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Background: Accurate left ventricular outflow tract obstruction (LVOTO) assessment is crucial for hypertrophic 
cardiomyopathy (HCM) management and prognosis. Traditional methods, requiring multiple views, Doppler, 
and provocation, is often infeasible, especially where resources are limited. This study aimed to develop and 
validate a deep learning (DL) model capable of predicting severe LVOTO in HCM patients using only the 
parasternal long-axis (PLAX) view from transthoracic echocardiography (TTE).

Methods: A DL model was trained on PLAX videos extracted from TTE examinations (developmental data-

set, n = 1,007) to capture both morphological and dynamic motion features, generating a DL index for 
LVOTO (DLi-LVOTO; range 0-100). Performance was evaluated in an internal test dataset (ITDS; n = 87) 
and externally validated in the distinct hospital dataset (DHDS; n = 1,334) and the LVOTO reduction treat-

ment dataset (n = 156).

Results: The model achieved high accuracy in detecting severe LVOTO (pressure gradient 50 mm Hg), with 
area under the receiver operating characteristics curve of 0.97 (95% CI, 0.92-1.00) in ITDS and 0.93 (0.92-

0.95) in DHDS. At a DLi-LVOTO threshold of 70, the model demonstrated a specificity of 97.3% and negative 
predictive value of 96.1% in ITDS. In DHDS, a cutoff of 60 yielded a specificity of 94.6% and negative predic-

tive value of 95.5%. The DLi-LVOTO also decreased significantly after surgical myectomy or Mavacamten 
treatment, correlating with reductions in peak pressure gradient (P < .001 for all).

Conclusions: Our DL-based approach predicts severe LVOTO using only the PLAX view from TTE, serving as a 
complementary tool when Doppler assessment is unavailable and for monitoring treatment response. (J Am 
Soc Echocardiogr 2025;38:1115-26.)
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INTRODUCTION

Hypertrophic cardiomyopathy (HCM) is one of the most common 
genetic cardiomyopathies, with an estimated prevalence of 1 in 
200 to 1 in 500. 1 The phenotype of HCM is highly heterogeneous, 
ranging from asymptomatic presentation to severe outcomes such 
as sudden cardiac death. Among the various factors influencing symp-

toms and prognosis, left ventricular outflow tract (LVOT) obstruction 
(LVOTO) plays a pivotal role. 1,2 When LVOTO becomes severe, it not 
only contributes to symptoms such as exertional dyspnea, chest pain, 
and syncope but also serves as the key determinant in guiding clinical 
management, including pharmacological treatment, septal reduction 
intervention, or surgery. 2 Therefore, accurate identification of 
LVOTO is critical in the clinical evaluation of HCM patients.

Transthoracic echocardiography (TTE) is the primary imaging mo-

dality for diagnosing and evaluating HCM. 2 Left ventricular outflow 
tract obstruction is typically assessed through TTE using Doppler imag-

ing and multiple echocardiographic views, often incorporating provoca-

tion maneuvers. 2 However, these assessments require substantial 
expertise in image acquisition and interpretation, are time-intensive, 
and are subject to technical variability, interobserver variability, and pa-

tient cooperation. These limitations can hinder their feasibility, espe-

cially in acute care settings using handheld devices, in resource-

limited community hospitals, or in patients unable to tolerate provoca-

tion. Among TTE views, the parasternal long-axis (PLAX) view is one of 
the most fundamental, offering critical insights into cardiac anatomy 
and dynamic function. Therefore, leveraging this single, widely available

view for automated prediction of LVOTO could improve accessibility 
and maintain clinical accuracy, even in settings where expert evaluation 
is limited or advanced Doppler-equipped systems are unavailable.

Recent advancements in deep learning (DL) have demonstrated sig-

nificant potential in automating and enhancing medical image interpre-

tation, and TTE is no exception. Deep learning algorithms can identify 
complex patterns in imaging data that may elude human observers, 
thereby improving diagnostic accuracy and efficiency. For instance, ef-

forts have been made to accurately assess conditions such as aortic ste-

nosis (AS) and diastolic dysfunction using limited two-dimensional 
(2D) TTE images, even without Doppler input. 3-7 Despite these 
advances, the application of DL for predicting LVOTO using single-

view TTE in HCM patients remains underexplored. A recent attempt 
utilized the apical 4-chamber (A4C) view to predict LVOTO through 
a DL-based model. 8 However, this single-view approach is fundamen-

tally limited by the A4C’s indirect visualization of the LVOT, resulting in 
suboptimal performance that may restrict its clinical applicability.

