, 0.51–0.72]; for non-small cell lung cancer: HR, 0.72 [95% CI, 0.63–0.83]). A separate meta-analysis of nine studies that reported unadjusted HRs also showed a significant reduction in mortality among those who quit smoking around the time of diagnosis compared to those who continued smoking (HR, 0.77; 95% CI, 0.67–0.88).

For current smokers, smoking cessation at the time of lung cancer diagnosis offers greater benefits than risks, particularly in terms of improved survival. Given that smoking is the leading cause of lung cancer, a cancer diagnosis may serve as a powerful motivator for smoking cessation. Further research is needed to explore both pharmacological and non-pharmacological smoking cessation interventions tailored to current smokers diagnosed with lung cancer.

Smokers undergoing lung cancer screening

- 1) Is low-dose computed tomography (LDCT) screening effective for smoking cessation in smokers undergoing lung cancer screening?
- 2) Is smoking cessation treatment effective for smokers undergoing lung cancer screening?

Recommendation: We recommend active smoking cessation counseling and pharmacotherapy for smokers undergoing lung cancer screening. (Certainty of Evidence: Low; Grade of Recommendation: A)

Clinical Considerations

- Research indicates insufficient evidence to support the effectiveness of low-dose chest CT screening alone in increasing smoking cessation rates.

Four RCTs were selected through a systematic search and identification of primary studies that addressed the key question of whether LDCT promotes smoking cessation.⁴⁴⁰⁻⁴⁴³ Evidence synthesis showed that smoking cessation rates at 12 months or longer did not significantly differ between the LDCT group and the non-LDCT group (four studies; RR, 1.11; 95% CI, 0.91–1.36) (**Supplementary Table 7-3**). To assess the effectiveness of smoking cessation interventions in smokers undergoing lung cancer screening, 10 RCTs (reported across 12 publications) were selected through a systematic search and screening process.^{281,336,444-453} Pooled analysis of nine studies revealed no statistically significant difference in smoking cessation rates at three months or longer between the intervention group and the control group that received minimal or usual care (RR, 1.56; 95% CI, 0.90–2.69) (**Supplementary Table 7-4**). In a cluster RCT conducted by Foley et al., there was no significant difference in odds ratio between groups (OR, 0.97; 95% CI, 0.65–1.45). In the subgroup analyses, smoking cessation interventions that included pharmacotherapy achieved significantly higher cessation success than control interventions (RR, 2.41; 95% CI, 1.32–4.39). Similarly, interventions classified as intensive smoking cessation treatments achieved significantly greater quit rates than less intensive or usual care interventions (RR, 2.00; 95% CI, 1.20–3.34). Serious adverse events did not differ significantly between groups in the single study that reported them (RR, 0.93; 95% CI, 0.63–1.36) (**Supplementary Table 7-4**).

The benefits of smoking cessation are particularly significant for individuals with a high risk for lung cancer, such as those undergoing lung cancer screening. The risks associated with implementing cessation interventions during the screening process are comparable to those of standard cessation treatments, whereas the potential benefits are substantial. A systematic review of patients' perspectives on the "teachable moment" of lung cancer screening indicated that the screening experience heightened intrinsic motivation, increased awareness of smoking-related health risks, and encouraged smoking reduction.⁴⁵⁴ In Korea's national lung cancer screening program, smoking cessation counseling is intended to be delivered during follow-up result consultations. However, attendance rates for follow-up visits are declining, prompting discussions on strategies to improve counseling uptake. Most physicians who conduct result consultations report limited time and experience to provide in-depth counseling. Therefore, delivering brief, motivational messages that highlight the clear benefits of quitting smoking, followed by referrals to specialized cessation services, may optimize intervention effectiveness.

Is initiating smoking cessation treatment prior to elective surgery effective for achieving smoking cessation in smokers?

Recommendation: We recommend starting smoking cessation treatment prior to elective surgery for smokers. (Certainty of evidence: Moderate; Grade of recommendation: A)

Nine publications (seven unique studies) were identified through systematic screening,^{54,455-460} and five additional RCTs (four unique studies) were retrieved through supplementary searches,⁴⁶¹⁻⁴⁶⁷ resulting in a total of 14 RCTs (11 studies) included in the analysis. The meta-analysis showed that smokers who underwent preoperative smoking cessation interventions had a significantly increased likelihood of quitting at six months or longer compared to controls (RR, 1.71; 95% CI, 1.20–2.44). Analysis stratified according to follow-up time indicated that quit rates remained significantly higher in the intervention group (RR at 6 months, 1.42; 95%

CI, 1.06–1.90; RR at 12 months, 1.84; 95% CI, 1.31–2.59). Regarding postoperative outcomes, the intervention group had a significantly lower risk of developing any complication (RR, 0.79; 95% CI, 0.63–0.98) (Supplementary Table 7-5).

Smokers awaiting elective surgery may be more receptive to preoperative cessation treatment when informed that it can reduce postoperative complications and improve surgical outcomes. Unlike emergency procedures, the preoperative period for elective surgeries offers a valuable “teachable moment” for initiation of smoking cessation interventions. Similar to hospitalization for non-surgical reasons, this controlled setting encourages smokers to reflect more deeply on their health and the pros and cons of continuing smoking.

Smokers with heart disease

- 1) Compared to placebo, is varenicline safe and effective for smoking cessation in smokers with heart disease?
- 2) Compared to placebo, is NRT safe and effective for smoking cessation in smokers with heart disease?
- 3) Compared to placebo, is bupropion safe and effective for smoking cessation in smokers with heart disease?

Recommendation

- 1) We recommend varenicline as a first-line pharmacotherapy option for smoking cessation in smokers with heart disease. (*Certainty of Evidence: Low; Grade of Recommendation: A*)
- 2) We suggest considering NRT for smoking cessation in smokers with heart disease. (*Certainty of Evidence: Low; Grade of Recommendation: B*)
- 3) We suggest considering bupropion for smoking cessation in smokers with heart disease. (*Certainty of Evidence: Moderate; Grade of Recommendation: B*)

Clinical Consideration

- Varenicline is recommended as a first-line treatment for smoking cessation in smokers with heart disease. However, NRT or bupropion may be considered if side effects occur or based on the smoker's preference.

For the analysis of varenicline as a pharmacotherapy option for smoking cessation in smokers with heart disease, four publications (three RCTs) selected from a previous systematic review and through updated search were included for synthesis.^{43,53,468,469} The results showed that among smokers with cardiovascular disease, varenicline significantly increased smoking cessation rates at six months or longer compared to placebo (RR, 2.35; 95% CI, 1.15–4.80). Subgroup analysis conducted according to disease phase (acute vs. non-acute) showed no statistically significant differences between the intervention and control groups (acute, RR, 1.44; 95% CI, 0.97–2.12; non-acute, RR, 4.36; 95% CI, 0.97–19.53). The incidence of cardiovascular adverse events did not differ significantly between groups (RR, 1.11; 95% CI, 0.71–1.73). In addition, no statistically significant difference in serious adverse events was observed (RR, 1.11; 95% CI, 0.80–1.56) (Supplementary Table 7-6).

For NRT, two publications were selected from a previous systematic review and through an updated search.^{105,469} The results of the analysis showed that among smokers with

cardiovascular disease, NRT increased smoking cessation success rate at six months or longer compared to placebo; however, the difference between groups was not statistically significant (RR, 1.39; 95% CI, 0.74–2.60). In the only study that includes data on cardiovascular adverse events, no statistically significant differences in the incidence of myocardial infarction (RR, 0.33; 95% CI, 0.01–8.04) or cardiac arrest (RR, 0.99; 95% CI, 0.06–15.70) were observed between the NRT and placebo groups. Regarding serious adverse events, no statistically significant difference was observed between smokers with cardiovascular disease in the NRT and placebo groups (RR, 1.01; 95% CI, 0.70–1.46) (Supplementary Table 7-7).

For bupropion, five publications were selected from a previous systematic review and through an updated search.^{154,170,171,178,469} Among smokers with cardiovascular disease, the bupropion group showed a higher six-month smoking cessation success rate than the placebo group; however, the difference was not statistically significant (RR, 1.51; 95% CI, 0.99–2.31). The subgroup analyses showed that among patients hospitalized for acute myocardial infarction or acute coronary syndrome, there was no statistically significant difference in smoking cessation rates between the bupropion and placebo groups (RR, 1.17; 95% CI, 0.91–1.51). However, among smokers with stable cardiovascular conditions, bupropion significantly increased cessation rates compared to placebo (RR, 2.75; 95% CI, 1.23–6.15). Regarding cardiovascular adverse events, there was no significant difference between the groups overall (RR, 1.35; 95% CI, 1.00–1.83). In addition, the findings were consistent in both the acute (RR, 1.26; 95% CI, 0.89–1.77) and non-acute subgroups (RR, 1.71; 95% CI, 0.90–3.25). Similarly, no statistically significant difference in serious adverse events was observed between the bupropion and placebo groups (RR, 1.30; 95% CI, 0.48–3.52) (Supplementary Table 7-8).

Some previous studies have highlighted the potential cardiovascular risks of varenicline in patients with heart disease. However, subsequent research has shown no association between varenicline and increased cardiovascular risk, with some studies even indicating a reduction in all-cause mortality. In this meta-analysis, varenicline was the only pharmacological treatment to achieve a statistically significant improvement in smoking cessation rates among smokers with cardiovascular disease compared to placebo. Although NRT and bupropion did not demonstrate statistically significant efficacy, their relative risk values were modestly elevated (RR 1.39 and 1.51, respectively). In addition, they were not associated with increased risks of cardiovascular or serious adverse events compared to placebo. Therefore, NRT or bupropion SR may be considered as alternative options for patients who cannot tolerate varenicline.

Smokers with mental illness

- 1) Compared to a placebo, is varenicline safe and effective for smoking cessation in smokers with mental illness?
- 2) Compared to a placebo, is bupropion safe and effective for smoking cessation in smokers with mental illness?
- 3) Compared to a placebo, is NRT safe and effective for smoking cessation in smokers with mental illness?

Recommendation: We recommend varenicline, bupropion, or NRT as a first-line pharmacotherapy option for smoking cessation in smokers with mental illness. (Certainty of evidence: Moderate; Grade of recommendation: A)

Clinical Considerations

- Varenicline, bupropion, and NRT can be used for smoking cessation in smokers with mental illness. However, the potential side effects of each medication should be carefully explained to the smoker before making a choice.

For evaluation of varenicline as a pharmacotherapy option for smoking cessation in smokers with mental illness, 15 articles (13 RCTs) were selected from a previous systematic review and updated evidence and included for data synthesis.^{16,17,21,30,36,40,44,51,55,56,470-474} The results indicated that varenicline was significantly more effective than placebo in achieving smoking cessation at six months or longer (RR, 2.17; 95% CI, 1.79–2.64). There was no statistically significant difference in serious adverse events between the varenicline and placebo groups (RR, 0.95; 95% CI, 0.66–1.37). Subgroup analyses conducted according to psychiatric disorders yielded consistent findings. However, the results for individual disorders were not statistically significant due to the wide CIs observed (major depressive disorder [RR, 0.82; 95% CI, 0.44–1.53], substance or opioid use disorder [RR, 1.77; 95% CI, 0.51–6.18], bipolar disorder [RR, 1.40; 95% CI, 0.44–4.47], and schizophrenia/schizoaffective disorder/bipolar disorder [RR, 0.76; 95% CI, 0.23–2.55]) (**Supplementary Table 7-9**).

For bupropion, 11 studies (9 RCTs) were selected from a previous systematic review and an updated search.^{16,155,156,158,162,165,176,179,470-472} In smokers with mental illness, bupropion was significantly more effective than placebo in achieving smoking cessation at 6 months or longer (RR, 1.67; 95% CI, 1.30–2.14). There was no significant difference in serious adverse events between bupropion and placebo (RR, 1.12; 95% CI, 0.67–1.87). Bupropion was associated with a significantly higher risk of neuropsychiatric adverse events (RR, 1.23; 95% CI, 1.10–1.37). However, no statistically significant differences in serious neuropsychiatric events (RR, 1.30; 95% CI, 0.86–1.95) or individual symptoms including anxiety (RR, 1.26; 95% CI, 0.63–2.51), insomnia (RR, 1.27; 95% CI, 0.62–2.60), seizure (RR, 2.61; 95% CI, 0.11–60.51), suicidal ideation or intent (RR, 0.49; 95% CI, 0.06–3.75), and depression (RR, 0.90; 95% CI, 0.61–1.33) were observed between the two groups (**Supplementary Table 7-10**).

For NRT, four studies (two RCTs) were selected from a previous systematic review and an updated search.^{16,99,470,471} Among smokers with mental illness, NRT was significantly more effective than placebo in achieving smoking cessation at six months or longer (RR, 1.55; 95% CI, 1.22–1.99). There was no significant difference in serious adverse events between the NRT and placebo groups (RR, 0.96; 95% CI, 0.55–1.67). Regarding neuropsychiatric adverse events, there were no significant differences in depression (RR, 1.00; 95% CI, 0.60–1.45), irritability (RR, 0.91; 95% CI, 0.65–1.27), or agitation (RR, 0.95; 95% CI, 0.62–1.46) between the groups. However, NRT was associated with a significantly higher risk of anxiety (RR, 1.47; 95% CI, 1.08–2.01), having abnormal dreams (RR, 2.64; 95% CI, 1.95–3.58), and insomnia (RR, 1.57; 95% CI, 1.17–2.12) than placebo (**Supplementary Table 7-11**).

Varenicline, bupropion, and NRT are all considered first-line pharmacotherapies for smoking cessation. The results of the studies on smokers with mental illness indicated notable differences in cessation efficacy among these agents; however, no significant differences in serious adverse events among them were observed. According to the 2020 clinical practice guideline from the American Thoracic Society, varenicline is recommended over nicotine patches for adults with mental health conditions.⁴⁷⁵ Similarly, Ireland's National Clinical

Guideline No. 28 (2022) recommends that mental health professionals prioritize varenicline as the first-line treatment.⁴⁷⁶ If a smoker does not tolerate or respond to one medication, switching to one of the other first-line agents may be an appropriate alternative.

E-cigarettes and HTPs

Is smoking cessation treatment effective for e-cigarette users? (1)

Is smoking cessation treatment effective for heated tobacco users? (2)

Is smoking cessation treatment effective for multiple tobacco product users? (3)

Recommendation

- (1) We recommend both pharmacological and non-pharmacological interventions for quitting e-cigarettes. (*Certainty of evidence: Moderate; Grade of recommendation: A*)
- (2) We recommend both pharmacological and non-pharmacological interventions for quitting HTPs. (*Good Practice Statement*)
- (3) We recommend both pharmacological and non-pharmacological interventions for complete cessation of all tobacco products among multiple tobacco product users. (*Certainty of evidence: Low; Grade of recommendation: A*)

Clinical considerations

- Pharmacological and non-pharmacological interventions for smoking cessation can be applied to help quit e-cigarettes and multiple tobacco product use.
- Based on research, effective interventions for e-cigarette cessation include varenicline and counseling, as well as tailored interactive text messages. For cessation of multiple tobacco products, effective interventions include varenicline, a combination of varenicline/bupropion + NRT + behavioral support, tailored interactive text messages, use of a smoking cessation app based on acceptance and commitment therapy, and smoking cessation booklets for dual users. However, additional research is needed to determine the efficacy of other interventions.
- For e-cigarettes, relapse to combustible cigarettes upon cessation should be avoided.

For analysis of smoking cessation for e-cigarette users, four studies were selected through a literature search and screening. Of the four studies, three were RCTs⁴⁷⁷⁻⁴⁷⁹ and one was a non-randomized study (NRS) that included a post-hoc analysis of users of liquid-based e-cigarettes.^{245,480} Regarding smoking cessation success rates, intervention groups who received smoking cessation treatment showed significantly higher quit rates than control groups. In the RCTs, the intervention groups were 73% more likely to achieve smoking cessation than the control groups (RR, 1.73; 95% CI, 1.07–2.79). In the NRSs, the intervention groups showed a 29% higher likelihood of smoking cessation (RR, 1.29; 95% CI, 1.04–1.58). Regarding serious adverse events, an RCT conducted by Caponnetto et al.⁴⁷⁷ indicated that such events were rare and the cases recorded in either group were not treatment-related (**Supplementary Table 8-1**).

For analysis of smoking cessation among users of HTPs, no eligible studies were identified through the systematic search; however, two excluded cohort studies provided relevant data on the comparison of smoking cessation outcomes between users of conventional cigarettes and HTPs.^{481,482} Nomura et al.⁴⁸² analyzed the efficacy of a telemedicine

cessation program that included optional use of a varenicline or nicotine patch. Higher abstinence was observed in the HTP group at 24 weeks (OR, 1.12; 95% CI, 1.02–1.23) and borderline significance was recorded at 52 weeks (OR, 1.09; 95% CI, 0.99–1.19). Noda et al.⁴⁸¹ evaluated the use of an app-based program with educational and behavioral features and reported a significantly higher 24-week abstinence in the HTP group (OR, 1.17; 95% CI, 1.12–1.22). No serious adverse events were reported. Although direct clinical evidence from studies such as RCTs is limited, the balance of benefits and harms, patient values and preferences, and resource implications, as well clinical experience and expert consensus, support the recommendation of smoking cessation treatment for users of HTPs. The lack of high-quality evidence on the efficacy of HTP cessation treatment represents a critical gap in current tobacco control research. Given the substantial and growing prevalence of HTP use in Korea, there is an urgent need for prospective studies and RCTs specifically designed to evaluate the effectiveness of pharmacological and behavioral interventions in this population. Future research should be focused on head-to-head comparisons of different cessation modalities and investigation of the need for HTP-specific cessation strategies beyond conventional smoking cessation approaches.

Eight studies were selected for analysis of smoking cessation for users of multiple tobacco products. These included four RCTs,^{478,483–485} two post-hoc analyses of previous RCTs,^{245,486} and two cohort studies.^{487,488} The studies were primarily focused on evaluation of dual or poly-use of conventional cigarettes and other tobacco products (e-cigarettes, waterpipes, cigars). No study on HTP-related multiple use was identified. Smoking cessation outcomes were analyzed separately for complete cessation of conventional cigarettes and other tobacco products, and cessation of conventional cigarettes only. For complete cessation of all tobacco products, both RCTs (RR, 1.39; 95% CI, 1.16–1.65) and NRSs (RR, 1.59; 95% CI, 1.12–2.24) indicated significantly higher quit rates in the intervention group than in the control group. For cigarette-only cessation, the RCTs did not show a statistically significant difference (RR, 1.17; 95% CI, 0.95–1.45); however, the results of the NRSs favored the intervention group. No serious adverse events were reported (Supplementary Table 8-2).

The effectiveness of behavioral and pharmacological interventions for tobacco and nicotine dependence is well established, and the interventions are widely used in clinical practice. Recent studies suggest that these interventions may also help users of e-cigarettes, HTPs, and multiple tobacco products. However, more large-scale RCTs are needed to confirm the effectiveness of the existing interventions in these populations, especially through the comparison of treatment modalities. Although the prevalence of conventional smoking is declining in Korea, the use of e-cigarettes and multiple tobacco products is projected to increase.⁵ Many users view e-cigarettes as less harmful and use them to quit smoking, reduce cigarette use, or for economic reasons.⁴⁸⁹ When treating e-cigarette users, clinicians should assess tobacco use history, dual use with cigarettes, and perceptions of harm. Providing evidence-based information and engaging in shared decision-making are essential for achievement of satisfactory cessation outcomes.

CONCLUSION

This clinical practice guideline is the first developed in Korea to comprehensively address pharmacological and non-pharmacological treatments for smoking cessation, interventions for special populations, and smoking cessation strategies for users of electronic cigarettes.

Developed through multidisciplinary collaborations among experts in medicine, public health, nursing, and psychology, it reflects the latest research and provides evidence-based recommendations tailored to individual smoker characteristics and needs. In addition, this guideline was developed by systematically evaluating the benefits and harms of each intervention and considering smokers' values and preferences, resource use, acceptability, feasibility, and equity. This guideline also includes practical tools, such as a pharmacotherapy algorithm and Korea's first cessation guidance for diverse tobacco product users, enhancing its clinical and policy relevance. Furthermore, the guideline presents tailored approaches to smoking cessation for special populations and specific guidance for e-cigarette users to ensure inclusivity and applicability across diverse groups. By increasing the likelihood of successful cessation and reducing smoking-related disease burden, this guideline is expected to improve public health outcomes. Moreover, it will serve as a key reference for informing health policies, supporting smoking cessation efforts, and guiding future research.

