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Spine age estimation using deep learning
in lateral spine radiographs and DXA VFA
to predict incident fracture and mortality

Check for updates

SangWouk Cho1,2, Namki Hong1,3,4,5 , Kyoung Min Kim6, Young Han Lee7, Chang Oh Kim8,
Hyeon Chang Kim1,9, Yumie Rhee3, Brian H. Chen4,5, William D. Leslie10 & Steven R. Cummings4,5

Spine age estimated from lateral spine radiographs and DXA VFAs could be associated with fracture
and mortality risk. In the VERTE-X cohort (n = 10,341, derivation set) and KURE cohort (n = 3517;
external test set), spine age discriminated prevalent vertebral fractures and osteoporosis better than
chronological age. Predicted age difference was associated with overall (adjusted HR [aHR] 1.22 per
1 SD increment, p < 0.001), vertebral, non-vertebral incident fractures, and mortality (aHR 1.31,
p = 0.001) during a median 6.6 years follow-up in KURE, independent of chronological age and
covariates. Spine age to estimate FRAX hip fracture probabilities, instead of chronological age,
improved the discriminatory performance for incident hip fracture (AUROC 0.83 vs. 0.78, p = 0.027).
Shorter height, lower femoral neck BMD, diabetes, vertebral fractures, and surgical prosthesis were
associated with higher predicted age difference, explaining 40% of variance. Spine age estimated
from lateral spine radiographs and DXA VFA enhanced fracture risk assessment and mortality
prediction over chronological age.

Fractures are a major health burden related to aging, posing sig-
nificant morbidity and mortality globally1. According to the Global
Burden of Disease study, the absolute incidence, years lived with
disability, and health care costs for fracture increased substantially
between 1990 and 2019, with the highest incidence in the oldest old
age group1. Although several fracture risk assessment tools are
available, there is room to improve the performance of individualized
assessment to facilitate the optimal use of pharmacologic interven-
tions for fracture prevention2.

Biological age represents the state of the body or organ system of an
individual estimated as an integrated value of biophysiological mea-
sures in contrast to the chronological age as the time since the indivi-
dual’s birth3. Biological age, estimated from various imaging modalities
including brain magnetic resonance images (MRI)4, eye retinal
photographs5, and chest radiographs6, outperformed chronological age
in predicting health outcomes, including mortality. However, attempts

to estimate biological age in the musculoskeletal system using imaging
data are limited.

In this context, we propose a novel concept of ‘spine age’, an imaging-
derived surrogatemarker that reflects the biological aging of the spine based
on structural features observed in lateral spine radiographs. Unlike chron-
ological age, a fundamental input inmost existing riskprediction tools, spine
age may more precisely capture individual variation in musculoskeletal
aging. Incorporating spine age in place of, or in addition to, chronological
age in widely used prediction models could enhance fracture risk stratifi-
cation, enablingmore accurate identification of individuals who are likely to
benefit from intervention.

In this study, we developed a convolutional neural network model to
estimate spine age from lateral spine radiographs and dual-energy X-ray
absorptiometry (DXA) vertebral fracture assessment (VFA) images.
Discriminatory performance for prevalent vertebral fracture and osteo-
porosis was compared for biological spine age versus chronological age.
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The prognostic value of predicted spine age difference for incident fracture
and mortality was assessed with adjustment for chronological age, sex, and
covariates.

Results
Characteristics of study participants
Median follow-up duration was 5.4 years (interquartile range [IQR] 2.6–7.7
years) in thederivation test set (VERTE-X) and6.6 years (IQR5.5–7.5 years)
in the external test set (KURE). Incidence rates of overall fracture events
during follow-up were 20.5/1000 person-years and 21.0/1000 person-years
in the derivation test set (251/2063, 12.2%) and external test set (473/3508,
13.5%), respectively. Participants with versus without incident fracture
during follow-up had older chronological and predicted spine age, with a
higher prevalence of women, previous history of fracture, morphometric
vertebral fracture, surgical prosthesis in the spine, and lower DXA areal
BMD (Table 1).