In the present study, we aimed to develop a hybrid spatiotemporal 
network that learns directly from resting 2D PLAX TTE videos, which 
provide a clear visualization of the LVOT, to predict the presence of se-

vere LVOTO in HCM patients without the need for Doppler input or 
provocation maneuvers. To achieve this, our framework integrates 
global B-mode spatial context with multiresolution M-mode features, 
enabling the construction of a comprehensive spatiotemporal repre-

sentation of LVOTO dynamics. Specifically, we designed a novel, fully 
automated multislice M-mode generation framework derived directly 
from PLAX 2D video data, eliminating the need for manual placement 
or predefined anatomical landmarks. This multislice M-mode approach 
dynamically tracks key anatomical structures throughout the cardiac 
cycle, capturing subtle hemodynamic cues that are often only observed 
during provocation maneuvers. Our model’s ability to synchronize

Central Illustration Deep learning–based single-view echocardiographic analysis for LVOTO in HCM.
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spatial and temporal information 
allows for the detection of flow 
abnormalities and structural 
changes in real time, enhancing 
both interpretability and diag-

nostic precision. This study pre-

sents the development and 
validation of our DL-based model 
and evaluates its predictive perfor-

mance for severe LVOTO. 
Additionally, we assess its poten-

tial as a practical complementary 
tool to conventional Doppler-

based assessments, which often 
require multiple TTE views with 
provocation maneuvers, offering 
a streamlined method for 
LVOTO detection, particularly 
valuable in resource-limited set-

tings and for less experienced op-

erators.

METHODS

Study Population and Data 
Sources

The DL-based model presented 
in this study was developed and

validated using the Open AI 
Dataset Project (AI-Hub) dataset, 
an initiative supported by the

South Korean government’s

Ministry of Science and

Information and Communication

Technology.5,6,9-13 This dataset 
comprised 30,000 
echocardiographic examinations

retrospectively collected from 5 
tertiary hospitals between 2012

and 2021, encompassing a wide 
range of cardiovascular diseases,

including HCM. From this 
dataset, we identified cases

categorized as HCM and applied 
the following inclusion criteria: (1)

availability of echocardiographic 
reports, (2) a clinical diagnosis of 
HCM established by identifying a 

maximal end-diastolic wall thickness ≥15 mm in any segment of the 
left ventricle (LV), with other potential causes of hypertrophy excluded, 
and (3) TTE, in which the presence or absence of LVOTO had been as-

sessed by Doppler-based pressure gradient (PG) measurements. While 
Doppler data were necessary to establish ground truth for LVOTO clas-

sification, they were not used as model input. Furthermore, no examina-

tions were excluded based on image quality (IQ), as we aimed to capture 
typical variations observed in real-world clinical TTE images.

To develop the DL-based LVOTO prediction algorithm, we created 
the Developmental Dataset (DDS), consisting of 722 patients with 
1,007 TTE examinations, which were divided into training, validation, 
and test datasets in an 8:1:1 ratio, comprising 578, 71, and 73 patients

(809, 111, and 87 TTE examinations, respectively), ensuring that no 
patient overlap occurred among these subsets. Transthoracic echocar-

diography data from Severance Hospital were excluded from the DDS 
and designated as the Distinct Hospital Dataset (DHDS) for indepen-

dent external tests. The DHDS included 573 patients with 1,334 TTE 
examinations, serving as an external dataset to evaluate model gener-

alizability. Both the DDS and DHDS explicitly excluded any TTE data 
from patients who had undergone LVOT gradient reduction treat-

ments, including surgical myectomy or Mavacamten therapy, to avoid 
potential confounding effects during model development and valida-

tion. Additionally, we collected pre- and posttreatment TTE data from 
obstructive HCM patients who underwent LVOT gradient reduction 
treatment at Seoul National University Bundang Hospital and 
Severance Hospital. This dataset comprises 17 patients with 112 TTE 
examinations from those who underwent surgical myectomy and 
13 patients with 44 TTE examinations from those treated with 
Mavacamten. To eliminate any risk of data leakage, these patients 
were entirely excluded from the DDS, regardless of when their TTE 
examinations were performed. A schematic overview of the dataset 
composition and allocation is provided in Supplemental Methods 1.

The study protocol was approved by the institutional review boards 
of all participating institutions, with a waiver of informed consent 
granted due to the retrospective study design. All clinical data were fully 
anonymized prior to analysis. The study was conducted in accordance 
with the principles outlined in the Declaration of Helsinki (2013).

