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Machine learning approaches
overcome imbalanced clinical data
for intraoral free flap monitoring

Hyounmin Kim*, Dongwook Kim%%*"* & Juho Bai***

Free flap reconstruction is essential for treating intraoral defects; however, failure can lead to complex
and prolonged complications. While various monitoring methods have been employed to prevent such
situations, they are qualitative and sometimes unfamiliar to novices. The purpose of this study was to
develop a user-friendly model using artificial intelligence that quantitatively represents flap status. We
analyzed 1877 images from 131 patients who underwent free flap reconstruction for intraoral defects
between June 2021 and March 2024. Since patients with vascular damage were very few in number,
class weighting and focal loss techniques were used to address this imbalance. The proposed model
achieved high overall accuracy and F1 scores of 0.9867 and 0.9863, respectively. This study introduces
the first deep learning model for intraoral flaps and demonstrates the possibility of quantitative
measurement of flap changes. This tool can assist surgeons in making timely decisions regarding
salvage procedures and facilitate easier monitoring for resident care-givers.
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Free flap reconstruction is a common procedure used to reconstruct large defects resulting from tumor resection
or trauma’. In the oral and maxillofacial region, flaps play a crucial role both functionally and aesthetically;
consequently, flap necrosis can lead to challenging medical situations®>. To prevent such situations, postoperative
flap monitoring is essential and various device-based monitoring methods have been introduced*-°. However,
these monitoring methods still rely on multiple observations from personnel who are not constantly present at
the patient’s bedside, such as residents”®, Moreover, the resulting data, often qualitative images, can be difficult
to interpret and may not provide conclusive evidence to the operating surgeon.

To resolve these difficulties, artificial intelligence (AI) models have been applied to flap monitoring in extraoral
region® !2. However, these approaches often struggled to achieve robust performance while addressing the class
imbalance inherent in clinical settings, or they required specialized imaging equipment. Our research utilizes
photographs obtained from patients already under observation, incorporating images from diverse anatomical
sites and under varying conditions, with the aim of developing a model that can be broadly implemented in
real-world clinical scenarios.

Results

Patients characteristics

Medical records, including clinical photographs, of 131 patients were reviewed. The most common case was
the reconstruction of glossectomy defects using anterolateral thigh (ALT) free flaps. Among the 131 patients, 8
underwent salvage procedures due to vascular compromise and late failure leading to total flap loss was observed
in 2 patients. Details are presented in Table 1.

Dataset details
A total of 1877 images obtained from these patients were divided into training and test sets. Only the training
set was used for model learning, while the test set was utilized solely for validation. The data were split in an 8: 2
ratio, resulting in 1501 samples in the training set and 376 samples in the test set.

Images were classified into two classes based on the presence or absence of vascular compromise in the flap.
Class 1 represented a set of images with confirmed vascular compromise, which was verified either through
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Characteristics Patients (N=131)
Age (mean) 58.1
Sex
Male 81 (61.8%)
Female 50 (38.2%)
Primary site
Tongue 47 (35.9%)
Mandible* 39 (29.8%)
Maxilla 11 (8.4%)
Floor of mouth 10 (7.6%)
Buccal mucosa 7 (5.3%)
Soft palate 2 (1.5%)
Lower gingiva 1(0.7%)
Retromolar trigone 1(0.7%)
Composite 13 (9.9%)
Mandible + Skin 4
Mandible + oropharynx 2
Maxilla + Skin 2
Parotidectomy defect 2

Mandible + Base of the tongue | 1

Buccal mucosa + Skin 1
Hypopharynx + Skin 1
Free flap
Anterolateral thigh free flap 64 (48.9%)
Fibula free flap 45 (34.3%)
Radial forearm free flap 22 (16.8%)
Compromised patients 10 (7.6%)
Success in flap salvage 8

Arterial insufficiency

Venous thrombosis’

Total flap loss

SRR NN RN

Arterial insufficiency

Table 1. Clinical characteristic of the study patients. *This includes all cases where both the lower gingiva and
mandible bone were reconstructed. " This includes both cases where there was a problem with the anastomosis
as well as cases where there was a venous compromise due to kinking

Classification
Class 0 Class 1
Data set | Samples | (Absence of vascular compromise) | (Presence of vascular compromise)
Training | 1501 1404 (93.5%) 97 (6.4%)
Testing | 376 352 (93.6%) 24 (6.4%)
Total 1877 1756 (93.6%) 121 (6.4%)

Table 2. Distribution of the images used for training and tests.

the patient undergoing a repeat salvage procedure or through confirmation of flap necrosis as evidenced by
comprehensive color change and complete alteration in turgidity. All other flaps that remained normal and
viable were categorized as Class 0. In patients who underwent re-entry for salvage procedures due to detected
vascular compromise, images taken after the second vascular anastomosis period were not collected.

