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Background: Accurate left ventricular outflow tract obstruction (LVOTO) assessment is crucial for hypertrophic
cardiomyopathy (HCM) management and prognosis. Traditional methods, requiring multiple views, Doppler,
and provocation, is often infeasible, especially where resources are limited. This study aimed to develop and
validate a deep learning (DL) model capable of predicting severe LVOTO in HCM patients using only the
parasternal long-axis (PLAX) view from transthoracic echocardiography (TTE).

Methods: A DL model was trained on PLAX videos extracted from TTE examinations (developmental data-
set, n = 1,007) to capture both morphological and dynamic motion features, generating a DL index for
LVOTO (DLi-LVOTO; range 0-100). Performance was evaluated in an internal test dataset (ITDS; n = 87)
and externally validated in the distinct hospital dataset (DHDS; n = 1,334) and the LVOTO reduction treat-
ment dataset (n = 156).

Results: The model achieved high accuracy in detecting severe LVOTO (pressure gradient 50 mm Hg), with
area under the receiver operating characteristics curve of 0.97 (95% CI, 0.92-1.00) in ITDS and 0.93 (0.92-
0.95) in DHDS. At a DLi-LVOTO threshold of 70, the model demonstrated a specificity of 97.3% and negative
predictive value of 96.1% in ITDS. In DHDS, a cutoff of 60 yielded a specificity of 94.6% and negative predic-
tive value of 95.5%. The DLi-LVOTO also decreased significantly after surgical myectomy or Mavacamten
treatment, correlating with reductions in peak pressure gradient (P < .001 for all).

Conclusions: Our DL-based approach predicts severe LVOTO using only the PLAX view from TTE, serving as a
complementary tool when Doppler assessment is unavailable and for monitoring treatment response. (J Am
Soc Echocardiogr 2025;38:1115-26.)
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Central lllustration Deep learning-based single-view echocardiographic analysis for LVOTO in HCM.

INTRODUCTION

Hypertrophic cardiomyopathy (HCM) is one of the most common
genetic cardiomyopathies, with an estimated prevalence of 1 in
200 to 1 in 500." The phenotype of HCM is highly heterogeneous,
ranging from asymptomatic presentation to severe outcomes such
as sudden cardiac death. Among the various factors influencing symp-
toms and prognosis, left ventricular outflow tract (LVOT) obstruction
(LVOTO) plays a pivotal role."> When LVOTO becomes severe, it not
only contributes to symptoms such as exertional dyspnea, chest pain,
and syncope but also serves as the key determinant in guiding clinical
management, including pharmacological treatment, septal reduction
intervention, or surgery.” Therefore, accurate identification of
LVOTO is critical in the clinical evaluation of HCM patients.

See page 1127 in issue for related content.

Transthoracic echocardiography (TTE) is the primary imaging mo-
dality for diagnosing and evaluating HCM.? Left ventricular outflow
tract obstruction is typically assessed through TTE using Doppler imag-
ing and multiple echocardiographic views, often incorporating provoca-
tion maneuvers.” However, these assessments require substantial
expertise in image acquisition and interpretation, are time-intensive,
and are subject to technical variability, interobserver variability, and pa-
tient cooperation. These limitations can hinder their feasibility, espe-
cially in acute care settings using handheld devices, in resource-
limited community hospitals, or in patients unable to tolerate provoca-
tion. Among TTE views, the parasternal long-axis (PLAX) view is one of
the most fundamental, offering critical insights into cardiac anatomy
and dynamic function. Therefore, leveraging this single, widely available

view for automated prediction of LVOTO could improve accessibility
and maintain clinical accuracy, even in settings where expert evaluation
is limited or advanced Doppler-equipped systems are unavailable.

Recent advancements in deep learning (DL) have demonstrated sig-
nificant potential in automating and enhancing medical image interpre-
tation, and TTE is no exception. Deep learning algorithms can identify
complex patterns in imaging data that may elude human observers,
thereby improving diagnostic accuracy and efficiency. For instance, ef-
forts have been made to accurately assess conditions such as aortic ste-
nosis (AS) and diastolic dysfunction using limited two-dimensional
(2D) TTE images, even without Doppler input.” Despite these
advances, the application of DL for predicting LVOTO using single-
view TTE in HCM patients remains underexplored. A recent attempt
utilized the apical 4-chamber (A4C) view to predict LVOTO through
a DL-based model.2 However, this single-view approach is fundamen-
tally limited by the A4C’s indirect visualization of the LVOT, resulting in
suboptimal performance that may restrict its clinical applicability.