TTE Acquisition and Interpretation

All TTE studies were conducted by trained echocardiographers or car-

diologists and interpreted by board-certified cardiologists specializing in 
echocardiography as part of routine clinical care. All TTE examinations 
included in this study were standard TTEs; exercise or pharmacological 
stress tests were not included. However, provocation maneuvers that 
can be performed during standard TTE, such as the Valsalva maneuver, 
were included to evaluate LVOTO. For the assessment of LVOTO, 
continuous-wave Doppler was used in the apical 3-chamber or 5-

chamber view to measure the LVOT peak velocity (V max , m/sec). The 
Bernoulli equation (PG = 4 × V max 

2 ) was then applied to calculate the 
LVOT peak PG. If a Valsalva maneuver successfully induced or exacer-

bated LVOTO, the peak PG measured during Valsalva was used for clas-

sification. Conversely, if the Valsalva maneuver did not lead to any 
measurable increase in LVOTO, the resting PG was used instead. Left ven-

tricular outflow tract obstruction was classified based on the LVOT peak 
PG: a peak PG ≥ 30 mm Hg was defined as significant LVOTO, and a 
peak PG ≥ 50 mm Hg was defined as severe LVOTO. 2,14 Importantly, 
the ground truth labels used for model training and evaluation were based 
solely on Doppler-assessed LVOT gradient; cases of midventricular or api-

cal obstruction were not included as positive labels.

As part of image interpretation, the HCM phenotype was classified 
based on morphological characteristics observed on TTE to support 
subgroup analyses. Patients were categorized into 4 phenotypes: api-

cal, septal, diffuse, mixed, and others. Detailed definitions of these 
phenotypes are provided in Supplemental Methods 2.

Model Development

We developed a novel DL model to predict severe LVOTO using 
single-view, 2D PLAX TTE videos acquired at rest, eliminating the 
need for Doppler assessments. The model was trained to infer the pres-

ence of severe LVOTO as determined by Doppler assessment. It was 
explicitly designed to capture both morphological (i.e., spatial) and mo-

tion (M-mode) features critical for LVOTO assessment (Figure 1).

Abbreviations

2D = Two-dimensional 

A4C = Apical 4-chamber 

AI = Artificial intelligence 

AS = Aortic stenosis

CE = Cross-entropy

DDS = Developmental 

Dataset

DHDS = Distinct hospital 

dataset

DL = Deep learning

DLi-LVOTO = Deep learning 

index for left ventricular 

outflow tract obstruction

Grad-CAM = Gradient-

Weighted Class Activation 

Mapping

HCM = Hypertrophic 
cardiomyopathy

IQ = Image quality

ITDS = Internal test dataset 

LV = Left ventricle

LVOT = Left ventricular 

outflow tract

LVOTO = Left ventricular 

outflow tract obstruction

MV = Mitral valve

NPV = Negative predictive 

value

PG = Pressure gradient 

PLAX = Parasternal long-axis

PPV = Positive predictive 
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TTE = Transthoracic 
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Our network architecture employs a modified R(2 + 1)D-18 back-

bone, 15 based on a ResNet-18 16 using factorized three-dimensional 
convolutions (2D spatial + one-dimensional temporal) to retain full 
temporal resolution for video data. To effectively capture the motion 
dynamics critical for predicting severe LVOTO, we introduced an auto-

mated M-mode generation process that leverages a spatial transformer 
network. 17 The model autonomously learns and predicts an optimal

M-mode line and extracts the motion information along that line in a 
fully differentiable manner. An auxiliary mean squared error loss con-

strains the M-mode trajectory to pass through the mitral valve (MV) tip, 
ensuring alignment with clinically relevant anatomical landmarks. This 
approach mimics the conventional clinician-derived M-mode acquisi-

tion from the PLAX view, where the M-mode line is typically placed 
to evaluate LVOT dynamics effectively. Additionally, we implemented 
multilevel M-mode generation at various network depths, fusing these 
representations to create comprehensive motion embeddings. The 
generated M-mode representations were independently processed us-

ing a pretrained EfficientNet-B3 10,18 M-mode, and spatiotemporal (B-

mode) features were then fused via concatenation.

The model was trained using a supervised learning approach with a 
primary classification task to distinguish severe and nonsevere 
LVOTO, optimized using a binary cross-entropy (CE) loss. Since se-

vere LVOTO is defined based on peak PG, which can be augmented 
by provocation, but PLAX videos used in this study were recorded at 
rest, we introduced an auxiliary regression task to predict the LVOT 
PG measured at rest. This guided the network to learn subtle hemo-

dynamic features from resting images that correlate with LVOTO 
severity, allowing it to infer additional predictive cues beyond rest-

HIGHLIGHTS

• A DL model predicts severe LVOTO from resting PLAX view.

• No Doppler or provocation maneuvers are required for DL-

based LVOTO assessment.

• DLi-LVOTO enables risk stratification of LVOTO.

• DLi-LVOTO supports response monitoring of LVOT gradient

reduction treatment.

• DLi-LVOTO provides complementary tools in the manage-

ment of HCM patients.