The samples were randomly selected for each class, ensuring similar class distributions in both the test and
training sets. This information is summarized in Table 2.

Clinical application

Of the 376 images, 352 represented healthy flaps without any vascular compromise, partial flap loss. The
remaining 24 images depicted flaps that had experienced venous congestion, arterial insufficiency. The model
correctly classified 351 of 352 normal flap images as class 0, and identified 20 of 24 unhealthy flap images that
required salvage procedures.
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Model name Class weighting | Loss function
CE loss without weight No Cross-Entropy
Weighted CE loss Yes Cross-Entropy
Focal loss without weight No Focal Loss (7 = 2)
Weighted focal loss (proposed) | Yes Focal Loss (7 = 2)

Table 3. The four experimental configurations.

Model configuration Accuracy | F1score
Proposed (weighted focal loss) | 0.9867 0.9863
Focal loss without weight 0.9761 0.9741

Weighted cross-entropy loss 0.9787 0.9783
CE loss without weight 0.9814 0.9804

Table 4. Overall performance.

Precision-Recall curve: AP=0.95
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Fig. 1. The precision-recall curve maintains high precision (close to 1.0) for a wide range of recall values, only
dropping sharply at very high recall levels. This demonstrates the model’s ability to effectively identify class 1
flaps (those requiring salvage procedure) with minimal errors. The combination of class weighting and Focal
loss appears to effectively address the class imbalance problem.

Model performance
We previously explored four distinct model configurations, as shown in Table 3, considering the application
of class weighting and the choice of loss function. All configurations utilized the Vision Transformer (ViT)
large model as the common architecture. The learning rate was set to 0.0001 across all experiments, with other
hyperparameters following the default recommendations for Vision Transformers.

The models were assessed using accuracy, F1 score, precision, recall, and class-specific metrics. Table 4
summarizes the overall performance metrics for each model.

The overall accuracy of the proposed model across all classes was 0.9867, with an F1 score of 0.9863,
indicating exceptionally high performance among the four models. The corresponding precision-recall curve
is presented in Fig. 1.
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Model configuration Class | Precision | Recall | F1 score
0.99 1.00 0.99
Proposed (weighted Focal loss)
0.95 0.83 0.89
0.98 1.00 0.99
Focal loss without Weight
0.94 0.67 0.78
0.99 0.99 0.99
Weighted Cross-entropy loss
0.86 0.79 0.83
0.98 1.00 0.99
CE loss without Weight
0.95 0.75 0.84

Table 5. Class-specific performance-metrics table for all models. The results of the proposed model are shown
in bold.

Model configuration Accuracy Precision Recall F1 score

Proposed (weighted focal loss) | 0.9379 +0.0173 | 0.9421 +0.0152 | 0.9379 + 0.0173 | 0.9080 + 0.0253
Focal loss without weight 0.8956 +0.0229 | 0.8987 +0.0185 | 0.8956 + 0.0229 | 0.8962 + 0.0099
Weighted cross-entropy loss 0.8634 £0.0748 | 0.9039 +0.0221 | 0.8634 £ 0.0748 | 0.8789 + 0.0524
CE loss without weight 0.9339 +£0.0197 | 0.9187 +0.0380 | 0.9339 +0.0197 | 0.9060 + 0.0263

Table 6. Patient-level 5-fold cross-validation results for all model configurations. The results of the proposed
model are shown in bold.

As expected, the proposed model among 4 models performed exceptionally well on the majority class
0 samples. Notably, it also achieved a precision of 0.95 for the minority class 1 samples, indicating superior
performance compared to models without weighting or those using simple cross-entropy (CE) loss. The class-
specific performance metrics of all models are presented in Table 5.

Patient-level cross-validation for model validation

We initially evaluated our model using an 80:20 train-test split at the image level. To more rigorously validate
the model’s clinical applicability, we additionally performed 5-fold cross-validation at the patient level. In this
approach, 131 patients were randomly divided into 5 groups, ensuring that all images from the same patient were
placed exclusively in either the training or testing set.

The results of patient-level cross-validation are summarized in Table 6. The weighted focal loss model
demonstrated superior performance with an average accuracy of 0.9379 + 0.0173 and precision of 0.9421 +
0.0152. For comparison, the CE loss without weight model achieved an accuracy of 0.9339 + 0.0197, while focal
loss without weight and weighted CE loss models showed lower performance with accuracies of 0.8956 + 0.0229
and 0.8634 + 0.0748, respectively.

