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Abstract

Migraine is a complex neurological disorder with diverse clinical phenotypes and a multifaceted pathophysiology,
which poses substantial challenges for accurate diagnosis, subtype differentiation, and biomarker discovery.
Machine learning (ML) techniques have emerged as promising tools for classifying migraine patients and
uncovering the underlying neurobiological mechanisms that differentiate migraine types and subtypes. This
systematic review identifies current ML classification models for migraine types and subtypes, evaluating the
quality, reproducibility, and clinical utility of published studies. The findings demonstrate that current ML models,
particularly support vector machines and linear discriminant analysis, can accurately classify migraine patients
based on structural and functional neuroimaging features with accuracies ranging from 75 to 98%. However,
quality assessment revealed significant methodological heterogeneity across studies, including inconsistent
reporting of model performance, insufficient patient phenotyping, small and imbalanced datasets, and limited
external validation. These limitations hinder the global generalizability and reproducibility of these studies.

We propose a roadmap for future research emphasizing well-characterized clinical subgrouping, standardized
data acquisition and feature engineering protocols, transparency in model development and reporting, and
collaborative multicentric designs to enable large-scale validation. Furthermore, this review stresses the importance
of incorporating real-world phenotypic data, such as treatment response, comorbidities, and digital phenotyping
metrics, to enrich ML models and support the transition toward precision medicine in migraine care. Ultimately,
this review highlights the urgent need for methodological rigor in migraine ML classification studies to bridge the
gap between experimental success and clinical applicability.
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reporting, and 4) limited external validation.
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Application of Machine Learning in Migraine Classification:
call for study design standardization and global collaboration

Problem: Migraine is a complex disorder with diverse subtypes and overlapping
features, making accurate classification and biomarker discovery difficult.

Opportunity: ML models using MRI and EEG data can accurately classify:

Challenges identified: 1) small and heterogeneous samples, 2) inconsistent
patient phenotyping, 3) lack of standardization in data collection and model
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translate ML-based migraine classification into precision medicine.
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Introduction

Migraine is a highly heterogeneous and disabling dis-
order [1, 2], with varying symptomatology, genetic
basis, molecular pathways involved in the pathophysiol-
ogy, attack triggers, and course of disease [1]. Although
the varying symptomatology is well characterized by
the International Classification of Headache Disorders
(ICHD-3) [3], heterogeneous phenotypes are poorly
characterized in neuroimaging, neurophysiological, and
other multidisciplinary biomedical studies. Further-
more, the drawback of the current classification is that
it does not fully include and recognize the heterogene-
ity of migraine in important domains such as neuro-
biological and psychosocial factors [4—6]. Even though
the pursuit of migraine biomarkers is still undergoing
progress, machine learning (ML) techniques are emerg-
ing as valuable tools to capture patterns of disease [7]
and discover the most influential factors in differentiat-
ing migraine patients from healthy controls (HCs) [8].
Moreover, discovering differences between homogenous
migraine subtypes, such as migraine with aura (MwA)
characterized by only visual symptoms and MwA accom-
panied by additional somatosensory and/or dysphasic
symptoms [9], using ML models could point to new bio-
markers and allow innovative therapeutic strategies and
precision medicine. In addition, the homogenization of
investigated migraine subgroups according to clinical and
neurobiological phenotypes can improve the chances of

discovering new pathophysiological mechanisms [10, 11].
Collaborative efforts between global headache experts
and data scientists are essential to overcoming cur-
rent barriers and unlocking the full potential of artificial
intelligence (Al) in transforming migraine research and
management [12]. Furthermore, evaluating the quality
of research in articles dealing with ML classification in
the migraine field is necessary to move from hype to real
impact [10].

This systematic review aims to report the current ML
models for classifying migraine types and subtypes and
assess the quality of identified studies. Furthermore, our
goal is to determine the best models, types of data, and
features for classifying migraine types and subtypes. Ulti-
mately, we envision that findings from this review will
serve as a practical guide for researchers aiming to lever-
age ML in migraine studies, ensuring international repro-
ducibility and clinically meaningful findings.

