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Abstract
Migraine is a complex neurological disorder with diverse clinical phenotypes and a multifaceted pathophysiology, 
which poses substantial challenges for accurate diagnosis, subtype differentiation, and biomarker discovery. 
Machine learning (ML) techniques have emerged as promising tools for classifying migraine patients and 
uncovering the underlying neurobiological mechanisms that differentiate migraine types and subtypes. This 
systematic review identifies current ML classification models for migraine types and subtypes, evaluating the 
quality, reproducibility, and clinical utility of published studies. The findings demonstrate that current ML models, 
particularly support vector machines and linear discriminant analysis, can accurately classify migraine patients 
based on structural and functional neuroimaging features with accuracies ranging from 75 to 98%. However, 
quality assessment revealed significant methodological heterogeneity across studies, including inconsistent 
reporting of model performance, insufficient patient phenotyping, small and imbalanced datasets, and limited 
external validation. These limitations hinder the global generalizability and reproducibility of these studies. 
We propose a roadmap for future research emphasizing well-characterized clinical subgrouping, standardized 
data acquisition and feature engineering protocols, transparency in model development and reporting, and 
collaborative multicentric designs to enable large-scale validation. Furthermore, this review stresses the importance 
of incorporating real-world phenotypic data, such as treatment response, comorbidities, and digital phenotyping 
metrics, to enrich ML models and support the transition toward precision medicine in migraine care. Ultimately, 
this review highlights the urgent need for methodological rigor in migraine ML classification studies to bridge the 
gap between experimental success and clinical applicability.
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Introduction
Migraine is a highly heterogeneous and disabling dis-
order [1, 2], with varying symptomatology, genetic 
basis, molecular pathways involved in the pathophysiol-
ogy, attack triggers, and course of disease [1]. Although 
the varying symptomatology is well characterized by 
the International Classification of Headache Disorders 
(ICHD-3) [3], heterogeneous phenotypes are poorly 
characterized in neuroimaging, neurophysiological, and 
other multidisciplinary biomedical studies. Further-
more, the drawback of the current classification is that 
it does not fully include and recognize the heterogene-
ity of migraine in important domains such as neuro-
biological and psychosocial factors [4–6]. Even though 
the pursuit of migraine biomarkers is still undergoing 
progress, machine learning (ML) techniques are emerg-
ing as valuable tools to capture patterns of disease [7] 
and discover the most influential factors in differentiat-
ing migraine patients from healthy controls (HCs) [8]. 
Moreover, discovering differences between homogenous 
migraine subtypes, such as migraine with aura (MwA) 
characterized by only visual symptoms and MwA accom-
panied by additional somatosensory and/or dysphasic 
symptoms [9], using ML models could point to new bio-
markers and allow innovative therapeutic strategies and 
precision medicine. In addition, the homogenization of 
investigated migraine subgroups according to clinical and 
neurobiological phenotypes can improve the chances of 

discovering new pathophysiological mechanisms [10, 11]. 
Collaborative efforts between global headache experts 
and data scientists are essential to overcoming cur-
rent barriers and unlocking the full potential of artificial 
intelligence (AI) in transforming migraine research and 
management [12]. Furthermore, evaluating the quality 
of research in articles dealing with ML classification in 
the migraine field is necessary to move from hype to real 
impact [10].

This systematic review aims to report the current ML 
models for classifying migraine types and subtypes and 
assess the quality of identified studies. Furthermore, our 
goal is to determine the best models, types of data, and 
features for classifying migraine types and subtypes. Ulti-
mately, we envision that findings from this review will 
serve as a practical guide for researchers aiming to lever-
age ML in migraine studies, ensuring international repro-
ducibility and clinically meaningful findings.