Figure 1 Deep learning framework for LVOTO assessment. (A) B-mode feature extraction, (B) trajectory-guided M-mode sampling, 
(C) M-mode feature extraction, (D) feature fusion. CNN, Convolutional neural network.
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only inputs for a diagnosis that often requires provocation. 
Additionally, an early exit strategy with auxiliary classifiers attached 
to intermediate features improved gradient flow and training stability. 
Overall, the training objective was formulated as a summation of 3 
loss components: binary CE loss for classification, mean absolute error 
loss for PG regression, and anatomical mean squared error loss to 
ensure physiologically meaningful feature extraction. All loss terms 
were equally weighted (1.0). All PLAX videos were first normalized 
to 24 fps and then resized to 224 × 224 pixels. To assess the effect 
of frame rate variability on model performance, we additionally tested 
the trained model across different normalized frame rates (10-45 fps); 
results confirmed stable performance above 20 fps (Supplemental 
Method 3). To enhance generalization and robustness of the model, 
we applied random augmentations including noise injection, sector 
masking, haze, depth-dependent attenuation, dynamic gain variation, 
brightness/contrast adjustment, temporal noise, sharpening, and geo-

metric transforms such as translation, rotation, and cropping. 19

For patient-level DL index of LVOTO (DLi-LVOTO; range, 0-100), 
multiple PLAX videos from a single patient were individually 
analyzed, and their DLi-LVOTO scores were averaged. Additional de-

tails on the model architecture, M-mode processing, and training pa-

rameters are available in Supplemental Methods 4. Further analyses 
on the incremental contributions of key components, including auxil-

iary regression loss, anatomical alignment loss, early-exit strategy, and 
multilevel M-mode generation, are presented in Supplemental 
Methods 5. The model represents the latest advancement in our arti-

ficial intelligence (AI)-driven HCM evaluation module (USfeat_HCM. 
ai, Ontact Health), which integrates validated features such as view 
classification and automatic measurement capabilities. 10,12,13,20

Model Validation and Statistical Analysis

The performance of our DL-based LVOTO prediction model was 
validated using an internal test dataset (ITDS) and an independent 
external dataset (DHDS). Additionally, we assessed the model’s per-

formance in serial TTE examinations of patients who underwent 
LVOT gradient reduction therapy, including surgical myectomy and 
Mavacamten treatment.

The DL-based prediction algorithm’s performance for severe 
LVOTO in the ITDS and DHDS was evaluated using receiver oper-

ating characteristics curve analysis, with the area under the curve 
and 95% CI as key performance measures. We also visualized the dis-

tribution of the DLi-LVOTO across categories of no or insignificant 
LVOTO, significant LVOTO, and severe LVOTO using violin plots. 
Additionally, we stratified DLi-LVOTO into 10-unit intervals and eval-

uated its diagnostic performance at each cutoff, assessing key perfor-

mance metrics, including accuracy, F1-score, sensitivity, specificity, 
positive predictive value (PPV), and negative predictive value (NPV).

To further assess model robustness, subgroup analyses were per-

formed based on HCM phenotypes and PLAX IQ. Hypertrophic car-

diomyopathy was categorized into 3 phenotypes—septal, diffuse/ 
mixed, and apical subtypes—based on morphological characteristics 
observed during TTE. In addition, PLAX IQ was classified into 3 
levels: excellent (clear visualization of key structures with sharp endo-

cardial borders), good (minor shadowing or dropout with adequate 
diagnostic quality), and fair (partial obscuration due to artifacts or sub-

optimal window, yet still interpretable). 21

Saliency maps were generated using the Gradient-Weighted Class 
Activation Mapping (Grad-CAM), 22 with representative maps pre-

sented for each severity level to highlight the areas with the greatest 
influence on the model’s prediction. In patients who were treated 
with surgical myectomy or Mavacamten, we compared baseline

and follow-up TTE studies performed before and after treatment by 
visualizing changes in LVOT peak PG and DLi-LVOTO.

RESULTS

Baseline Clinical and Echocardiographic Characteristics

Baseline clinical and echocardiographic characteristics across datasets 
are shown in Table 1. The median age of patients was 65 years (inter-

quartile range, 54-74) in the DDS and 60 years (interquartile range, 
50-70) in the DHDS, with similar male predominance (66.3% and 
67.0%, respectively). The DDS exhibited a relatively balanced distri-

bution of HCM phenotypes: apical (38.4%), septal (30.7%), and 
diffuse or mixed (28.9%). In contrast, the DHDS was predominantly 
composed of the septal type (71.4%). The overall prevalence of 
LVOTO was 28.9% in DDS and 15.4% in DHDS. Additionally, 
when comparing the Mavacamten treatment dataset and the surgical 
myectomy dataset, patients who received Mavacamten were gener-

ally older and had a higher diffuse or mixed-type prevalence. In 
contrast, those who underwent surgical myectomy were relatively 
younger, with a predominance of the septal type.