Discriminatory ability of chronological age and predicted
spine age
ThePearson correlation coefficient between chronological age and spine age
was 0.88 and 0.50 in the derivation test set and external test set (both
p < 0.001), respectively (Supplementary Fig. 3). Average predicted age dif-
ference (spine age minus chronological age) was −0.8 years (standard
deviation 4.9) in the derivation test set and−0.5 years (standard deviation
8.0) in the external test set. Spine age showed better discriminatory per-
formance for the presence ofmorphologic vertebral fracture or osteoporosis
in both the derivation test set (Fig. 1; AUROC: vertebral fracture, 0.77 vs.
0.72; osteoporosis, 0.66 vs. 0.52) and external test set (AUROC: vertebral
fracture, 0.66 vs. 0.60; osteoporosis, 0.65 vs. 0.57, all p < 0.001).

Association of predicted age differences with incident fracture
In Fig. 2, compared to the referent group of individuals of younger chron-
ological age (belowmedian; 65 years in the derivation test set and 72 years in
the external test set) without accelerated spine age, younger chronological
age with accelerated spine age was associated with a 2.21- and 1.60-fold
elevated fracture risk in the derivation and external test sets, respectively.

Participants of older chronological age (above themedian) with accelerated
spine age had the highest fracture risk in both cohorts (unadjusted hazard
ratio [HR] 6.67 and 2.53 in derivation and external test sets, respectively). In
the derivation and external test sets, each standard deviation increment of
predicted age difference was associated with greater risk of overall (adjusted
HR [aHR] 1.71 and 1.22, respectively), vertebral (aHR 1.55 and 1.34), and
non-vertebral fractures (aHR1.89 and1.15, allp < 0.05), independent of age,
sex, prevalent morphologic vertebral fracture, clinical risk factors, and
osteoporosis (Table 2).

Reclassification of FRAX risk categories by predicted spine age
When FRAX probabilities for major osteoporotic fracture and hip
fracture were calculated using predicted spine age in the place of
chronological age in the derivation test set, up-classification from low to
high risk group was observed in 53 individuals (53/2063, 2.5%), whereas
144 were down-classified from high to low risk (144/2063, 6.9%; Sup-
plementary Fig. 4). Individuals who remained at high risk had the
highest fracture risk (28.9%), followed by the low to high up-classified
group (24.5%). High risk by FRAX probabilities based on estimated
spine age versus FRAX probabilities from chronological age demon-
strated higher positive predictive value (28.3% vs. 25.2%, respectively)
but lower sensitivity (40.6% vs. 45.4%), yieldingmodest improvement in
odds ratios (4.1 vs. 3.6) for incident fracture (Supplementary Table 2).
Using image-predicted spine age instead of chronological age improved
the discriminatory performance of FRAX probabilities to predict hip
fracture (FRAX MOF probabilities: AUROC 0.81 vs. 0.77, p = 0.007;
FRAX hip fracture probabilities: 0.83 vs. 0.78, p = 0.027; Supplementary
Table 3) and FRAX hip fracture probabilities to predict overall fractures
(AUROC 0.74 vs. 0.72, p = 0.024), although the difference in dis-
criminatory performance for overall incident fracture between FRAX
MOF probabilities based on spine age and chronological age to did not
reach statistical significance (AUROC 0.74 vs. 0.73, p = 0.097).

Factors associated with predicted age difference
In Supplementary Fig. 5, examples of GRAD-CAM (visualizing the
pixels with the largest influence on the CNN model’s spine age

Table 1 | Clinical characteristics of study participants

Lateral spine radiograph cohort (VERTE-X, hospital-
based) age 40 years or older; derivation test
set (n = 2063)

DXAVFA cohort (KURE, community-based) age 65 years
or older; external test set (n = 3508)

Incident fracture during follow-up Incident fracture during follow-up

No (n = 1812) Yes (n = 251) p value No (n = 3035) Yes (n = 473) p value

Age, years 63.0 ± 10.2 68.5 ± 8.4 <0.001 71.7 ± 4.6 73.1 ± 4.8 <0.001

Predicted spine age, years 62.1 ± 8.4 67.7 ± 6.3 <0.001 70.8 ± 9.3 74.8 ± 8.6 <0.001