Furthermore, our proposed weighted focal loss model achieved the highest F1 score (0.9080 + 0.0253) among
all configurations, confirming its effectiveness in handling the imbalanced class distribution present in this
clinical dataset.

Discussion

Artificial intelligence has revolutionized medical imaging, particularly in diagnosis and segmentation.
Numerous studies have employed artificial neural networks to identify diseases and predict prognosis in various
fields, including neurosurgery and plastic surgery'3-1°. Subsequently, convolutional neural network (CNN)
models were developed to recognize abnormal regions, diagnose conditions, and predict outcomes from clinical
photographs!”18.

Mantelakis et al. provided a comprehensive review of artificial intelligence applications in plastic surgery,
ranging from early non-neural network models to contemporary CNN approaches. They reported that AI
systems analyzing visual images for lesion assessment and treatment planning demonstrated remarkably high
accuracy'’.

Free flap reconstruction is a crucial treatment modality for both functional and aesthetic perspective
following tumor resection or trauma®. Although this procedure has a success rate that exceeds 95%, rare
instances of vascular compromise can lead to complicated results>>. Such complications can often be averted
through frequent monitoring and prompt salvage procedures*-.

Current monitoring methods include traditional observation, Doppler systems, color duplex sonography,
and near-infrared spectroscopy. Despite their popularity, each of these methods has critical limitations: they
may produce meaningless signals, prove challenging for inexperienced resident staff to interpret, or involve
prohibitively large observational devices that preclude frequent use?"?2. Moreover, none of the existing
monitoring methods provide quantifiable measurements of flap changes®.

In response to these limitations, Hsu et al. developed a supervised learning approach to generate quantified
results for extraoral flap changes'?>. However, to date, no such attempt has been made for monitoring free
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flaps inserted inside the oral cavity. Monitoring flaps located within the oral cavity presents greater challenges
compared to observing flaps positioned in external sites. Despite regular oral cleaning procedures, the flap is
often covered by blood mixed with saliva, making complete visualization difficult. Additionally, the complex
anatomical structure of the oral cavity can make the photographic documentation itself challenging?>?%.
Furthermore, some of the aforementioned monitoring devices are entirely inapplicable within the oral cavity.

Our model utilizes only 2D images of the flap, eliminating the discomfort associated with inserting large
probes into the oral cavity. While the cave-like structure of the oral cavity inevitably leads to significant lighting
variations between images, this challenge was overcome through random adjustments within the model.
Consequently, only a smartphone flash was required for image capture.

Given that the success rate of vascular anastomosis exceeds 95%, only 10 out of 131 patients in our study
underwent salvage procedures or experienced total flap loss. We addressed the inherent dataset imbalance by
applying class weighting and incorporating focal loss during the training process. The combination of class
weighting and focal loss presents a synergistic approach to addressing class imbalance in machine learning
models. Class weighting mitigates the under representation of minority classes by assigning them higher
importance, while focal loss dynamically adjusts the learning process to focus on hard-to-classify samples. This
integrated method enhances the model’s ability to learn discriminative features from underrepresented classes
and challenging instances, thereby improving overall classification performance. Such an approach is particularly
effective in highly skewed datasets, where it can significantly boost the model’s generalization capabilities and
increase the recognition rate of critical minority classes encountered in real-world applications.

Despite the presence of complex structures such as teeth, lips, and tongue in the images, often obscured by
blood and saliva, our model successfully recognizes the flap and detects changes in its viability. This capability
persists even when these structures deviate from their normal appearance due to surgical intervention and
postoperative conditions.

The model’s ability to quantify changes allows for more sensitive detection of alterations compared to
human observers. As illustrated in Fig. 2, two input images were captured with a 3-h interval (A: 2 h post-initial
salvage procedure, B: 5 h post-initial salvage procedure). While the second image shows a slight increase in
the congestive margin compared to the first, the difference was subtle enough that clinicians deemed the flaps
similar and deferred further salvage procedures. However, the model indicated a significant change, estimating
a 1.3% probability of vascular compromise in the flap in the first image, which increased nearly tenfold to 13%
in the second image. Subsequently, this patient underwent a second salvage procedure 15 h after the initial
one. Despite these interventions, the vascular compromise remained unresolved, ultimately necessitating flap
removal.