SUPPLEMENTARY MATERIALS

Supplementary Table 1

Level of conflict of interest and participation decisions

Supplementary Table 2

Population, Interventions, Professionals, Outcomes, Healthcare setting (PIPOH) framework

Supplementary Table 3

Certainty of evidence definitions based on Grading of Recommendations Assessment Development and Evaluation (GRADE) approach

Supplementary Table 4

Definition of grade of recommendation based on the Grading of Recommendations Assessment Development and Evaluation (GRADE) approach

Supplementary Table 5

GRADE summary of findings for pharmacotherapy

Supplementary Table 6

GRADE summary of findings for non-pharmacotherapy

Supplementary Table 7

GRADE summary of findings for smoking cessation in special populations

Supplementary Table 8

GRADE summary of findings for E-cigarettes and heated tobacco products users

REFERENCES

1. National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. *The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General*. Atlanta, GA, USA: Centers for Disease Control and Prevention; 2014.

2. U.S. Department of Health and Human Services. *Smoking Cessation. A Report of the Surgeon General*. Atlanta, GA, USA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2020.
3. Cho SI. *Building a Research Foundation on the Harmful Effects of Smoking and Measuring the Socioeconomic Burden*. Osong, Korea: Korea Disease Control and Prevention Agency; 2021.
4. Korea Disease Control and Prevention Agency. *2020 National Health Statistics – Korea National Health and Nutrition Examination Survey (KNHANES VIII-2)*. Osong, Korea: Korea Disease Control and Prevention Agency; 2022.
5. Tobacco Control Integrated Knowledge Center. *2022 KDCA Report on Harmful Effects of Tobacco: An Overview of Tobacco Use and its Effects on Health*. Cheongju, Korea: Korea Disease Control and Prevention Agency; 2022.
6. Guyatt GH, Oxman AD, Kunz R, Atkins D, Brozek J, Vist G, et al. GRADE guidelines: 2. Framing the question and deciding on important outcomes. *J Clin Epidemiol* 2011;64(4):395-400. [PUBMED](#) | [CROSSREF](#)
7. Seo HJ, Kim SY, Lee YJ, Park JE. RoBANS 2: a revised risk of bias assessment tool for nonrandomized studies of interventions. *Korean J Fam Med* 2023;44(5):249-60. [PUBMED](#) | [CROSSREF](#)
8. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ* 2011;343:d5928. [PUBMED](#) | [CROSSREF](#)
9. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ* 2019;366:l4898. [PUBMED](#) | [CROSSREF](#)
10. Covidence. *Covidence Systematic Review Software*. Melbourne, VIC, Australia: Veritas Health Innovation Ltd.; 2022.
11. 5.4. *MRMCpV*. The Cochrane Collaboration. London, UK: Cochrane; 2020.
12. The R Core Team. *A Language and Environment for Statistical Computing*. Vienna, Austria: R Foundation for Statistical Computing; 2021.
13. StataCorp. *Stata Statistical Software: Release 18*. College Station, TX, USA: StataCorp LLC.; 2023.
14. Lee CM, Seo YB, Paek YJ, Lee ES, Kang HS, Kim SY, et al.. Evidence-based guideline for the treatment of smoking cessation provided by the National Health Insurance Service in Korea. *Korean J Fam Med* 2024;45(2):69-81. [PUBMED](#) | [CROSSREF](#)
15. Livingstone-Banks J, Fanshawe TR, Thomas KH, Theodoulou A, Hajizadeh A, Hartman L, et al. Nicotine receptor partial agonists for smoking cessation. *Cochrane Database Syst Rev* 2023;5(5):CD006103. [PUBMED](#)
16. Anthenelli RM, Benowitz NL, West R, St Aubin L, McRae T, Lawrence D, et al. Neuropsychiatric safety and efficacy of varenicline, bupropion, and nicotine patch in smokers with and without psychiatric disorders (EAGLES): a double-blind, randomised, placebo-controlled clinical trial. *Lancet* 2016;387(10037):2507-20. [PUBMED](#) | [CROSSREF](#)
17. Anthenelli RM, Morris C, Ramey TS, Dubrava SJ, Tsilkos K, Russ C, et al. Effects of varenicline on smoking cessation in adults with stably treated current or past major depression: a randomized trial. *Ann Intern Med* 2013;159(6):390-400. [PUBMED](#) | [CROSSREF](#)
18. Ashare RL, Thompson M, Serrano K, Leone F, Metzger D, Frank I, et al. Placebo-controlled randomized clinical trial testing the efficacy and safety of varenicline for smokers with HIV. *Drug Alcohol Depend* 2019;200:26-33. [PUBMED](#) | [CROSSREF](#)
19. Bolliger CT, Issa JS, Posadas-Valay R, Safwat T, Abreu P, Correia EA, et al. Effects of varenicline in adult smokers: a multinational, 24-week, randomized, double-blind, placebo-controlled study. *Clin Ther* 2011;33(4):465-77. [PUBMED](#) | [CROSSREF](#)
20. Chen LS, Baker TB, Miller JP, Bray M, Smock N, Chen J, et al. Genetic variant in CHRNA5 and response to varenicline and combination nicotine replacement in a randomized placebo-controlled trial. *Clin Pharmacol Ther* 2020;108(6):1315-25. [PUBMED](#) | [CROSSREF](#)
21. Chengappa KN, Perkins KA, Brar JS, Schlicht PJ, Turkin SR, Hetrick ML, et al. Varenicline for smoking cessation in bipolar disorder: a randomized, double-blind, placebo-controlled study. *J Clin Psychiatry* 2014;75(7):765-72. [PUBMED](#) | [CROSSREF](#)
22. Cinciripini PM, Minnix JA, Green CE, Robinson JD, Engelmann JM, Versace F, et al. An RCT with the combination of varenicline and bupropion for smoking cessation: clinical implications for front line use. *Addiction* 2018;113(9):1673-82. [PUBMED](#) | [CROSSREF](#)
23. Cinciripini PM, Robinson JD, Karam-Hage M, Minnix JA, Lam C, Versace F, et al. Effects of varenicline and bupropion sustained-release use plus intensive smoking cessation counseling on prolonged abstinence from smoking and on depression, negative affect, and other symptoms of nicotine withdrawal. *JAMA Psychiatry* 2013;70(5):522-33. [PUBMED](#) | [CROSSREF](#)
24. Cox LS, Nollen NL, Mayo MS, Faseru B, Greiner A, Ellerbeck EF, et al. Effect of varenicline added to counseling on smoking cessation among African American daily smokers: the kick it at swope IV randomized clinical trial. *JAMA* 2022;327(22):2201-9. [PUBMED](#) | [CROSSREF](#)

25. de Dios MA, Anderson BJ, Stanton C, Audet DA, Stein M. Project Impact: a pharmacotherapy pilot trial investigating the abstinence and treatment adherence of Latino light smokers. *J Subst Abuse Treat* 2012;43(3):322-30. [PUBMED](#) | [CROSSREF](#)
26. Ebbert JO, Croghan IT, Hurt RT, Schroeder DR, Hays JT. Varenicline for smoking cessation in light smokers. *Nicotine Tob Res* 2016;18(10):2031-5. [PUBMED](#) | [CROSSREF](#)
27. Ebbert JO, Hughes JR, West RJ, Rennard SI, Russ C, McRae TD, et al. Effect of varenicline on smoking cessation through smoking reduction: a randomized clinical trial. *JAMA* 2015;313(7):687-94. [PUBMED](#) | [CROSSREF](#)
28. Gonzales D, Hajek P, Pliamm L, Nackaerts K, Tseng LJ, McRae TD, et al. Retreatment with varenicline for smoking cessation in smokers who have previously taken varenicline: a randomized, placebo-controlled trial. *Clin Pharmacol Ther* 2014;96(3):390-6. [PUBMED](#) | [CROSSREF](#)
29. Gonzales D, Rennard SI, Nides M, Oncken C, Azoulay S, Billing CB, et al. Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: a randomized controlled trial. *JAMA* 2006;296(1):47-55. [PUBMED](#) | [CROSSREF](#)
30. Hurt RT, Ebbert JO, Croghan IT, Schroeder DR, Hurt RD, Hays JT. Varenicline for tobacco-dependence treatment in alcohol-dependent smokers: a randomized controlled trial. *Drug Alcohol Depend* 2018;184:12-7. [PUBMED](#) | [CROSSREF](#)
31. Jorenby DE, Hays JT, Rigotti NA, Azoulay S, Watsky EJ, Williams KE, et al. Efficacy of varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs placebo or sustained-release bupropion for smoking cessation: a randomized controlled trial. *JAMA* 2006;296(1):56-63. [PUBMED](#) | [CROSSREF](#)
32. Le Mao R, Tromeur C, Paleiron N, Sanchez O, Gagnadoux F, Jounneau S, et al. Effect of early initiation of varenicline on smoking cessation in COPD patients admitted for exacerbation: the save randomized clinical trial. *COPD* 2020;17(1):7-14. [PUBMED](#) | [CROSSREF](#)
33. Lerman C, Schnoll RA, Hawk LW Jr, Cinciripini P, George TP, Wileyto EP, et al. Use of the nicotine metabolite ratio as a genetically informed biomarker of response to nicotine patch or varenicline for smoking cessation: a randomised, double-blind placebo-controlled trial. *Lancet Respir Med* 2015;3(2):131-8. [PUBMED](#) | [CROSSREF](#)
34. Littlewood RA, Claus ED, Wilcox CE, Mickey J, Arenella PB, Bryan AD, et al. Moderators of smoking cessation outcomes in a randomized-controlled trial of varenicline versus placebo. *Psychopharmacology (Berl)* 2017;234(23-24):3417-29. [PUBMED](#) | [CROSSREF](#)
35. Mercié P, Arsandaux J, Katlama C, Ferret S, Beuscart A, Spadone C, et al. Efficacy and safety of varenicline for smoking cessation in people living with HIV in France (ANRS 144 Inter-ACTIV): a randomised controlled phase 3 clinical trial. *Lancet HIV* 2018;5(3):e126-35. [PUBMED](#) | [CROSSREF](#)
36. Nahvi S, Ning Y, Segal KS, Richter KP, Arnsten JH. Varenicline efficacy and safety among methadone maintained smokers: a randomized placebo-controlled trial. *Addiction* 2014;109(9):1554-63. [PUBMED](#) | [CROSSREF](#)
37. Nakamura M, Oshima A, Fujimoto Y, Maruyama N, Ishibashi T, Reeves KR. Efficacy and tolerability of varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, in a 12-week, randomized, placebo-controlled, dose-response study with 40-week follow-up for smoking cessation in Japanese smokers. *Clin Ther* 2007;29(6):1040-56. [PUBMED](#) | [CROSSREF](#)
38. Niaura R, Hays JT, Jorenby DE, Leone FT, Pappas JE, Reeves KR, et al. The efficacy and safety of varenicline for smoking cessation using a flexible dosing strategy in adult smokers: a randomized controlled trial. *Curr Med Res Opin* 2008;24(7):1931-41. [PUBMED](#) | [CROSSREF](#)
39. Nides M, Oncken C, Gonzales D, Rennard S, Watsky EJ, Anziano R, et al. Smoking cessation with varenicline, a selective alpha4beta2 nicotinic receptor partial agonist: results from a 7-week, randomized, placebo- and bupropion-controlled trial with 1-year follow-up. *Arch Intern Med* 2006;166(15):1561-8. [PUBMED](#) | [CROSSREF](#)
40. O'Malley SS, Zweben A, Fucito LM, Wu R, Piepmeyer ME, Ockert DM, et al. Effect of varenicline combined with medical management on alcohol use disorder with comorbid cigarette smoking: a randomized clinical trial. *JAMA Psychiatry* 2018;75(2):129-38. [PUBMED](#) | [CROSSREF](#)
41. Oncken C, Gonzales D, Nides M, Rennard S, Watsky E, Billing CB, et al. Efficacy and safety of the novel selective nicotinic acetylcholine receptor partial agonist, varenicline, for smoking cessation. *Arch Intern Med* 2006;166(15):1571-7. [PUBMED](#) | [CROSSREF](#)
42. Rennard S, Hughes J, Cinciripini PM, Kralikova E, Raupach T, Arteaga C, et al. A randomized placebo-controlled trial of varenicline for smoking cessation allowing flexible quit dates. *Nicotine Tob Res* 2012;14(3):343-50. [PUBMED](#) | [CROSSREF](#)
43. Rigotti NA, Pipe AL, Benowitz NL, Arteaga C, Garza D, Tonstad S. Efficacy and safety of varenicline for smoking cessation in patients with cardiovascular disease: a randomized trial. *Circulation* 2010;121(2):221-9. [PUBMED](#) | [CROSSREF](#)

44. Stein MD, Caviness CM, Kurth ME, Audet D, Olson J, Anderson BJ. Varenicline for smoking cessation among methadone-maintained smokers: a randomized clinical trial. *Drug Alcohol Depend* 2013;133(2):486-93. [PUBMED](#) | [CROSSREF](#)
45. Steinberg MB, Randall J, Greenhaus S, Schmelzer AC, Richardson DL, Carson JL. Tobacco dependence treatment for hospitalized smokers: a randomized, controlled, pilot trial using varenicline. *Addict Behav* 2011;36(12):1127-32. [PUBMED](#) | [CROSSREF](#)
46. Steinberg ML, Lu SE, Williams JM. Varenicline for smoking reduction in smokers not yet ready to quit: a double-blind, proof-of-concept randomized clinical trial. *Addict Behav* 2018;84:20-6. [PUBMED](#) | [CROSSREF](#)
47. Tashkin D, Kanner R, Bailey W, Buist S, Anderson P, Nides M, et al. Smoking cessation in patients with chronic obstructive pulmonary disease: a double-blind, placebo-controlled, randomised trial. *Lancet* 2001;357(9268):1571-5. [PUBMED](#) | [CROSSREF](#)
48. Tsai ST, Cho HJ, Cheng HS, Kim CH, Hsueh KC, Billing CB Jr, et al. A randomized, placebo-controlled trial of varenicline, a selective alpha4beta2 nicotinic acetylcholine receptor partial agonist, as a new therapy for smoking cessation in Asian smokers. *Clin Ther* 2007;29(6):1027-39. [PUBMED](#) | [CROSSREF](#)
49. Wang C, Xiao D, Chan KP, Pothirat C, Garza D, Davies S. Varenicline for smoking cessation: a placebo-controlled, randomized study. *Respirology* 2009;14(3):384-92. [PUBMED](#) | [CROSSREF](#)
50. Westergaard CG, Porsbjerg C, Backer V. The effect of Varenicline on smoking cessation in a group of young asthma patients. *Respir Med* 2015;109(11):1416-22. [PUBMED](#) | [CROSSREF](#)
51. Williams JM, Anthenelli RM, Morris CD, Treadow J, Thompson JR, Yunis C, et al. A randomized, double-blind, placebo-controlled study evaluating the safety and efficacy of varenicline for smoking cessation in patients with schizophrenia or schizoaffective disorder. *J Clin Psychiatry* 2012;73(5):654-60. [PUBMED](#) | [CROSSREF](#)
52. Williams KE, Reeves KR, Billing CB Jr, Pennington AM, Gong J. A double-blind study evaluating the long-term safety of varenicline for smoking cessation. *Curr Med Res Opin* 2007;23(4):793-801. [PUBMED](#) | [CROSSREF](#)
53. Windle SB, Dehghani P, Roy N, Old W, Grondin FR, Bata I, et al. Smoking abstinence 1 year after acute coronary syndrome: follow-up from a randomized controlled trial of varenicline in patients admitted to hospital. *CMAJ* 2018;190(12):E347-54. [PUBMED](#) | [CROSSREF](#)
54. Wong J, Abrishami A, Yang Y, Zaki A, Friedman Z, Selby P, et al. A perioperative smoking cessation intervention with varenicline: a double-blind, randomized, placebo-controlled trial. *Anesthesiology* 2012;117(4):755-64. [PUBMED](#) | [CROSSREF](#)
55. Zawertailo L, Ivanova A, Ng G, Le Foll B, Selby P. Safety and efficacy of varenicline for smoking cessation in alcohol-dependent smokers in concurrent treatment for alcohol use disorder: a pilot, randomized placebo-controlled trial. *J Clin Psychopharmacol* 2020;40(2):130-6. [PUBMED](#) | [CROSSREF](#)
56. Hitsman B, Papandonatos GD, Gollan JK, Huffman MD, Niaura R, Mohr DC, et al. Efficacy and safety of combination behavioral activation for smoking cessation and varenicline for treating tobacco dependence among individuals with current or past major depressive disorder: a 2 x 2 factorial, randomized, placebo-controlled trial. *Addiction* 2023;118(9):1710-25. [PUBMED](#) | [CROSSREF](#)
57. Russo C, Walicka M, Caponnetto P, Cibella F, Maglia M, Alamo A, et al. Efficacy and safety of varenicline for smoking cessation in patients with type 2 diabetes: a randomized clinical trial. *JAMA Netw Open* 2022;5(6):e2217709. [PUBMED](#) | [CROSSREF](#)
58. Baker TB, Piper ME, Stein JH, Smith SS, Bolt DM, Fraser DL, et al. Effects of nicotine patch vs varenicline vs combination nicotine replacement therapy on smoking cessation at 26 weeks: a randomized clinical trial. *JAMA* 2016;315(4):371-9. [PUBMED](#) | [CROSSREF](#)
59. Ikonomidis I, Marinou M, Vlastos D, Kourea K, Andreadou I, Liarakos N, et al. Effects of varenicline and nicotine replacement therapy on arterial elasticity, endothelial glycocalyx and oxidative stress during a 3-month smoking cessation program. *Atherosclerosis* 2017;262:123-30. [PUBMED](#) | [CROSSREF](#)
60. Tulloch HE, Pipe AL, Els C, Clyde MJ, Reid RD. Flexible, dual-form nicotine replacement therapy or varenicline in comparison with nicotine patch for smoking cessation: a randomized controlled trial. *BMC Med* 2016;14(1):80. [PUBMED](#) | [CROSSREF](#)
61. Hartmann-Boyce J, Chepkin SC, Ye W, Bullen C, Lancaster T. Nicotine replacement therapy versus control for smoking cessation. *Cochrane Database Syst Rev* 2018;5(5):CD000146. [PUBMED](#) | [CROSSREF](#)
62. Lindson N, Theodoulou A, Ordóñez-Mena JM, Fanshawe TR, Sutton AJ, Livingstone-Banks J, et al. Pharmacological and electronic cigarette interventions for smoking cessation in adults: component network meta-analyses. *Cochrane Database Syst Rev* 2023;9(9):CD015226. [PUBMED](#)
63. Abelin T, Buehler A, Müller P, Vesanen K, Imhof PR. Controlled trial of transdermal nicotine patch in tobacco withdrawal. *Lancet* 1989;1(8628):710. [PUBMED](#) | [CROSSREF](#)

64. Ahluwalia JS, McNagny SE, Clark WS. Smoking cessation among inner-city African Americans using the nicotine transdermal patch. *J Gen Intern Med* 1998;13(1):1-8. [PUBMED](#) | [CROSSREF](#)

65. Ahluwalia JS, Okuyemi K, Nollen N, Choi WS, Kaur H, Pulvers K, et al. The effects of nicotine gum and counseling among African American light smokers: a 2 x 2 factorial design. *Addiction* 2006;101(6):883-91. [PUBMED](#) | [CROSSREF](#)

66. Areechon W, Punnnotok J. Smoking cessation through the use of nicotine chewing gum: a double-blind trial in Thailand. *Clin Ther* 1988;10(2):183-6. [PUBMED](#)

67. Blöndal T. Controlled trial of nicotine polacrilex gum with supportive measures. *Arch Intern Med* 1989;149(8):1818-21. [PUBMED](#) | [CROSSREF](#)

68. Blöndal T, Franzon M, Westin A. A double-blind randomized trial of nicotine nasal spray as an aid in smoking cessation. *Eur Respir J* 1997;10(7):1585-90. [PUBMED](#) | [CROSSREF](#)