Methodology

Search strategy

This systematic review followed the ‘Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses’
(PRISMA) guidelines [13]. Search strategy combined
information of two main terms, i.e. migraine and Al clas-
sification (with possible variations). PubMed and SCO-
PUS were searched for the terms, using database-specific
variations, in the period between their inception and
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February 19, 2025. The search string for PubMed was:
((migraine[Title/Abstract]) AND (classification[Title/
Abstract] OR classifier*[Title/Abstract] OR “Machine
Learning” [Title/Abstract] OR ML[Title/Abstract]
OR “Support Vector Machine” [Title/Abstract] OR
SVM[Title/Abstract] OR “deep learning” [Title/Abstract]
OR “neural network*”[Title/ Abstract] OR “artificial intel-
ligence” [Title/Abstract] OR Al[Title/Abstract])). The
SCOPUS string was: ((TITLE (migraine) AND TITLE
((classification OR classifier* OR “Machine Learning” OR
ML OR “Support Vector Machine” OR SVM OR “deep
learning” OR “neural network*” OR “artificial intelli-
gence” OR AI))) OR ((ABS (migraine) AND ABS ((clas-
sification OR classifier* OR “Machine Learning” OR ML
OR “Support Vector Machine” OR SVM OR “deep learn-
ing” OR “neural network*” OR “artificial intelligence” OR
Al))). Retrieved references were exported as.csv files and
imported into Rayyan QRCI [14] for duplicate checking.
The set of records was then exported to MS Excel for
study selection and data extraction.

Study selection

Retrieved references were equally and randomly assigned
to the authors who screened titles and abstracts for eli-
gibility. A double check on titles and abstracts eligibility
was randomly performed on 30% of selected references:
IP, WW, RM and LP performed the double check on
abstracts. The inter-rater reliability was calculated
using Krippendorft’s alpha coefficient (), which ranges
between O (total disagreement) and 1 (total agreement).
In case of disagreement, the record was considered as
selected and retained for full-text evaluation. If a was
below 0.70, a second 30% set of abstracts was submitted
to double check.

To be eligible and be evaluated in full texts, abstracts of
retrieved records had to refer to original research papers,
written in English and dealing with the use of Al to clas-
sify migraine disorders, i.e. distinguishing migraine from
healthy controls and/or different migraine subtypes (e.g.,
episodic migraine (EM) from chronic migraine (CM),
MwA from migraine without aura (MwoA)). Therefore,
records were excluded if: (a) had no abstract, (b) were
not in English, (c) were letters, editorials, case reports,
reviews or meta-analyses; (d) were not focusing on
migraine; (e) did not employ an Al approach to classify
migraine. In case of doubts, especially on the last crite-
rion, we decided to keep the record and further re-assess
it at the full-text evaluation stage.

The records maintained after the abstract check were
equally and randomly assigned to the authors who
screened full texts for inclusion. At this stage, we used
a “shuffle” procedure, i.e. authors did not receive the file
of the abstract they previously selected, and we applied
for a 100% double check over PDFs: authors worked in
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couples, blind to the results of each other. Two authors
(IP and AR) evaluated the presence of disagreement and
resolved conflicts.

For full texts evaluation, studies were excluded if: (a)
could not be retrieved; (b) description of migraine cohort
did not include information about whether patients
have EM or CM and MwA or MwoA, according to the
ICHD-3 criteria; (c) it was unclear whether the data were
collected during an ictal or interictal phase; (d) did not
deal with binary migraine classification (ML task that
involves distinguishing between two categories, e.g., EM
vs. HCs); (e) the type of data and features used for classi-
fication were not clearly stated, i.e. if it was unclear what
kind of neuroimaging or neurophysiological data was
used; (f) data for classification were based only on symp-
toms from ICHD-3 criteria; (g) there was no report on
the evaluation of the ML models (at least one of the fol-
lowing: accuracy, confusion matrix, sensitivity, specific-
ity, AUC, and F1 score).