Despite the model’s overall fine performance (F1 score = 0.9863), the relatively low recall value(0.83)
observed for class 1 requires improvement. This indicates that the model may incorrectly classify actual cases of
vascular compromise as normal with approximately 17% probability, which could potentially lead to significant
clinical risks in practice. These errors primarily stem from the limited dataset, with only a few hundred images
representing vascular compromise, as well as suboptimal configuration of the confidence level threshold for

, 2 S TR

Confidence: 0.9868 Confidence: 0.8653
Probabilities: Probabilities:

negative: 0.9868 negative: 0.8653

positive :0.0132 positive °0.1347

Fig. 2. Input images from a 58-year-old male patient who underwent glossectomy and pharyngectomy

for oropharyngeal cancer, with the defect repaired using an anterolateral thigh flap. The patient exhibited
congestive symptoms following the initial surgery, prompting vein re-anastomosis after 11 h. The image on the
left shows the model’s analysis 2 h after re-anastomosis, while the image on the right represents the analysis 5 h
after re-anastomosis.
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determining vascular compromise. As previously described, the current model does not directly print class
1 when the confidence level falls below 50%; however, it does indicate potential vascular disorders through
increased confidence levels. Therefore, prior to clinical deployment, it appears necessary to recalibrate the
confidence level thresholds based on images where blood flow disorders are suspected. In clinical settings, where
missing a compromised flap (false negative) could lead to irreversible tissue loss, we would recommend setting
a lower threshold for flagging potential compromise, accepting a higher false positive rate as a reasonable trade-
off for enhanced patient safety. A clinically acceptable recall should approach 0.95 or higher, given the severe
consequences of missed vascular compromise.

In the test set of 376 images, the model misclassified only five. One healthy flap was incorrectly classified
as necrotic (false negative), while four flaps with vascular compromise were misclassified as healthy (false
positives). The false-negative case involved a glossectomy defect repaired with an ALT free flap, where the
contralateral tongue appeared necrotic. The model mistakenly identified this darkened tongue as the flap due
to similar proportions in the image. All four false positive cases exhibited vascular compromise. In three of
these cases, the flap occupied only a small portion of the image, and the majority of the photograph consisted of
normal tissue, which likely contributed to the model’s misclassification. The remaining case involved an image
taken 12 h after a forearm flap was transplanted to the buccal cheek. In this image, the color and margins of the
flap closely resembled those of a healthy flap, leading the model to diagnose it as having no vascular compromise.
However, by postoperative day four, the flap showed signs of necrosis, including partial skin sloughing.

This model, initially developed for diagnostic purposes, demonstrates potential as a sensitive detector
of vascular compromise in flaps, serving as an assistant to surgeons. With the capability to analyze images
taken under various conditions and lighting, it could provide round-the-clock, location-independent results,
supporting decision-making processes for post-operative surgeons.

However, it is widely acknowledged that AI should augment, not replace, the surgeon’s decision-making
process®. As the model quantifies the probability of vascular compromise rather than dictating treatment
timing, clinical judgment remains crucial in determining the threshold for initiating salvage procedures.

This study presents several areas for potential improvement. While the model currently provides a binary
classification based on the probability of vascular compromise, future iterations could incorporate expert
annotations to offer more nuanced explanations for the flap’s apparent condition, potentially providing clinicians
with additional insights for treatment decisions. Moreover, this study was conducted at a single institution with
patients of a single nationality, limiting the patient cohort to Asian ethnicity. To expand the model’s applicability,
further training on more diverse skin complexions would be necessary.

Objectively, our model demonstrates high performance in identifying flaps and assessing their viability.
Notably, this represents the first deep learning model developed for intraoral flap monitoring.

Methods

Ethics declaration

This retrospective study was waived for the requirement of informed consent from all subjects by the Institutional
Review Board (IRB) of Dental Hospital of Yonsei University, College of Dentistry, and the experimental protocol
of this study was approved by the IRB of Dental Hospital of Yonsei University, College of Dentistry (Approval
number: 2-2024-0008). All methods were carried out in accordance with relevant guidelines and regulations of
Dental Hospital of Yonsei University, College of Dentistry.

Study population

From June 2021 to March 2024, 207 consecutive patients underwent surgery to reconstruct intraoral postoperative
defects using various free flaps. Among these, only 131 patients provided a sufficient quantity and appropriate
quality of sequential clinical photographs, yielding a total of 1877 images for analysis. Following established
protocols, clinical observations focused on flap color, temperature, capillary refill, and turgidity. In cases of
suspected arterial insufficiency, a pin-prick test was performed. Indications for salvage procedure included
noticeable changes in flap color compared to previous observations, widening of congestive margins, absence of
blood flow in the pin-prick test, or alterations in flap turgidity.