Women, n (%) 1127 (62.2) 200 (79.7) <0.001 1969 (64.9) 380 (80.3) <0.001

Body mass index, kg/m2 24.2 ± 3.3 23.8 ± 3.4 0.075 24.2 ± 3.0 24.1 ± 3.0 0.346

Previous clinical fracture, n (%) 88 (4.9) 55 (21.9) <0.001 439 (20.7) 90 (26.9) 0.011

Morphologic vertebral fracture, n (%)b 265 (14.6) 90 (35.9) <0.001 337 (11.1) 97 (20.5) <0.001

Surgical prosthesis in spine, n (%) 220 (12.1) 44 (17.5) 0.017 98 (3.2) 25 (5.3) 0.024

Chronic glucocorticoid use, n (%) 74 (4.1) 26 (10.4) <0.001 8 (0.3) 1 (0.2) 0.835

Rheumatoid arthritis, n (%) 47 (2.6) 17 (6.8) <0.001 29 (1.0) 6 (1.3) 0.524

DXA aBMD T-scorea

Lumbar spine −1.2 ± 1.9 −2.3 ± 1.7 <0.001 −1.6 ± 1.6 −2.4 ± 1.4 <0.001

Femoral neck −1.6 ± 1.2 −2.3 ± 1.1 <0.001 −1.9 ± 0.9 −2.4 ± 0.9 <0.001

Total hip −1.1 ± 1.2 −1.9 ± 1.1 <0.001 −1.3 ± 1.0 −1.8 ± 0.9 <0.001

Osteoporosis, n (%)c 452 (35.0) 97 (62.2) <0.001 1272 (41.9) 306 (64.7) <0.001

DXA dual-energy X-ray absorptiometry, aBMD areal bone mineral density, VFA vertebral fracture assessment, VERTE-X vertebral X-ray cohort, KURE Korean urban rural elderly cohort.
aAvailable in 1448/2063 in VERTE-X dataset.
bMorphologic vertebral fracture was defined according to modified algorithm-based qualitative (mABQ) method.
cOsteoporosis was defined as DXA areal BMD T-score −2.5 or below at lumbar, femoral neck, or total hip using NHANES III White young female reference.
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prediction) for spine radiographs from individuals with and without
accelerated spine age are presented. Images with accelerated spine age
showed the presence of morphologic vertebral fracture (Supplementary
Fig. 5A), vertebroplasty or surgical prosthesis (Supplementary Fig. 5B),
and aortic calcification with various degrees of degenerative changes

(Supplementary Fig. 5C).Male sex (+0.66 year vs. women), lower height
(+0.31 year per 5 cm decrement), presence of diabetes mellitus (+0.51
year), prevalent morphometric vertebral fracture (+1.64 year), lower
femoral neck BMD (+0.64 year per 1 standard deviation decrement),
and presence of surgical prosthesis (+1.15 year) were associated with

Fig. 1 | Discriminatory ability of chronological age and predicted spine age for
prevalent vertebral fracture and osteoporosis. The area under the receiver
operating characteristic curve (AUROC) was compared for chronological age and

predicted spine age in discriminating vertebral fracture (A, C) and osteoporosis
(B, D) within the derivation and external test sets. Predicted spine age consistently
showed higher discriminatory performance than chronological age.

Fig. 2 | Kaplan–Meier cumulative failure curve for overall incident clinical
fracture.Kaplan–Meier cumulative failure curve for overall incident clinical fracture
in the A spine radiograph cohort (derivation test set) and B DXA VFA cohort
(external test set) from combinations of chronological age (< or ≥ median) and

predicted spine age (accelerated spine age versus non-accelerated age). Accelerated
spine age was defined using the highest tertile threshold of predicted age difference
(predicted spine age minus chronological age ≥+1) in the derivation test set. HR
unadjusted hazard ratio.
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higher predicted age difference in a multivariable linear regression
model, with about 40% of variance in predicted age difference explained
by the model (adjusted R2 0.40; Supplementary Table 4).

Spine age and mortality
In the external test set of community-dwelling older adults, individuals with
accelerated spine age had elevated risk of mortality compared to those
without (unadjusted HR 1.36, p = 0.036; Supplementary Fig. 6). Higher
predicted age difference was associated with greater risk of mortality,
independent of chronological age, sex, prevalent morphologic vertebral,
fracture, and clinical biomarkers related to mortality including serum
albumin, hemoglobin, and creatinine (Table 3; adjusted HR 1.31 per
1 standard deviation increment in predicted age difference, 95% CI
1.12–1.53, p = 0.001).