In the present study, we aimed to develop a hybrid spatiotemporal
network that learns directly from resting 2D PLAX TTE videos, which
provide a clear visualization of the LVOT, to predict the presence of se-
vere LVOTO in HCM patients without the need for Doppler input or
provocation maneuvers. To achieve this, our framework integrates
global B-mode spatial context with multiresolution M-mode features,
enabling the construction of a comprehensive spatiotemporal repre-
sentation of LVOTO dynamics. Specifically, we designed a novel, fully
automated multislice M-mode generation framework derived directly
from PLAX 2D video data, eliminating the need for manual placement
or predefined anatomical landmarks. This multislice M-mode approach
dynamically tracks key anatomical structures throughout the cardiac
cycle, capturing subtle hemodynamic cues that are often only observed
during provocation maneuvers. Our model’s ability to synchronize
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spatial and temporal information
allows for the detection of flow
abnormalities and  structural
changes in real time, enhancing
both interpretability and diag-
nostic precision. This study pre-
sents the development and
validation of our DL-based model
and evaluates its predictive perfor-
mance for severe LVOTO.
Additionally, we assess its poten-
tial as a practical complementary
tool to conventional Doppler-
based assessments, which often
require multiple TTE views with
DLi-LVOTO = Deep learning provocation maneuvers, offering
index for left ventricular a  streamlined  method  for
outflow tract obstruction LVOTO  detection, particularly
Grad-CAM = Gradient- valuable in resource-limited set-

Weighted Class Activation tings and for less experienced op-

Abbreviations

2D = Two-dimensional
A4C = Apical 4-chamber
Al = Artificial intelligence
AS = Aortic stenosis

CE = Cross-entropy

DDS = Developmental
Dataset

DHDS = Distinct hospital
dataset

DL = Deep learning

Mapping erators.
HCM = Hypertrophic
cardiomyopathy METHODS

L) el Study Population and Data

Sources

The DL-based model presented
in this study was developed and
validated using the Open Al
Dataset Project (Al-Hub) dataset,
an initiative supported by the
South  Korean  government’s
Ministry ~ of  Science  and
Information and Communication
Technology.>®”"®  This dataset
comprised 30,000
echocardiographic  examinations
retrospectively collected from 5
tertiary hospitals between 2012
and 2021, encompassing a wide
range of cardiovascular diseases,
including HCM. From this
dataset, we identified cases
categorized as HCM and applied
the following inclusion criteria: (1)
availability of echocardiographic
reports, (2) a clinical diagnosis of
HCM established by identifying a
maximal end-diastolic wall thickness =15 mm in any segment of the
left ventricle (LV), with other potential causes of hypertrophy excluded,
and (3) TTE, in which the presence or absence of LVOTO had been as-
sessed by Doppler-based pressure gradient (PG) measurements. While
Doppler data were necessary to establish ground truth for LVOTO clas-
sification, they were not used as model input. Furthermore, no examina-
tions were excluded based on image quality (IQ), as we aimed to capture
typical variations observed in real-world clinical TTE images.

To develop the DL-based LVOTO prediction algorithm, we created
the Developmental Dataset (DDS), consisting of 722 patients with
1,007 TTE examinations, which were divided into training, validation,
and test datasets in an 8:1:1 ratio, comprising 578, 71, and 73 patients

ITDS = Internal test dataset
LV = Left ventricle

LVOT = Left ventricular
outflow tract

LVOTO = Left ventricular
outflow tract obstruction

MV = Mitral valve

NPV = Negative predictive
value

PG = Pressure gradient
PLAX = Parasternal long-axis

PPV = Positive predictive
value

SAM = Systolic anterior
motion

TTE = Transthoracic
echocardiography
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(809, 111, and 87 TTE examinations, respectively), ensuring that no
patient overlap occurred among these subsets. Transthoracic echocar-
diography data from Severance Hospital were excluded from the DDS
and designated as the Distinct Hospital Dataset (DHDS) for indepen-
dent external tests. The DHDS included 573 patients with 1,334 TTE
examinations, serving as an external dataset to evaluate model gener-
alizability. Both the DDS and DHDS explicitly excluded any TTE data
from patients who had undergone LVOT gradient reduction treat-
ments, including surgical myectomy or Mavacamten therapy, to avoid
potential confounding effects during model development and valida-
tion. Additionally, we collected pre- and posttreatment TTE data from
obstructive HCM patients who underwent LVOT gradient reduction
treatment at Seoul National University Bundang Hospital and
Severance Hospital. This dataset comprises 17 patients with 112 TTE
examinations from those who underwent surgical myectomy and
13 patients with 44 TTE examinations from those treated with
Mavacamten. To eliminate any risk of data leakage, these patients
were entirely excluded from the DDS, regardless of when their TTE
examinations were performed. A schematic overview of the dataset
composition and allocation is provided in Supplemental Methods 1.
The study protocol was approved by the institutional review boards
of all participating institutions, with a waiver of informed consent
granted due to the retrospective study design. All clinical data were fully
anonymized prior to analysis. The study was conducted in accordance
with the principles outlined in the Declaration of Helsinki (2013).