To further characterize the population, Table 2 provides a stratified 
comparison of baseline characteristics according to the presence and 
severity of LVOTO. Across both DDS and DHDS, patients with severe 
LVOTO tended to have smaller LV end-diastolic dimensions and 
greater septal wall thickness compared to those without LVOTO. 
However, there was considerable overlap in other variables such as 
age, left ventricular ejection fraction, and left atrial volume index.

Performance of DL-Based Prediction of LVOTO

Our DL-based LVOTO prediction model was able to reliably detect 
the presence of severe LVOTO using single-view, 2D PLAX videos, 
achieving an area under the receiver operating characteristics curve 
of 0.97 (95% CI, 0.92-1.00) in ITDS and 0.93 (95% CI, 0.92-0.95) 
in DHDS (Figure 2). Subgroup analysis based on HCM phenotypes, 
including septal, diffuse/mixed, and apical subtypes, demonstrated 
that the model’s performance remained consistently robust across 
all subtypes in both ITDS and DHDS validations (Supplemental 
Result 1). Furthermore, IQ subgroup analysis revealed that model per-

formance remained stable regardless of PLAX view quality. Even in 
good and fair IQ subgroups, the area under the receiver operating 
characteristics curve values were comparable to those in the excellent 
group, indicating the model’s robustness against variations in IQ 
(Supplemental Result 2). The DLi-LVOTO distribution showed a 
gradual increase with LVOTO severity in both ITDS and DHDS, re-

flecting a consistent relationship between the predicted scores and 
clinical classification (Figure 2). Additionally, in a subgroup of patients 
with small LV end-systolic dimensions (<20 mm), the DLi-LVOTO 
score remained significantly higher in those with LVOTO than in 
those without, suggesting that the model does not simply reflect cavity 
size (Supplemental Result 3).

Table 3 presents the diagnostic performance of DLi-LVOTO across 
different cutoff values for identifying severe LVOTO in both the ITDS 
and DHDS. In the ITDS, a cutoff of 70 yielded the highest accuracy 
(94.3%) with a specificity of 97.3% and NPVof 96.1%. The same cut-

off also demonstrated high specificity (96.4%) in the DHDS, suggest-

ing its potential utility when the goal is to rule in LVOTO and prioritize 
further evaluation confidently. Conversely, a cutoff of 30 provided 
100.0% sensitivity in the ITDS and 93.0% in the DHDS, with corre-

sponding high NPVs (100.0% and 98.8%, respectively), supporting its 
use as a conservative threshold for ruling out severe obstruction.
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Table 2 Comparisons of baseline characteristics according to the presence of LVOTO

DDS DHDS

No LVOTO

Significant 

LVOTO (30≤ to 

<50 mm Hg)

Severe LVOTO 

(≥50 mm Hg) No LVOTO

Significant 

LVOTO (30≤ to 

<50 mm Hg)

Severe LVOTO 

(≥50 mm Hg)

Demographics

No. of patients 570 53 99 471 19 83

Age, years 65 (54-74) 60 (54-72) 65 (57-73) 61 (51-70) 57 (39-67) 60 (51-69)

Gender, male 396 (69.5) 30 (56.6) 53 (53.5) 324 (68.8) 13 (68.4) 47 (56.6)

HCM type

Apical 268 (47.0) 7 (13.2) 2 (2.0) 110 (23.4) 2 (10.5) 2 (2.4)

Septal 145 (25.4) 23 (43.4) 54 (54.5) 318 (67.5) 16 (84.2) 75 (90.4)

Diffuse or mixed 149 (26.1) 21 (39.6) 39 (39.4) 35 (7.4) 1 (5.3) 4 (4.8)

Others 8 (1.4) 2 (3.8) 4 (4.0) 8 (1.7) 0 (0.0) 2 (2.4)

Echocardiographic data

No. of TTEs 717 98 192 1,129 48 157

LVEDD, mm 46 (43-50) 43 (40-47) 41 (38-45) 48 (44-51) 44 (42-48) 46 (43-49)

IVS, mm 14 (12-17) 17 (14-18) 17 (15-19) 18 (16-20) 20 (16-24) 19 (16-22)

LVEF, % 65 (61-68) 65 (61-69) 66 (62-70) 67 (62-73) 74 (70-76) 71 (68-76)

LAVI, mL/m 2 45 (36-56) 44 (34-52) 50 (40-67) 42 (34-55) 45 (37-50) 53 (42-67)

E/e 12 (9-16) 13 (10-17) 17 (13-25) 14 (11-18) 16 (14-24) 20 (14-28)

IVS, Interventricular septum; LAVI, left atrial volume index; LVEDD, left ventricular end-diastolic dimension; LVEF, left ventricular ejection fraction. 