Methodology
Search strategy
This systematic review followed the ‘Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses’ 
(PRISMA) guidelines [13]. Search strategy combined 
information of two main terms, i.e. migraine and AI clas-
sification (with possible variations). PubMed and SCO-
PUS were searched for the terms, using database-specific 
variations, in the period between their inception and 
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February 19, 2025. The search string for PubMed was: 
((migraine[Title/Abstract]) AND (classification[Title/
Abstract] OR classifier*[Title/Abstract] OR “Machine 
Learning” [Title/Abstract] OR ML[Title/Abstract] 
OR “Support Vector Machine” [Title/Abstract] OR 
SVM[Title/Abstract] OR “deep learning” [Title/Abstract] 
OR “neural network*”[Title/Abstract] OR “artificial intel-
ligence” [Title/Abstract] OR AI[Title/Abstract])). The 
SCOPUS string was: ((TITLE (migraine) AND TITLE 
((classification OR classifier* OR “Machine Learning” OR 
ML OR “Support Vector Machine” OR SVM OR “deep 
learning” OR “neural network*” OR “artificial intelli-
gence” OR AI))) OR ((ABS (migraine) AND ABS ((clas-
sification OR classifier* OR “Machine Learning” OR ML 
OR “Support Vector Machine” OR SVM OR “deep learn-
ing” OR “neural network*” OR “artificial intelligence” OR 
AI))). Retrieved references were exported as.csv files and 
imported into Rayyan QRCI [14] for duplicate checking. 
The set of records was then exported to MS Excel for 
study selection and data extraction.

Study selection
Retrieved references were equally and randomly assigned 
to the authors who screened titles and abstracts for eli-
gibility. A double check on titles and abstracts eligibility 
was randomly performed on 30% of selected references: 
IP, WW, RM and LP performed the double check on 
abstracts. The inter-rater reliability was calculated 
using Krippendorff’s alpha coefficient (α), which ranges 
between 0 (total disagreement) and 1 (total agreement). 
In case of disagreement, the record was considered as 
selected and retained for full-text evaluation. If α was 
below 0.70, a second 30% set of abstracts was submitted 
to double check.

To be eligible and be evaluated in full texts, abstracts of 
retrieved records had to refer to original research papers, 
written in English and dealing with the use of AI to clas-
sify migraine disorders, i.e. distinguishing migraine from 
healthy controls and/or different migraine subtypes (e.g., 
episodic migraine (EM) from chronic migraine (CM), 
MwA from migraine without aura (MwoA)). Therefore, 
records were excluded if: (a) had no abstract, (b) were 
not in English, (c) were letters, editorials, case reports, 
reviews or meta-analyses; (d) were not focusing on 
migraine; (e) did not employ an AI approach to classify 
migraine. In case of doubts, especially on the last crite-
rion, we decided to keep the record and further re-assess 
it at the full-text evaluation stage.

The records maintained after the abstract check were 
equally and randomly assigned to the authors who 
screened full texts for inclusion. At this stage, we used 
a “shuffle” procedure, i.e. authors did not receive the file 
of the abstract they previously selected, and we applied 
for a 100% double check over PDFs: authors worked in 

couples, blind to the results of each other. Two authors 
(IP and AR) evaluated the presence of disagreement and 
resolved conflicts.

For full texts evaluation, studies were excluded if: (a) 
could not be retrieved; (b) description of migraine cohort 
did not include information about whether patients 
have EM or CM and MwA or MwoA, according to the 
ICHD-3 criteria; (c) it was unclear whether the data were 
collected during an ictal or interictal phase; (d) did not 
deal with binary migraine classification (ML task that 
involves distinguishing between two categories, e.g., EM 
vs. HCs); (e) the type of data and features used for classi-
fication were not clearly stated, i.e. if it was unclear what 
kind of neuroimaging or neurophysiological data was 
used; (f ) data for classification were based only on symp-
toms from ICHD-3 criteria; (g) there was no report on 
the evaluation of the ML models (at least one of the fol-
lowing: accuracy, confusion matrix, sensitivity, specific-
ity, AUC, and F1 score).

At this stage, authors also had to identify whether the 
paper was on ML approach. ML included: Support Vector 
Machines, K-Nearest Neighbors, Decision Trees, Naive 
Bayes, Linear Discriminant Analysis, Linear Regression 
and Random Forest. Deep learning, a subfield of ML, 
included: neural networks, such as a convolutional neural 
network, recurrent neural network and generative adver-
sarial network. In case of disagreement or uncertainty on 
the approach, the main author (IP) resolved the conflict.