TTE Acquisition and Interpretation

All TTE studies were conducted by trained echocardiographers or car-
diologists and interpreted by board-certified cardiologists specializing in
echocardiography as part of routine clinical care. All TTE examinations
included in this study were standard TTEs; exercise or pharmacological
stress tests were not included. However, provocation maneuvers that
can be performed during standard TTE, such as the Valsalva maneuver,
were included to evaluate LVOTO. For the assessment of LVOTO,
continuous-wave Doppler was used in the apical 3-chamber or 5-
chamber view to measure the LVOT peak velocity (V ., m/sec). The
Bernoulli equation (PG =4 x V,,,2) was then applied to calculate the
LVOT peak PG. If a Valsalva maneuver successfully induced or exacer-
bated LVOTO, the peak PG measured during Valsalva was used for clas-
sification. Conversely, if the Valsalva maneuver did not lead to any
measurable increase in LVOTO, the resting PG was used instead. Left ven-
tricular outflow tract obstruction was classified based on the LVOT peak
PG: a peak PG = 30 mm Hg was defined as significant LVOTO, and a
peak PG = 50 mm Hg was defined as severe LVOTO.>'* Importantly,
the ground truth labels used for model training and evaluation were based
solely on Doppler-assessed LVOT gradient; cases of midventricular or api-
cal obstruction were not included as positive labels.

As part of image interpretation, the HCM phenotype was classified
based on morphological characteristics observed on TTE to support
subgroup analyses. Patients were categorized into 4 phenotypes: api-
cal, septal, diffuse, mixed, and others. Detailed definitions of these
phenotypes are provided in Supplemental Methods 2.

Model Development

We developed a novel DL model to predict severe LVOTO using
single-view, 2D PLAX TTE videos acquired at rest, eliminating the
need for Doppler assessments. The model was trained to infer the pres-
ence of severe LVOTO as determined by Doppler assessment. It was
explicitly designed to capture both morphological (i.e., spatial) and mo-
tion (M-mode) features critical for LVOTO assessment (Figure 1).
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HIGHLIGHTS

e A DL model predicts severe LVOTO from resting PLAX view.

e No Doppler or provocation maneuvers are required for DL-
based LVOTO assessment.

e DLi-LVOTO enables risk stratification of LVOTO.

e DLi-LVOTO supports response monitoring of LVOT gradient
reduction treatment.

e DLi-LVOTO provides complementary tools in the manage-
ment of HCM patients.

Our network architecture employs a modified R(2 + 1)D-18 back-
bone,"” based on a ResNet-18'° using factorized three-dimensional
convolutions (2D spatial + one-dimensional temporal) to retain full
temporal resolution for video data. To effectively capture the motion
dynamics critical for predicting severe LVOTO, we introduced an auto-
mated M-mode generation process that leverages a spatial transformer
network.!” The model autonomously learns and predicts an optimal

(a) B-mode Feature Extraction
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M-mode line and extracts the motion information along that line in a
fully differentiable manner. An auxiliary mean squared error loss con-
strains the M-mode trajectory to pass through the mitral valve (MV) tip,
ensuring alignment with clinically relevant anatomical landmarks. This
approach mimics the conventional clinician-derived M-mode acquisi-
tion from the PLAX view, where the M-mode line is typically placed
to evaluate LVOT dynamics effectively. Additionally, we implemented
multilevel M-mode generation at various network depths, fusing these
representations to create comprehensive motion embeddings. The
generated M-mode representations were independently processed us-
ing a pretrained EfficientNet-B3'%'® M-mode, and spatiotemporal (B-
mode) features were then fused via concatenation.

The model was trained using a supervised learning approach with a
primary classification task to distinguish severe and nonsevere
LVOTO, optimized using a binary cross-entropy (CE) loss. Since se-
vere LVOTO is defined based on peak PG, which can be augmented
by provocation, but PLAX videos used in this study were recorded at
rest, we introduced an auxiliary regression task to predict the LVOT
PG measured at rest. This guided the network to learn subtle hemo-
dynamic features from resting images that correlate with [VOTO
severity, allowing it to infer additional predictive cues beyond rest-
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Figure 1 Deep learning framework for LVOTO assessment. (A) B-mode feature extraction, (B) trajectory-guided M-mode sampling,
(C) M-mode feature extraction, (D) feature fusion. CNN, Convolutional neural network.
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only inputs for a diagnosis that often requires provocation.
Additionally, an early exit strategy with auxiliary classifiers attached
to intermediate features improved gradient flow and training stability.
Overall, the training objective was formulated as a summation of 3
loss components: binary CE loss for classification, mean absolute error
loss for PG regression, and anatomical mean squared error loss to
ensure physiologically meaningful feature extraction. All loss terms
were equally weighted (1.0). All PLAX videos were first normalized
to 24 fps and then resized to 224 x 224 pixels. To assess the effect
of frame rate variability on model performance, we additionally tested
the trained model across different normalized frame rates (10-45 fps);
results confirmed stable performance above 20 fps (Supplemental
Method 3). To enhance generalization and robustness of the model,
we applied random augmentations including noise injection, sector
masking, haze, depth-dependent attenuation, dynamic gain variation,
brightness/contrast adjustment, temporal noise, sharpening, and geo-
metric transforms such as translation, rotation, and cropping.'®