69. Buchkremer G, Bents H, Horstmann M, Opitz K, Tölle R. Combination of behavioral smoking cessation with transdermal nicotine substitution. *Addict Behav* 1989;14(2):229-38. [PUBMED](#) | [CROSSREF](#)

70. Campbell IA, Lyons E, Prescott RJ. Stopping smoking. Do nicotine chewing-gum and postal encouragement add to doctors' advice. *Practitioner* 1987;231(1423):114-7. [PUBMED](#)

71. Campbell IA, Prescott RJ, Tjeder-Burton SM. Smoking cessation in hospital patients given repeated advice plus nicotine or placebo chewing gum. *Respir Med* 1991;85(2):155-7. [PUBMED](#) | [CROSSREF](#)

72. Campbell IA, Prescott RJ, Tjeder-Burton SM. Transdermal nicotine plus support in patients attending hospital with smoking-related diseases: a placebo-controlled study. *Respir Med* 1996;90(1):47-51. [PUBMED](#) | [CROSSREF](#)

73. Clavel-Chapelon F, Paoletti C, Benhamou S. A randomised 2 x 2 factorial design to evaluate different smoking cessation methods. *Rev Epidemiol Sante Publique* 1992;40(3):187-90. [PUBMED](#)

74. Cooper TV, Klesges RC, Debon MW, Zbikowski SM, Johnson KC, Clemens LH. A placebo controlled randomized trial of the effects of phenylpropanolamine and nicotine gum on cessation rates and postcessation weight gain in women. *Addict Behav* 2005;30(1):61-75. [PUBMED](#) | [CROSSREF](#)

75. Daughton D, Susman J, Sitorius M, Belenky S, Millatmal T, Nowak R, et al. Transdermal nicotine therapy and primary care. Importance of counseling, demographic, and participant selection factors on 1-year quit rates. *Arch Fam Med* 1998;7(5):425-30. [PUBMED](#) | [CROSSREF](#)

76. Daughton DM, Heatley SA, Prendergast JJ, Causey D, Knowles M, Rolf CN, et al. Effect of transdermal nicotine delivery as an adjunct to low-intervention smoking cessation therapy. A randomized, placebo-controlled, double-blind study. *Arch Intern Med* 1991;151(4):749-52. [PUBMED](#) | [CROSSREF](#)

77. Davidson M, Epstein M, Burt R, Schaefer C, Whitworth G, McDonald A. Efficacy and safety of an over-the-counter transdermal nicotine patch as an aid for smoking cessation. *Arch Fam Med* 1998;7(6):569-74. [PUBMED](#) | [CROSSREF](#)

78. Ehrsam RE, Bühler A, Müller P, Mauli D, Schumacher PM, Howald H, et al. Weaning of young smokers using a transdermal nicotine patch. *Schweiz Rundsch Med Prax* 1991;80(7):145-50. [PUBMED](#)

79. Fagerström KO. A comparison of psychological and pharmacological treatment in smoking cessation. *J Behav Med* 1982;5(3):343-51. [PUBMED](#) | [CROSSREF](#)

80. Fee WM, Stewart MJ. A controlled trial of nicotine chewing gum in a smoking withdrawal clinic. *Practitioner* 1982;226(1363):148-51. [PUBMED](#)

81. Fiore MC, Kenford SL, Jorenby DE, Wetter DW, Smith SS, Baker TB. Two studies of the clinical effectiveness of the nicotine patch with different counseling treatments. *Chest* 1994;105(2):524-33. [PUBMED](#) | [CROSSREF](#)

82. Garvey AJ, Kinnunen T, Nordstrom BL, Utman CH, Doherty K, Rosner B, et al. Effects of nicotine gum dose by level of nicotine dependence. *Nicotine Tob Res* 2000;2(1):53-63. [PUBMED](#) | [CROSSREF](#)

83. Glavas D, Rumboldt M, Rumboldt Z. Smoking cessation with nicotine replacement therapy among health care workers: randomized double-blind study. *Croat Med J* 2003;44(2):219-24. [PUBMED](#)

84. Glavas D, Rumboldt Z. Smoking cessation using the transdermal nicotine system. *Lijec Vjesn* 2003;125(1-2):8-12. [PUBMED](#)

85. Glover ED, Glover PN, Franzon M, Sullivan CR, Cerullo CC, Howell RM, et al. A comparison of a nicotine sublingual tablet and placebo for smoking cessation. *Nicotine Tob Res* 2002;4(4):441-50. [PUBMED](#) | [CROSSREF](#)

86. Gourlay SG, Forbes A, Marriner T, Pethica D, McNeil JJ. Double blind trial of repeated treatment with transdermal nicotine for relapsed smokers. *BMJ* 1995;311(7001):363-6. [PUBMED](#) | [CROSSREF](#)

87. Imperial Cancer Research Fund General Practice Research Group. Randomised trial of nicotine patches in general practice: results at one year. *BMJ* 1994;308(6942):1476-7. [PUBMED](#) | [CROSSREF](#)

88. Transdermal Nicotine Study Group. Transdermal nicotine for smoking cessation. Six-month results from two multicenter controlled clinical trials. *JAMA* 1991;266(22):3133-8. [PUBMED](#) | [CROSSREF](#)

89. Hall SM, Muñoz RF, Reus VI, Sees KL, Duncan C, Humfleet GL, et al. Mood management and nicotine gum in smoking treatment: a therapeutic contact and placebo-controlled study. *J Consult Clin Psychol* 1996;64(5):1003-9. [PUBMED](#) | [CROSSREF](#)
90. Hall SM, Tunstall CD, Ginsberg D, Benowitz NL, Jones RT. Nicotine gum and behavioral treatment: a placebo controlled trial. *J Consult Clin Psychol* 1987;55(4):603-5. [PUBMED](#) | [CROSSREF](#)
91. Hays JT, Croghan IT, Schroeder DR, Offord KP, Hurt RD, Wolter TD, et al. Over-the-counter nicotine patch therapy for smoking cessation: results from randomized, double-blind, placebo-controlled, and open label trials. *Am J Public Health* 1999;89(11):17017. [PUBMED](#) | [CROSSREF](#)
92. Herrera N, Franco R, Herrera L, Partidas A, Rolando R, Fagerström KO. Nicotine gum, 2 and 4 mg, for nicotine dependence. A double-blind placebo-controlled trial within a behavior modification support program. *Chest* 1995;108(2):447-51. [PUBMED](#) | [CROSSREF](#)
93. Hjalmarson A, Franzon M, Westin A, Wiklund O. Effect of nicotine nasal spray on smoking cessation. A randomized, placebo-controlled, double-blind study. *Arch Intern Med* 1994;154(22):2567-72. [PUBMED](#) | [CROSSREF](#)
94. Hjalmarson A, Nilsson F, Sjöström L, Wiklund O. The nicotine inhaler in smoking cessation. *Arch Intern Med* 1997;157(15):1721-8. [PUBMED](#) | [CROSSREF](#)
95. Hjalmarson AI. Effect of nicotine chewing gum in smoking cessation. A randomized, placebo-controlled, double-blind study. *JAMA* 1984;252(20):2835-8. [PUBMED](#) | [CROSSREF](#)
96. Hughes JR, Gust SW, Keenan RM, Fenwick JW. Effect of dose on nicotine's reinforcing, withdrawal-suppression and self-reported effects. *J Pharmacol Exp Ther* 1990;252(3):1175-83. [PUBMED](#) | [CROSSREF](#)
97. Hughes JR, Gust SW, Keenan RM, Fenwick JW, Healey ML. Nicotine vs placebo gum in general medical practice. *JAMA* 1989;261(9):1300-5. [PUBMED](#) | [CROSSREF](#)
98. Hughes JR, Lesmes GR, Hatsukami DK, Richmond RL, Lichtenstein E, Jorenby DE, et al. Are higher doses of nicotine replacement more effective for smoking cessation? *Nicotine Tob Res* 1999;1(2):169-74. [PUBMED](#) | [CROSSREF](#)
99. Hughes JR, Novy P, Hatsukami DK, Jensen J, Callas PW. Efficacy of nicotine patch in smokers with a history of alcoholism. *Alcohol Clin Exp Res* 2003;27(6):946-54. [PUBMED](#) | [CROSSREF](#)
100. Hurt RD, Dale LC, Fredrickson PA, Caldwell CC, Lee GA, Offord KP, et al. Nicotine patch therapy for smoking cessation combined with physician advice and nurse follow-up. One-year outcome and percentage of nicotine replacement. *JAMA* 1994;271(8):595-600. [PUBMED](#) | [CROSSREF](#)
101. Hurt RD, Lauger GG, Offord KP, Kottke TE, Dale LC. Nicotine-replacement therapy with use of a transdermal nicotine patch--a randomized double-blind placebo-controlled trial. *Mayo Clin Proc* 1990;65(12):1529-37. [PUBMED](#) | [CROSSREF](#)
102. Jamrozik K, Fowler G, Vessey M, Wald N. Placebo controlled trial of nicotine chewing gum in general practice. *Br Med J (Clin Res Ed)* 1984;289(6448):794-7. [PUBMED](#) | [CROSSREF](#)
103. Jarvis MJ, Raw M, Russell MA, Feyerabend C. Randomised controlled trial of nicotine chewing-gum. *Br Med J (Clin Res Ed)* 1982;285(6341):537-40. [PUBMED](#) | [CROSSREF](#)
104. Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, et al. A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 1999;340(9):685-91. [PUBMED](#) | [CROSSREF](#)
105. Joseph AM, Norman SM, Ferry LH, Prochazka AV, Westman EC, Steele BG, et al. The safety of transdermal nicotine as an aid to smoking cessation in patients with cardiac disease. *N Engl J Med* 1996;335(24):1792-8. [PUBMED](#) | [CROSSREF](#)
106. Killen JD, Fortmann SP, Davis L, Varady A. Nicotine patch and self-help video for cigarette smoking cessation. *J Consult Clin Psychol* 1997;65(4):663-72. [PUBMED](#) | [CROSSREF](#)
107. Killen JD, Fortmann SP, Newman B, Varady A. Evaluation of a treatment approach combining nicotine gum with self-guided behavioral treatments for smoking relapse prevention. *J Consult Clin Psychol* 1990;58(1):85-92. [PUBMED](#) | [CROSSREF](#)
108. Kornitzer M, Boutsen M, Dramaix M, Thijs J, Gustavsson G. Combined use of nicotine patch and gum in smoking cessation: a placebo-controlled clinical trial. *Prev Med* 1995;24(1):41-7. [PUBMED](#) | [CROSSREF](#)
109. Kralikova E, Kozak JT, Rasmussen T, Gustavsson G, Le Houezec J. Smoking cessation or reduction with nicotine replacement therapy: a placebo-controlled double blind trial with nicotine gum and inhaler. *BMC Public Health* 2009;9(1):433. [PUBMED](#) | [CROSSREF](#)
110. Leischow SJ, Nilsson F, Franzon M, Hill A, Otte P, Merikle EP. The effects of transdermal nicotine for the treatment of hispanic smokers. *Am J Health Behav* 1996;20(5):304-41.
111. Lewis SF, Piasecki TM, Fiore MC, Anderson JE, Baker TB. Transdermal nicotine replacement for hospitalized patients: a randomized clinical trial. *Prev Med* 1998;27(2):296-303. [PUBMED](#) | [CROSSREF](#)

112. Malcolm RE, Sillett RW, Turner JA, Ball KP. The use of nicotine chewing gum as an aid to stopping smoking. *Psychopharmacology (Berl)* 1980;70(3):295-6. [PUBMED](#) | [CROSSREF](#)
113. Nides M, Danielsson T, Saunders F, Perfekt R, Kapikian R, Solla J, et al. Efficacy and safety of a nicotine mouth spray for smoking cessation: a randomized, multicenter, controlled study in a naturalistic setting. *Nicotine Tob Res* 2020;22(3):339-45. [PUBMED](#)
114. Oncken C, Cooney J, Feinn R, Lando H, Kranzler HR. Transdermal nicotine for smoking cessation in postmenopausal women. *Addict Behav* 2007;32(2):296-309. [PUBMED](#) | [CROSSREF](#)
115. Paoletti P, Fornai E, Maggiorelli F, Puntoni R, Viegi G, Carrozzi L, et al. Importance of baseline cotinine plasma values in smoking cessation: results from a double-blind study with nicotine patch. *Eur Respir J* 1996;9(4):643-51. [PUBMED](#) | [CROSSREF](#)
116. Perng RP, Hsieh WC, Chen YM, Lu CC, Chiang SJ. Randomized, double-blind, placebo-controlled study of transdermal nicotine patch for smoking cessation. *J Formos Med Assoc* 1998;97(8):547-51. [PUBMED](#)
117. Piper ME, Smith SS, Schlam TR, Fiore MC, Jorenby DE, Fraser D, et al. A randomized placebo-controlled clinical trial of 5 smoking cessation pharmacotherapies. *Arch Gen Psychiatry* 2009;66(11):1253-62. [PUBMED](#) | [CROSSREF](#)
118. Puska P, Björkqvist S, Koskela K. Nicotine-containing chewing gum in smoking cessation: a double blind trial with half year follow-up. *Addict Behav* 1979;4(2):141-6. [PUBMED](#) | [CROSSREF](#)
119. Quílez García C, Hernando Arizaleta L, Rubio Díaz A, Granero Fernández EJ, Vila Coll MA, Estruch Riba J. Double-blind study of the efficacy of nicotine chewing gum for smoking cessation in the primary care setting. *Aten Primaria* 1989;6(10):719-26. [PUBMED](#)
120. Richmond RL, Harris K, de Almeida Neto A. The transdermal nicotine patch: results of a randomised placebo-controlled trial. *Med J Aust* 1994;161(2):130-5. [PUBMED](#) | [CROSSREF](#)
121. Sachs DP, Säwe U, Leischow SJ. Effectiveness of a 16-hour transdermal nicotine patch in a medical practice setting, without intensive group counseling. *Arch Intern Med* 1993;153(16):1881-90. [PUBMED](#) | [CROSSREF](#)
122. Salvador Llívina T, Marín Tuyà D, González Quintana J, Iniesta Torres C, Castellví Barrera E, Muriana Sáez C, et al. Treatment of smoking: efficacy of the use of nicotine chewing gum. Double-blind study. *Med Clin (Barc)* 1988;90(16):646-50. [PUBMED](#)
123. Scherphof CS, van den Eijnden RJ, Engels RC, Vollebergh WA. Long-term efficacy of nicotine replacement therapy for smoking cessation in adolescents: a randomized controlled trial. *Drug Alcohol Depend* 2014;140:217-20. [PUBMED](#) | [CROSSREF](#)
124. Schneider NG, Jarvik ME, Forsythe AB, Read LL, Elliott ML, Schweiger A. Nicotine gum in smoking cessation: a placebo-controlled, double-blind trial. *Addict Behav* 1983;8(3):253-61. [PUBMED](#) | [CROSSREF](#)
125. Schneider NG, Olmstead R, Mody FV, Doan K, Franzon M, Jarvik ME, et al. Efficacy of a nicotine nasal spray in smoking cessation: a placebo-controlled, double-blind trial. *Addiction* 1995;90(12):1671-82. [PUBMED](#) | [CROSSREF](#)
126. Schneider NG, Olmstead R, Nilsson F, Mody FV, Franzon M, Doan K. Efficacy of a nicotine inhaler in smoking cessation: a double-blind, placebo-controlled trial. *Addiction* 1996;91(9):1293-306. [PUBMED](#) | [CROSSREF](#)
127. Shiffman S, Dresler CM, Hajek P, Gilbert SJ, Targett DA, Strahs KR. Efficacy of a nicotine lozenge for smoking cessation. *Arch Intern Med* 2002;162(11):1267-76. [PUBMED](#) | [CROSSREF](#)
128. Shiffman S, Ferguson SG, Strahs KR. Quitting by gradual smoking reduction using nicotine gum: a randomized controlled trial. *Am J Prev Med* 2009;36(2):96-104.e1. [PUBMED](#) | [CROSSREF](#)
129. Society BT. Comparison of four methods of smoking withdrawal in patients with smoking related diseases. Report by a subcommittee of the Research Committee of the British Thoracic Society. *Br Med (Clin Res Ed)* 1983;286(6365):595-7. [PUBMED](#) | [CROSSREF](#)
130. Sønderskov J, Olsen J, Sabroe S, Meillier L, Overvad K. Nicotine patches in smoking cessation: a randomized trial among over-the-counter customers in Denmark. *Am J Epidemiol* 1997;145(4):309-18. [PUBMED](#) | [CROSSREF](#)
131. Stapleton JA, Russell MA, Feyerabend C, Wiseman SM, Gustavsson G, Sawe U, et al. Dose effects and predictors of outcome in a randomized trial of transdermal nicotine patches in general practice. *Addiction* 1995;90(1):31-42. [PUBMED](#) | [CROSSREF](#)
132. Sutherland G, Stapleton JA, Russell MA, Jarvis MJ, Hajek P, Belcher M, et al. Randomised controlled trial of nasal nicotine spray in smoking cessation. *Lancet* 1992;340(8815):324-9. [PUBMED](#) | [CROSSREF](#)
133. Tønnesen P, Fryd V, Hansen M, Helsted J, Gunnerßen AB, Forchammer H, et al. Effect of nicotine chewing gum in combination with group counseling on the cessation of smoking. *N Engl J Med* 1988;318(1):15-8. [PUBMED](#) | [CROSSREF](#)

134. Tønnesen P, Lauri H, Perfekt R, Mann K, Batra A. Efficacy of a nicotine mouth spray in smoking cessation: a randomised, double-blind trial. *Eur Respir J* 2012;40(3):548-54. [PUBMED](#) | [CROSSREF](#)

135. Tønnesen P, Mikkelsen K, Bremann L. Nurse-conducted smoking cessation in patients with COPD using nicotine sublingual tablets and behavioral support. *Chest* 2006;130(2):334-42. [PUBMED](#) | [CROSSREF](#)

136. Tønnesen P, Nørregaard J, Mikkelsen K, Jørgensen S, Nilsson F. A double-blind trial of a nicotine inhaler for smoking cessation. *JAMA* 1993;269(10):1268-71. [PUBMED](#) | [CROSSREF](#)

137. Tønnesen P, Nørregaard J, Simonsen K, Säwe U. A double-blind trial of a 16-hour transdermal nicotine patch in smoking cessation. *N Engl J Med* 1991;325(5):311-5. [PUBMED](#) | [CROSSREF](#)

138. Tuisku A, Salmela M, Nieminen P, Toljamo T. Varenicline and nicotine patch therapies in young adults motivated to quit smoking: a randomized, placebo-controlled, prospective study. *Basic Clin Pharmacol Toxicol* 2016;119(1):78-84. [PUBMED](#) | [CROSSREF](#)

139. Wallström M, Nilsson F, Hirsch JM. A randomized, double-blind, placebo-controlled clinical evaluation of a nicotine sublingual tablet in smoking cessation. *Addiction* 2000;95(8):1161-71. [PUBMED](#)

140. Ward KD, Asfar T, Al Ali R, Rastam S, Weg MW, Eissenberg T, et al. Randomized trial of the effectiveness of combined behavioral/pharmacological smoking cessation treatment in Syrian primary care clinics. *Addiction* 2013;108(2):394-403. [PUBMED](#) | [CROSSREF](#)

141. Westman EC, Levin ED, Rose JE. The nicotine patch in smoking cessation. A randomized trial with telephone counseling. *Arch Intern Med* 1993;153(16):1917-23. [PUBMED](#) | [CROSSREF](#)

142. Abdelghany DA, Shalabi NM, Abd-El-Maksoud AM, El-Bahaey WA, El-Dahan MS, Farrag NS, et al. Efficacy of nicotine-replacement therapy, bupropion, and a combination of both for treating nicotine addiction: a randomized clinical trial. *Egypt J Chest Dis Tuberc* 2022;71(1):51-8. [CROSSREF](#)

143. Myung SK, Seo HG, Park S, Kim Y, Kim DJ, Lee DH, et al. Sociodemographic and smoking behavioral predictors associated with smoking cessation according to follow-up periods: a randomized, double-blind, placebo-controlled trial of transdermal nicotine patches. *J Korean Med Sci* 2007;22(6):1065-70. [PUBMED](#) | [CROSSREF](#)

144. Oh H, Kim I, Jee S, Shon T, Nam C. Controlled trial of transdermal nicotine patch in tobacco withdrawal. *Korean J Epidemiol* 1991;13(1):63-72.