Data extraction
Data extraction was performed through ad hoc electronic 
spreadsheets of Microsoft Excel. Included studies were 
equally and randomly assigned to the authors who had 
to extract the following information: (a) author; (b) year 
of publication; (c) type of data (e.g. clinical, neuroimag-
ing, neurophysiological, questionnaires); (d) migraine 
condition (i.e., episodic, chronic, episodic with/without 
aura, vestibular and/or other migraine types to be speci-
fied): the number of subjects; (e) if HCs: the number of 
subjects; (f ) best ML model and its metrics (expressed 
in percentages); and (g) most important features for 
classification.

Finally, a comprehensive set of information for data 
quality was filled in. This information included: (1) Clini-
cally homogenized group (MwoA and MwA differenti-
ated into separate groups); (2) Clinically homogenized 
subgroup (differentiation into subgroups according to 
their deep profiled clinical phenotypes like migraine with 
only visual aura, migraine with somatosensory and dys-
phasic aura (with or without visual symptoms), hemiple-
gic migraine, vestibular migraine, etc.); (3) Frequency 
homogenized group (EM and CM differentiated into sep-
arate groups); (4) Frequency homogenized subgroup (EM 
with low frequency (up to 7 days with headache/month), 
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EM with high frequency (from 8 to 14 days with head-
ache/month), and CM, differentiated into separate sub-
groups); (5) Comorbidity; (6) Preventive drugs groups; 
(7) Triptans groups; (8) Previous failed preventive treat-
ment; (9) Age subgroups separately investigated; (10) Sex 
subgroups separately investigated; 11) Sufficient dataset; 
12) Collected data reliable; 13) Missing data; 14) Outliers; 
15) Data preprocessing and transformation; 16) Feature 
selection; 17) Data splitting into training and validation 
datasets; 18) Model selection; 19) Model finetuning; 20) 
Overfitting; 21) Model performance evaluation – report-
ing accuracy and confusion matrices or sensitivity and 
specificity; 22) Model performance evaluation - reporting 
accuracy and confusion matrix or sensitivity and speci-
ficity, plus area under the curve (AUC) or F1 score; 23) 
External validation; 24) Feature importance; 25) Interpre-
tation; 26) Future perspective; 27) Limitations; 28) Data 
availability upon request; 29) Anonymized data shared 
on the platform; and 30) Code availability.

Results
Out of 2,583 records retrieved in PubMed and SCOPUS, 
we found 187 papers relevant to the topic based on the 
title and abstract screening. After the full-text assess-
ment, eleven manuscripts fulfilled our inclusion crite-
ria. Figure 1 shows the review processes and reasons for 

paper exclusion. The agreement rate at abstract check 
was 94.7%, and at Full-text selection was 91.4%.

Figure 2 reports the publication period coverage of 
selected studies. It shows that the first study focused on 
ML classification of a well-characterized migraine cohort 
was published in 2016. In the last three years, more 
studies have used ML classification for distinguishing 
migraine patients from HCs and between migraine sub-
types, and for searching migraine biomarkers.

Table  1 summarizes the methodology and findings of 
studies employing an ML approach to classify patients 
with EM versus HCs. We identified seven studies, of 
which three pooled episodic migraine patients with aura 
(EMwA) and episodic migraine patients without aura 
(EMwoA) into one group [15–17], two studies explor-
ing the classification of EMwA patients [9, 18], one study 
exploring the classification of EMwoA patients [19], and 
one study exploring the classification of EM with vestib-
ular migraine [20]. The sample size was quite heteroge-
neous, ranging from 20 EM (10 EMwA and 10 EMwoA) 
versus 15 HCs up to 123 EM (including 18 EMwA and 
105 EMwoA) versus 113 HCs. Almost all studies used 
MRI-derived data for ML models, showing promising 
ML model metrics. Support vector machines (SVM) were 
the most common best model classifier, achieving accu-
racies between 80% and 89% (AUC: 84–88%), while linear 