Discussion
In this study, spine age estimated from lateral spine radiographs and DXA
VFA images using a convolutional neural network outperformed chron-
ological age fordiscriminatingpresence ofmorphologic vertebral fracture or
osteoporosis in older adults. About 40% of the variance in predicted age
difference, calculated as spine ageminus chronological age,was explainedby
chronological age, sex, height, femoral neck BMD, presence of diabetes
mellitus,morphologic vertebral fracture, and surgical prosthesis in the spine
images. Higher predicted age difference was associated with greater risk of

fracture and mortality independent of prevalent vertebral fracture, osteo-
porosis, and other covariates. Utilizing predicted spine age instead of
chronological age to calculate FRAX probabilities yielded modest
improvements in the discriminatory performance for incident fracture
events.

Several studies have shown the potential of artificial intelligence and
machine learning techniques to enhance fracture risk assessment, mostly
by improving detection of prevalent vertebral fracture or osteoporosis in
plain radiographs or computed tomography images7–9. In a study of
longitudinal DXA whole body images to predict mortality, features
derived from the raw whole body DXA images using deep learning
predicted all-cause mortality with and without clinical risk factors10.
Recurrent neural network models using sequential whole-body DXA
scans outperformed the comparable model using only one observation.
This study indicated that deep learning models could be trained to
capture information on what constitutes healthy aging from simple two-
dimensionalmusculoskeletal images, beyond the detection of known risk
factors such as prevalent fracture or osteoporosis. In line with this notion,
we confirmed the feasibility of estimating biological spine age from
simple imaging sources such as lateral spine radiographs orDXAVFAby
training a deep learning model. Predicted age difference was associated
not only with incident fracture outcomes but also with mortality, indi-
cating the potential utility of estimated spine age as an image-derived
biomarker for aging-related outcomes beyond fracture risk assessment.

Table 2 | Association of predicted age difference with incident fracture outcome in the derivation test set (spine radiograph
cohort, n = 2063) and external test set (DXA VFA cohort, n = 3508)

Model 1 (age- and sex-
adjusted)

Model 2 (model 1 + prevalent vertebral
fracture and clinical risk factorsa)

Model 3 (model 2 +
osteoporosisc)

Predictor: predicted age difference, per 1 SD increment HR (95% CI) p value HR (95% CI) p value HR (95% CI)b p value

Outcome: incident clinical fracture

Derivation test set (lateral spine radiograph, VERTE-X cohort)

Overall 1.74 (1.46–2.07) <0.001 1.54 (1.29–1.84) <0.001 1.71 (1.35–2.18) <0.001

Vertebral 1.63 (1.31–2.02) <0.001 1.49 (1.19–1.86) <0.001 1.55 (1.15–2.08) 0.004

Nonvertebral 1.92 (1.49–2.47) <0.001 1.61 (1.24–2.09) <0.001 1.89 (1.31–2.71) 0.001

External test set (DXA VFA, KURE cohort)

Overall 1.28 (1.16–1.42) <0.001 1.26 (1.14–1.40) <0.001 1.22 (1.10–1.35) <0.001

Vertebral 1.41 (1.21–1.61) <0.001 1.37 (1.19–1.59) <0.001 1.34 (1.16–1.54) <0.001

Nonvertebral 1.20 (1.05–1.38) 0.006 1.19 (1.04–1.36) 0.011 1.15 (1.01–1.32) 0.042
aHeight, previous history of clinical fracture or morphometric vertebral fracture in spine images, surgical prosthesis in spine images, rheumatoid arthritis, and chronic glucocorticoid use.
bIn derivation test set, BMD data were available in a subset (n = 1441).
cDXA areal BMD T-score −2.5 or lower at lumbar spine, femoral neck, or total hip.