145. Purushothama J, Badiger S, Olickal JJ, Kunkulol R, Kumar N, D'Souza N. Effectiveness of nicotine replacement therapy on smoking cessation and reduction among pulmonary tuberculosis patients - a randomized controlled trial. *Int J Prev Med* 2023;14(1):33. [PUBMED](#) | [CROSSREF](#)

146. Yoo TW, Shin HC, Choi HS, Lee JK, Kim YS, Cho HJ, et al. A multicenter trial on the effectiveness of transdermal nicotine patch in smoking cessation. *J Korean Acad Fam Med* 1993;14(4):206-14.

147. Hajizadeh A, Howes S, Theodoulou A, Klemperer E, Hartmann-Boyce J, Livingstone-Banks J, et al. Antidepressants for smoking cessation. *Cochrane Database Syst Rev* 2023;5(5):CD000031. [PUBMED](#)

148. Ahluwalia JS, Harris KJ, Catley D, Okuyemi KS, Mayo MS. Sustained-release bupropion for smoking cessation in African Americans: a randomized controlled trial. *JAMA* 2002;288(4):468-74. [PUBMED](#) | [CROSSREF](#)

149. Aubin HJ, Lebargy F, Berlin I, Bidaut-Mazel C, Chemali-Hudry J, Lagrue G. Efficacy of bupropion and predictors of successful outcome in a sample of French smokers: a randomized placebo-controlled trial. *Addiction* 2004;99(9):1206-18. [PUBMED](#) | [CROSSREF](#)

150. Brown RA, Niaura R, Lloyd-Richardson EE, Strong DR, Kahler CW, Abrantes AM, et al. Bupropion and cognitive-behavioral treatment for depression in smoking cessation. *Nicotine Tob Res* 2007;9(7):721-30. [PUBMED](#) | [CROSSREF](#)

151. Collins BN, Wileyto EP, Patterson F, Rukstalis M, Audrain-McGovern J, Kaufmann V, et al. Gender differences in smoking cessation in a placebo-controlled trial of bupropion with behavioral counseling. *Nicotine Tob Res* 2004;6(1):27-37. [PUBMED](#) | [CROSSREF](#)

152. Cox LS, Nollen NL, Mayo MS, Choi WS, Faseru B, Benowitz NL, et al. Bupropion for smoking cessation in African American light smokers: a randomized controlled trial. *J Natl Cancer Inst* 2012;104(4):290-8. [PUBMED](#) | [CROSSREF](#)

153. Dalsgareth OJ, Hansen NC, Søes-Petersen U, Evald T, Høegholm A, Barber J, et al. A multicenter, randomized, double-blind, placebo-controlled, 6-month trial of bupropion hydrochloride sustained-release tablets as an aid to smoking cessation in hospital employees. *Nicotine Tob Res* 2004;6(1):55-61. [PUBMED](#) | [CROSSREF](#)

154. Eisenberg MJ, Grandi SM, Gervais A, O'Loughlin J, Paradis G, Rinfret S, et al. Bupropion for smoking cessation in patients hospitalized with acute myocardial infarction: a randomized, placebo-controlled trial. *J Am Coll Cardiol* 2013;61(5):524-32. [PUBMED](#) | [CROSSREF](#)

155. Evins AE, Cather C, Deckersbach T, Freudenreich O, Culhane MA, Olm-Shipman CM, et al. A double-blind placebo-controlled trial of bupropion sustained-release for smoking cessation in schizophrenia. *J Clin Psychopharmacol* 2005;25(3):218-25. [PUBMED](#) | [CROSSREF](#)

156. Evins AE, Mays VK, Rigotti NA, Tisdale T, Cather C, Goff DC. A pilot trial of bupropion added to cognitive behavioral therapy for smoking cessation in schizophrenia. *Nicotine Tob Res* 2001;3(4):397-403. [PUBMED](#) | [CROSSREF](#)

157. Fossati R, Apolone G, Negri E, Compagnoni A, La Vecchia C, Mangano S, et al. A double-blind, placebo-controlled, randomized trial of bupropion for smoking cessation in primary care. *Arch Intern Med* 2007;167(16):1791-7. [PUBMED](#) | [CROSSREF](#)

158. George TP, Vescicchio JC, Termine A, Bregartner TA, Feingold A, Rounsaville BJ, et al. A placebo controlled trial of bupropion for smoking cessation in schizophrenia. *Biol Psychiatry* 2002;52(1):53-61. [PUBMED](#) | [CROSSREF](#)

159. Gilbert DG, Rabinovich NE, Gilbert-Matuskowitz EA, Klein KP, Pergadia ML. Smoking abstinence symptoms across 67 days compared with randomized controls-Moderation by nicotine replacement therapy, bupropion, and negative-affect traits. *Exp Clin Psychopharmacol* 2019;27(6):536-51. [PUBMED](#) | [CROSSREF](#)

160. Haggström FM, Chatkin JM, Sussenbach-Vaz E, Cesari DH, Fam CF, Fritscher CC. A controlled trial of nortriptyline, sustained-release bupropion and placebo for smoking cessation: preliminary results. *Pulm Pharmacol Ther* 2006;19(3):205-9. [PUBMED](#) | [CROSSREF](#)

161. Hall SM, Humfleet GL, Reus VI, Muñoz RF, Hartz DT, Maude-Griffin R. Psychological intervention and antidepressant treatment in smoking cessation. *Arch Gen Psychiatry* 2002;59(10):930-6. [PUBMED](#) | [CROSSREF](#)

162. Hertzberg MA, Moore SD, Feldman ME, Beckham JC. A preliminary study of bupropion sustained-release for smoking cessation in patients with chronic posttraumatic stress disorder. *J Clin Psychopharmacol* 2001;21(1):94-8. [PUBMED](#) | [CROSSREF](#)

163. Holt S, Timu-Parata C, Ryder-Lewis S, Weatherall M, Beasley R. Efficacy of bupropion in the indigenous Maori population in New Zealand. *Thorax* 2005;60(2):120-3. [PUBMED](#) | [CROSSREF](#)

164. Hurt RD, Sachs DP, Glover ED, Offord KP, Johnston JA, Dale LC, et al. A comparison of sustained-release bupropion and placebo for smoking cessation. *N Engl J Med* 1997;337(17):1195-202. [PUBMED](#) | [CROSSREF](#)

165. Karam-Hage M, Strobbe S, Robinson JD, Brower KJ. Bupropion-SR for smoking cessation in early recovery from alcohol dependence: a placebo-controlled, double-blind pilot study. *Am J Drug Alcohol Abuse* 2011;37(6):487-90. [PUBMED](#) | [CROSSREF](#)

166. Levine MD, Perkins KA, Kalarchian MA, Cheng Y, Houck PR, Slane JD, et al. Bupropion and cognitive behavioral therapy for weight-concerned women smokers. *Arch Intern Med* 2010;170(6):543-50. [PUBMED](#) | [CROSSREF](#)

167. McCarthy DE, Piasecki TM, Lawrence DL, Jorenby DE, Shiffman S, Fiore MC, et al. A randomized controlled clinical trial of bupropion SR and individual smoking cessation counseling. *Nicotine Tob Res* 2008;10(4):717-29. [PUBMED](#) | [CROSSREF](#)

168. Myles PS, Leslie K, Angliss M, Mezzavia P, Lee L. Effectiveness of bupropion as an aid to stopping smoking before elective surgery: a randomised controlled trial. *Anaesthesia* 2004;59(11):1053-8. [PUBMED](#) | [CROSSREF](#)

169. Piper ME, Federman EB, McCarthy DE, Bolt DM, Smith SS, Fiore MC, et al. Efficacy of bupropion alone and in combination with nicotine gum. *Nicotine Tob Res* 2007;9(9):947-54. [PUBMED](#) | [CROSSREF](#)

170. Planer D, Lev I, Elitzur Y, Sharon N, Ouzan E, Pugatsch T, et al. Bupropion for smoking cessation in patients with acute coronary syndrome. *Arch Intern Med* 2011;171(12):1055-60. [PUBMED](#) | [CROSSREF](#)

171. Rigotti NA, Thorndike AN, Regan S, McKool K, Pasternak RC, Chang Y, et al. Bupropion for smokers hospitalized with acute cardiovascular disease. *Am J Med* 2006;119(12):1080-7. [PUBMED](#) | [CROSSREF](#)

172. Schmitz JM, Stotts AL, Mooney ME, Delaune KA, Moeller GF. Bupropion and cognitive-behavioral therapy for smoking cessation in women. *Nicotine Tob Res* 2007;9(6):699-709. [PUBMED](#) | [CROSSREF](#)

173. Sheng LX, Tang YL, Jiang ZN, Yao CH, Gao JY, Xu GZ, et al. Sustained-release bupropion for smoking cessation in a Chinese sample: a double-blind, placebo-controlled, randomized trial. *Nicotine Tob Res* 2013;15(2):320-5. [PUBMED](#) | [CROSSREF](#)

174. Simon JA, Duncan C, Huggins J, Solkowitz S, Carmody TP. Sustained-release bupropion for hospital-based smoking cessation: a randomized trial. *Nicotine Tob Res* 2009;11(6):663-9. [PUBMED](#) | [CROSSREF](#)

175. Singh P, Kumar R. Assessment of the effectiveness of sustained release Bupropion and intensive physician advice in smoking cessation. *Lung India* 2010;27(1):11-8. [PUBMED](#) | [CROSSREF](#)

176. Tidey JW, Rohsenow DJ, Kaplan GB, Swift RM, Reid N. Effects of contingency management and bupropion on cigarette smoking in smokers with schizophrenia. *Psychopharmacology (Berl)* 2011;217(2):279-87. [PUBMED](#) | [CROSSREF](#)

177. Tønnesen P, Tonstad S, Hjalmarson A, Lebargy F, Van Spiegel PI, Hider A, et al. A multicentre, randomized, double-blind, placebo-controlled, 1-year study of bupropion SR for smoking cessation. *J Intern Med* 2003;254(2):184-92. [PUBMED](#) | [CROSSREF](#)

178. Tonstad S, Farsang C, Klaene G, Lewis K, Manolis A, Perruchoud AP, et al. Bupropion SR for smoking cessation in smokers with cardiovascular disease: a multicentre, randomised study. *Eur Heart J* 2003;24(10):946-55. [PUBMED](#) | [CROSSREF](#)

179. Weiner E, Ball MP, Buchholz AS, Gold JM, Evins AE, McMahon RP, et al. Bupropion sustained release added to group support for smoking cessation in schizophrenia: a new randomized trial and a meta-analysis. *J Clin Psychiatry* 2012;73(1):95-102. [PUBMED](#) | [CROSSREF](#)

180. Zellweger JP, Boelcskei PL, Carrozzini L, Sepper R, Sweet R, Hider AZ. Bupropion SR vs placebo for smoking cessation in health care professionals. *Am J Health Behav* 2005;29(3):240-9. [PUBMED](#) | [CROSSREF](#)

181. Ebbert JO, Hatsuhashi DK, Croghan IT, Schroeder DR, Allen SS, Hays JT, et al. Combination varenicline and bupropion SR for tobacco-dependence treatment in cigarette smokers: a randomized trial. *JAMA* 2014;311(2):155-63. [PUBMED](#) | [CROSSREF](#)

182. Rose JE, Behm FM. Combination treatment with varenicline and bupropion in an adaptive smoking cessation paradigm. *Am J Psychiatry* 2014;171(11):1199-205. [PUBMED](#) | [CROSSREF](#)

183. Rose JE, Behm FM. Combination varenicline/bupropion treatment benefits highly dependent smokers in an adaptive smoking cessation paradigm. *Nicotine Tob Res* 2017;19(8):999-1002. [PUBMED](#)

184. Theodoulou A, Chepkin SC, Ye W, Fanshawe TR, Bullen C, Hartmann-Boyce J, et al. Different doses, durations and modes of delivery of nicotine replacement therapy for smoking cessation. *Cochrane Database Syst Rev* 2023;6(CD013308). [PUBMED](#)

185. Blondal T, Gudmundsson LJ, Olafsdottir I, Gustavsson G, Westin A, Stapleton J. Nicotine nasal spray with nicotine patch for smoking cessation: randomised trial with six year follow up. *BMJ* 1999;318(7179):285-8. [PUBMED](#) | [CROSSREF](#)

186. Bohadana A, Nilsson F, Rasmussen T, Martinet Y. Nicotine inhaler and nicotine patch as a combination therapy for smoking cessation: a randomized, double-blind, placebo-controlled trial. *Arch Intern Med* 2000;160(20):3128-34. [PUBMED](#) | [CROSSREF](#)

187. Caldwell BO, Adamson SJ, Crane J. Combination rapid-acting nicotine mouth spray and nicotine patch therapy in smoking cessation. *Nicotine Tob Res* 2014;16(10):1356-64. [PUBMED](#) | [CROSSREF](#)

188. Caldwell BO, Crane J. Combination nicotine metered dose inhaler and nicotine patch for smoking cessation: a randomized controlled trial. *Nicotine Tob Res* 2016;18(10):1944-51. [PUBMED](#) | [CROSSREF](#)

189. Cooney NL, Cooney JL, Perry BL, Carbone M, Cohen EH, Steinberg HR, et al. Smoking cessation during alcohol treatment: a randomized trial of combination nicotine patch plus nicotine gum. *Addiction* 2009;104(9):1588-96. [PUBMED](#) | [CROSSREF](#)

190. Croghan GA, Sloan JA, Croghan IT, Novotny P, Hurt RD, DeKrey WL, et al. Comparison of nicotine patch alone versus nicotine nasal spray alone versus a combination for treating smokers: a minimal intervention, randomized multicenter trial in a nonspecialized setting. *Nicotine Tob Res* 2003;5(2):181-7. [PUBMED](#) | [CROSSREF](#)

191. Dignan MB, Jones K, Burhansstipanov L, Ahamed SI, Krebs LU, Williams D, et al. A randomized trial to reduce smoking among American Indians in South Dakota: The walking forward study. *Contemp Clin Trials* 2019;81:28-33. [PUBMED](#) | [CROSSREF](#)

192. US Preventive Services Task Force, Krist AH, Davidson KW, Mangione CM, Barry MJ, Cabana M, et al. Interventions for Tobacco Smoking Cessation in Adults, Including Pregnant Persons: US Preventive Services Task Force Recommendation Statement. *JAMA* 2021;325(3):265-79. [PUBMED](#) | [CROSSREF](#)

193. Krupski L, Cummings KM, Hyland A, Mahoney MC, Toll BA, Carpenter MJ, et al. Cost and effectiveness of combination nicotine replacement therapy among heavy smokers contacting a quitline. *J Smok Cessat* 2016;11(1):50-9. [CROSSREF](#)

194. Leung MKW, Bai D, Yip BHK, Fong MY, Lai PMH, Lai P, et al. Combined nicotine patch with gum versus nicotine patch alone in smoking cessation in Hong Kong primary care clinics: a randomised controlled trial. *BMC Public Health* 2019;19(1):1302. [PUBMED](#) | [CROSSREF](#)

195. Puska PKH, Vartiainen E, Urjanheimo EL, Gustavsson GWA. Combined use of nicotine patch and gum compared with gum alone in smoking cessation: a clinical trial in North Karelia. *Tob Control* 1995;4(3):231-5. [CROSSREF](#)

196. Smith SS, Keller PA, Kobinsky KH, Baker TB, Fraser DL, Bush T, et al. Enhancing tobacco quitline effectiveness: identifying a superior pharmacotherapy adjuvant. *Nicotine Tob Res* 2013;15(3):718-28. [PUBMED](#) | [CROSSREF](#)

197. Smith SS, McCarthy DE, Japuntich SJ, Christiansen B, Piper ME, Jorenby DE, et al. Comparative effectiveness of 5 smoking cessation pharmacotherapies in primary care clinics. *Arch Intern Med* 2009;169(22):2148-55. [PUBMED](#) | [CROSSREF](#)
198. Tønnesen P, Mikkelsen KL. Smoking cessation with four nicotine replacement regimes in a lung clinic. *Eur Respir J* 2000;16(4):717-22. [PUBMED](#) | [CROSSREF](#)
199. Stapleton J, West R, Hajek P, Wheeler J, Vangeli E, Abdi Z, et al. Randomized trial of nicotine replacement therapy (NRT), bupropion and NRT plus bupropion for smoking cessation: effectiveness in clinical practice. *Addiction* 2013;108(12):2193-201. [PUBMED](#) | [CROSSREF](#)
200. Swanson NA, Burroughs CC, Long MA, Lee RW. Controlled trial for smoking cessation in a Navy shipboard population using nicotine patch, sustained-release bupropion, or both. *Mil Med* 2003;168(10):830-4. [PUBMED](#) | [CROSSREF](#)
201. Evins AE, Cather C, Culhane MA, Birnbaum A, Horowitz J, Hsieh E, et al. A 12-week double-blind, placebo-controlled study of bupropion sr added to high-dose dual nicotine replacement therapy for smoking cessation or reduction in schizophrenia. *J Clin Psychopharmacol* 2007;27(4):380-6. [PUBMED](#) | [CROSSREF](#)
202. George TP, Vescicchio JC, Sacco KA, Weinberger AH, Dudas MM, Allen TM, et al. A placebo-controlled trial of bupropion combined with nicotine patch for smoking cessation in schizophrenia. *Biol Psychiatry* 2008;63(11):1092-6. [PUBMED](#) | [CROSSREF](#)
203. Grant KM, Kelley SS, Smith LM, Agrawal S, Meyer JR, Romberger DJ. Bupropion and nicotine patch as smoking cessation aids in alcoholics. *Alcohol* 2007;41(5):381-91. [PUBMED](#) | [CROSSREF](#)
204. Hilberink SR, Jacobs JE, Breteler MH, de Vries H, Grol RP. General practice counseling for patients with chronic obstructive pulmonary disease to quit smoking: impact after 1 year of two complex interventions. *Patient Educ Couns* 2011;83(1):120-4. [PUBMED](#) | [CROSSREF](#)
205. Kalman D, Herz L, Monti P, Kahler CW, Mooney M, Rodrigues S, et al. Incremental efficacy of adding bupropion to the nicotine patch for smoking cessation in smokers with a recent history of alcohol dependence: results from a randomized, double-blind, placebo-controlled study. *Drug Alcohol Depend* 2011;118(2-3):111-8. [PUBMED](#) | [CROSSREF](#)
206. Rose JE, Behm FM. Adapting smoking cessation treatment according to initial response to precessation nicotine patch. *Am J Psychiatry* 2013;170(8):860-7. [PUBMED](#) | [CROSSREF](#)
207. Schnoll RA, Martinez E, Tatum KL, Weber DM, Kuzla N, Glass M, et al. A bupropion smoking cessation clinical trial for cancer patients. *Cancer Causes Control* 2010;21(6):811-20. [PUBMED](#) | [CROSSREF](#)
208. Simon JA, Duncan C, Carmody TP, Hudes ES. Bupropion for smoking cessation: a randomized trial. *Arch Intern Med* 2004;164(16):1797-803. [PUBMED](#) | [CROSSREF](#)
209. Baskerville NB, Struik LL, Guindon GE, Norman CD, Whittaker R, Burns C, et al. Effect of a mobile phone intervention on quitting smoking in a young adult population of smokers: randomized controlled trial. *JMIR Mhealth Uhealth* 2018;6(10):e10893. [PUBMED](#) | [CROSSREF](#)
210. BinDhim NF, McGeechan K, Trevena L. Smartphone Smoking Cessation Application (SSC App) trial: a multicountry double-blind automated randomised controlled trial of a smoking cessation decision-aid 'app'. *BMJ Open* 2018;8(1):e017105. [PUBMED](#) | [CROSSREF](#)
211. Danaher BG, Tyler MS, Crowley RC, Brendryen H, Seeley JR. Outcomes and device usage for fully automated internet interventions designed for a smartphone or personal computer: the mobilequit smoking cessation randomized controlled trial. *J Med Internet Res* 2019;21(6):e13290. [PUBMED](#) | [CROSSREF](#)
212. Garrison KA, Pal P, O'Malley SS, Pittman BP, Gueorguieva R, Rojiani R, et al. Craving to quit: a randomized controlled trial of smartphone app-based mindfulness training for smoking cessation. *Nicotine Tob Res* 2020;22(3):324-31. [PUBMED](#) | [CROSSREF](#)
213. Peiris D, Wright L, News M, Rogers K, Redfern J, Chow C, et al. A smartphone app to assist smoking cessation among aboriginal Australians: findings from a pilot randomized controlled trial. *JMIR Mhealth Uhealth* 2019;7(4):e12745. [PUBMED](#) | [CROSSREF](#)
214. Affret A, Luc A, Baumann C, Bergman P, Le Faou AL, Pasquereau A, et al. Effectiveness of the e-Tabac Info Service application for smoking cessation: a pragmatic randomised controlled trial. *BMJ Open* 2020;10(10):e039515. [PUBMED](#) | [CROSSREF](#)
215. Asayut N, Olson PS, Kanjanasilp J, Thanarat P, Senkraigul B, Sittisarn C, et al. A community pharmacist-led smoking cessation intervention using a smartphone app (PharmQuit): a randomized controlled trial. *PLoS One* 2022;17(3):e0265483. [PUBMED](#) | [CROSSREF](#)
216. Etter JF, Khazaal Y. The Stop-tabac smartphone application for smoking cessation: a randomized controlled trial. *Addiction* 2022;117(5):1406-15. [PUBMED](#) | [CROSSREF](#)
217. García-Pazo P, Sesé A, Llabrés J, Fornés-Vives J. NoFumo+: a clinical trial of an mhealth for smoking cessation with hospitalized patients. *Int J Environ Res Public Health* 2021;18(19):10476. [PUBMED](#) | [CROSSREF](#)