Fig. 1  Flowchart of selected studies
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discriminant analysis reached 97% accuracy in one study. 
The most important features for distinguishing between 
EMwA and HCs were: left temporal pole thickness, right 
lingual gyrus thickness, left pars opercularis thickness, 
and volume of the medial occipital cortex. Key discrimi-
native features for distinguishing between EM and HCs 
included decreased amplitude responses from somato-
sensory evoked potentials in the left insula and left pri-
mary motor cortex, and altered functional connectivity 
between the right periaqueductal gray region and frontal 
cortical areas and insula, as well as between the cerebel-
lum and inferior occipital and orbitofrontal gyrus.

Quality scores for assessment of ML classification 
studies in migraine (out of 30) varied from 13 to 24, 
achieving from 5 to 13 (out of 13) obligatory require-
ments to ensure high-quality results and possible 
reproducibility of the study (Supplementary Table 1).

Table  2 details three ML studies [16, 17, 21] aim-
ing to classify CM patients versus HCs. Sample sizes 
ranged from 40 CM (17 CM with aura) versus 40 HCs 
to 106 CM (22 CM with aura) versus 113 HCs. Deci-
sion trees and SVMs achieved accuracies of 76–87% 
(AUC: 84–89%). Feature sets included evoked poten-
tial oscillatory and somatosensory metrics and struc-
tural magnetic resonance imaging (MRI) measures of 
cortical volume, surface area, and thickness, pointing 
to decreased amplitude responses in the left insula 
as the most important feature for distinguishing CM 
from HCs. Quality scores for assessment ML classi-
fication studies in migraine were modest (13–21/30), 
achieving from 5 to 10 (out of 13) obligatory require-
ments to ensure high-quality results and possible 
reproducibility of the study, reflecting limited group 

homogenization, feature importance reporting, and 
transparency (Supplementary Table 1).

Table  3 presents five ML studies [9;17,18,22,23] clas-
sifying migraine types and subtypes (e.g., EMwA vs. 
EMwoA), using multimodal data such as electroen-
cephalographic (EEG) connectivity, cerebral blood flow 
from arterial spin labeling, structural MRI, and somato-
sensory evoked potentials. Sample sizes ranged from 30 
EMwA versus 22 EMwoA to 123 EM (18 EMwA) versus 
106 CM (22 CMwA). Linear discriminant analysis and 
SVMs yielded accuracies of 71–98% (AUC: 73–88%). Key 
discriminative features for distinguishing EMwA patients 
with different aura subtypes included pericalcarine and 
pars opercularis thickness. Quality scores for assessment 
ML classification studies in migraine ranged from 15 to 
21 (out of 30), achieving from 9 to 10 (out of 13) obliga-
tory requirements to ensure high-quality results and pos-
sible reproducibility of the study, reflecting limited group 
homogenization, model performance evaluation, feature 
importance reporting, and transparency (Supplementary 
Table 1).

Table  4 describes a deep learning study employing a 
3D ResNet-18 neural network on selected structural MRI 
regions (95 migraine patients with different types ver-
sus 532 HCs). The network achieved 75% accuracy and 
yielded several important gray and white matter features 
[24].

Discussion
Our systematic review highlights that ML applications 
in migraine classification have demonstrated promising 
accuracy and novel insights into disease mechanisms, 
yet several critical challenges remain to be addressed. 

Fig. 2  Publishing trends of ML classification studies performed on well-characterized migraine patients
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Table 2  Studies employing a machine learning approach to classify chronic migraine versus healthy controls
Study Data Best ML model and metrics Most 

important 
features

Qual-
ity score 
(obligato-
ry items)

 Hsiao et al., 
2023 [21]

All three tasks measure evoked oscillatory latency, frequency, power, and 
power ratios, including non-painful, painful, and repetitive painful tasks.
40 CM (17 CMwA and 23 CMwoA) vs. 40 HCs

Decision tree;
Accuracy 87%, Sensitivity 
81%, Specificity 94%, and 
AUC 84%.