Values are given as n%) or median (interquartile range).

Table 1 Baseline characteristics

Overall DDS

DDS External test dataset

Training

dataset

Validation

dataset

Internal test 

dataset 

(ITDS)

DHDS

(DHDS)

Surgical

myectomy

dataset

Mavacamten

treatment

dataset

Demographics

No. of patients 722 578 71 73 573 17 13

Age, years 65 (54-74) 65 (55-74) 60 (51-72) 65 (56-75) 60 (50-70) 60 (46-65) 69 (51-77)

Gender, male 479 (66.3) 385 (66.6) 55 (77.5) 39 (53.4) 384 (67.0) 9 (52.9) 6 (46.2)

HCM type

Apical 277 (38.4) 226 (39.1) 24 (33.8) 27 (37.0) 114 (19.9) 0 (0.0) 0 (0.0)

Septal 222 (30.7) 178 (30.8) 24 (33.8) 20 (27.4) 409 (71.4) 10 (58.8) 3 (23.1)

Diffuse or mixed 209 (28.9) 161 (27.9) 23 (32.4) 25 (34.2) 40 (7.0) 7 (41.2) 9 (69.2)

Others 14 (1.9) 13 (2.2) 0 (0.0) 1 (1.4) 10 (1.7) 0 (0.0) 1 (7.7)

Echocardiographic data

No. of TTEs 1,005 809 111 87 1,334 112 44

LVEDD, mm 45 (41-49) 45 (41-48) 45 (42-48) 46 (42-50) 47 (44-51) 44 (40-49) 42 (37-46)

IVS, mm 15 (12-18) 15 (12-18) 16 (14-18) 14 (12-18) 18 (16-20) 17 (15-20) 18 (14-22)

LVEF, % 65 (61-69) 65 (61-69) 65 (61-69) 65 (62-69) 68 (62-73) 65 (58-69) 67 (62-69)

LAVI, mL/m 2 46 (37-58) 45 (36-58) 48 (39-59) 47 (38 -60) 44 (35-56) 59 (42-77) 54 (46-79)

E/e 13 (10-18) 13 (10-18) 13 (10-17) 13 (9-18) 15 (11-19) 19 (15-24) 19 (13-29)

LVOTO 290 (28.9) 235 (29.0) 31 (27.9) 24 (27.6) 205 (15.4) 55 (49.1) 26 (59.1)

Significant (30≤ to <50 mm Hg) 98 (9.7) 73 (9.0) 13 (11.7) 12 (13.8) 48 (3.6) 13 (11.6) 9 (20.5)

Severe (≥50 mm Hg) 192 (19.1) 162 (20.0) 18 (16.2) 12 (13.8) 157 (11.8) 42 (37.5) 17 (38.6)

SAM 110 (10.9) 97 (12.0) 6 (5.4) 7 (8.0) 163 (12.2) 43 (38.4) 21 (47.7)

IVS, Interventricular septum; LAVI, left atrial volume index; LVEDD, left ventricular end-diastolic dimension; LVEF, left ventricular ejection fraction. 

Values are given as n (%) or median (interquartile range).
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Deep learning index for LVOTO values between 30 and 70 were 
associated with a trade-off between sensitivity and specificity, repre-

senting an intermediate range in which additional Doppler-based 
assessment may be warranted for accurate classification.

For each severity level, we present representative samples with 
Grad-CAM saliency maps overlaid on PLAX views, specifically 
highlighting the LVOT region (Figure 3, Video 1). These results 
demonstrate that our model accurately identifies the relevant

Table 3 Diagnostic performance of DLi-LVOTO cutoffs for identifying severe LVOTO

DLi-LVOTO

Cutoff

ITDS DHDS

Accuracy

(%) F1-score

Sensitivity

(%)

Specificity

(%)

PPV

(%)

NPV

(%)

Accuracy

(%) F1-score

Sensitivity

(%)

Specificity

(%)

PPV

(%)

NPV

(%)

10 55.2 38.1 100.0 48.0 23.5 100.0 65.4 40.3 99.4 60.8 25.3 99.9

20 73.6 51.1 100.0 69.3 34.3 100.0 78.7 50.7 93.0 76.8 34.8 98.8

30 83.9 63.2 100.0 81.3 46.2 100.0 84.4 57.7 90.4 83.6 42.4 98.5

40 87.4 66.7 91.7 86.7 52.4 98.5 87.6 61.5 84.1 88.1 48.5 97.6

50 90.8 71.4 83.3 92.0 62.5 97.2 89.5 63.5 77.7 91.1 53.7 96.8

60 92.0 72.0 75.0 94.7 69.2 95.9 91.3 64.2 66.2 94.6 62.3 95.5

70 94.3 78.3 75.0 97.3 81.8 96.1 90.5 53.1 45.9 96.4 63.2 93.0

80 92.0 58.8 41.7 100.0 100.0 91.5 89.1 29.8 19.7 98.3 60.8 90.2

The data given in bold text is to emphasize the corresponding content in the article.