218. Guo N, Luk TT, Wu YS, Guo Z, Chu JCL, Cheung YTD, et al. Effect of mobile interventions with nicotine replacement therapy sampling on long-term smoking cessation in community smokers: a pragmatic randomized clinical trial. *Tob Induc Dis* 2023;21(March):44. [PUBMED](#) | [CROSSREF](#)
219. Herbec A, Shahab L, Brown J, Ubhi HK, Beard E, Matei A, et al. Does addition of craving management tools in a stop smoking app improve quit rates among adult smokers? Results from BupaQuit pragmatic pilot randomised controlled trial. *Digit Health* 2021;7:20552076211058935. [PUBMED](#) | [CROSSREF](#)
220. Masaki K, Tateno H, Nomura A, Muto T, Suzuki S, Satake K, et al. A randomized controlled trial of a smoking cessation smartphone application with a carbon monoxide checker. *NPJ Digit Med* 2020;3(1):35. [PUBMED](#) | [CROSSREF](#)
221. Mistik S, Uzun C, Gürmez İ. The effect of a mobile phone application on smoking cessation. *Konuralp Tip Derg* 2022;14(2):290-7. [CROSSREF](#)
222. Naughton F, Hope A, Siegle-Brown C, Grant K, Barton G, Notley C, et al. An automated, online feasibility randomized controlled trial of a just-in-time adaptive intervention for smoking cessation (Quit Sense). *Nicotine Tob Res* 2023;25(7):1319-29. [PUBMED](#) | [CROSSREF](#)
223. Olano-Espinosa E, Avila-Tomas JE, Minue-Lorenzo C, Matilla-Pardo B, Serrano Serrano ME, Martinez-Suberviela FJ, et al. Effectiveness of a conversational chatbot (Dejal@bot) for the adult population to quit smoking: pragmatic, multicenter, controlled, randomized clinical trial in primary care. *JMIR Mhealth Uhealth* 2022;10(6):e34273. [PUBMED](#) | [CROSSREF](#)
224. Pallejà-Millán M, Rey-Reñones C, Barrera Uriarte ML, Granado-Font E, Basora J, Flores-Mateo G, et al. Evaluation of the Tobbstop mobile app for smoking cessation: cluster randomized controlled clinical trial. *JMIR Mhealth Uhealth* 2020;8(6):e15951. [PUBMED](#) | [CROSSREF](#)
225. Wang MP, Luk TT, Wu Y, Li WH, Cheung DY, Kwong AC, et al. Chat-based instant messaging support integrated with brief interventions for smoking cessation: a community-based, pragmatic, cluster-randomised controlled trial. *Lancet Digit Health* 2019;1(4):e183-92. [PUBMED](#) | [CROSSREF](#)
226. Weng X, Lau OS, Ng CH, Li WHC, Lam TH, Wang MP. Effect of a workplace mobile phone-based instant messaging intervention on smoking cessation: a cluster-randomized controlled trial. *Addiction* 2022;117(6):1758-67. [PUBMED](#) | [CROSSREF](#)
227. Zhao SZ, Wu YS, Chau SL, Fong DYT, Lam TH, Wang MP. Mobile chat-based support plus nicotine replacement therapy sampling to promote smoking cessation for community smokers: a randomized controlled trial. *Tob Induc Dis* 2021;19(April):32. [PUBMED](#) | [CROSSREF](#)
228. Abroms LC, Boal AL, Simmens SJ, Mendel JA, Windsor RA. A randomized trial of Text2Quit: a text messaging program for smoking cessation. *Am J Prev Med* 2014;47(3):242-50. [PUBMED](#) | [CROSSREF](#)
229. Abroms LC, Johnson PR, Leavitt LE, Cleary SD, Bushar J, Brandon TH, et al. A randomized trial of text messaging for smoking cessation in pregnant women. *Am J Prev Med* 2017;53(6):781-90. [PUBMED](#) | [CROSSREF](#)
230. Bock B, Heron K, Jennings E, Morrow K, Cobb V, Magee J, et al. A text message delivered smoking cessation intervention: the initial trial of TXT-2-Quit: randomized controlled trial. *JMIR Mhealth Uhealth* 2013;1(2):e17. [PUBMED](#) | [CROSSREF](#)
231. Borland R, Balmford J, Benda P. Population-level effects of automated smoking cessation help programs: a randomized controlled trial. *Addiction* 2013;108(3):618-28. [PUBMED](#) | [CROSSREF](#)
232. Chan SS, Wong DC, Cheung YT, Leung DY, Lau L, Lai V, et al. A block randomized controlled trial of a brief smoking cessation counselling and advice through short message service on participants who joined the Quit to Win Contest in Hong Kong. *Health Educ Res* 2015;30(4):609-21. [PUBMED](#) | [CROSSREF](#)
233. Cobos-Campos R, Apiñaniz Fernández de Larrinoa A, Sáez de Lafuente Moriñigo A, Parraza Diez N, Aizpuru Barandiaran F. Effectiveness of text messaging as an adjuvant to health advice in smoking cessation programs in primary care. A randomized clinical trial. *Nicotine Tob Res* 2017;19(8):901-7. [PUBMED](#)
234. Free C, Knight R, Robertson S, Whittaker R, Edwards P, Zhou W, et al. Smoking cessation support delivered via mobile phone text messaging (txt2stop): a single-blind, randomised trial. *Lancet* 2011;378(9785):49-55. [PUBMED](#) | [CROSSREF](#)
235. Free C, Whittaker R, Knight R, Abramsky T, Rodgers A, Roberts IG. Txt2stop: a pilot randomised controlled trial of mobile phone-based smoking cessation support. *Tob Control* 2009;18(2):88-91. [PUBMED](#) | [CROSSREF](#)
236. Haug S, Schaub MP, Venzin V, Meyer C, John U. Efficacy of a text message-based smoking cessation intervention for young people: a cluster randomized controlled trial. *J Med Internet Res* 2013;15(8):e171. [PUBMED](#) | [CROSSREF](#)
237. Liao Y, Wu Q, Kelly BC, Zhang F, Tang YY, Wang Q, et al. Effectiveness of a text-messaging-based smoking cessation intervention ("Happy Quit") for smoking cessation in China: A randomized controlled trial. *PLoS Med* 2018;15(12):e1002713. [PUBMED](#) | [CROSSREF](#)

238. Naughton F, Jamison J, Boase S, Sloan M, Gilbert H, Prevost AT, et al. Randomized controlled trial to assess the short-term effectiveness of tailored web- and text-based facilitation of smoking cessation in primary care (iQuit in practice). *Addiction* 2014;109(7):1184-93. [PUBMED](#) | [CROSSREF](#)

239. Rodgers A, Corbett T, Bramley D, Riddell T, Wills M, Lin RB, et al. Do u smoke after txt? Results of a randomised trial of smoking cessation using mobile phone text messaging. *Tob Control* 2005;14(4):255-61. [PUBMED](#) | [CROSSREF](#)

240. Tseng TY, Krebs P, Schoenthaler A, Wong S, Sherman S, Gonzalez M, et al. Combining text messaging and telephone counseling to increase varenicline adherence and smoking abstinence among cigarette smokers living with HIV: a randomized controlled study. *AIDS Behav* 2017;21(7):1964-74. [PUBMED](#) | [CROSSREF](#)

241. Walters J, Ferguson S. The effect of mobile text messages on short and long term quitting in motivated smokers: a randomised controlled trial. Annual Meeting of the Society for Research on Nicotine & Tobacco; February 25-28, 2015; Philadelphia, PA, USA. Windsor, WI, USA: Society for Research on Nicotine & Tobacco; 2015.

242. Whittaker R, Dorey E, Bramley D, Bullen C, Denny S, Elley CR, et al. A theory-based video messaging mobile phone intervention for smoking cessation: randomized controlled trial. *J Med Internet Res* 2011;13(1):e10. [PUBMED](#) | [CROSSREF](#)

243. Yu S, Duan Z, Redmon PB, Eriksen MP, Koplan JP, Huang C. mHealth intervention is effective in creating smoke-free homes for newborns: a randomized controlled trial study in China. *Sci Rep* 2017;7(1):9276. [PUBMED](#) | [CROSSREF](#)

244. Durmaz S, Ergin I, Durusoy R, Hassoy H, Caliskan A, Okyay P. WhatsApp embedded in routine service delivery for smoking cessation: effects on abstinence rates in a randomized controlled study. *BMC Public Health* 2019;19(1):387. [PUBMED](#) | [CROSSREF](#)

245. Graham AL, Cha S, Papandonatos GD, Amato MS, Jacobs MA, Abrams LC, et al. E-cigarette and combusted tobacco abstinence among young adults: secondary analyses from a U.S.-based randomized controlled trial of vaping cessation. *Prev Med* 2022;165(Pt B):107119. [PUBMED](#) | [CROSSREF](#)

246. Hitsman B, Matthews PA, Papandonatos GD, Cameron KA, Rittner SS, Mohanty N, et al. An EHR-automated and theory-based population health management intervention for smoking cessation in diverse low-income patients of safety-net health centers: a pilot randomized controlled trial. *Transl Behav Med* 2022;12(9):892-9. [PUBMED](#) | [CROSSREF](#)

247. Houston TK, Chen J, Amante DJ, Blok AC, Nagawa CS, Wijesundara JG, et al. Effect of technology-assisted brief abstinence game on long-term smoking cessation in individuals not yet ready to quit: a randomized clinical trial. *JAMA Intern Med* 2022;182(3):303-12. [PUBMED](#) | [CROSSREF](#)

248. Mays D, Johnson AC, Phan L, Sanders C, Shoben A, Tercyak KP, et al. Tailored mobile messaging intervention for waterpipe tobacco cessation in young adults: a randomized trial. *Am J Public Health* 2021;111(9):1686-95. [PUBMED](#) | [CROSSREF](#)

249. Vidrine DJ, Frank-Pearce SG, Vidrine JI, Tahay PD, Marani SK, Chen S, et al. Efficacy of mobile phone-delivered smoking cessation interventions for socioeconomically disadvantaged individuals: a randomized clinical trial. *JAMA Intern Med* 2019;179(2):167-74. [PUBMED](#) | [CROSSREF](#)

250. Weng X, Luk TT, Suen YN, Wu Y, Li HCW, Cheung YTD, et al. Effects of simple active referrals of different intensities on smoking abstinence and smoking cessation services attendance: a cluster-randomized clinical trial. *Addiction* 2020;115(10):1902-12. [PUBMED](#) | [CROSSREF](#)

251. Bastian LA, Fish LJ, Gierisch JM, Rohrer LD, Stechuchak KM, Grambow SC. Comparative effectiveness trial of family-supported smoking cessation intervention versus standard telephone counseling for chronically ill veterans using proactive recruitment. *Comp Eff Res* 2012;2:45-56.

252. Blebil AQ, Sulaiman SAS, Hassali MA, Dujaili JA, Zin AM. Impact of additional counselling sessions through phone calls on smoking cessation outcomes among smokers in Penang State, Malaysia. *BMC Public Health* 2014;14(1):460. [PUBMED](#) | [CROSSREF](#)

253. Borland R, Balmford J, Segar C, Livingston P, Owen N. The effectiveness of personalized smoking cessation strategies for callers to a Quitline service. *Addiction* 2003;98(6):837-46. [PUBMED](#) | [CROSSREF](#)

254. Borland R, Segar CJ, Livingston PM, Owen N. The effectiveness of callback counselling for smoking cessation: a randomized trial. *Addiction* 2001;96(6):881-9. [PUBMED](#) | [CROSSREF](#)

255. Brunette MF, Pratt SI, Bartels SJ, Scherer EA, Sigmon SC, Ferron JC, et al. Randomized trial of interventions for smoking cessation among Medicaid beneficiaries with mental illness. *Psychiatr Serv* 2018;69(3):274-80. [PUBMED](#) | [CROSSREF](#)

256. Collins BN, Lepore SJ, Winickoff JP, Nair US, Moughan B, Bryant-Stephens T, et al. An office-initiated multilevel intervention for tobacco smoke exposure: a randomized trial. *Pediatrics* 2018;141 Suppl 1:S75-86. [PUBMED](#) | [CROSSREF](#)

257. Cummins SE, Gamst AC, Brandstein K, Seymann GB, Klonoff-Cohen H, Kirby CA, et al. Helping hospitalized smokers: a factorial RCT of nicotine patches and counseling. *Am J Prev Med* 2016;51(4):578-86. [PUBMED](#) | [CROSSREF](#)

258. Cummins SE, Tedeschi GJ, Anderson CM, Zhu SH. Telephone intervention for pregnant smokers: a randomized controlled trial. *Am J Prev Med* 2016;51(3):318-26. [PUBMED](#) | [CROSSREF](#)

259. Duffy SA, Ronis DL, Valenstein M, Lambert MT, Fowler KE, Gregory L, et al. A tailored smoking, alcohol, and depression intervention for head and neck cancer patients. *Cancer Epidemiol Biomarkers Prev* 2006;15(11):2203-8. [PUBMED](#) | [CROSSREF](#)

260. Ebbert JO, Carr AB, Patten CA, Morris RA, Schroeder DR. Tobacco use quitline enrollment through dental practices: a pilot study. *J Am Dent Assoc* 2007;138(5):595-601. [PUBMED](#) | [CROSSREF](#)

261. Ferguson J, Docherty G, Bauld L, Lewis S, Lorgelly P, Boyd KA, et al. Effect of offering different levels of support and free nicotine replacement therapy via an English national telephone quitline: randomised controlled trial. *BMJ* 2012;344:e1696. [PUBMED](#) | [CROSSREF](#)

262. Gilbert H, Sutton S. Evaluating the effectiveness of proactive telephone counselling for smoking cessation in a randomized controlled trial. *Addiction* 2006;101(4):590-8. [PUBMED](#) | [CROSSREF](#)

263. Hollis JF, McAfee TA, Fellows JL, Zbikowski SM, Stark M, Riedlinger K. The effectiveness and cost effectiveness of telephone counselling and the nicotine patch in a state tobacco quitline. *Tob Control* 2007;16(Suppl 1):i53-9. [PUBMED](#) | [CROSSREF](#)

264. Nohlert E, Öhrvik J, Helgason ÁR. Effectiveness of proactive and reactive services at the Swedish National Tobacco Quitline in a randomized trial. *Tob Induc Dis* 2014;12(1):9. [PUBMED](#) | [CROSSREF](#)

265. Piper ME, Fiore MC, Smith SS, Fraser D, Bolt DM, Collins LM, et al. Identifying effective intervention components for smoking cessation: a factorial screening experiment. *Addiction* 2016;111(1):129-41. [PUBMED](#) | [CROSSREF](#)

266. Rabius V, McAlister AL, Geiger A, Huang P, Todd R. Telephone counseling increases cessation rates among young adult smokers. *Health Psychol* 2004;23(5):539-41. [PUBMED](#) | [CROSSREF](#)

267. Rabius V, Pike KJ, Hunter J, Wiatrek D, McAlister AL. Effects of frequency and duration in telephone counselling for smoking cessation. *Tob Control* 2007;16(Suppl 1):i71-4. [PUBMED](#) | [CROSSREF](#)

268. Ramon JM, Nerin I, Comino A, Pinet C, Abella F, Carreras JM, et al. A multicentre randomized trial of combined individual and telephone counselling for smoking cessation. *Prev Med* 2013;57(3):183-8. [PUBMED](#) | [CROSSREF](#)

269. Rogers ES, Smelson DA, Gillespie CC, Elbel B, Poole S, Hagedorn HJ, et al. Telephone smoking-cessation counseling for smokers in mental health clinics: a patient-randomized controlled trial. *Am J Prev Med* 2016;50(4):518-27. [PUBMED](#) | [CROSSREF](#)

270. Schlam TR, Fiore MC, Smith SS, Fraser D, Bolt DM, Collins LM, et al. Comparative effectiveness of intervention components for producing long-term abstinence from smoking: a factorial screening experiment. *Addiction* 2016;111(1):142-55. [PUBMED](#) | [CROSSREF](#)

271. Sherman SE, Krebs P, York LS, Cummins SE, Kuschner W, Guvenc-Tunceturk S, et al. Telephone care co-ordination for tobacco cessation: randomised trials testing proactive versus reactive models. *Tob Control* 2018;27(1):78-82. [PUBMED](#) | [CROSSREF](#)

272. Sims TH, McAfee T, Fraser DL, Baker TB, Fiore MC, Smith SS. Quitline cessation counseling for young adult smokers: a randomized clinical trial. *Nicotine Tob Res* 2013;15(5):932-41. [PUBMED](#) | [CROSSREF](#)

273. Smith PM, Cameron R, McDonald PW, Kawash B, Madill C, Brown KS. Telephone counseling for population-based smoking cessation. *Am J Health Behav* 2004;28(3):231-41. [PUBMED](#) | [CROSSREF](#)

274. Warner DO, Nolan MB, Kadimpatti S, Burke MV, Hanson AC, Schroeder DR. Quitline tobacco interventions in hospitalized patients: a randomized trial. *Am J Prev Med* 2016;51(4):473-84. [PUBMED](#) | [CROSSREF](#)

275. Wu L, He Y, Jiang B, Zhang D, Tian H, Zuo F, et al. Very brief physician advice and supplemental proactive telephone calls to promote smoking reduction and cessation in Chinese male smokers with no intention to quit: a randomized trial. *Addiction* 2017;112(11):2032-40. [PUBMED](#) | [CROSSREF](#)

276. Zhu SH, Anderson CM, Tedeschi GJ, Rosbrook B, Johnson CE, Byrd M, et al. Evidence of real-world effectiveness of a telephone quitline for smokers. *N Engl J Med* 2002;347(14):1087-93. [PUBMED](#) | [CROSSREF](#)

277. Zhu SH, Cummins SE, Wong S, Gamst AC, Tedeschi GJ, Reyes-Nocon J. The effects of a multilingual telephone quitline for Asian smokers: a randomized controlled trial. *J Natl Cancer Inst* 2012;104(4):299-310. [PUBMED](#) | [CROSSREF](#)

278. Zhu SH, Stretch V, Balabanis M, Rosbrook B, Sadler G, Pierce JP. Telephone counseling for smoking cessation: effects of single-session and multiple-session interventions. *J Consult Clin Psychol* 1996;64(1):202-11. [PUBMED](#) | [CROSSREF](#)

279. Zwar NA, Richmond RL, Halcomb EJ, Furler JS, Smith JP, Hermiz O, et al. Quit in general practice: a cluster randomized trial of enhanced in-practice support for smoking cessation. *Fam Pract* 2015;32(2):173-80. [PUBMED](#) | [CROSSREF](#)

280. Ni K, Wang B, Link AR, Sherman SE. Does smoking intensity predict cessation rates? A study of light-intermittent, light-daily, and heavy smokers enrolled in two telephone-based counseling interventions. *Nicotine Tob Res* 2020;22(3):423-30. [PUBMED](#) | [CROSSREF](#)

281. Taylor KL, Williams RM, Li T, Luta G, Smith L, Davis KM, et al. A randomized trial of telephone-based smoking cessation treatment in the lung cancer screening setting. *J Natl Cancer Inst* 2022;114(10):1410-9. [PUBMED](#) | [CROSSREF](#)

282. Cheung YTD, Jiang N, Jiang CQ, Zhuang RS, Gao WH, Zhou J, et al. Physicians' very brief (30-sec) intervention for smoking cessation on 13 671 smokers in China: a pragmatic randomized controlled trial. *Addiction* 2021;116(5):1172-85. [PUBMED](#) | [CROSSREF](#)

283. Cheung KW, Wong IW, Fingrut W, Tsai APY, Ke SR, Shoaie S, et al. Randomized controlled trial of emergency department initiated smoking cessation counselling and referral to a community counselling service. *CJEM* 2018;20(4):556-64. [PUBMED](#) | [CROSSREF](#)

284. Li WHC, Ho KY, Wang MP, Cheung DYT, Lam KKW, Xia W, et al. Effectiveness of a brief self-determination theory-based smoking cessation intervention for smokers at emergency departments in Hong Kong: a randomized clinical trial. *JAMA Intern Med* 2020;180(2):206-14. [PUBMED](#) | [CROSSREF](#)

285. Jamrozik K, Vessey M, Fowler G, Wald N, Parker G, Van Vunakis H. Controlled trial of three different antismoking interventions in general practice. *Br Med J (Clin Res Ed)* 1984;288(6429):1499-503. [PUBMED](#) | [CROSSREF](#)

286. Betson CL, Lam TH, Chung TWH, Chung SF. A randomized controlled trial of smoking cessation in Government out-patient clinics in Hong Kong. In: Lu R, Mackay J, Niu S, Peto R, editors. *Tobacco: The Growing Epidemic*. London, UK: Springer London; 2000.