At this stage, authors also had to identify whether the
paper was on ML approach. ML included: Support Vector
Machines, K-Nearest Neighbors, Decision Trees, Naive
Bayes, Linear Discriminant Analysis, Linear Regression
and Random Forest. Deep learning, a subfield of ML,
included: neural networks, such as a convolutional neural
network, recurrent neural network and generative adver-
sarial network. In case of disagreement or uncertainty on
the approach, the main author (IP) resolved the conflict.

Data extraction

Data extraction was performed through ad hoc electronic
spreadsheets of Microsoft Excel. Included studies were
equally and randomly assigned to the authors who had
to extract the following information: (a) author; (b) year
of publication; (c) type of data (e.g. clinical, neuroimag-
ing, neurophysiological, questionnaires); (d) migraine
condition (i.e., episodic, chronic, episodic with/without
aura, vestibular and/or other migraine types to be speci-
fied): the number of subjects; (e) if HCs: the number of
subjects; (f) best ML model and its metrics (expressed
in percentages); and (g) most important features for
classification.

Finally, a comprehensive set of information for data
quality was filled in. This information included: (1) Clini-
cally homogenized group (MwoA and MwA differenti-
ated into separate groups); (2) Clinically homogenized
subgroup (differentiation into subgroups according to
their deep profiled clinical phenotypes like migraine with
only visual aura, migraine with somatosensory and dys-
phasic aura (with or without visual symptoms), hemiple-
gic migraine, vestibular migraine, etc.); (3) Frequency
homogenized group (EM and CM differentiated into sep-
arate groups); (4) Frequency homogenized subgroup (EM
with low frequency (up to 7 days with headache/month),
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EM with high frequency (from 8 to 14 days with head-
ache/month), and CM, differentiated into separate sub-
groups); (5) Comorbidity; (6) Preventive drugs groups;
(7) Triptans groups; (8) Previous failed preventive treat-
ment; (9) Age subgroups separately investigated; (10) Sex
subgroups separately investigated; 11) Sufficient dataset;
12) Collected data reliable; 13) Missing data; 14) Outliers;
15) Data preprocessing and transformation; 16) Feature
selection; 17) Data splitting into training and validation
datasets; 18) Model selection; 19) Model finetuning; 20)
Overfitting; 21) Model performance evaluation — report-
ing accuracy and confusion matrices or sensitivity and
specificity; 22) Model performance evaluation - reporting
accuracy and confusion matrix or sensitivity and speci-
ficity, plus area under the curve (AUC) or F1 score; 23)
External validation; 24) Feature importance; 25) Interpre-
tation; 26) Future perspective; 27) Limitations; 28) Data
availability upon request; 29) Anonymized data shared
on the platform; and 30) Code availability.

Results

Out of 2,583 records retrieved in PubMed and SCOPUS,
we found 187 papers relevant to the topic based on the
title and abstract screening. After the full-text assess-
ment, eleven manuscripts fulfilled our inclusion crite-
ria. Figure 1 shows the review processes and reasons for
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paper exclusion. The agreement rate at abstract check
was 94.7%, and at Full-text selection was 91.4%.

Figure 2 reports the publication period coverage of
selected studies. It shows that the first study focused on
ML classification of a well-characterized migraine cohort
was published in 2016. In the last three years, more
studies have used ML classification for distinguishing
migraine patients from HCs and between migraine sub-
types, and for searching migraine biomarkers.

Table 1 summarizes the methodology and findings of
studies employing an ML approach to classify patients
with EM versus HCs. We identified seven studies, of
which three pooled episodic migraine patients with aura
(EMwA) and episodic migraine patients without aura
(EMwoA) into one group [15-17], two studies explor-
ing the classification of EMwA patients [9, 18], one study
exploring the classification of EMwoA patients [19], and
one study exploring the classification of EM with vestib-
ular migraine [20]. The sample size was quite heteroge-
neous, ranging from 20 EM (10 EMwA and 10 EMwoA)
versus 15 HCs up to 123 EM (including 18 EMwA and
105 EMwoA) versus 113 HCs. Almost all studies used
MRI-derived data for ML models, showing promising
ML model metrics. Support vector machines (SVM) were
the most common best model classifier, achieving accu-
racies between 80% and 89% (AUC: 84—88%), while linear