Table 3 | Association of predicted spine age difference using DXA VFA with all-cause mortality in community-dwelling older
adults (external test set)

Model 1 (age- and sex-adjusted) Model 2 (model 1+ prevalent
vertebral fracture and clinical
biomarkers)

Variables Adjusted HR (95% CI) p value Adjusted HR (95% CI) p value

Predicted age difference (spine age minus chronological age), per 1 SD increment 1.32 (1.13–1.54) <0.001 1.31 (1.12–1.53) 0.001

Chronological age, per 1 SD increment 1.93 (1.68–2.21) <0.001 1.74 (1.51–2.01) <0.001

Women (vs. men) 0.28 (0.21–0.38) <0.001 0.25 (0.17–0.35) <0.001

Prevalent vertebral fracture 1.49 (1.02–2.19) 0.042

Serum albumin, per 1 SD decrement 1.18 (1.02–1.36) 0.024

Hemoglobin, per 1 SD decrement 1.21 (1.04–1.41) 0.012

Serum creatinine, per 1 SD increment 1.12 (1.07–1.18) <0.001

SD standard deviation, CI confidence interval.
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Factors contributing to the difference between estimated spine age and
chronological age were identified from a multivariable linear regression
model.Weobserved an association ofmale sexwith accelerated spine aging,
along with known risk factors such as lower height11, lower femoral neck
BMD12, presence of diabetes mellitus13, morphologic vertebral fracture14,
and surgical prosthesis15 in spine images. A study of opposite-sex twins
reported that men were biologically older than women and the association
of sex with accelerated aging was stronger in older twins using epigenetic
clocks, which supports the sex disparity observed in spine age16. Despite the
inclusion of well-established risk factors for fracture, the model only
explained 40% of the variance in predicted age difference, indicating that
some information in the spine images was not considered in the explain-
ability model but contributed substantially to spine age estimation. As
highlighted in GRAD-CAM images, the presence of aortic calcification
could be associated with accelerated spine aging17. Degenerative change in
the spine could also contribute to the estimated spine age18. The association
of predicted spine age difference with incident fracture andmortality might
be partly mediated by central obesity and low lean mass, which affect soft
tissue in spine radiographs, though this needs to be explored in future
studies. Taken together, these findings portend that biological age estimated
from lateral spine radiographs andDXAVFA images have potential to serve
as an integrated biomarker of aging and age-related health outcomes.

Although spine age showed a meaningful association with both ver-
tebral fracture and osteoporosis, the discriminatory performance for pre-
valent osteoporosis wasmodest. This likely reflects themultifactorial nature
of spine aging. While osteoporosis is a major contributor to vertebral fra-
gility, spine age captures a wider array of structural changes, including
vertebral deformities and age-related degeneration in bone and soft tissues,
that are not fully explained by low BMD. Thus, the limited discriminative
power for osteoporosis may underscore the broader biological construct
that spine age represents beyond BMD,which in turn offers the potential to
enhance fracture risk assessment when used in combination with conven-
tional metrics.

Estimation of biological age from clinical data sources, including
images, may provide new opportunities to improve clinical practice. Our
approach demonstrates a meaningful improvement in discriminatory
performance for incident fracture, especially at the hip, when spine age is
incorporated into the FRAXprobability estimation instead of chronological
age. The discriminatory performance of FRAX probabilities without BMD
for incident hip fracture has been reported AUROCs ranging from 0.74 to
0.7919–21. In our study, FRAX hip fracture probability without BMD alone
achieved an AUROC of 0.78, which increased to 0.83 when spine age was
incorporated. This represents a notable improvement in discriminatory
ability, suggesting that spine age derived from images captures additional
aging features relevant to fracture risk. This finding provides a proof-of-
concept example for enhanced fracture risk assessment from inductive,
bottom-up deep learning, such as estimated spine age, as a complement to
well-established statistical modeling based on hypothesis-driven, top-down
domain-specific knowledge8.