For patient-level DL index of LVOTO (DLi-LVOTO; range, 0-100),
multiple PLAX videos from a single patient were individually
analyzed, and their DLi-LVOTO scores were averaged. Additional de-
tails on the model architecture, M-mode processing, and training pa-
rameters are available in Supplemental Methods 4. Further analyses
on the incremental contributions of key components, including auxil-
iary regression loss, anatomical alignment loss, early-exit strategy, and
multilevel M-mode generation, are presented in Supplemental
Methods 5. The model represents the latest advancement in our arti-
ficial intelligence (AD-driven HCM evaluation module (USfeat. HCM.
ai, Ontact Health), which integrates validated features such as view
classification and automatic measurement capabilities.'%'% !>

Model Validation and Statistical Analysis

The performance of our DL-based LVOTO prediction model was
validated using an internal test dataset ITDS) and an independent
external dataset (DHDS). Additionally, we assessed the model's per-
formance in serial TTE examinations of patients who underwent
LVOT gradient reduction therapy, including surgical myectomy and
Mavacamten treatment.

The DL-based prediction algorithm’s performance for severe
LVOTO in the ITDS and DHDS was evaluated using receiver oper-
ating characteristics curve analysis, with the area under the curve
and 95% Cl as key performance measures. We also visualized the dis-
tribution of the DLi-LVOTO across categories of no or insignificant
LVOTQO, significant LVOTO, and severe LVOTO using violin plots.
Additionally, we stratified DLi-LVOTO into 10-unit intervals and eval-
uated its diagnostic performance at each cutoff, assessing key perfor-
mance metrics, including accuracy, Fl-score, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV).

To further assess model robustness, subgroup analyses were per-
formed based on HCM phenotypes and PLAX IQ. Hypertrophic car-
diomyopathy was categorized into 3 phenotypes—septal, diffuse/
mixed, and apical subtypes—based on morphological characteristics
observed during TTE. In addition, PLAX IQ was classified into 3
levels: excellent (clear visualization of key structures with sharp endo-
cardial borders), good (minor shadowing or dropout with adequate
diagnostic quality), and fair (partial obscuration due to artifacts or sub-
optimal window, yet still interpretable).?!

Saliency maps were generated using the Gradient-Weighted Class
Activation Mapping (Grad-CAM),*? with representative maps pre-
sented for each severity level to highlight the areas with the greatest
influence on the model's prediction. In patients who were treated
with surgical myectomy or Mavacamten, we compared baseline
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and follow-up TTE studies performed before and after treatment by
visualizing changes in LVOT peak PG and DLi-LVOTO.

RESULTS

Baseline Clinical and Echocardiographic Characteristics

Baseline clinical and echocardiographic characteristics across datasets
are shown in Table 1. The median age of patients was 65 years (inter-
quartile range, 54-74) in the DDS and 60 years (interquartile range,
50-70) in the DHDS, with similar male predominance (66.3% and
67.0%, respectively). The DDS exhibited a relatively balanced distri-
bution of HCM phenotypes: apical (38.4%), septal (30.7%), and
diffuse or mixed (28.9%). In contrast, the DHDS was predominantly
composed of the septal type (71.4%). The overall prevalence of
LVOTO was 28.9% in DDS and 15.4% in DHDS. Additionally,
when comparing the Mavacamten treatment dataset and the surgical
myectomy dataset, patients who received Mavacamten were gener-
ally older and had a higher diffuse or mixed-type prevalence. In
contrast, those who underwent surgical myectomy were relatively
younger, with a predominance of the septal type.

To further characterize the population, Table 2 provides a stratified
comparison of baseline characteristics according to the presence and
severity of LVOTO. Across both DDS and DHDS, patients with severe
LVOTO tended to have smaller LV end-diastolic dimensions and
greater septal wall thickness compared to those without LVOTO.
However, there was considerable overlap in other variables such as
age, left ventricular ejection fraction, and left atrial volume index.

Performance of DL-Based Prediction of LVOTO

Our DL-based LVOTO prediction model was able to reliably detect
the presence of severe LVOTO using single-view, 2D PLAX videos,
achieving an area under the receiver operating characteristics curve
of 0.97 (95% CI, 0.92-1.00) in ITDS and 0.93 (95% CI, 0.92-0.95)
in DHDS (Figure 2). Subgroup analysis based on HCM phenotypes,
including septal, diffuse/mixed, and apical subtypes, demonstrated
that the model’s performance remained consistently robust across
all subtypes in both ITDS and DHDS validations (Supplemental
Result 1). Furthermore, IQ subgroup analysis revealed that model per-
formance remained stable regardless of PLAX view quality. Even in
good and fair IQ subgroups, the area under the receiver operating
characteristics curve values were comparable to those in the excellent
group, indicating the model’s robustness against variations in 1Q
(Supplemental Result 2). The DLi-LVOTO distribution showed a
gradual increase with LVOTO severity in both ITDS and DHDS, re-
flecting a consistent relationship between the predicted scores and
clinical classification (Figure 2). Additionally, in a subgroup of patients
with small LV end-systolic dimensions (<20 mm), the DLi-LVOTO
score remained significantly higher in those with LVOTO than in
those without, suggesting that the model does not simply reflect cavity
size (Supplemental Result 3).