N/A 21/30 
(10/13)

 Yoon et al., 
2024 [16]

Volume, surface area, and thickness for cortical regions derived from the 
Desikan-Killiany Atlas.
26 CM (15 CMwA and 11 CMwoA) vs. 42 HCs

XGBoost;
AUC 70%.

N/A 13/30 
(5/13)

 Hsiao et al., 
2024 [17]

Multimodal data (amplitude derived from somatosensory evoked poten-
tials, effective connectivity from spectral Granger causality analysis, and 
scores of psychometric assessments).
106 CM (22 CMwA and 84 CMwoA) vs. 113 HCs

Support vector machine;
Accuracy 76%, Sensitivity 
60%, Specificity 91%, and 
AUC 89%.

Decreased 
amplitude 
responses 
in the left 
insula.

19/30 
(9/13)

CM chronic migraine, HCs healthy controls, CMwA chronic migraine with aura, CMwoA chronic migraine without aura, ML machine learning, AUC area under the curve

Table 3  Studies employing a machine learning approach to classify migraine types and subtypes
Study Data Best ML model and metrics Most impor-

tant features
Qual-
ity score 
(obligato-
ry items)

 Frid et al., 
2020 [22]

Functional connectivity metrics of resting-state EEG data.
30 EMwA vs. 22 EMwoA

Linear discriminant analysis;
Accuracy 85%, Sensitivity 87%, 
Specificity 82%, and AUC 88%

N/A 15/30 
(10/13)

 Fu et al., 
2022 [23]

Cerebral blood flow maps from arterial spin labeling magnetic resonance 
imaging.
32 EMwA vs. 56 EMwoA

Support vector machine 
classifier;
Accuracy 81%, Sensitivity 88%, 
Specificity 74%, and AUC 84%.

N/A 15/30 
(9/13)

 Mitrović 
et al., 2023 
[9]

Cortical thickness, surface area, volume, mean Gaussian curvature, and 
folding index for cortical regions derived from the Desikan-Killiany Atlas.
22 EMwA-S vs. 24 EMwA-C

Linear discriminant analysis;
Accuracy 98%.

The thickness 
of the left peri-
calcarine gyrus 
and left pars 
opercularis.

21/30 
(10/13)

 Niddam 
et al., 2024 
[18]

Voxels from structural neuroimaging derived from the masks yielded from 
functional MRI of visual cerebral regions.
50 EMwA vs. 50 EMwoA

Binary Gaussian process 
classification;
Accuracy 71% and AUC 73%.

N/A 17/30 
(9/13)

 Hsiao et 
al., 2024 
[17]

Multimodal data (amplitude derived from somatosensory evoked poten-
tials, effective connectivity from spectral Granger causality analysis, and 
scores of psychometric assessments).
123 EM (18 EMwA and 105 EMwoA) vs. 106 CM (22 CMwA and 84 
CMwoA)

Support vector machine;
Accuracy 73%, Sensitivity 60%, 
Specificity 83%, and AUC 74%.

N/A 19/30 
(9/13)

EM episodic migraine, EMwA episodic migraine with aura, EMwoA episodic migraine without aura, EMwA-S episodic migraine with only visual aura, EMwA-C episodic 
migraine with visual, somatosensory and dysphasic aura, CM chronic migraine, CMwA chronic migraine with aura, CMwoA chronic migraine without aura, ML 
machine learning, AUC area under the curve

Table 4  Study employing a deep learning approach to classify migraine versus healthy controls
Study Data Best deep learning 

model and metrics
Most important features

 Siddiquee et 
al., 2022 [24]

Cortical and white matter parcellation de-
rived from structural magnetic resonance 
imaging, as well as masks of subcortical 
structures.
95 migraine (37 EM and 58 CM; 49 MwA 
and 46 MwoA) vs. 532 HCs

3D ResNet-18;
Accuracy 75%, Sensitiv-
ity 67%, and Specificity 
83%.