Fig. 1 Flowchart of selected studies
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Fig. 2 Publishing trends of ML classification studies performed on well-characterized migraine patients

discriminant analysis reached 97% accuracy in one study.
The most important features for distinguishing between
EMwA and HCs were: left temporal pole thickness, right
lingual gyrus thickness, left pars opercularis thickness,
and volume of the medial occipital cortex. Key discrimi-
native features for distinguishing between EM and HCs
included decreased amplitude responses from somato-
sensory evoked potentials in the left insula and left pri-
mary motor cortex, and altered functional connectivity
between the right periaqueductal gray region and frontal
cortical areas and insula, as well as between the cerebel-
lum and inferior occipital and orbitofrontal gyrus.
Quality scores for assessment of ML classification
studies in migraine (out of 30) varied from 13 to 24,
achieving from 5 to 13 (out of 13) obligatory require-
ments to ensure high-quality results and possible
reproducibility of the study (Supplementary Table 1).
Table 2 details three ML studies [16, 17, 21] aim-
ing to classify CM patients versus HCs. Sample sizes
ranged from 40 CM (17 CM with aura) versus 40 HCs
to 106 CM (22 CM with aura) versus 113 HCs. Deci-
sion trees and SVMs achieved accuracies of 76—-87%
(AUC: 84-89%). Feature sets included evoked poten-
tial oscillatory and somatosensory metrics and struc-
tural magnetic resonance imaging (MRI) measures of
cortical volume, surface area, and thickness, pointing
to decreased amplitude responses in the left insula
as the most important feature for distinguishing CM
from HCs. Quality scores for assessment ML classi-
fication studies in migraine were modest (13-21/30),
achieving from 5 to 10 (out of 13) obligatory require-
ments to ensure high-quality results and possible
reproducibility of the study, reflecting limited group

homogenization, feature importance reporting, and
transparency (Supplementary Table 1).

Table 3 presents five ML studies [9;17,18,22,23] clas-
sifying migraine types and subtypes (e.g, EMwA vs.
EMwoA), using multimodal data such as electroen-
cephalographic (EEG) connectivity, cerebral blood flow
from arterial spin labeling, structural MRI, and somato-
sensory evoked potentials. Sample sizes ranged from 30
EMwA versus 22 EMwoA to 123 EM (18 EMwA) versus
106 CM (22 CMwA). Linear discriminant analysis and
SVMs yielded accuracies of 71-98% (AUC: 73—-88%). Key
discriminative features for distinguishing EMwA patients
with different aura subtypes included pericalcarine and
pars opercularis thickness. Quality scores for assessment
ML classification studies in migraine ranged from 15 to
21 (out of 30), achieving from 9 to 10 (out of 13) obliga-
tory requirements to ensure high-quality results and pos-
sible reproducibility of the study, reflecting limited group
homogenization, model performance evaluation, feature
importance reporting, and transparency (Supplementary
Table 1).

Table 4 describes a deep learning study employing a
3D ResNet-18 neural network on selected structural MRI
regions (95 migraine patients with different types ver-
sus 532 HCs). The network achieved 75% accuracy and
yielded several important gray and white matter features
[24].

Discussion

Our systematic review highlights that ML applications
in migraine classification have demonstrated promising
accuracy and novel insights into disease mechanisms,
yet several critical challenges remain to be addressed.
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Table 2 Studies employing a machine learning approach to classify chronic migraine versus healthy controls
Study Data Best ML model and metrics Most Qual-
important ity score
features (obligato-
ry items)
Hsiao et al,  All three tasks measure evoked oscillatory latency, frequency, power, and Decision tree; N/A 21/30
2023 [21] power ratios, including non-painful, painful, and repetitive painful tasks. Accuracy 87%, Sensitivity (10/13)
40 CM (17 CMwA and 23 CMwoA) vs. 40 HCs 81%, Specificity 94%, and
AUC 84%.
Yoonetal, Volume, surface area, and thickness for cortical regions derived from the XGBoost; N/A 13/30
2024 [16] Desikan-Killiany Atlas. AUC 709%. (5/13)
26 CM (15 CMwA and 11 CMwoA) vs. 42 HCs
Hsiao etal, Multimodal data (amplitude derived from somatosensory evoked poten- Support vector machine; Decreased 19/30
2024 [17] tials, effective connectivity from spectral Granger causality analysis, and Accuracy 76%, Sensitivity amplitude (9/13)
scores of psychometric assessments). 60%, Specificity 91%, and responses
106 CM (22 CMwA and 84 CMwoA) vs. 113 HCs AUC 89%. in the left
insula.