Table 3 presents the diagnostic performance of DLi-LVOTO across
different cutoff values for identifying severe LVOTO in both the ITDS
and DHDS. In the ITDS, a cutoff of 70 yielded the highest accuracy
(94.3%) with a specificity of 97.3% and NPV of 96.1%. The same cut-
off also demonstrated high specificity (96.4%) in the DHDS, suggest-
ing its potential utility when the goal is to rule in LVOTO and prioritize
further evaluation confidently. Conversely, a cutoff of 30 provided
100.0% sensitivity in the ITDS and 93.0% in the DHDS, with corre-
sponding high NPVs (100.0% and 98.8%, respectively), supporting its
use as a conservative threshold for ruling out severe obstruction.
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Table 1 Baseline characteristics
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DDS External test dataset
Internal test Surgical Mavacamten
Training Validation dataset DHDS myectomy treatment
Overall DDS dataset dataset (ITDS) (DHDS) dataset dataset
Demographics
No. of patients 722 578 71 73 573 17 13
Age, years 65 (54-74) 65 (55-74) 60 (51-72) 65 (56-75) 60 (50-70) 60 (46-65) 69 (51-77)
Gender, male 479 (66.3) 385 (66.6) 55 (77.5) 39 (63.4) 384 (67.0) 9 (52.9) 6 (46.2)
HCM type
Apical 277 (38.4) 226 (39.1) 24 (33.8) 27 (37.0) 114 (19.9) 0 (0.0) 0 (0.0)
Septal 222 (30.7) 178 (30.8) 24 (33.8) 20 (27.4) 409 (71.4) 10 (58.8) 3 (23.1)
Diffuse or mixed 209 (28.9) 161 (27.9) 23 (32.4) 25 (34.2) 40 (7.0) 741.2) 9(69.2)
Others 14 (1.9) 13 (2.2) 0 (0.0 1(1.4) 10(1.7) 0 (0.0 1(7.7)
Echocardiographic data
No. of TTEs 1,005 809 111 87 1,334 112 44
LVEDD, mm 45 (41-49) 45 (41-48) 45 (42-48) 6 (42-50) 47 (44-51) 44 (40-49) 42 (37-46)
IVS, mm 5(12-18) 5(12-18) 16 (14-18) 4 (12-18) 8 (16-20) 17 (15-20) 8 (14-22)
LVEF, % 65 (61-69) 65 (61-69) 65 (61-69) 5 (62-69) 68 (62-73) 65 (58-69) 67 (62-69)
LAVI, mL/m? 46 (37-58) 45 (36-58) 48 (39-59) 47 (38 -60) 44 (35-56) 59 (42-77) 54 (46-79)
E/e 3(10-18) 13 (10-18) 13 (10-17) 3 (9-18) 5(11-19) 19 (15-24) 9 (13-29)
LVOTO 290 (28.9) 235 (29.0) 31 (27.9) 4 (27.6) 205 (15.4) 55 (49.1) 26 (59.1)
Significant (30= to <50 mm Hg) 98 (9.7) 73 (9.0 13 (11.7) 2(13.8) 48 (3.6) 13 (11.6) 9 (20.5)
Severe (=50 mm Hg) 192 (19.1) 162 (20.0) 18 (16.2) 2(13.8) 157 (11.8) 42 (37.5) 7 (38.6)
SAM 110 (10.9) 97 (12.0) 6 (5.4) 7 (8.0) 163 (12.2) 43 (38.4) 21 47.7)

IVS, Interventricular septum; LAV/, left atrial volume index; LVEDD, left ventricular end-diastolic dimension; LVEF, left ventricular ejection fraction.
Values are given as n (%) or median (interquartile range).

Table 2 Comparisons of baseline characteristics according to the presence of LVOTO

DDS DHDS
Significant Significant
LVOTO (30=to Severe LVOTO LVOTO (30=to Severe LVOTO
No LVOTO <50 mm Hg) (=50 mm Hg) No LVOTO <50 mm Hg) (=50 mm Hg)
Demographics

No. of patients 570 53 99 471 19 83
Age, years 65 (54-74) 60 (54-72) 65 (57-73) 61 (51-70) 57 (39-67) 60 (51-69)
Gender, male 396 (69.5) 30 (56.6) 53 (53.5) 324 (68.8) 13 (68.4) 47 (56.6)
HCM type