Caudate, caudal anterior cingulate white matter, superior 
frontal, thalamus, ventral diencephalon, posterior cingulate, 
medial orbitofrontal white matter, pallidum, accumbens
area, putamen, rostral anterior cingulate white matter, lateral 
orbitofrontal white matter, brain stem, rostral middle frontal 
white matter, insula white matter, hippocampus, caudal
middle frontal white matter and precentral white matter.

EM episodic migraine, CM chronic migraine, MwA migraine with aura, MwoA migraine without aura, HCs healthy controls
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The studies herein included show that migraine patients 
could be differentiated from HCs and even subdivided 
into subtypes using ML models: accuracy in distin-
guishing EM from HCs was 78–97%, CM from HCs was 
76–87%, and the accuracy to differentiate patient sub-
types was 71–98%. These results point out a considerable 
number of potential biomarkers derived from neuroim-
aging data, either structural or functional, that should be 
explored in the future. We are, in fact, only at the begin-
ning of the AI era, striving to enhance our study designs 
with advanced data analysis. Before proceeding, we must 
first establish clear guidelines on patient selection and 
define essential elements that should be included in the 
design of migraine classification studies. Therefore, we 
used the recently proposed method for quality assess-
ment of ML classification in migraine [10] to identify 
limitations of current studies and propose actions for 
standardizing future studies. The final goal is to achieve 
more generalizable ML models that can be implemented 
globally in migraine research and clinical practice.

The first important barrier for developing a generaliz-
able ML classification model in migraine is not recog-
nizing the importance of well-characterized patients 
included in model training and testing. It should be 
obligatory to record and mention in the study whether 
patients have EM or CM and MwA or MwoA, as well as 
whether the data were collected during an ictal or interic-
tal phase. Not knowing this information imposes bias on 
the model. Therefore, in a real-world scenario, the per-
formance of the model trained on such poorly described 
datasets may considerably vary from reported metrics. 
For example, cortical thickness alterations or functional 
connectivity changes may differ systematically between 
EM and CM or MwA and MwoA [1]; thus, aggregat-
ing these groups can obscure subtype-specific patterns 
and mislead feature selection. Furthermore, overlook-
ing important cohort descriptors related to migraine, 
such as demographic factors, presence of allodynia [25], 
acute and preventive treatment response [26], comor-
bidities [27], active (at least 1 migraine attack in the last 
year before collecting data for the study) or inactive dis-
ease states [28], and level of disability [2] might impose 
additional biases and lead to limited and/or false inter-
pretability of the importance of certain features for 
the model, and divert our attention from the right path 
in the search for biomarkers. Although homogenizing 
migraine patients into subgroups according to the above 
mentioned factors leads to the loss of the generaliza-
tion capability of the model, it provides a better under-
standing of complex pathophysiological mechanisms in 
various migraine subtypes and allows progress toward 
precision medicine [10]. However, ML model trained on 
large migraine cohorts consisting of several clinical phe-
notypes and demographic backgrounds, that is adjusted 

to an adequate ratio for the general migraine popula-
tion, would provide a powerful tool for decision-making 
in case of probable migraine in clinical practice. Another 
consideration would be to utilize unsupervised ML to 
explore the natural subgroups of patients with migraine 
using the imaging and clinical features that exist in the 
databases. Given the debate on whether the 15-day cutoff 
would be the most suitable way to characterize patients 
with migraine [29], such ML approach could help us 
explore subgroups of patients with migraine beyond 
the traditional classification based on aura status, and 
between episodic and chronic migraine.