CM chronic migraine, HCs healthy controls, CMwA chronic migraine with aura, CMwoA chronic migraine without aura, ML machine learning, AUC area under the curve

Table 3 Studies employing a machine learning approach to classify migraine types and subtypes

Study Data Best ML model and metrics  Mostimpor-  Qual-
tant features ity score
(obligato-
ry items)
Frid etal, Functional connectivity metrics of resting-state EEG data. Linear discriminant analysis; N/A 15/30
2020[22] 30 EMwA vs. 22 EMwoA Accuracy 85%, Sensitivity 87%, (10/13)
Specificity 82%, and AUC 88%
Fuetal,  Cerebral blood flow maps from arterial spin labeling magnetic resonance  Support vector machine N/A 15/30
2022 [23] imaging. classifier; (9/13)
32 EMwA vs. 56 EMwoA Accuracy 81%, Sensitivity 88%,
Specificity 74%, and AUC 84%.
Mitrovi¢  Cortical thickness, surface area, volume, mean Gaussian curvature, and Linear discriminant analysis; The thickness ~ 21/30
etal, 2023 folding index for cortical regions derived from the Desikan-Killiany Atlas.  Accuracy 98%. of the left peri-  (10/13)
[9] 22 EMwA-S vs. 24 EMwA-C calcarine gyrus
and left pars
opercularis.
Niddam  Voxels from structural neuroimaging derived from the masks yielded from Binary Gaussian process N/A 17/30
etal, 2024 functional MRI of visual cerebral regions. classification; (9/13)
[18] 50 EMWA vs. 50 EMwoA Accuracy 71% and AUC 73%.
Hsiaoet  Multimodal data (@amplitude derived from somatosensory evoked poten-  Support vector machine; N/A 19/30
al, 2024 ftials, effective connectivity from spectral Granger causality analysis, and Accuracy 73%, Sensitivity 60%, (9/13)

n7n scores of psychometric assessments).
123 EM (18 EMwWA and 105 EMwoA) vs. 106 CM (22 CMwA and 84
CMwoA)

Specificity 83%, and AUC 74%.

EM episodic migraine, EMwA episodic migraine with aura, EMwoA episodic migraine without aura, EMWA-S episodic migraine with only visual aura, EMwA-C episodic
migraine with visual, somatosensory and dysphasic aura, CM chronic migraine, CMwA chronic migraine with aura, CMwoA chronic migraine without aura, ML

machine learning, AUC area under the curve

Table 4 Study employing a deep learning approach to classify migraine versus healthy controls

Study Data Best deep learning
model and metrics

Most important features

Siddiquee et Cortical and white matter parcellation de- 3D ResNet-18;

al, 2022 [24] rived from structural magnetic resonance  Accuracy 75%, Sensitiv-
imaging, as well as masks of subcortical ity 67%, and Specificity
structures. 83%.

95 migraine (37 EM and 58 CM; 49 MwA
and 46 MwoA) vs. 532 HCs

Caudate, caudal anterior cingulate white matter, superior
frontal, thalamus, ventral diencephalon, posterior cingulate,
medial orbitofrontal white matter, pallidum, accumbens
area, putamen, rostral anterior cingulate white matter, lateral
orbitofrontal white matter, brain stem, rostral middle frontal
white matter, insula white matter, hippocampus, caudal
middle frontal white matter and precentral white matter.