Apical 268 (47.0) 7(13.2) 2 (2.0 110 (23.4) 2 (10.5) 2.4

Septal 145 (25.4) 23 (43.4) 54 (54.5) 318 (67.5) 16 (84.2) 75 (90.4)

Diffuse or mixed 149 (26.1) 21 (39.6) 39 (39.4) 35 (7.4) 1(5.3) 4 (4.8)

Others 8 (1.4) 2 (3.8) 4 (4.0) 8(1.7) 0 (0.0 2 (2.4)

Echocardiographic data

No. of TTEs 717 98 192 1,129 48 157
LVEDD, mm 6 (43-50) 43 (40-47) 1 (38-45) 8 (44-51) 4 (42-48) 6 (43-49)
IVS, mm 4 (12-17) 17 (14-18) 7 (15-19) 8 (16-20) 0 (16-24) 9 (16-22)
LVEF, % 65 (61-68) 65 (61-69) 66 (62-70) 67 (62-73) 74 (70-76) 71 (68-76)
LAVI, mL/m? 5 (36-56) 44 (34-52) 0 (40-67) 2 (34-55) 5 (37-50) 3 (42-67)
E/e 12 (9-16) 13 (10-17) 7 (13-25) 4 (11-18) 16 (14-24) 0 (14-28)

IVS, Interventricular septum; LAV/, left atrial volume index; LVEDD, left ventricular end-diastolic dimension; LVEF, left ventricular ejection fraction.
Values are given as n%) or median (interquartile range).
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Deep learning index for LVOTO values between 30 and 70 were
associated with a trade-off between sensitivity and specificity, repre-
senting an intermediate range in which additional Doppler-based
assessment may be warranted for accurate classification.
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For each severity level, we present representative samples with
Grad-CAM saliency maps overlaid on PLAX views, specifically
highlighting the LVOT region (Figure 3, Video 1). These results
demonstrate that our model accurately identifies the relevant

Table 3 Diagnostic performance of DLi-LVOTO cutoffs for identifying severe LVOTO

ITDS DHDS

DLi-LVOTO Accuracy Sensitivity Specificity PPV NPV Accuracy Sensitivity Specificity PPV NPV

Cutoff (%) F1-score (%) (%) (%) (%) (%) F1-score (%) (%) (%) (%)
10 55.2 38.1 100.0 48.0 23.5 100.0 65.4 40.3 99.4 60.8 25.3 99.9
20 73.6 51.1 100.0 69.3 34.3 100.0 78.7 50.7 93.0 76.8 34.8 98.8
30 83.9 63.2 100.0 81.3 46.2 100.0 84.4 57.7 90.4 83.6 42.4 98.5
40 87.4 66.7 91.7 86.7 52.4 98.5 87.6 61.5 841 88.1 48.5 97.6
50 90.8 71.4 83.3 92.0 62.5 97.2 89.5 63.5 7.7 91.1 53.7 96.8
60 92.0 72.0 75.0 94.7 69.2 95.9 91.3 64.2 66.2 94.6 62.3 95.5
70 94.3 78.3 75.0 97.3 81.8 96.1 90.5 53.1 45.9 96.4 63.2 93.0
80 92.0 58.8 41.7 100.0 100.0 91.5 89.1 29.8 19.7 98.3 60.8 90.2

The data given in bold text is to emphasize the corresponding content in the article.
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regions for evaluating LVOTO across all severity levels without su-
pervision.

DLi-LVOTO Changes After LVOT Gradient Reduction
Treatment

In patients who underwent LVOT gradient reduction treatment, we
visualized the changes in LVOT peak PG and DLi-LVOTO between
baseline and follow-up TTE exams (Figure 4). In patients who under-
went surgical myectomy, LVOT peak PG showed a marked reduction
postsurgery, accompanied by a corresponding decrease in DLi-
LVOTO. Similarly, in patients treated with Mavacamten, both LVOT
peak PG and DLi-LVOTO progressively decreased over the course
of treatment compared to baseline. Representative cases are presented
in Figure 5. In the patient who underwent surgical myectomy, a signif-
icant reduction in peak PG was accompanied by a corresponding
decrease in DLI-LVOTO. After a while, for the patient treated with
Mavacamten, when the initial treatment response was insufficient,
both peak PG and DLi-LVOTO remained elevated. However, with
dose escalation, a gradual decrease in both parameters was observed.
To further investigate the relationship between treatment-induced
changes in peak PG and DLi-LVOTO, we visualized these changes at

the individual case level (Supplemental Results 4 and 5). The results
demonstrated that changes in DLI-LVOTO closely paralleled changes
in LVOT peak PG following treatment.

DISCUSSION

We have developed and validated a DL-based model for predicting
severe LVOTO in HCM using only a single TTE view. Despite relying
solely on the PLAX view, the model demonstrated high accuracy in
predicting severe LVOTO, with robust performance validated not
only in the [TDS but also in independent external datasets. These find-
ings suggest that this approach could be a reliable and efficient alter-
native to conventional methods. Furthermore, we observed that
changes in LVOT peak PG following treatment were generally accom-
panied by corresponding changes in DLi-LVOTO within the same pa-
tient, suggesting the model's potential utility in reflecting
treatment-related trends (Central lllustration).