287. Lin PR, Zhao ZW, Cheng KK, Lam TH. The effect of physician's 30 s smoking cessation intervention for male medical outpatients: a pilot randomized controlled trial. *J Public Health (Oxf)* 2013;35(3):375-83. [PUBMED](#) | [CROSSREF](#)

288. Russell MA, Merriman R, Stapleton J, Taylor W. Effect of nicotine chewing gum as an adjunct to general practitioner's advice against smoking. *Br Med J (Clin Res Ed)* 1983;287(6407):1782-5. [PUBMED](#) | [CROSSREF](#)

289. Russell MA, Wilson C, Taylor C, Baker CD. Effect of general practitioners' advice against smoking. *BMJ* 1979;2(6184):231-5. [PUBMED](#) | [CROSSREF](#)

290. Severson HH, Andrews JA, Lichtenstein E, Gordon JS, Barckley MF. Using the hygiene visit to deliver a tobacco cessation program: results of a randomized clinical trial. *J Am Dent Assoc* 1998;129(7):993-9. [PUBMED](#) | [CROSSREF](#)

291. Slama K, Redman S, Perkins J, Reid AL, Sanson-Fisher RW. The effectiveness of two smoking cessation programmes for use in general practice: a randomised clinical trial. *BMJ* 1990;300(6741):1707-9. [PUBMED](#) | [CROSSREF](#)

292. Papadakis S, Anastasaki M, Papadakaki M, Antonopoulou M, Chliveros C, Daskalaki C, et al. 'Very brief advice' (VBA) on smoking in family practice: a qualitative evaluation of the tobacco user's perspective. *BMC Fam Pract* 2020;21(1):121. [PUBMED](#) | [CROSSREF](#)

293. Park EW, Cheong YS. Physicians' perspectives on the smoking cessation service for inpatient smokers. *Korean J Health Promot* 2019;19(3):128-37. [CROSSREF](#)

294. van Schayck OCP, Bindels L, Nijs A, van Engelen B, van den Bosch A, Muller IS, et al. The experience of general practitioners with Very Brief Advice in the treatment of tobacco addiction. *NPJ Prim Care Respir Med* 2020;30(1):40. [PUBMED](#) | [CROSSREF](#)

295. Aveyard P, Brown K, Saunders C, Alexander A, Johnstone E, Munafó MR, et al. Weekly versus basic smoking cessation support in primary care: a randomised controlled trial. *Thorax* 2007;62(10):898-903. [PUBMED](#) | [CROSSREF](#)

296. Bobo JK, McIlvain HE, Lando HA, Walker RD, Leed-Kelly A. Effect of smoking cessation counseling on recovery from alcoholism: findings from a randomized community intervention trial. *Addiction* 1998;93(6):877-87. [PUBMED](#) | [CROSSREF](#)

297. Bronson DL, Flynn BS, Solomon LJ, Vacek P, Secker-Walker RH. Smoking cessation counseling during periodic health examinations. *Arch Intern Med* 1989;149(7):1653-6. [PUBMED](#) | [CROSSREF](#)

298. Brunner Frandsen N, Sørensen M, Hyldahl TK, Henriksen RM, Bak S. Smoking cessation intervention after ischemic stroke or transient ischemic attack. A randomized controlled pilot trial. *Nicotine Tob Res* 2012;14(4):443-7. [PUBMED](#) | [CROSSREF](#)

299. Burling TA, Marshall GD, Seidner AL. Smoking cessation for substance abuse inpatients. *J Subst Abuse* 1991;3(3):269-76. [PUBMED](#) | [CROSSREF](#)

300. Burling TA, Burling AS, Latini D. A controlled smoking cessation trial for substance-dependent inpatients. *J Consult Clin Psychol* 2001;69(2):295-304. [PUBMED](#) | [CROSSREF](#)

301. Chan SS, Leung DY, Wong DC, Lau CP, Wong VT, Lam TH. A randomized controlled trial of stage-matched intervention for smoking cessation in cardiac out-patients. *Addiction* 2012;107(4):829-37. [PUBMED](#) | [CROSSREF](#)

302. Cropsey KL, Clark CB, Zhang X, Hendricks PS, Jardin BF, Lahti AC. Race and medication adherence moderate cessation outcomes in criminal justice smokers. *Am J Prev Med* 2015;49(3):335-44. [PUBMED](#) | [CROSSREF](#)

303. Fiore MC, McCarthy DE, Jackson TC, Zehner ME, Jorenby DE, Mielke M, et al. Integrating smoking cessation treatment into primary care: an effectiveness study. *Prev Med* 2004;38(4):412-20. [PUBMED](#) | [CROSSREF](#)

304. Garvey AJ, Kalman D, Hoskinson RA Jr, Kinnunen T, Wadler BM, Thomson CC, et al. Front-loaded versus weekly counseling for treatment of tobacco addiction. *Nicotine Tob Res* 2012;14(5):578-85. [PUBMED](#) | [CROSSREF](#)

305. Glasgow RE, Whitlock EP, Eakin EG, Lichtenstein E. A brief smoking cessation intervention for women in low-income planned parenthood clinics. *Am J Public Health* 2000;90(5):786-9. [PUBMED](#) | [CROSSREF](#)

306. Hannöver W, Thyrian JR, Röske K, Grempler J, Rumpf HJ, John U, et al. Smoking cessation and relapse prevention for postpartum women: results from a randomized controlled trial at 6, 12, 18 and 24 months. *Addict Behav* 2009;34(1):1-8. [PUBMED](#) | [CROSSREF](#)

307. Hennrikus DJ, Lando HA, McCarty MC, Klevan D, Holtan N, Huebsch JA, et al. The TEAM project: the effectiveness of smoking cessation intervention with hospital patients. *Prev Med* 2005;40(3):249-58. [PUBMED](#) | [CROSSREF](#)

308. Jorenby DE, Smith SS, Fiore MC, Hurt RD, Offord KP, Croghan IT, et al. Varying nicotine patch dose and type of smoking cessation counseling. *JAMA* 1995;274(17):1347-52. [PUBMED](#) | [CROSSREF](#)

309. Killen JD, Fortmann SP, Schatzberg AF, Arredondo C, Murphy G, Hayward C, et al. Extended cognitive behavior therapy for cigarette smoking cessation. *Addiction* 2008;103(8):1381-90. [PUBMED](#) | [CROSSREF](#)

310. Kim JR, Lee MS, Hwang JY, Lee JD. Efficacy of a smoking cessation intervention using the AHCPR guideline tailored for Koreans: a randomized controlled trial. *Health Promot Int* 2005;20(1):51-9. [PUBMED](#) | [CROSSREF](#)

311. Kim SS, Kim SH, Fang H, Kwon S, Shelley D, Ziedonis D. A culturally adapted smoking cessation intervention for Korean Americans: a mediating effect of perceived family norm toward quitting. *J Immigr Minor Health* 2015;17(4):1120-9. [PUBMED](#) | [CROSSREF](#)

312. Marley JV, Atkinson D, Kitaura T, Nelson C, Gray D, Metcalf S, et al. The Be Our Ally Beat Smoking (BOABS) study, a randomised controlled trial of an intensive smoking cessation intervention in a remote aboriginal Australian health care setting. *BMC Public Health* 2014;14(1):32. [PUBMED](#) | [CROSSREF](#)

313. Aleixandre i Martí E, Casanova Matutano MA, Mitjans Lafont J, Sánchez Monfort J, Sanmartín Almenar A. Clinical trial of 2 tobacco use cessation interventions in primary care. *Aten Primaria* 1998;22(7):424-8. [PUBMED](#)

314. Molyneux A, Lewis S, Leivers U, Anderton A, Antoniak M, Brackenridge A, et al. Clinical trial comparing nicotine replacement therapy (NRT) plus brief counselling, brief counselling alone, and minimal intervention on smoking cessation in hospital inpatients. *Thorax* 2003;58(6):484-8. [PUBMED](#) | [CROSSREF](#)

315. Mueller SE, Petitjean SA, Wiesbeck GA. Cognitive behavioral smoking cessation during alcohol detoxification treatment: a randomized, controlled trial. *Drug Alcohol Depend* 2012;126(3):279-85. [PUBMED](#) | [CROSSREF](#)

316. Nakamura M, Masui S, Oshima A, Okayama A, Ueshima H, HISLIM Research Group. Effects of stage-matched repeated individual counseling on smoking cessation: a randomized controlled trial for the high-risk strategy by lifestyle modification (HISLIM) study. *Environ Health Prev Med* 2004;9(4):152-60. [PUBMED](#) | [CROSSREF](#)

317. Nohlert E, Tegelberg A, Tillgren P, Johansson P, Rosenblad A, Helgason ÅR. Comparison of a high and a low intensity smoking cessation intervention in a dentistry setting in Sweden: a randomized trial. *BMC Public Health* 2009;9(1):121. [PUBMED](#) | [CROSSREF](#)

318. Okuyemi KS, Goldade K, Whembolua GL, Thomas JL, Eischen S, Sewali B, et al. Motivational interviewing to enhance nicotine patch treatment for smoking cessation among homeless smokers: a randomized controlled trial. *Addiction* 2013;108(6):1136-44. [PUBMED](#) | [CROSSREF](#)

319. Pedersen L, Johansen S, Eksten L. Smoking cessation among patients with acute heart disease. A randomised intervention project. *Ugeskr Laeger* 2005;167(33):3044-7. [PUBMED](#)

320. Pederson LL, Wanklin JM, Lefcoe NM. The effects of counseling on smoking cessation among patients hospitalized with chronic obstructive pulmonary disease: a randomized clinical trial. *Int J Addict* 1991;26(1):107-19. [PUBMED](#) | [CROSSREF](#)

321. Ramos M, Ripoll J, Estrades T, Socias I, Fe A, Duro R, et al. Effectiveness of intensive group and individual interventions for smoking cessation in primary health care settings: a randomized trial. *BMC Public Health* 2010;10(1):89. [PUBMED](#) | [CROSSREF](#)

322. Rigotti NA, Arnsten JH, McKool KM, Wood-Reid KM, Pasternak RC, Singer DE. Efficacy of a smoking cessation program for hospital patients. *Arch Intern Med* 1997;157(22):2653-60. [PUBMED](#) | [CROSSREF](#)

323. Schmitz JM, Spiga R, Rhoades HM, Fuentes F, Grabowski J. Smoking cessation in women with cardiac risk: a comparative study of two theoretically based therapies. *Nicotine Tob Res* 1999;1(1):87-94. [PUBMED](#) | [CROSSREF](#)

324. Simon JA, Solkowitz SN, Carmody TP, Browner WS. Smoking cessation after surgery. A randomized trial. *Arch Intern Med* 1997;157(12):1371-6. [PUBMED](#) | [CROSSREF](#)

325. Tønnesen P, Mikkelsen K, Bremann L. Nurse-conducted smoking cessation in patients with COPD using nicotine sublingual tablets and behavioral support. *Chest* 2006;130(2):334-42. [PUBMED](#) | [CROSSREF](#)

326. Weissfeld JL, Holloway JL. Treatment for cigarette smoking in a Department of Veterans Affairs outpatient clinic. *Arch Intern Med* 1991;151(5):973-7. [PUBMED](#) | [CROSSREF](#)

327. Wiggers LC, Oort FJ, Dijkstra A, de Haes JC, Legemate DA, Smets EM. Cognitive changes in cardiovascular patients following a tailored behavioral smoking cessation intervention. *Prev Med* 2005;40(6):812-21. [PUBMED](#) | [CROSSREF](#)

328. Williams JM, Steinberg ML, Zimmermann MH, Gandhi KK, Stipelman B, Budsook PD, et al. Comparison of two intensities of tobacco dependence counseling in schizophrenia and schizoaffective disorder. *J Subst Abuse Treat* 2010;38(4):384-93. [PUBMED](#) | [CROSSREF](#)

329. Wu D, Ma GX, Zhou K, Zhou D, Liu A, Poon AN. The effect of a culturally tailored smoking cessation for Chinese American smokers. *Nicotine Tob Res* 2009;11(12):1448-57. [PUBMED](#) | [CROSSREF](#)

330. Chen J, Chen Y, Chen P, Liu Z, Luo H, Cai S. Effectiveness of individual counseling for smoking cessation in smokers with chronic obstructive pulmonary disease and asymptomatic smokers. *Exp Ther Med* 2014;7(3):716-20. [PUBMED](#) | [CROSSREF](#)

331. Lifrak P, Gariti P, Alterman AI, McKay J, Volpicelli J, Sparkman T, et al. Results of two levels of adjunctive treatment used with the nicotine patch. *Am J Addict* 1997;6(2):93-8. [PUBMED](#) | [CROSSREF](#)

332. Alterman AI, Gariti P, Mulvaney F. Short- and long-term smoking cessation for three levels of intensity of behavioral treatment. *Psychol Addict Behav* 2001;15(3):261-4. [PUBMED](#) | [CROSSREF](#)

333. Dornelas EA, Sampson RA, Gray JF, Waters D, Thompson PD. A randomized controlled trial of smoking cessation counseling after myocardial infarction. *Prev Med* 2000;30(4):261-8. [PUBMED](#) | [CROSSREF](#)

334. Hennrikus D, Joseph AM, Lando HA, Duval S, Ukestad L, Kodl M, et al. Effectiveness of a smoking cessation program for peripheral artery disease patients: a randomized controlled trial. *J Am Coll Cardiol* 2010;56(25):2105-12. [PUBMED](#) | [CROSSREF](#)

335. Windsor RA, Lowe JB, Bartlett EE. The effectiveness of a worksite self-help smoking cessation program: a randomized trial. *J Behav Med* 1988;11(4):407-21. [PUBMED](#) | [CROSSREF](#)

336. Marshall HM, Courtney DA, Passmore LH, McCaul EM, Yang IA, Bowman RV, et al. Brief tailored smoking cessation counseling in a lung cancer screening population is feasible: a pilot randomized controlled trial. *Nicotine Tob Res* 2016;18(7):1665-9. [PUBMED](#) | [CROSSREF](#)

337. Leppänen A, Lindgren P, Sundberg CJ, Petzold M, Tomson T. Motivation 2 Quit (M2Q): A cluster randomized controlled trial evaluating the effectiveness of Tobacco Cessation on Prescription in Swedish primary healthcare. *PLoS One* 2022;17(12):e0278369. [PUBMED](#) | [CROSSREF](#)

338. Li WH, Wang MP, Lam TH, Cheung YT, Cheung DY, Suen YN, et al. Brief intervention to promote smoking cessation and improve glycemic control in smokers with type 2 diabetes: a randomized controlled trial. *Sci Rep* 2017;7(1):45902. [PUBMED](#) | [CROSSREF](#)

339. Luo JG, Han L, Chen LW, Gao Y, Ding XJ, Li Y, et al. Effect of intensive personalized "5As+ 5Rs" intervention on smoking cessation in hospitalized acute coronary syndrome patients not ready to quit immediately: a randomized controlled trial. *Nicotine Tob Res* 2018;20(5):596-605. [PUBMED](#) | [CROSSREF](#)

340. Pettry D, Rae J, Aubry T. An examination of the effectiveness of smoking cessation treatment interventions for individuals with severe mental illness: a pilot randomized controlled trial. *Community Mental Health J* 2023;59(3):564-77. [PUBMED](#) | [CROSSREF](#)

341. Rajalu BM, Jayarajan D, Muliyala KP, Sharma P, Gandhi S, Chand PK. Effectiveness of personalized tobacco cessation intervention package among patients with schizophrenia and related psychotic disorders - A two-group experimental study. *Asian J Psychiatr* 2023;81:103447. [PUBMED](#) | [CROSSREF](#)

342. Sarkar BK, West R, Arora M, Ahluwalia JS, Reddy KS, Shahab L. Effectiveness of a brief community outreach tobacco cessation intervention in India: a cluster-randomised controlled trial (the BABEX Trial). *Thorax* 2017;72(2):167-73. [PUBMED](#) | [CROSSREF](#)

343. Sobell MB, Peterson AL, Sobell LC, Brundige A, Hunter CM, Hunter CM, et al. Reducing alcohol consumption to minimize weight gain and facilitate smoking cessation among military beneficiaries. *Addict Behav* 2017;75:145-51. [PUBMED](#) | [CROSSREF](#)

344. Rasmussen M, Lauridsen SV, Pedersen B, Backer V, Tønnesen H. Intensive *versus* short face-to-face smoking cessation interventions: a meta-analysis. *Eur Respir Rev* 2022;31(165):220063. [PUBMED](#) | [CROSSREF](#)

345. Marks DF, Sykes CM. Randomized controlled trial of cognitive behavioural therapy for smokers living in a deprived area of London: outcome at one-year follow-up. *Psychol Health Med* 2010;7(1):17-24. [PUBMED](#) | [CROSSREF](#)

346. Rovina N, Nikoloutsou I, Katsani G, Dima E, Fransis K, Roussos C, et al. Effectiveness of pharmacotherapy and behavioral interventions for smoking cessation in actual clinical practice. *Ther Adv Respir Dis* 2009;3(6):279-87. [PUBMED](#) | [CROSSREF](#)

347. Rüther T, Kiss A, Eberhardt K, Linhardt A, Kröger C, Pogarell O. Evaluation of the cognitive behavioral smoking reduction program "Smoke_less": a randomized controlled trial. *Eur Arch Psychiatry Clin Neurosci* 2018;268(3):269-77. [PUBMED](#) | [CROSSREF](#)

348. Simon JA, Carmody TP, Hudes ES, Snyder E, Murray J. Intensive smoking cessation counseling versus minimal counseling among hospitalized smokers treated with transdermal nicotine replacement: a randomized trial. *Am J Med* 2003;114(7):555-62. [PUBMED](#) | [CROSSREF](#)

349. Smith SS, Jorenby DE, Fiore MC, Anderson JE, Mielke MM, Beach KE, et al. Strike while the iron is hot: can stepped-care treatments resurrect relapsing smokers? *J Consult Clin Psychol* 2001;69(3):429-39. [PUBMED](#) | [CROSSREF](#)

350. Webb Hooper M, Lee DJ, Simmons VN, Brandon KO, Antoni MH, Asfar T, et al. Cognitive behavioral therapy versus general health education for smoking cessation: a randomized controlled trial among diverse treatment seekers. *Psychol Addict Behav* 2024;38(1):124-33. [PUBMED](#) | [CROSSREF](#)