EM episodic migraine, CM chronic migraine, MwA migraine with aura, MwoA migraine without aura, HCs healthy controls
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The studies herein included show that migraine patients
could be differentiated from HCs and even subdivided
into subtypes using ML models: accuracy in distin-
guishing EM from HCs was 78-97%, CM from HCs was
76—87%, and the accuracy to differentiate patient sub-
types was 71-98%. These results point out a considerable
number of potential biomarkers derived from neuroim-
aging data, either structural or functional, that should be
explored in the future. We are, in fact, only at the begin-
ning of the Al era, striving to enhance our study designs
with advanced data analysis. Before proceeding, we must
first establish clear guidelines on patient selection and
define essential elements that should be included in the
design of migraine classification studies. Therefore, we
used the recently proposed method for quality assess-
ment of ML classification in migraine [10] to identify
limitations of current studies and propose actions for
standardizing future studies. The final goal is to achieve
more generalizable ML models that can be implemented
globally in migraine research and clinical practice.

The first important barrier for developing a generaliz-
able ML classification model in migraine is not recog-
nizing the importance of well-characterized patients
included in model training and testing. It should be
obligatory to record and mention in the study whether
patients have EM or CM and MwA or MwoA, as well as
whether the data were collected during an ictal or interic-
tal phase. Not knowing this information imposes bias on
the model. Therefore, in a real-world scenario, the per-
formance of the model trained on such poorly described
datasets may considerably vary from reported metrics.
For example, cortical thickness alterations or functional
connectivity changes may differ systematically between
EM and CM or MwA and MwoA [1]; thus, aggregat-
ing these groups can obscure subtype-specific patterns
and mislead feature selection. Furthermore, overlook-
ing important cohort descriptors related to migraine,
such as demographic factors, presence of allodynia [25],
acute and preventive treatment response [26], comor-
bidities [27], active (at least 1 migraine attack in the last
year before collecting data for the study) or inactive dis-
ease states [28], and level of disability [2] might impose
additional biases and lead to limited and/or false inter-
pretability of the importance of certain features for
the model, and divert our attention from the right path
in the search for biomarkers. Although homogenizing
migraine patients into subgroups according to the above
mentioned factors leads to the loss of the generaliza-
tion capability of the model, it provides a better under-
standing of complex pathophysiological mechanisms in
various migraine subtypes and allows progress toward
precision medicine [10]. However, ML model trained on
large migraine cohorts consisting of several clinical phe-
notypes and demographic backgrounds, that is adjusted
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to an adequate ratio for the general migraine popula-
tion, would provide a powerful tool for decision-making
in case of probable migraine in clinical practice. Another
consideration would be to utilize unsupervised ML to
explore the natural subgroups of patients with migraine
using the imaging and clinical features that exist in the
databases. Given the debate on whether the 15-day cutoff
would be the most suitable way to characterize patients
with migraine [29], such ML approach could help us
explore subgroups of patients with migraine beyond
the traditional classification based on aura status, and
between episodic and chronic migraine.

Another important barrier in studies about ML clas-
sification of migraine types and subtypes is the number
of patients included in the training of ML models, which
prevents researchers from achieving the best model
metrics for the used features, selecting the best feature
candidates for biomarkers, and generalizability for the
aimed migraine population. Our review found that most
ML classification studies have relied on relatively small,
clinically mixed datasets, which limits both the generaliz-
ability and translational potential of their findings. There
are two ways in which this barrier could be overcome: the
first is to increase the sample size by making multicentric
international collaborations between institutions special-
ized in migraine research [16], while the second is to use
repeated data collection from patients where the sample
corresponds to the number of patients that provides a
95% confidence interval for a given migraine subpopula-
tion. In the first case, this would lead to better rigor of
selected features for the ML model and a harmonized
dataset from diverse geographic and socio-demographic
populations. Such efforts would enable external valida-
tion with a reduction of site-specific biases [30]. In addi-
tion, it would allow an adequate number of patients to
reach the plateau of ML model metrics in the training
dataset, which will, at the same time, indicate the number
of patients needed to train the model for a particular data
modality, such as structural MRI, functional MRI, and
electrophysiological metrics. In the second case, where
the sample size is limited, multiple data collections would
allow training of an ML model until it reaches a plateau
in the ML model metrics. This scenario would be most
preferable in studies designed to collect data via digital
phenotyping technologies, implementing the real-time
collection and analysis of behavioral and physiological
data using digital devices, including smartphones, wear-
able technology and biosensors [31-35]. Moreover, in
migraine research, digital phenotyping offers an unprec-
edented opportunity to objectively quantify symptom
patterns, physiological and behavioral changes associ-
ated with attacks, and disease cumulative burden dur-
ing the interictal stage, which could significantly help in
the characterization of migraine subtypes in individuals
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contributing to well-characterized homogenous sub-
groups [36].