This study has several limitations. Derivation and test datasets are
limited to Korean ethnicities; whether this finding would be applicable to
individuals of other ethnicities needs to be examined further. Individuals
with ages younger than 40 years were not included in the training dataset.
FRAX probabilities were calculated without BMD because BMD data were
limited to a subset of study participants in the derivation set. Antero-
posterior view spine radiographs were not utilized to calculate spine age;
whether utilizing both lateral and antero-posterior view spine images could
improve the prediction of spine age merits further investigation. Frailty,
musclemass, andphysical performancemeasurementswere not available in
this study; whether spine age is associated with frailty needs to be studied.
Although estimated spine age from VFA images using a model trained in
lateral spine radiographs showed similar predictive performance for inci-
dent fracture outcome, the correlation of spine age with chronological age
was weaker in the VFA cohort. This is partly due to a domain shift or
reflecting the true pattern in older individuals. VFA images from different

manufacturers, such as GE, have different characteristics fromVFA images
fromHologic and lateral spine radiographs, requiring additional validation.
Clinical application of spine age requires further verification. Future studies
incorporating multi-omics data and epigenetic clocks may provide deeper
insights into the biological underpinnings of spine age.

To summarize, spine age estimated from lateral spine radiographs and
DXA VFA predicted incident fracture and mortality in adults independent
of age, sex, prevalent vertebral fracture, osteoporosis, and other covariates.
Spine age outperformed chronological age in discriminating prevalent
vertebral fractures and osteoporosis. The discriminatory performance of
FRAXprobabilities for incident fracture outcome improvedmodestly when
spine age was used as an input variable instead of chronological age.

Methods
Study participants
Derivation cohort: Demographic and clinical data of individuals who
underwent lateral spine radiographs at Severance Hospital, Seoul, Korea,
between January 2007 and December 2018 were collected (Supplementary
Fig. 1; the VERTEbral fracture and osteoporosis detection in spine X-ray
study, VERTE-X)7,22. The requirement for written permission for the
medical record review was waived by the Institutional Review Board (IRB
no. 4-2021-0937).Cohort entry date (index date)was thedate of initial spine
radiograph acquisition. We excluded individuals with an age younger than
40 years, a history of bone metastasis or hematologic malignancy within 1
year prior to index date, severe scoliosis, kyphosis, poor image quality, non-
Korean ethnicity, and those without follow-up radiographs at least 28 days
after the index date. A total of 10,341 participants remained in the final
cohort. The dataset was randomly split into train (60%), validation (20%),
and a hold-out test set (20%).

External test cohort: Korean Urban Rural Elderly (KURE) cohort is a
prospective cohort study of aging and health outcomes in community-
dwelling older adults23. Details on the cohort have previously been
published23,24. A total of 3517 individuals aged 65 years or older participated
in the study at baseline (year 2012–2015) after obtainingwritten permission
(IRB no 4-2012-0172). After excluding individuals without DXA VFA
images (n = 9), a total of 3,508 participants remained in the external test
cohort.

This study was conducted in accordance with the ethical standards of
the Declaration of Helsinki.

Image specifications and preprocessing
Lumbar spine radiographs and DXA VFA images were obtained using
standardized acquisition protocols within a single institution (Supplemen-
tary Table 1). To standardize image inputs, histogram equalization and
Min-Max normalization were applied to adjust intensity distributions.
Approximately 5% of non-informative margins were cropped, and images
were resized to 1024 × 512 pixels, maintaining aspect ratios. Images smaller
than the target size were zero-padded and centrally aligned. VFA images,
focusedon the thoracolumbar spinewith consistent framing, didnot require
cropping.

Spine age estimation
Model architecture for the convolutional neural network (CNN) to estimate
spine age is presented in Supplementary Fig. 2. Using the EfficientNet-B4
architecture, we applied the mean-variance loss function proposed by Pan
and colleagues25. This approach simultaneously penalizes the difference
between the mean of the predicted spine age distribution and the chron-
ological age (mean loss) and reduces the variance of the estimated dis-
tribution to maintain a concentrated prediction (variance loss). The model
was trained using the Adam optimizer with an initial learning rate of 1e−4.
Thebatch sizewas set to 45, and the training ran forup to100 epochson four
NVIDIA RTX 3090 GPUs. Although lateral spine radiographs and VFA
images differ in their resolution, they share similar positioning and mor-
phological features. Thus, we were able to extract features and predict spine
age using a single CNN model for both modalities. To reduce modality-
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specific differences in the external test set, an age-level bias correction was
applied to the external VFA test set based on Beheshti’s method26,27. This
approach involvesfitting the slope (α) and intercept (β) of a linear regression
model between the predicted age difference (Predicted age minus chron-
ological age) and chronological age in the training set through a 10-fold
cross-validation. The resulting regression parameters are used to adjust the
predicted values in the external test set. To enhancemodel explainability, we
visualized regions of high importance in spine age prediction using
gradient-weighted class activation mapping (Grad-CAM), which high-
lighted specific regions with strong weights from the CNN kernel28.