Another important barrier in studies about ML clas-
sification of migraine types and subtypes is the number 
of patients included in the training of ML models, which 
prevents researchers from achieving the best model 
metrics for the used features, selecting the best feature 
candidates for biomarkers, and generalizability for the 
aimed migraine population. Our review found that most 
ML classification studies have relied on relatively small, 
clinically mixed datasets, which limits both the generaliz-
ability and translational potential of their findings. There 
are two ways in which this barrier could be overcome: the 
first is to increase the sample size by making multicentric 
international collaborations between institutions special-
ized in migraine research [16], while the second is to use 
repeated data collection from patients where the sample 
corresponds to the number of patients that provides a 
95% confidence interval for a given migraine subpopula-
tion. In the first case, this would lead to better rigor of 
selected features for the ML model and a harmonized 
dataset from diverse geographic and socio-demographic 
populations. Such efforts would enable external valida-
tion with a reduction of site-specific biases [30]. In addi-
tion, it would allow an adequate number of patients to 
reach the plateau of ML model metrics in the training 
dataset, which will, at the same time, indicate the number 
of patients needed to train the model for a particular data 
modality, such as structural MRI, functional MRI, and 
electrophysiological metrics. In the second case, where 
the sample size is limited, multiple data collections would 
allow training of an ML model until it reaches a plateau 
in the ML model metrics. This scenario would be most 
preferable in studies designed to collect data via digital 
phenotyping technologies, implementing the real-time 
collection and analysis of behavioral and physiological 
data using digital devices, including smartphones, wear-
able technology and biosensors [31–35]. Moreover, in 
migraine research, digital phenotyping offers an unprec-
edented opportunity to objectively quantify symptom 
patterns, physiological and behavioral changes associ-
ated with attacks, and disease cumulative burden dur-
ing the interictal stage, which could significantly help in 
the characterization of migraine subtypes in individuals 
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contributing to well-characterized homogenous sub-
groups [36].

Beyond clinical subgrouping, our findings underscore 
that action should be initiated for the standardization 
of protocols for neuroimaging [37], neurophysiological, 
and other biomedical activities aiming to develop ML 
model for the classification of migraine and its subtypes. 
Standardization efforts should address MRI acquisition 
protocols (such as field strength, sequence parameters, 
harmonization across sites), EEG recording conditions 
(such as resting state vs. evoked potentials, electrode 
montage), and preprocessing pipelines (such as artifact 
removal, co-registration, parcellation schemes). Feature 
engineering must follow reproducible frameworks to 
allow consistent and transparent reporting, which will 
facilitate external validation and meta-analyses. In addi-
tion, when developing an ML model to distinguish CM 
patients from HCs or those with EM, it is crucial to 
exclude features inherently indicative of specific migraine 
types or subtypes according to ICHD-3 criteria. For 
instance, incorporating neurophysiological data along-
side clinical variables and patient-reported outcome 
measures related to symptoms and disability, such as the 
frequency of attacks, presence of photophobia, or disabil-
ity score, can enhance model accuracy by leveraging fea-
tures that are a priori suggestive of a particular migraine 
phenotype [10]. In addition, future ML studies should 
aim to use high-quality data that already show potential 
to reveal pathophysiological mechanisms in migraine 
types and subtypes [9, 23, 38–53]. Although our system-
atic analysis revealed that most of the selected studies 
used advanced methodologies to acquire neuroimaging 
and electrophysiological data with standard programs for 
data processing and obtaining features, there were sub-
stantial differences in the design of these studies, which 
prevented us from performing a meta-analysis.

Another significant barrier in studies about ML clas-
sification of migraine types and subtypes is a lack of 
comprehensive reporting regarding the model metrics 
during training and testing the model. Researchers often 
report only accuracy or sensitivity and specificity, avoid-
ing to provide a complete confusion matrix to both the 
training and testing phases of developing a model. The 
lack of this information prevents readers from analyz-
ing and interpreting the study findings more in-depth. 
This should be obligatory in future studies if we want to 
achieve transparency and evaluate the significance of the 
study findings. For example, reporting only high sensitiv-
ity or specificity and avoiding the reporting of AUC and 
F1 can mask overfitting and class imbalance issues. Fur-
thermore, if there are no reports regarding the metrics 
of the training and testing phases, the overfitting issue 
cannot be evaluated properly, indicating a problem with 
generalization.