Figure 2 Model performance in the internal and external validation sets (A, ITDS; B, DHDS).

Journal of the American Society of Echocardiography 

Volume 38 Number 12

Park et al 1121



regions for evaluating LVOTO across all severity levels without su-

pervision.

DLi-LVOTO Changes After LVOT Gradient Reduction 
Treatment

In patients who underwent LVOT gradient reduction treatment, we 
visualized the changes in LVOT peak PG and DLi-LVOTO between 
baseline and follow-up TTE exams (Figure 4). In patients who under-

went surgical myectomy, LVOT peak PG showed a marked reduction 
postsurgery, accompanied by a corresponding decrease in DLi-

LVOTO. Similarly, in patients treated with Mavacamten, both LVOT 
peak PG and DLi-LVOTO progressively decreased over the course 
of treatment compared to baseline. Representative cases are presented 
in Figure 5. In the patient who underwent surgical myectomy, a signif-

icant reduction in peak PG was accompanied by a corresponding 
decrease in DLi-LVOTO. After a while, for the patient treated with 
Mavacamten, when the initial treatment response was insufficient, 
both peak PG and DLi-LVOTO remained elevated. However, with 
dose escalation, a gradual decrease in both parameters was observed. 
To further investigate the relationship between treatment-induced 
changes in peak PG and DLi-LVOTO, we visualized these changes at

the individual case level (Supplemental Results 4 and 5). The results 
demonstrated that changes in DLi-LVOTO closely paralleled changes 
in LVOT peak PG following treatment.

DISCUSSION

We have developed and validated a DL-based model for predicting 
severe LVOTO in HCM using only a single TTE view. Despite relying 
solely on the PLAX view, the model demonstrated high accuracy in 
predicting severe LVOTO, with robust performance validated not 
only in the ITDS but also in independent external datasets. These find-

ings suggest that this approach could be a reliable and efficient alter-

native to conventional methods. Furthermore, we observed that 
changes in LVOT peak PG following treatment were generally accom-

panied by corresponding changes in DLi-LVOTO within the same pa-

tient, suggesting the model’s potential utility in reflecting 
treatment-related trends (Central Illustration).

The application of AI in echocardiography has advanced signifi-

cantly over the past decade. Early research focused on automating 
manual measurements, including view classification, target structure 
segmentation, and quantification. However, one of the core aspects

Figure 3 Explainability analysis for DLi-LVOTO using saliency map.
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of echocardiographic examination—the expert-driven visual anal-

ysis—remained largely unchallenged by AI. Recent DL models 
have begun to mimic expert eyeball analysis, predicting diastolic 
dysfunction from an A4C view and AS using PLAX or parasternal 
short-axis views. 4-7,23 These models do not aim for a standalone 
definitive diagnosis but rather serve as decision-support tools, flag-

ging potential disease and guiding further workup. Our DLi-

LVOTO model extends this paradigm by enabling real-time 
LVOTO risk estimation during routine B-mode scanning. It has the 
potential to assist early decision-making in settings where Doppler 
assessment is not immediately available. For example, it could be in-

tegrated into handheld ultrasound devices or limited-resource envi-

ronments, although further validation in such conditions would be 
required. Additionally, it could be integrated into handheld ultra-

sound devices that lack Doppler capability, allowing early detection 
and timely evaluation in resource-limited settings. It can also be 
incorporated into the standard echocardiography workflow, gener-

ating the DL-derived index during initial PLAX acquisition. This 
real-time feedback would prompt targeted Doppler evaluation 
with provocation maneuvers for high-risk cases, streamlining the 
diagnostic process. The DLi-LVOTO also promises longitudinal 
monitoring during treatment, tracking changes to evaluate the effec-

tiveness of Mavacamten therapy or septal myectomy. To fully vali-

date these applications, larger-scale prospective studies focusing on 
both the diagnostic effectiveness of DLi-LVOTO integration and 
treatment response tracking are warranted.