The application of Al in echocardiography has advanced signifi-
cantly over the past decade. Early research focused on automating
manual measurements, including view classification, target structure
segmentation, and quantification. However, one of the core aspects
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Figure 4 Interval changes in DLi-LVOTO and peak PG after LVOT gradient reduction treatment (A, myectomy; B, Mavacamten).

of echocardiographic examination—the expert-driven visual anal-
ysis—remained largely unchallenged by Al Recent DL models
have begun to mimic expert eyeball analysis, predicting diastolic
dysfunction from an A4C view and AS using PLAX or parasternal
short-axis views.*”>> These models do not aim for a standalone
definitive diagnosis but rather serve as decision-support tools, flag-
ging potential disease and guiding further workup. Our DLi-
LVOTO model extends this paradigm by enabling real-time
LVOTO risk estimation during routine B-mode scanning. It has the
potential to assist early decision-making in settings where Doppler
assessment is not immediately available. For example, it could be in-
tegrated into handheld ultrasound devices or limited-resource envi-
ronments, although further validation in such conditions would be
required. Additionally, it could be integrated into handheld ultra-
sound devices that lack Doppler capability, allowing early detection
and timely evaluation in resource-limited settings. It can also be
incorporated into the standard echocardiography workflow, gener-
ating the DL-derived index during initial PLAX acquisition. This
real-time feedback would prompt targeted Doppler evaluation
with provocation maneuvers for high-risk cases, streamlining the
diagnostic process. The DLi-LVOTO also promises longitudinal
monitoring during treatment, tracking changes to evaluate the effec-
tiveness of Mavacamten therapy or septal myectomy. To fully vali-
date these applications, larger-scale prospective studies focusing on
both the diagnostic effectiveness of DLi-LVOTO integration and
treatment response tracking are warranted.

Although predicting LVOTO and AS from B-mode TTE video
may be similar, key differences exist. Unlike AS, which is typically
a fixed obstruction, LVOTO is inherently dynamic, fluctuating
throughout the day and influenced by physiological and hemody-
namic conditions. Therefore, accurate LVOTO assessment with
TTE often requires provocation maneuvers, such as the Valsalva ma-
neuver, or stress tests to induce obstruction and unmask its severity.
This variability makes predicting LVOTO using only resting B-mode
videos challenging. However, certain structural and hemodynamic
factors that predispose patients to LVOTO development can still
be evaluated on resting TTE. These include a narrowed LVOT, sig-
moid septum morphology, systolic anterior motion (SAM) of the
MYV, and small LV cavity size, all of which contribute to flow accel-
eration and obstruction under specific conditions. Based on this un-
derstanding, we hypothesized that the PLAX view—a foundational
TTE perspective—could serve as an optimal input for DL-based
LVOTO prediction. Its clear visualization of the LVOT and key
anatomical determinants of obstruction makes it particularly suited
for this purpose. As a result, we successfully developed a DL-
based model trained exclusively on single-view video data, capable
of reliably identifying severe LVOTO, even without Doppler input
or multiview analysis. This distinguishes our approach from the
only existing study (preprint, not peer-reviewed) that attempted to
predict LVOTO using A4C views alone.® We believe this difference
in anatomical visualization is one of the key factors contributing to
the enhanced performance observed in our study.
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camten).

Several previous studies on echocardiographic disease predic-
tion have adopted different strategies, each with inherent limita-
tions. For example, Huang et al.>> extracted single frames from
echocardiogram videos, converted them to grayscale, and resized
them to 64 x 64 pixels before training a WideResNet-28 for
view classification and AS diagnosis. While this 2D method is
computationally efficient, its static nature makes capturing the dy-
namic motion patterns critical for conditions like LVOTO chal-
lenging. In contrast, Holste et al’ employed three-dimensional
convolutional neural networks with extensive self-supervised pre-
training and deep ensemble methods, assuming that temporal pat-
terns would emerge implicitly from the video data. Although such
approaches benefited from modeling spatiotemporal information,
they did not explicitly focus on the motion of key anatomical struc-
tures and were computationally expensive. Similarly, our group
previously utilized an R(2 + 1)D architecture with a continuum-
aware multitask loss to accurately classify and comprehensively
assess the AS continuum.>®?* However, this method still relied
on the network to implicitly learn temporal dynamics rather than
explicitly track motion. In contrast, our current LVOTO prediction
model was explicitly designed to capture both morphological and
dynamic motion features crucial for LVOTO assessment. By incor-
porating multilevel M-mode generation and embeddings, our

method enhances the detection of subtle transient motion, such
as the SAM of the MV, and their resulting hemodynamic conse-
quences. These architectural advancements contributed to the su-
perior performance compared to a prior attempt to detect LVOTO
from B-mode video only,® indicating its robustness and potential
for clinical translation of our model.