Our findings suggest that SVM and linear discriminant 
analysis were the best techniques for classifying EM ver-
sus HCs, CM versus HCs, and between migraine sub-
types. SVM is a supervised learning algorithm that finds 
the optimal hyperplane that best separates data points of 
different classes (e.g., EM vs. HCs) in a high-dimensional 
feature space. The advantages of this model are: (1) works 
well with small sample sizes (migraine neuroimaging 
and EEG datasets are often modest in size due to cost 
and complexity of data collection); (2) effective in high-
dimensional spaces (migraine research often involves 
high-dimensional data such as voxel-based morphom-
etry, functional connectivity matrices and EEG frequency 
bands); (3) the margin-maximizing property of SVM 
helps avoid overfitting, which is crucial when the dataset 
has more features than subjects; and (4) handles nonlin-
ear patterns with kernels (migraine-related brain changes 
may be nonlinear and subtle). In addition to these advan-
tages, linear discriminant analysis models each class as 
a Gaussian distribution with a shared covariance matrix 
and finds a linear combination of features that best sepa-
rates the means of the classes while minimizing within-
class variance. This offers better dimensionality reduction 
and high interpretability, providing coefficients for each 
feature and thus showing how much each coefficient con-
tributes to the classification decision. However, linear 
discriminant analysis is sensitive to outliers and assumes 
a normal distribution of data.

Inconsistencies in study design and different types of 
datasets prevented us from performing a meta-analy-
sis and led to various important features for classifying 
migraine types and subtypes, which were not replicated 
or validated in subsequent studies. These inconsistencies 
should motivate researchers to implement all the above 
proposed solutions (Fig.  3) for the identified barriers to 
improve ML classification models and identify potential 
migraine subtype biomarkers. However, it is also possible 
that migraine and its subtypes represent functional dis-
eases of the neural network with multiple structural and 
functional changes in the brain, rather than diseases of 
a single brain area [54]. This hypothesis is further sup-
ported by previous neuroimaging non-ML studies show-
ing structural and functional changes in the visual cortex, 
sensory processing regions, insula, hypothalamus, and 
brainstem across all migraine subgroups [55–58].

Datasets and codes for developed model should be 
made available upon request respecting general data pro-
tection regulations and FAIR principles (a set of guide-
lines for data management designed to make scientific 
data more Findable, Accessible, Interoperable, and Reus-
able), allowing researchers to access valuable datasets 
and study protocols to replicate, improve and/or validate 
findings [59–61]. Finally, translating ML discoveries into 
clinical practice requires multidisciplinary and global 



Page 10 of 13Petrušić et al. The Journal of Headache and Pain          (2025) 26:200 

collaboration. Neurologists, neuroscientists, and data sci-
entists must jointly develop clinically actionable pipelines 
that integrate ML outputs with clinical decision-making 
workflows.

Conclusion
Our findings highlight the potential value of ML tech-
niques in understanding the neurobiological basis of 
migraine by discovering neuroimaging patterns in 
migraine types and subtypes. Furthermore, MRI and 
EEG classifiers can accurately classify individuals who 
suffer from migraine and those representing HCs, as well 
as distinguish migraine types and subtypes, supporting 
the view of migraine as a complex brain disorder charac-
terized by multifaceted neurobiological pathophysiology. 
In the future, combining AI with multimodal biomark-
ers for stratifying migraine patients (such as genom-
ics and modifiable risk factors) to develop personalized 
treatment and prevention strategies remains a potential 
research hotspot [62].

In conclusion, achieving the promise of ML in migraine 
classification hinges on three pillars: (1) rigorous clinical 
subgroup definitions that capture phenotypic, therapeu-
tic, and demographic heterogeneity, (2) standardized, 
transparent high-quality data acquisition and feature-
processing frameworks, and (3) large-scale interna-
tional, multicentric and multidisciplinary collaborations 
that foster external validation and knowledge sharing. 
Embracing these strategies will not only accelerate the 
identification of migraine subtype biomarkers, deepen 
our understanding of multifaceted pathophysiological 
mechanisms, ensure ML migraine classification applica-
bility in a real-world setting, but will ultimately pave the 
way for precision medicine approaches tailored to each 
patient’s unique migraine profile.
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Fig. 3  Methodological requirements for future machine learning classification studies in migraine
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