351. Webb MS, de Ybarra DR, Baker EA, Reis IM, Carey MP. Cognitive-behavioral therapy to promote smoking cessation among African American smokers: a randomized clinical trial. *J Consult Clin Psychol* 2010;78(1):24-33. [PUBMED](#) | [CROSSREF](#)

352. Wittchen HU, Hoch E, Klotsche J, Muehlig S. Smoking cessation in primary care - a randomized controlled trial of bupropione, nicotine replacements, CBT and a minimal intervention. *Int J Methods Psychiatr Res* 2011;20(1):28-39. [PUBMED](#) | [CROSSREF](#)

353. Hall SM, Humfleet GL, Muñoz RF, Reus VI, Robbins JA, Prochaska JJ. Extended treatment of older cigarette smokers. *Addiction* 2009;104(6):1043-52. [PUBMED](#) | [CROSSREF](#)

354. Prapavessis H, Cameron L, Baldi JC, Robinson S, Borrie K, Harper T, et al. The effects of exercise and nicotine replacement therapy on smoking rates in women. *Addict Behav* 2007;32(7):1416-32. [PUBMED](#) | [CROSSREF](#)

355. Blenkiron P. Who is suitable for cognitive behavioural therapy? *J R Soc Med* 1999;92(5):222-9. [PUBMED](#) | [CROSSREF](#)

356. Notley C, Gentry S, Livingstone-Banks J, Bauld L, Perera R, Hartmann-Boyce J. Incentives for smoking cessation. *Cochrane Database Syst Rev* 2019;7(7):CD004307. [PUBMED](#)

357. Ainscough TS, Brose LS, Strang J, McNeill A. Contingency management for tobacco smoking during opioid addiction treatment: a randomised pilot study. *BMJ Open* 2017;7(9):e017467. [PUBMED](#) | [CROSSREF](#)

358. Alessi SM, Petry NM. Smoking reductions and increased self-efficacy in a randomized controlled trial of smoking abstinence-contingent incentives in residential substance abuse treatment patients. *Nicotine Tob Res* 2014;16(11):1436-45. [PUBMED](#) | [CROSSREF](#)

359. Baker TB, Fraser DL, Kobinsky K, Adsit R, Smith SS, Khalil L, et al. A randomized controlled trial of financial incentives to low income pregnant women to engage in smoking cessation treatment: effects on post-birth abstinence. *J Consult Clin Psychol* 2018;86(5):464-73. [PUBMED](#) | [CROSSREF](#)

360. Cheung YTD, Wang MP, Li HCW, Kwong A, Lai V, Chan SSC, et al. Effectiveness of a small cash incentive on abstinence and use of cessation aids for adult smokers: a randomized controlled trial. *Addict Behav* 2017;66:17-25. [PUBMED](#) | [CROSSREF](#)

361. Cooney JL, Cooper S, Grant C, Sevarino K, Krishnan-Sarin S, Gutierrez IA, et al. A randomized trial of contingency management for smoking cessation during intensive outpatient alcohol treatment. *J Subst Abuse Treat* 2017;72:89-96. [PUBMED](#) | [CROSSREF](#)

362. Dallery J, Raiff BR, Kim SJ, Marsch LA, Stitzer M, Grabinski MJ. Nationwide access to an internet-based contingency management intervention to promote smoking cessation: a randomized controlled trial. *Addiction* 2017;112(5):875-83. [PUBMED](#) | [CROSSREF](#)

363. Donatelle R, Prows S, Champeau D, Hudson D. Using social support, biochemical feedback, and incentives to motivate smoking cessation during pregnancy: comparison of three intervention trials. Poster Session Presented at the Annual Meeting of the American Public Health Association; November 12-16, 2000; Boston, MA, USA. Washington, D.C., USA: American Public Health Association; 2000.

364. Donatelle RJ, Prows SL, Champeau D, Hudson D. Randomised controlled trial using social support and financial incentives for high risk pregnant smokers: significant other supporter (SOS) program. *Tob Control* 2000;9(Suppl 3):III67-9. [PUBMED](#) | [CROSSREF](#)

365. Drummond MB, Astemborski J, Lambert AA, Goldberg S, Stitzer ML, Merlo CA, et al. A randomized study of contingency management and spirometric lung age for motivating smoking cessation among injection drug users. *BMC Public Health* 2014;14(1):761. [PUBMED](#) | [CROSSREF](#)

366. Etter JF, Schmid F. Effects of large financial incentives for long-term smoking cessation: a randomized trial. *J Am Coll Cardiol* 2016;68(8):777-85. [PUBMED](#) | [CROSSREF](#)

367. Fraser DL, Fiore MC, Kobinsky K, Adsit R, Smith SS, Johnson ML, et al. A randomized trial of incentives for smoking treatment in Medicaid members. *Am J Prev Med* 2017;53(6):754-63. [PUBMED](#) | [CROSSREF](#)

368. Gallagher SM, Penn PE, Schindler E, Layne W. A comparison of smoking cessation treatments for persons with schizophrenia and other serious mental illnesses. *J Psychoactive Drugs* 2007;39(4):487-97. [PUBMED](#) | [CROSSREF](#)

369. Ghosh A, Philiponis G, Bewley A, Ransom ER, Mirza N. You can't pay me to quit: the failure of financial incentives for smoking cessation in head and neck cancer patients. *J Laryngol Otol* 2016;130(3):278-83. [PUBMED](#) | [CROSSREF](#)

370. Giné X, Karlan D, Zinman J. Put your money where your butt is: a commitment contract for smoking cessation. *Am Econ J Appl Econ* 2010;2(4):213-35. [CROSSREF](#)

371. Glasgow RE, Hollis JF, Ary DV, Boles SM. Results of a year-long incentives-based worksite smoking-cessation program. *Addict Behav* 1993;18(4):455-64. [PUBMED](#) | [CROSSREF](#)

372. Halpern SD, French B, Small DS, Saulsgiver K, Harhay MO, Audrain-McGovern J, et al. Randomized trial of four financial-incentive programs for smoking cessation. *N Engl J Med* 2015;372(22):2108-17. [PUBMED](#) | [CROSSREF](#)

373. Halpern SD, Harhay MO, Saulsgiver K, Brophy C, Troxel AB, Volpp KG. A Pragmatic trial of E-cigarettes, incentives, and drugs for smoking cessation. *N Engl J Med* 2018;378(24):2302-10. [PUBMED](#) | [CROSSREF](#)

374. Harris M, Reynolds B. A pilot study of home-based smoking cessation programs for rural, appalachian, pregnant smokers. *J Obstet Gynecol Neonatal Nurs* 2015;44(2):236-45. [PUBMED](#) | [CROSSREF](#)

375. Heil SH, Higgins ST, Bernstein IM, Solomon LJ, Rogers RE, Thomas CS, et al. Effects of voucher-based incentives on abstinence from cigarette smoking and fetal growth among pregnant women. *Addiction* 2008;103(6):1009-18. [PUBMED](#) | [CROSSREF](#)

376. Higgins ST, Washio Y, Lopez AA, Heil SH, Solomon LJ, Lynch ME, et al. Examining two different schedules of financial incentives for smoking cessation among pregnant women. *Prev Med* 2014;68:51-7. [PUBMED](#) | [CROSSREF](#)

377. Lasser KE, Quintiliani LM, Truong V, Xuan Z, Murillo J, Jean C, et al. Effect of patient navigation and financial incentives on smoking cessation among primary care patients at an urban safety-net hospital: a randomized clinical trial. *JAMA Intern Med* 2017;177(12):1798-807. [PUBMED](#) | [CROSSREF](#)

378. Ledgerwood DM, Arfken CL, Petry NM, Alessi SM. Prize contingency management for smoking cessation: a randomized trial. *Drug Alcohol Depend* 2014;140:208-12. [PUBMED](#) | [CROSSREF](#)

379. McMahon SD, Jason LA, Salina D. Stress, coping, and appraisal in a smoking cessation intervention. *Anxiety Stress Coping* 1994;7(2):161-71. [CROSSREF](#)

380. Ondersma SJ, Svikis DS, Lam PK, Connors-Burge VS, Ledgerwood DM, Hopper JA. A randomized trial of computer-delivered brief intervention and low-intensity contingency management for smoking during pregnancy. *Nicotine Tob Res* 2012;14(3):351-60. [PUBMED](#) | [CROSSREF](#)

381. Rand CS, Stitzer ML, Bigelow GE, Mead AM. The effects of contingent payment and frequent workplace monitoring on smoking abstinence. *Addict Behav* 1989;14(2):121-8. [PUBMED](#) | [CROSSREF](#)

382. Rettig EM, Fakhry C, Hales RK, Kisule F, Quon H, Kiess AP, et al. Pilot randomized controlled trial of a comprehensive smoking cessation intervention for patients with upper aerodigestive cancer undergoing radiotherapy. *Head Neck* 2018;40(7):1534-47. [PUBMED](#) | [CROSSREF](#)

383. Rohsenow DJ, Martin RA, Tidey JW, Colby SM, Monti PM. Treating smokers in substance treatment with contingent vouchers, nicotine replacement and brief advice adapted for sobriety settings. *J Subst Abuse Treat* 2017;72:72-9. [PUBMED](#) | [CROSSREF](#)

384. Rohsenow DJ, Tidey JW, Martin RA, Colby SM, Sirota AD, Swift RM, et al. Contingent vouchers and motivational interviewing for cigarette smokers in residential substance abuse treatment. *J Subst Abuse Treat* 2015;55:29-38. [PUBMED](#) | [CROSSREF](#)

385. Romanowich P, Lamb RJ. The effects of fixed versus escalating reinforcement schedules on smoking abstinence. *J Appl Behav Anal* 2015;48(1):25-37. [PUBMED](#) | [CROSSREF](#)

386. Secades-Villa R, García-Rodríguez O, López-Núñez C, Alonso-Pérez F, Fernández-Hermida JR. Contingency management for smoking cessation among treatment-seeking patients in a community setting. *Drug Alcohol Depend* 2014;140:63-8. [PUBMED](#) | [CROSSREF](#)

387. Shopaw S, Rotheram-Fuller E, Yang X, Frosch D, Nahom D, Jarvik ME, et al. Smoking cessation in methadone maintenance. *Addiction* 2002;97(10):1317-28. [PUBMED](#) | [CROSSREF](#)

388. Tappin D, Bauld L, Purves D, Boyd K, Sinclair L, MacAskill S, et al. Financial incentives for smoking cessation in pregnancy: randomised controlled trial. *BMJ* 2015;350:h134. [PUBMED](#) | [CROSSREF](#)

389. Tevyaw TOL, Colby SM, Tidey JW, Kahler CW, Rohsenow DJ, Barnett NP, et al. Contingency management and motivational enhancement: a randomized clinical trial for college student smokers. *Nicotine Tob Res* 2009;11(6):739-49. [PUBMED](#) | [CROSSREF](#)

390. Tuten M, Fitzsimons H, Chisolm MS, Nuzzo PA, Jones HE. Contingent incentives reduce cigarette smoking among pregnant, methadone-maintained women: results of an initial feasibility and efficacy randomized clinical trial. *Addiction* 2012;107(10):1868-77. [PUBMED](#) | [CROSSREF](#)

391. van den Brand FA, Nagelhout GE, Winkens B, Chavannes NH, van Schayck OCP. Effect of a workplace-based group training programme combined with financial incentives on smoking cessation: a cluster-randomised controlled trial. *Lancet Public Health* 2018;3(11):e536-44. [PUBMED](#) | [CROSSREF](#)

392. Volpp KG, Gurmankin Levy A, Asch DA, Berlin JA, Murphy JJ, Gomez A, et al. A randomized controlled trial of financial incentives for smoking cessation. *Cancer Epidemiol Biomarkers Prev* 2006;15(1):12-8. [PUBMED](#) | [CROSSREF](#)

393. Volpp KG, Troxel AB, Pauly MV, Glick HA, Puig A, Asch DA, et al. A randomized, controlled trial of financial incentives for smoking cessation. *N Engl J Med* 2009;360(7):699-709. [PUBMED](#) | [CROSSREF](#)

394. White JS, Lowenstein C, Srivirojana N, Jampaklay A, Dow WH. Incentive programmes for smoking cessation: cluster randomized trial in workplaces in Thailand. *BMJ* 2020;371:m3797. [PUBMED](#) | [CROSSREF](#)

395. White JS, Dow WH, Rungruanghiranya S. Commitment contracts and team incentives: a randomized controlled trial for smoking cessation in Thailand. *Am J Prev Med* 2013;45(5):533-42. [PUBMED](#) | [CROSSREF](#)

396. Anderson CM, Cummins SE, Kohatsu ND, Gamst AC, Zhu SH. Incentives and patches for medicaid smokers: an RCT. *Am J Prev Med* 2018;55(6 Suppl 2):S138-47. [PUBMED](#) | [CROSSREF](#)

397. Berlin I, Berlin N, Malecot M, Breton M, Jusot F, Goldzahl L. Financial incentives for smoking cessation in pregnancy: multicentre randomised controlled trial. *BMJ* 2021;375:e065217. [PUBMED](#) | [CROSSREF](#)

398. Higgins ST, Nighbor TD, Kurti AN, Heil SH, Slade EP, Shepard DS, et al. Randomized controlled trial examining the efficacy of adding financial incentives to best practices for smoking cessation among pregnant and newly postpartum women. *Prev Med* 2022;165(Pt B):107012. [PUBMED](#) | [CROSSREF](#)

399. Higgins ST, Plucinski S, Orr E, Nighbor TD, Coleman SRM, Skelly J, et al. Randomized clinical trial examining financial incentives for smoking cessation among mothers of young children and possible impacts on child secondhand smoke exposure. *Prev Med* 2023;176:107651. [PUBMED](#) | [CROSSREF](#)

400. Hofmeyr A, Kincaid H, Rusch O. Incentivizing university students to quit smoking: a randomized controlled trial of a contingency management intervention in a developing country. *Am J Drug Alcohol Abuse* 2020;46(1):109-19. [PUBMED](#) | [CROSSREF](#)

401. Kurti AN, Tang K, Bolivar HA, Emery C, Medina N, Skelly J, et al. Smartphone-based financial incentives to promote smoking cessation during pregnancy: a pilot study. *Prev Med* 2020;140:106201. [PUBMED](#) | [CROSSREF](#)

402. Ladapo JA, Tseng CH, Sherman SE. Financial incentives for smoking cessation in hospitalized patients: a randomized clinical trial. *Am J Med* 2020;133(6):741-9. [PUBMED](#) | [CROSSREF](#)

403. Rash CJ, Petry NM, Alessi SM. A randomized trial of contingency management for smoking cessation in the homeless. *Psychol Addict Behav* 2018;32(2):141-8. [PUBMED](#) | [CROSSREF](#)

404. Tappin D, Sinclair L, Kee F, McFadden M, Robinson-Smith L, Mitchell A, et al. Effect of financial voucher incentives provided with UK stop smoking services on the cessation of smoking in pregnant women (CPIT III): pragmatic, multicentre, single blinded, phase 3, randomised controlled trial. *BMJ* 2022;379:e071522. [PUBMED](#) | [CROSSREF](#)

405. Aryapur M, Hosseini M, Masjedi MR, Mortaz E, Tabarsi P, Soori H, et al. A randomized controlled trial of smoking cessation methods in patients newly-diagnosed with pulmonary tuberculosis. *BMC Infect Dis* 2016;16(1):369. [PUBMED](#) | [CROSSREF](#)

406. Dogar O, Keding A, Gabe R, Marshall AM, Huque R, Barua D, et al. Cytisine for smoking cessation in patients with tuberculosis: a multicentre, randomised, double-blind, placebo-controlled phase 3 trial. *Lancet Glob Health* 2020;8(11):e1408-17. [PUBMED](#) | [CROSSREF](#)

407. Fernandes L, Narvekar A, Lawande D. Efficacy of smoking cessation intervention delivered through mobile tele-counseling among smokers with tuberculosis in a Revised National Tuberculosis Control Program. *Indian J Tuberc* 2022;69(2):207-12. [PUBMED](#) | [CROSSREF](#)

408. Goel S, Kathiresan J, Singh P, Singh RJ. Effect of a brief smoking cessation intervention on adult tobacco smokers with pulmonary tuberculosis: a cluster randomized controlled trial from North India. *Indian J Public Health* 2017;61(5 Suppl 1):S47-53. [PUBMED](#) | [CROSSREF](#)

409. Kumar SR, Pooranagangadevi N, Rajendran M, Mayer K, Flanigan T, Niaura R, et al. Physician's advice on quitting smoking in HIV and TB patients in south India: a randomised clinical trial. *Public Health Action* 2017;7(1):39-45. [PUBMED](#) | [CROSSREF](#)

410. Louwagie G, Kanaan M, Morojele NK, Van Zyl A, Moriarty AS, Li J, et al. Effect of a brief motivational interview and text message intervention targeting tobacco smoking, alcohol use and medication adherence to improve tuberculosis treatment outcomes in adult patients with tuberculosis: a multicentre, randomised controlled trial of the ProLife programme in South Africa. *BMJ Open* 2022;12(2):e056496. [PUBMED](#) | [CROSSREF](#)

411. Louwagie GM, Okuyemi KS, Ayo-Yusuf OA. Efficacy of brief motivational interviewing on smoking cessation at tuberculosis clinics in Tshwane, South Africa: a randomized controlled trial. *Addiction* 2014;109(11):1942-52. [PUBMED](#) | [CROSSREF](#)

412. Malhotra S, Mohanty V, Balappanavar AY, Sharma N, Khanna A, Chahar P, et al. Effectiveness of two tobacco cessation methods among TB patients. *Int J Tuberc Lung Dis* 2022;26(1):12-7. [PUBMED](#) | [CROSSREF](#)

413. Nicther M, Padmawati S, Ng N. Introducing smoking cessation to Indonesian males treated for tuberculosis: the challenges of low-moderate level smoking. *Soc Sci Med* 2016;152:70-9. [PUBMED](#) | [CROSSREF](#)

414. Ramesh Kumar S, Dolla C, Vasantha M, Menon PA, Venkatesan G, Venkatesan P. Strategies for smoking cessation (pharmacologic intervention versus enhanced motivation vs. standard motivation) in TB patients under treatment in the RNTCP, India - A cluster - randomized trial. *Indian J Tuberc* 2020;67(1):8-14. [PUBMED](#) | [CROSSREF](#)

415. Sharma SK, Mohan A, Singh AD, Mishra H, Jhanjee S, Pandey RM, et al. Impact of nicotine replacement therapy as an adjunct to anti-tuberculosis treatment and behaviour change counselling in newly diagnosed pulmonary tuberculosis patients: an open-label, randomised controlled trial. *Sci Rep* 2018;8(1):8828. [PUBMED](#) | [CROSSREF](#)

416. Baser S, Shannon VR, Eapen GA, Jimenez CA, Onn A, Lin E, et al. Smoking cessation after diagnosis of lung cancer is associated with a beneficial effect on performance status. *Chest* 2006;130(6):1784-90. [PUBMED](#) | [CROSSREF](#)

417. Bergman B, Sörenson S. Smoking and effect of chemotherapy in small cell lung cancer. *Eur Respir J* 1988;1(10):932-7. [PUBMED](#) | [CROSSREF](#)

418. Chen J, Jiang R, Garces YI, Jatoi A, Stoddard SM, Sun Z, et al. Prognostic factors for limited-stage small cell lung cancer: a study of 284 patients. *Lung Cancer* 2010;67(2):221-6. [PUBMED](#) | [CROSSREF](#)

419. Dobson Amato KA, Hyland A, Reed R, Mahoney MC, Marshall J, Giovino G, et al. Tobacco cessation may improve lung cancer patient survival. *J Thorac Oncol* 2015;10(7):1014-9. [PUBMED](#) | [CROSSREF](#)

420. Ferketich AK, Niland JC, Mamet R, Zornosa C, D'Amico TA, Ettinger DS, et al. Smoking status and survival in the national comprehensive cancer network non-small cell lung cancer cohort. *Cancer* 2013;119(4):847-53. [PUBMED](#) | [CROSSREF](#)

421. Gemine RE, Ghosal R, Collier G, Parry D, Campbell I, Davies G, et al. Longitudinal study to assess impact of smoking at diagnosis and quitting on 1-year survival for people with non-small cell lung cancer. *Lung Cancer* 2019;129:1-7. [PUBMED](#) | [CROSSREF](#)