While B-mode-derived M-mode representations have been
explored in Al-driven echocardiographic analysis, the prior approach
has limitations. For instance, a previous study attempted to improve
cardiac function prediction by incorporating M-mode imaging for
ejection fraction estimation.”> However, their method relied on fixed
sampling lines selected via heuristic rules, producing static M-mode
representations that could not adapt to individual patient anatomy
or dynamic motion patterns. Additionally, because M-mode extrac-
tion was performed as a separate preprocessing step, the model could
not refine feature selection in an end-to-end manner, potentially
limiting diagnostic performance. Our approach fundamentally differs
by incorporating M-mode generation directly within the DL frame-
work through the spatial transformer module. This allows the
network to autonomously determine the most informative M-mode
trajectory on a frame-by-frame basis, optimizing motion extraction
as part of the training process. By jointly optimizing the trajectory se-
lection, feature extraction, and classification, our model overcomes
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the constraints of the static M-mode placement and enables more
robust LVOTO detection. Furthermore, our model enhances feature
extractions through multiresolution processing and bilinear fusion of
B-mode and M-mode representations, providing a comprehensive
understanding of both structural morphology and motion dynamics
within an end-to-end framework. This integration improves classifica-
tion accuracy and enhances clinical interpretability, as the network
autonomously identifies and prioritizes diagnostically relevant fea-
tures directly from the data. Importantly, our automated M-mode
generation yields visualizations that align with traditional clinical prac-
tice, where M-mode imaging is highly valued for capturing motion
over time by producing M-mode images that display critical dynamic
features in a format familiar to clinicians. Moreover, Grad-CAM over-
lays on these generated M-mode images further enhance interpret-
ability by highlighting the precise regions and moments of abnormal
motion that drive the network’s predictions.

Despite the robust performance demonstrated across internal and
external datasets, it is important to recognize the trade-off between
specificity and sensitivity observed at different cutoff values. As noted
in our analysis, higher cutoffs increase specificity but simultaneously
reduce sensitivity, potentially leading to missed severe LVOTO cases.
This trade-off highlights the need for careful consideration when se-
lecting an optimal threshold, particularly in clinical settings where
the balance between false positives and false negatives must be
managed according to diagnostic priorities. Unlike fixed Doppler-
based criteria, our DL-based model offers the flexibility to adjust cut-
off values depending on clinical context—for example, prioritizing
sensitivity in initial screenings or specificity in pretreatment evalua-
tions. Further studies are warranted to explore optimal threshold stra-
tegies tailored to specific clinical scenarios.

This study has several limitations. Although we developed and
rigorously validated our DL-based model using multicenter data,
including internal and external validation, all datasets were retro-
spectively collected from tertiary centers in South Korea. As a result,
caution is required when interpreting the findings and applying
them to clinical practice. Further validation across diverse popula-
tions and healthcare settings is essential to enhance generalizability.
Additionally, while the DL model was evaluated using TTE data
from multiple institutions, its performance in resource-limited envi-
ronments or when used by novice operators remains uncertain.
Whether DLi-LVOTO will perform reliably on TTE images acquired
in such settings is yet to be determined. However, given that the
PLAX view is one of the most fundamental TTE views and is
more likely to be adequately obtained than a complete multiview
TTE examination, this suggests that DLi-LVOTO could provide a
reliable assessment of LVOTO in HCM patients even in less
advanced settings. Second, LVOTO is not exclusive to HCM pa-
tients and can occur in various clinical settings, such as hyperdy-
namic states and certain cardiac structural variations. Additional
studies are required to determine whether DLi-LVOTO can accu-
rately detect LVOTO in non-HCM patients. Third, this study also
examined the changes in DLi-LVOTO in response to Mavacamten
or surgical myectomy treatment alongside LVOT PG, although the
analysis was conducted on a relatively small patient cohort. While
DLi-LVOTO generally reflected treatment-related trends, it did not
always show close temporal alignment with Doppler-derived PG
at every time point. This discrepancy may be attributable to physio-
logical variability in PG or differences in what each metric captures.
Further investigation is needed to evaluate the robustness and repro-
ducibility of DLi-LVOTO as a longitudinal marker of treatment
response. Lastly, future research should explore whether DLi-
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LVOTO can predict clinical outcomes in HCM patients.
Addressing these aspects will be crucial for further validating the
clinical utility of this DL-based approach.

In conclusion, our DL-based approach enables the prediction of se-
vere LVOTO using only the PLAX view from TTE, providing a com-
plementary tool in situations where acquiring multiple views or
Doppler-based LVOT PGs is challenging. Additionally, DLi-LVOTO
may support the longitudinal monitoring of treatment response by re-
flecting overall trends in LVOTO severity, although it is not intended
to replace Doppler-based PG measurements. This method has the po-
tential to enhance LVOTO evaluation in select clinical scenarios, sup-
porting rather than replacing traditional assessment methods.
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