All photographs were taken by residential staff who performed immediate flap monitoring, using various
capture devices (iPhone 13 mini (Apple Inc.), iPhone 13 Pro (Apple Inc.), iPhone 15 (Apple Inc.), Galaxy
$21 (Samsung Group), and Galaxy Z Flip4 (Samsung Group)). During the first 48 h, when there is a higher
probability of successful salvage procedures, images were captured at 2-h or 3-h intervals®. On the third day after
surgery, the flap was observed once every 6 h, and from the fourth day post-surgery onwards, one photograph
was taken daily. The photographs were categorized by case, date, and time of capture.

Data preparation

Due to the variety of devices used to take the photographs, a standardized pre-processing pipeline was
implemented: resizing, random horizontal flipping, random rotation, color jittering, and normalization. These
processes help overcome limitations in color tonality that might arise from restricting the dataset to a single
population, as well as the lighting inconsistencies characteristic of the oral cavity when flaps are located in deeper
regions. Detailed explanations of each method are provided below.

1. Resizing: All images were maintained at 224 x 224 pixels while preserving aspect ratios®.
2. Random horizontal flipping: Images were horizontally flipped with a 0.5 probability to introduce reflection

invariance®.
3. Random rotation: Images were rotated by a random angle within +10 degrees to enhance rotational invari-
ance”.
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Dataset

4. Color jittering: Random adjustments to brightness, contrast, saturation, and hue were applied to improve
model resilience to variations in lighting conditions and color distribution?®.

5. Normalization: Recently, Huang et al. pointed out in their 2023 study that even within a single image cap-
turing a flap, there can be differences in RGB values between the flap tissue and the original skin. The re-
search team therefore underwent a normalization process during pre-processing, utilizing images from the
ImageNet dataset, which can enhance the diversity of skin complexion that would otherwise be limited by
including only a single ethnicity>**.

Model development

We employed an AMD 7500F CPU and an RTX 4090 with 24GB RAM for training. The pre-trained model

utilized was the vit_|_16 model with default parameter values.

To address the class imbalance in our prepared dataset, we implemented a sample weighting strategy’!. We
define the weight w; for each class using the total number of samples (N), the number of classes (C), and the
number of samples in class i n; as follows*2.

w; = N/(C *n;) (1)

Using this, we defined an adjusted weight w] for the minority class. In our implementation, 8 = 2.
wy = - w )

This additional boost emphasizes the importance of minority class samples during training®.
To further address imbalance during training, we employed the Focal Loss technique at the loss function
level. Using a balance coefficient c; for class i and a focusing parameter +y, we defined the Focal Loss (FL) as:

FL(y,9) = (1 = 9) ylog(9) — (1 — :)(9)" (1 — y) log(1 — 9) 3)

@ is 0.25 and -y is 2 in our implementation.

This approach helps to “reduce the loss contribution from easy examples (where y is close to §) and increase
the importance of correcting misclassified examples”. The overall training architecture is briefly illustrated in
Fig. 3.

Clinical application
The 376 images used for testing were input into the model, which output a confidence level representing the
probability of vascular compromise (Fig. 4). When this probability fell below 0.5, the image was classified as
class 1 (vascular compromise is likely present).

The inference process of our proposed method, which utilizes the Vision Transformer (ViT) architecture, can
be executed on hardware with less than 8 GB of GPU memory, based on the ViT-Large model configuration.
Upon quantization, the proposed method can be effectively used in mobile environments, such as smartphones
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Fig. 3. Schematic diagram of a model that uses class weighting and focal loss to overcome class imbalance.
MLP = Multilayer perceptron.
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Flap surgery Image Classification Assistant

Upload an image to classify it using deeplearning model.

Flag

Clear Submit A

Confidence: 0.;9929 Confidence: 0.9911
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negative: 0.9929 negative: 0.9911
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Fig. 4. (A) Model interface. When a postoperative image is submitted to the model, it recognizes the flap
among the structures in the image and outputs the probability of vascular compromise. (B) A 3-h postoperative
photograph of a 64-year-old female patient who underwent resection of squamous cell carcinoma in the left
lower gingiva, covered with an anterolateral thigh free flap. Considering the color and turgidity of the flap,

it appears very healthy, and the model outputs a probability of less than 1% for vascular compromise. This

flap has remained healthy to date. (C) A 48-h postoperative photograph of a 43-year-old male patient who
underwent resection of ameloblastoma in the left mandible, reconstructed using the jaw-in-a-day technique.
Although the anterior margin appears slightly dark, the overall appearance of the flap is considered healthy,
and the model calculated a low probability of vascular compromise. This flap has also remained healthy to date.

equipped with Neural Processing Units (NPUs). This optimization enables the implementation of our method as
a smartphone application, facilitating on-device inference capabilities.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding
author on reasonable request.
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