422. Heiden BT, Eaton DB Jr, Chang SH, Yan Y, Schoen MW, Chen LS, et al. Assessment of Duration of smoking cessation prior to surgical treatment of non-small cell lung cancer. *Ann Surg* 2023;277(4):e933-40. [PUBMED](#) | [CROSSREF](#)

423. Japuntich SJ, Kumar P, Pendergast JF, Juarez Caballero GY, Malin JL, Wallace RB, et al. Smoking status and survival among a national cohort of lung and colorectal cancer patients. *Nicotine Tob Res* 2019;21(4):497-504. [PUBMED](#) | [CROSSREF](#)

424. Johnston-Early A, Cohen MH, Minna JD, Paxton LM, Fossieck BE Jr, Ihde DC, et al. Smoking abstinence and small cell lung cancer survival. An association. *JAMA* 1980;244(19):2175-9. [PUBMED](#) | [CROSSREF](#)

425. Koshiaris C, Aveyard P, Oke J, Ryan R, Szatkowski L, Stevens R, et al. Smoking cessation and survival in lung, upper aero-digestive tract and bladder cancer: cohort study. *Br J Cancer* 2017;117(8):1224-32. [PUBMED](#) | [CROSSREF](#)

426. Kovács G, Barsai A, Szilasi M. Smoking: a prognostic factor of lung cancer survival. *Magy Onkol* 2012;56(3):187-91. [PUBMED](#)

427. Linhas ARD, Dias MCP, Barroso AMP. Smoking cessation before initiation of chemotherapy in metastatic non-small cell lung cancer: influence on prognosis. *J Bras Pneumol* 2018;44(5):436-8. [PUBMED](#) | [CROSSREF](#)

428. Lugg ST, Tikka T, Agostini PJ, Kerr A, Adams K, Kalkat MS, et al. Smoking and timing of cessation on postoperative pulmonary complications after curative-intent lung cancer surgery. *J Cardiothorac Surg* 2017;12(1):52. [PUBMED](#) | [CROSSREF](#)

429. Park HY, Choe YR, Oh IJ, Kim MS, Kho BG, Shin HJ, et al. Efficacy of an inpatient smoking cessation program at a single regional cancer center: a prospective observational study. *Medicine (Baltimore)* 2021;100(6):e24745. [PUBMED](#) | [CROSSREF](#)

430. Rades D, Setter C, Schild SE, Dunst J. Effect of smoking during radiotherapy, respiratory insufficiency, and hemoglobin levels on outcome in patients irradiated for non-small-cell lung cancer. *Int J Radiat Oncol Biol Phys* 2008;71(4):1134-42. [PUBMED](#) | [CROSSREF](#)

431. Roach MC, Rehman S, DeWees TA, Abraham CD, Bradley JD, Robinson CG. It's never too late: smoking cessation after stereotactic body radiation therapy for non-small cell lung carcinoma improves overall survival. *Pract Radiat Oncol* 2016;6(1):12-8. [PUBMED](#) | [CROSSREF](#)

432. Saito-Nakaya K, Nakaya N, Fujimori M, Akizuki N, Yoshikawa E, Kobayakawa M, et al. Marital status, social support and survival after curative resection in non-small-cell lung cancer. *Cancer Sci* 2006;97(3):206-13. [PUBMED](#) | [CROSSREF](#)

433. Sardari Nia P, Weyler J, Colpaert C, Vermeulen P, Van Marck E, Van Schil P. Prognostic value of smoking status in operated non-small cell lung cancer. *Lung Cancer* 2005;47(3):351-9. [PUBMED](#) | [CROSSREF](#)

434. Sheikh M, Mukeriya A, Shangina O, Brennan P, Zaridze D. Postdiagnosis smoking cessation and reduced risk for lung cancer progression and mortality: a prospective cohort study. *Ann Intern Med* 2021;174(9):1232-9. [PUBMED](#) | [CROSSREF](#)

435. Tao L, Wang R, Gao YT, Yuan JM. Impact of postdiagnosis smoking on long-term survival of cancer patients: the Shanghai cohort study. *Cancer Epidemiol Biomarkers Prev* 2013;22(12):2404-11. [PUBMED](#) | [CROSSREF](#)

436. Videtic GM, Stitt LW, Dar AR, Kocha WI, Tomiak AT, Truong PT, et al. Continued cigarette smoking by patients receiving concurrent chemoradiotherapy for limited-stage small-cell lung cancer is associated with decreased survival. *J Clin Oncol* 2003;21(8):1544-9. [PUBMED](#) | [CROSSREF](#)

437. Warren GW, Kasza KA, Reid ME, Cummings KM, Marshall JR. Smoking at diagnosis and survival in cancer patients. *Int J Cancer* 2013;132(2):401-10. [PUBMED](#) | [CROSSREF](#)

438. Xie D, Allen MS, Marks R, Jiang G, Sun Z, Nichols F, et al. Nomogram prediction of overall survival for patients with non-small-cell lung cancer incorporating pretreatment peripheral blood markers. *Eur J Cardiothorac Surg* 2018;53(6):1214-22. [PUBMED](#) | [CROSSREF](#)

439. Xie D, Marks R, Zhang M, Jiang G, Jatoi A, Garces YI, et al. Nomograms predict overall survival for patients with small-cell lung cancer incorporating pretreatment peripheral blood markers. *J Thorac Oncol* 2015;10(8):1213-20. [PUBMED](#) | [CROSSREF](#)

440. Ashraf H, Tønnesen P, Holst Pedersen J, Dirksen A, Thorsen H, Døssing M. Effect of CT screening on smoking habits at 1-year follow-up in the Danish Lung Cancer Screening Trial (DLCST). *Thorax* 2009;64(5):388-92. [PUBMED](#) | [CROSSREF](#)

441. Brain K, Carter B, Lifford KJ, Burke O, Devaraj A, Baldwin DR, et al. Impact of low-dose CT screening on smoking cessation among high-risk participants in the UK Lung Cancer Screening Trial. *Thorax* 2017;72(10):912-8. [PUBMED](#) | [CROSSREF](#)

442. Pistelli F, Aquilini F, Falaschi F, Puliti D, Ocello C, Lopes Pegna A, et al. Smoking cessation in the ITALUNG lung cancer screening: what does "teachable moment" mean? *Nicotine Tob Res* 2020;22(9):1484-91. [PUBMED](#) | [CROSSREF](#)

443. van der Aalst CM, van den Bergh KA, Willemsen MC, de Koning HJ, van Klaveren RJ. Lung cancer screening and smoking abstinence: 2 year follow-up data from the Dutch-Belgian randomised controlled lung cancer screening trial. *Thorax* 2010;65(7):600-5. [PUBMED](#) | [CROSSREF](#)

444. Buttery SC, Williams P, Mweseli R, Philip KEJ, Sadaka A, Bartlett EJ, et al. Immediate smoking cessation support versus usual care in smokers attending a targeted lung health check: the QuLIT trial. *BMJ Open Respir Res* 2022;9(1):e001030. [PUBMED](#) | [CROSSREF](#)

445. Clark MM, Cox LS, Jett JR, Patten CA, Schroeder DR, Nirelli LM, et al. Effectiveness of smoking cessation self-help materials in a lung cancer screening population. *Lung Cancer* 2004;44(1):13-21. [PUBMED](#) | [CROSSREF](#)

446. Foley KL, Dressler EV, Weaver KE, Sutfin EL, Miller DP Jr, Bellinger C, et al. The optimizing lung screening trial (WF-20817CD): multicenter randomized effectiveness implementation trial to increase tobacco use cessation for individuals undergoing lung screening. *Chest* 2023;164(2):531-43. [PUBMED](#) | [CROSSREF](#)

447. Lucchiarri C, Masiero M, Mazzocco K, Veronesi G, Maisonneuve P, Jemal C, et al. Benefits of e-cigarettes in smoking reduction and in pulmonary health among chronic smokers undergoing a lung cancer screening program at 6 months. *Addict Behav* 2020;103:106222. [PUBMED](#) | [CROSSREF](#)

448. Pastorino U, Ladisa V, Trussardo S, Sabia F, Rolli L, Valsecchi C, et al. Cytisine therapy improved smoking cessation in the randomized screening and multiple intervention on lung epidemics lung cancer screening trial. *J Thorac Oncol* 2022;17(11):1276-86. [PUBMED](#) | [CROSSREF](#)

449. Taylor KL, Hagerman CJ, Luta G, Bellini PG, Stanton C, Abrams DB, et al. Preliminary evaluation of a telephone-based smoking cessation intervention in the lung cancer screening setting: a randomized clinical trial. *Lung Cancer* 2017;108:242-6. [PUBMED](#) | [CROSSREF](#)

450. Tremblay A, Taghizadeh N, Huang J, Kasowski D, MacEachern P, Burrowes P, et al. A randomized controlled study of integrated smoking cessation in a lung cancer screening program. *J Thorac Oncol* 2019;14(9):1528-37. [PUBMED](#) | [CROSSREF](#)

451. van der Aalst CM, de Koning HJ, van den Bergh KA, Willemsen MC, van Klaveren RJ. The effectiveness of a computer-tailored smoking cessation intervention for participants in lung cancer screening: a randomised controlled trial. *Lung Cancer* 2012;76(2):204-10. [PUBMED](#) | [CROSSREF](#)

452. Williams PJ, Philip KEJ, Buttery SC, Perkins A, Chan L, Bartlett EC, et al. Immediate smoking cessation support during lung cancer screening: long-term outcomes from two randomised controlled trials. *Thorax* 2024;79(3):269-73. [PUBMED](#) | [CROSSREF](#)

453. Williams PJ, Philip KEJ, Gill NK, Flannery D, Buttery S, Bartlett EC, et al. Immediate, remote smoking cessation intervention in participants undergoing a targeted lung health check: quit smoking lung health intervention trial, a randomized controlled trial. *Chest* 2023;163(2):455-63. [PUBMED](#) | [CROSSREF](#)

454. Vikram A, Muller C, Hulme L, Ward K. Patients' views on medical events in lung cancer screening as teachable moments for smoking behaviour change: a systematic review and metasynthesis. *J Smok Cessat* 2023;2023:6647364. [PUBMED](#) | [CROSSREF](#)

455. Lindström D, Sadr Azodi O, Wladis A, Tønnesen H, Linder S, Nåsell H, et al. Effects of a perioperative smoking cessation intervention on postoperative complications: a randomized trial. *Ann Surg* 2008;248(5):739-45. [PUBMED](#) | [CROSSREF](#)

456. Møller AM, Villebro N, Pedersen T, Tønnesen H. Effect of preoperative smoking intervention on postoperative complications: a randomised clinical trial. *Lancet* 2002;359(9301):114-7. [PUBMED](#) | [CROSSREF](#)

457. Ratner PA, Johnson JL, Richardson CG, Bottorff JL, Moffat B, Mackay M, et al. Efficacy of a smoking-cessation intervention for elective-surgical patients. *Res Nurs Health* 2004;27(3):148-61. [PUBMED](#) | [CROSSREF](#)

458. Thomsen T, Tønnesen H, Okholm M, Kroman N, Maibom A, Sauerberg ML, et al. Brief smoking cessation intervention in relation to breast cancer surgery: a randomized controlled trial. *Nicotine Tob Res* 2010;12(11):1118-24. [PUBMED](#) | [CROSSREF](#)

459. Villebro NM, Pedersen T, Møller AM, Tønnesen H. Long-term effects of a preoperative smoking cessation programme. *Clin Respir J* 2008;2(3):175-82. [PUBMED](#) | [CROSSREF](#)

460. Wong J, Abrishami A, Riazi S, Siddiqui N, You-Ten E, Korman J, et al. A perioperative smoking cessation intervention with varenicline, counseling, and fax referral to a telephone quitline versus a brief intervention: a randomized controlled trial. *Anesth Analg* 2017;125(2):571-9. [PUBMED](#) | [CROSSREF](#)

461. Australian and New Zealand College of Anesthetists and the Faculty of Pain Medicine. *PG07 Guideline on Pre-Anaesthesia Consultation and Patient Preparation*. Melbourne, VIC, Australia: ANZCA; 2024.

462. Brunelli A, Kim AW, Berger KI, Addrizzo-Harris DJ. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. *Chest* 2013;143(5 Suppl):e166S-e190S. [PUBMED](#) | [CROSSREF](#)

463. Lauridsen SV, Thomsen T, Jensen JB, Kallehave T, Schmidt Behrend M, Steffensen K, et al. Effect of a smoking and alcohol cessation intervention initiated shortly before radical cystectomy—the STOP-OP study: a randomised clinical trial. *Eur Urol Focus* 2022;8(6):1650-8. [PUBMED](#) | [CROSSREF](#)

464. Lee SM, Landry J, Jones PM, Buhrmann O, Morley-Forster P. The effectiveness of a perioperative smoking cessation program: a randomized clinical trial. *Anesth Analg* 2013;117(3):605-13. [PUBMED](#) | [CROSSREF](#)

465. Lee SM, Landry J, Jones PM, Buhrmann O, Morley-Forster P. Long-term quit rates after a perioperative smoking cessation randomized controlled trial. *Anesth Analg* 2015;120(3):582-7. [PUBMED](#) | [CROSSREF](#)

466. Sørensen LT, Hemmingsen U, Jørgensen T. Strategies of smoking cessation intervention before hernia surgery—effect on perioperative smoking behavior. *Hernia* 2007;11(4):327-33. [PUBMED](#) | [CROSSREF](#)

467. Sørensen LT, Jørgensen T. Short-term pre-operative smoking cessation intervention does not affect postoperative complications in colorectal surgery: a randomized clinical trial. *Colorectal Dis* 2003;5(4):347-52. [PUBMED](#) | [CROSSREF](#)

468. Eisenberg MJ, Windle SB, Roy N, Old W, Grondin FR, Bata I, et al. Varenicline for smoking cessation in hospitalized patients with acute coronary syndrome. *Circulation* 2016;133(1):21-30. [PUBMED](#) | [CROSSREF](#)

469. Rojewski AM, Palmer AM, Baker NL, Toll BA. Smoking cessation pharmacotherapy efficacy in comorbid medical populations: secondary analysis of the evaluating adverse events in a global smoking cessation study (EAGLES) randomized clinical trial. *Nicotine Tob Res* 2024;26(1):31-8. [PUBMED](#) | [CROSSREF](#)

470. Ayers CR, Heffner JL, Russ C, Lawrence D, McRae T, Evins AE, et al. Efficacy and safety of pharmacotherapies for smoking cessation in anxiety disorders: Subgroup analysis of the randomized, active- and placebo-controlled EAGLES trial. *Depress Anxiety* 2020;37(3):247-60. [PUBMED](#) | [CROSSREF](#)

471. Cinciripini PM, Kyriakakis G, Green C, Lawrence D, Anthenelli RM, Minnix J, et al. The effects of varenicline, bupropion, nicotine patch, and placebo on smoking cessation among smokers with major depression: a randomized clinical trial. *Depress Anxiety* 2022;39(5):429-40. [PUBMED](#) | [CROSSREF](#)

472. Fatemi SH, Yousefi MK, Kneeland RE, Liesch SB, Folsom TD, Thuras PD. Antismoking and potential antipsychotic effects of varenicline in subjects with schizophrenia or schizoaffective disorder: a double-blind placebo and bupropion-controlled study. *Schizophr Res* 2013;146(1-3):376-8. [PUBMED](#) | [CROSSREF](#)

473. Smith RC, Amiaz R, Si TM, Maayan L, Jin H, Boules S, et al. Varenicline effects on smoking, cognition, and psychiatric symptoms in schizophrenia: a double-blind randomized trial. *PLoS One* 2016;11(1):e0143490. [PUBMED](#) | [CROSSREF](#)

474. Wu BS, Weinberger AH, Mancuso E, Wing VC, Haji-Khamneh B, Levinson AJ, et al. A preliminary feasibility study of varenicline for smoking cessation in bipolar disorder. *J Dual Diagn* 2012;8(2):131-2. [PUBMED](#) | [CROSSREF](#)

475. Leone FT, Zhang Y, Evers-Casey S, Evins AE, Eakin MN, Fathi J, et al. Initiating pharmacologic treatment in tobacco-dependent adults. An official American Thoracic Society Clinical Practice Guideline. *Am J Respir Crit Care Med* 2020;202(2):e5-31. [PUBMED](#) | [CROSSREF](#)

476. Department of Health. *Stop Smoking (NICE National Clinical Guideline No. 28)*. Dublin, Ireland: The Department of Health; 2022.

477. Caponnetto P, Campagna D, Ahluwalia JS, Russell C, Maglia M, Riela PM, et al. Varenicline and counseling for vaping cessation: a double-blind, randomized, parallel-group, placebo-controlled trial. *BMC Med* 2023;21(1):220. [PUBMED](#) | [CROSSREF](#)

478. Palmer AM, Carpenter MJ, Rojewski AM, Haire K, Baker NL, Toll BA. Nicotine replacement therapy for vaping cessation among mono and dual users: a mixed methods preliminary study. *Addict Behav* 2023;139:107579. [PUBMED](#) | [CROSSREF](#)

479. Sahr M, Kelsh S, Blower N, Sohn M. Pilot study of electronic nicotine delivery systems (ENDS) cessation methods. *Pharmacy (Basel)* 2021;9(1):21. [PUBMED](#) | [CROSSREF](#)

480. Graham AL, Amato MS, Cha S, Jacobs MA, Bottcher MM, Papandonatos GD. Effectiveness of a vaping cessation text message program among young adult e-cigarette users: a randomized clinical trial. *JAMA Intern Med* 2021;181(7):923-30. [PUBMED](#) | [CROSSREF](#)

481. Noda Y, So R, Sonoda M, Tabuchi T, Nomura A. The usefulness of a smartphone app-based smoking cessation program for conventional cigarette users, heated tobacco product users, and dual users: retrospective study. *J Med Internet Res* 2023;25:e42776. [PUBMED](#) | [CROSSREF](#)

482. Nomura A, Ikeda T, Fujimoto T, Morita Y, Taniguchi C, Ishizawa T, et al. Outcomes of a telemedicine smoking cessation programme for heated tobacco product users in Japan: a retrospective cohort study. *BMJ Open* 2022;12(12):e063489. [PUBMED](#) | [CROSSREF](#)

483. Bricker JB, Watson NL, Mull KE, Sullivan BM, Heffner JL. Efficacy of smartphone applications for smoking cessation: a randomized clinical trial. *JAMA Intern Med* 2020;180(11):1472-80. [PUBMED](#) | [CROSSREF](#)

484. Martinez U, Simmons VN, Sutton SK, Drobis DJ, Meltzer LR, Brandon KO, et al. Targeted smoking cessation for dual users of combustible and electronic cigarettes: a randomised controlled trial. *Lancet Public Health* 2021;6(7):e500-9. [PUBMED](#) | [CROSSREF](#)

485. Vickerman KA, Carpenter KM, Miles LN, Hsu JM, Watt KA, Brandon TH, et al. A randomized pilot of a tailored smoking cessation quitline intervention for individuals who smoke and vape. *Nicotine Tob Res* 2022;24(11):1811-20. [PUBMED](#) | [CROSSREF](#)

486. Santiago-Torres M, Mull KE, Sullivan BM, Rigotti NA, Bricker JB. Acceptance and commitment therapy-based smartphone applications for cessation of tobacco use among adults with high nicotine dependence: results from the iCanQuit randomized trial. *Subst Use Misuse* 2023;58(3):354-64. [PUBMED](#) | [CROSSREF](#)

487. Hajek P, Peerbux S, Phillips-Waller A, Smith C, Pittaccio K, Przulj D. Are 'dual users' who smoke and use e-cigarettes interested in using varenicline to stop smoking altogether, and can they benefit from it? A cohort study of UK vapers. *BMJ Open* 2019;9(3):e026642. [PUBMED](#) | [CROSSREF](#)

488. Heiden BT, Baker TB, Smock N, Pham G, Chen J, Bierut LJ, et al. Assessment of formal tobacco treatment and smoking cessation in dual users of cigarettes and e-cigarettes. *Thorax* 2023;78(3):267-73. [PUBMED](#) | [CROSSREF](#)

489. Kim JY, Seo SW, Choi JE, Lee S. Awareness of electronic cigarettes among the general population and medical experts. *J Korean Soc Res Nicotine Tob* 2015;6(2):102-17. [CROSSREF](#)