Beyond clinical subgrouping, our findings underscore
that action should be initiated for the standardization
of protocols for neuroimaging [37], neurophysiological,
and other biomedical activities aiming to develop ML
model for the classification of migraine and its subtypes.
Standardization efforts should address MRI acquisition
protocols (such as field strength, sequence parameters,
harmonization across sites), EEG recording conditions
(such as resting state vs. evoked potentials, electrode
montage), and preprocessing pipelines (such as artifact
removal, co-registration, parcellation schemes). Feature
engineering must follow reproducible frameworks to
allow consistent and transparent reporting, which will
facilitate external validation and meta-analyses. In addi-
tion, when developing an ML model to distinguish CM
patients from HCs or those with EM, it is crucial to
exclude features inherently indicative of specific migraine
types or subtypes according to ICHD-3 criteria. For
instance, incorporating neurophysiological data along-
side clinical variables and patient-reported outcome
measures related to symptoms and disability, such as the
frequency of attacks, presence of photophobia, or disabil-
ity score, can enhance model accuracy by leveraging fea-
tures that are a priori suggestive of a particular migraine
phenotype [10]. In addition, future ML studies should
aim to use high-quality data that already show potential
to reveal pathophysiological mechanisms in migraine
types and subtypes [9, 23, 38—53]. Although our system-
atic analysis revealed that most of the selected studies
used advanced methodologies to acquire neuroimaging
and electrophysiological data with standard programs for
data processing and obtaining features, there were sub-
stantial differences in the design of these studies, which
prevented us from performing a meta-analysis.

Another significant barrier in studies about ML clas-
sification of migraine types and subtypes is a lack of
comprehensive reporting regarding the model metrics
during training and testing the model. Researchers often
report only accuracy or sensitivity and specificity, avoid-
ing to provide a complete confusion matrix to both the
training and testing phases of developing a model. The
lack of this information prevents readers from analyz-
ing and interpreting the study findings more in-depth.
This should be obligatory in future studies if we want to
achieve transparency and evaluate the significance of the
study findings. For example, reporting only high sensitiv-
ity or specificity and avoiding the reporting of AUC and
F1 can mask overfitting and class imbalance issues. Fur-
thermore, if there are no reports regarding the metrics
of the training and testing phases, the overfitting issue
cannot be evaluated properly, indicating a problem with
generalization.
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Our findings suggest that SVM and linear discriminant
analysis were the best techniques for classifying EM ver-
sus HCs, CM versus HCs, and between migraine sub-
types. SVM is a supervised learning algorithm that finds
the optimal hyperplane that best separates data points of
different classes (e.g., EM vs. HCs) in a high-dimensional
feature space. The advantages of this model are: (1) works
well with small sample sizes (migraine neuroimaging
and EEG datasets are often modest in size due to cost
and complexity of data collection); (2) effective in high-
dimensional spaces (migraine research often involves
high-dimensional data such as voxel-based morphom-
etry, functional connectivity matrices and EEG frequency
bands); (3) the margin-maximizing property of SVM
helps avoid overfitting, which is crucial when the dataset
has more features than subjects; and (4) handles nonlin-
ear patterns with kernels (migraine-related brain changes
may be nonlinear and subtle). In addition to these advan-
tages, linear discriminant analysis models each class as
a Gaussian distribution with a shared covariance matrix
and finds a linear combination of features that best sepa-
rates the means of the classes while minimizing within-
class variance. This offers better dimensionality reduction
and high interpretability, providing coefficients for each
feature and thus showing how much each coefficient con-
tributes to the classification decision. However, linear
discriminant analysis is sensitive to outliers and assumes
a normal distribution of data.