Outcomes
In thederivation set (lateral spine radiographs,VERTE-X), incident fracture
was defined as any new-onset morphologic vertebral fracture confirmed on
follow-up lateral spine radiographs or clinical non-vertebral fractures at the
hip, distal forearm, upper arm, pelvis, and lower leg ascertained during
follow-up from the Severance Hospital electronic medical records system
until the last observation date (December 31, 2023). In the external test
cohort (DXA VFA, KURE) of community-dwelling older adults, outcomes
including clinical fracture (any clinical vertebra, hip, distal forearm, or
proximal humerus fracture) and mortality were collected by interviewer-
assisted questionnaire performed at the time of 4-year interval follow-up
visit to the center or follow-up phone calls until December 31st, 2021, with
subsequent outcome ascertainment using individual-level diagnosis codes
and/or procedural codes obtained by linkage to the Health Insurance
Review and Assessment (HIRA; research data [M20190729878]) which
covers 99% of residents in South Korea29.

Covariates
Information on chronological age, sex, height, weight, previous history of
clinical fracture, chronic glucocorticoid use, and presence of rheumatoid
arthritis at the time of cohort entry (index date) were collected by reviewing
electronic health recordof SeveranceHospital in thederivation set (VERTE-
X). In the external test set (KURE), information on covariates was collected
at the time of cohort entry using interviewer-assisted questionnaires and
anthropometry measurements. FRAX probability (Korean tool) for major
osteoporotic fracture andhip fracturewithout BMDwas calculated using an
online calculator (https://frax.shef.ac.uk/frax/tool.aspx?country=25; web
version 1.4.7). Unavailable covariates to calculate FRAXwere entered as ‘no’
responses. High risk FRAX probabilities were defined as FRAX major
osteoporotic fracture probability ≥20% or FRAX hip fracture probability
≥3%30.DXAareal bonemineral density (BMD)measurement (DiscoveryW
and A, Hologic, USA) was available in 70% (1448/2063) of the derivation
test set (VERTE-X) and 100% (3508/3508) of the external test set (KURE).
Presence of osteoporosis was defined as DXA areal BMD T-score −2.5 or
below (reference population: NHANES III young White female) from the
lumbar spine, femoral neck, or total hip31.

Statistical analysis
Differences in clinical characteristics of study participants with or without
incident fracture outcomes were compared using two-sample independent
t-tests for continuous variables (presented as mean ± standard deviation)
and chi-square test for categorical variables (presented as number and
percentage). Discriminatory ability for the presence of morphologic ver-
tebral fracture and osteoporosis at baseline was compared between chron-
ological age and predicted spine age using the area under the receiver-
operating characteristics (AUROC) by the De Long method32.
Kaplan–Meier failure curves were plotted for incident fracture grouped by
chronological age and predicted age difference (predicted spine age minus
chronological age) among participants categorized as four groups based
upon chronological age (above or below median) and presence of acceler-
ated spine age (defined as highest tertile of predicted age difference [spine
age minus chronological age] in the derivation test set,+1 year or higher).
ProportionalCoxhazardmodelswerebuilt to assess the associationbetween
predicted age difference (per one standard deviation increment) and

incident fracture, with adjustments for age, sex, presence of prevalent ver-
tebral fracture, clinical risk factors, and osteoporosis. A two-sided p value of
< 0.05 was considered statistically significant. All statistical analyses were
performed using Stata version 17.0 (StataCorp LLC, College Sta-
tion, TX, USA).

Data availability
Data sharing requests will be considered for research purposes upon a
written request to the corresponding author. If agreed, deidentified parti-
cipant data and/or deep learning model weights will be made available,
subject to a data sharing agreement.

Code availability
All source codes to train a deep learning model to estimate spine age are
publicly available on GitHub (https://github.com/nkhong84/VERTE-
X-Aging).
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