Inconsistencies in study design and different types of
datasets prevented us from performing a meta-analy-
sis and led to various important features for classifying
migraine types and subtypes, which were not replicated
or validated in subsequent studies. These inconsistencies
should motivate researchers to implement all the above
proposed solutions (Fig. 3) for the identified barriers to
improve ML classification models and identify potential
migraine subtype biomarkers. However, it is also possible
that migraine and its subtypes represent functional dis-
eases of the neural network with multiple structural and
functional changes in the brain, rather than diseases of
a single brain area [54]. This hypothesis is further sup-
ported by previous neuroimaging non-ML studies show-
ing structural and functional changes in the visual cortex,
sensory processing regions, insula, hypothalamus, and
brainstem across all migraine subgroups [55-58].

Datasets and codes for developed model should be
made available upon request respecting general data pro-
tection regulations and FAIR principles (a set of guide-
lines for data management designed to make scientific
data more Findable, Accessible, Interoperable, and Reus-
able), allowing researchers to access valuable datasets
and study protocols to replicate, improve and/or validate
findings [59-61]. Finally, translating ML discoveries into
clinical practice requires multidisciplinary and global
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Securing
adequate
number of
participants to
collect sufficient
data for training
dataset

Providing a
rationale for
choosing
particular type of
data and
features; securing
high quality of
collected data

Fig. 3 Methodological requirements for future machine learning classification studies in migraine

collaboration. Neurologists, neuroscientists, and data sci-
entists must jointly develop clinically actionable pipelines
that integrate ML outputs with clinical decision-making
workflows.

Conclusion

Our findings highlight the potential value of ML tech-
niques in understanding the neurobiological basis of
migraine by discovering neuroimaging patterns in
migraine types and subtypes. Furthermore, MRI and
EEG classifiers can accurately classify individuals who
suffer from migraine and those representing HCs, as well
as distinguish migraine types and subtypes, supporting
the view of migraine as a complex brain disorder charac-
terized by multifaceted neurobiological pathophysiology.
In the future, combining AI with multimodal biomark-
ers for stratifying migraine patients (such as genom-
ics and modifiable risk factors) to develop personalized
treatment and prevention strategies remains a potential
research hotspot [62].

In conclusion, achieving the promise of ML in migraine
classification hinges on three pillars: (1) rigorous clinical
subgroup definitions that capture phenotypic, therapeu-
tic, and demographic heterogeneity, (2) standardized,
transparent high-quality data acquisition and feature-
processing frameworks, and (3) large-scale interna-
tional, multicentric and multidisciplinary collaborations
that foster external validation and knowledge sharing.
Embracing these strategies will not only accelerate the
identification of migraine subtype biomarkers, deepen
our understanding of multifaceted pathophysiological
mechanisms, ensure ML migraine classification applica-
bility in a real-world setting, but will ultimately pave the
way for precision medicine approaches tailored to each
patient’s unique migraine profile.

Abbreviations

Al Artificial intelligence

ALFF amplitude of low-frequency fluctuations
AUC Area under the curve

™M Chronic migraine

CMwA chronic migraine with aura

CMwoA  chronic migraine without aura
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EEG Electroencephalography
EM Episodic migraine
EMwA Episodic migraine with aura

EMwA C-episodic migraine with visual, somatosensory and dysphasic
aura

EMwA S—episodic migraine with only visual aura

EMwoA  Episodic migraine without aura

HCs Healthy controls

ICHD 3-International Classification of Headache Disorders —3rd edition

ML Machine learning

MRI Magnetic resonance imaging

MwA Migraine with aura

MwoA Migraine without aura

ReHo regional homogeneity

RFCS regional functional correlation strength

SVM Support vector machines
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