Although predicting LVOTO and AS from B-mode TTE video 
may be similar, key differences exist. Unlike AS, which is typically 
a fixed obstruction, LVOTO is inherently dynamic, fluctuating 
throughout the day and influenced by physiological and hemody-

namic conditions. Therefore, accurate LVOTO assessment with 
TTE often requires provocation maneuvers, such as the Valsalva ma-

neuver, or stress tests to induce obstruction and unmask its severity. 
This variability makes predicting LVOTO using only resting B-mode 
videos challenging. However, certain structural and hemodynamic 
factors that predispose patients to LVOTO development can still 
be evaluated on resting TTE. These include a narrowed LVOT, sig-

moid septum morphology, systolic anterior motion (SAM) of the 
MV, and small LV cavity size, all of which contribute to flow accel-

eration and obstruction under specific conditions. Based on this un-

derstanding, we hypothesized that the PLAX view—a foundational 
TTE perspective—could serve as an optimal input for DL-based 
LVOTO prediction. Its clear visualization of the LVOT and key 
anatomical determinants of obstruction makes it particularly suited 
for this purpose. As a result, we successfully developed a DL-

based model trained exclusively on single-view video data, capable 
of reliably identifying severe LVOTO, even without Doppler input 
or multiview analysis. This distinguishes our approach from the 
only existing study (preprint, not peer-reviewed) that attempted to 
predict LVOTO using A4C views alone. 8 We believe this difference 
in anatomical visualization is one of the key factors contributing to 
the enhanced performance observed in our study.

Figure 4 Interval changes in DLi-LVOTO and peak PG after LVOT gradient reduction treatment (A, myectomy; B, Mavacamten).
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Several previous studies on echocardiographic disease predic-

tion have adopted different strategies, each with inherent limita-

tions. For example, Huang et al. 23 extracted single frames from 
echocardiogram videos, converted them to grayscale, and resized 
them to 64 × 64 pixels before training a WideResNet-28 for 
view classification and AS diagnosis. While this 2D method is 
computationally efficient, its static nature makes capturing the dy-

namic motion patterns critical for conditions like LVOTO chal-

lenging. In contrast, Holste et al. 4 employed three-dimensional 
convolutional neural networks with extensive self-supervised pre-

training and deep ensemble methods, assuming that temporal pat-

terns would emerge implicitly from the video data. Although such 
approaches benefited from modeling spatiotemporal information, 
they did not explicitly focus on the motion of key anatomical struc-

tures and were computationally expensive. Similarly, our group 
previously utilized an R(2 + 1)D architecture with a continuum-

aware multitask loss to accurately classify and comprehensively 
assess the AS continuum. 5,6,24 However, this method still relied 
on the network to implicitly learn temporal dynamics rather than 
explicitly track motion. In contrast, our current LVOTO prediction 
model was explicitly designed to capture both morphological and 
dynamic motion features crucial for LVOTO assessment. By incor-

porating multilevel M-mode generation and embeddings, our

method enhances the detection of subtle transient motion, such 
as the SAM of the MV, and their resulting hemodynamic conse-

quences. These architectural advancements contributed to the su-

perior performance compared to a prior attempt to detect LVOTO 
from B-mode video only, 8 indicating its robustness and potential 
for clinical translation of our model.

While B-mode-derived M-mode representations have been 
explored in AI-driven echocardiographic analysis, the prior approach 
has limitations. For instance, a previous study attempted to improve 
cardiac function prediction by incorporating M-mode imaging for 
ejection fraction estimation. 25 However, their method relied on fixed 
sampling lines selected via heuristic rules, producing static M-mode 
representations that could not adapt to individual patient anatomy 
or dynamic motion patterns. Additionally, because M-mode extrac-

tion was performed as a separate preprocessing step, the model could 
not refine feature selection in an end-to-end manner, potentially 
limiting diagnostic performance. Our approach fundamentally differs 
by incorporating M-mode generation directly within the DL frame-

work through the spatial transformer module. This allows the 
network to autonomously determine the most informative M-mode 
trajectory on a frame-by-frame basis, optimizing motion extraction 
as part of the training process. By jointly optimizing the trajectory se-

lection, feature extraction, and classification, our model overcomes

Figure 5 Representative cases for trends in DLi-LVOTO and PG with LVOT gradient reduction treatment (A, myectomy; B, Mava-
camten).
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the constraints of the static M-mode placement and enables more 
robust LVOTO detection. Furthermore, our model enhances feature 
extractions through multiresolution processing and bilinear fusion of 
B-mode and M-mode representations, providing a comprehensive 
understanding of both structural morphology and motion dynamics 
within an end-to-end framework. This integration improves classifica-

tion accuracy and enhances clinical interpretability, as the network 
autonomously identifies and prioritizes diagnostically relevant fea-

tures directly from the data. Importantly, our automated M-mode 
generation yields visualizations that align with traditional clinical prac-

tice, where M-mode imaging is highly valued for capturing motion 
over time by producing M-mode images that display critical dynamic 
features in a format familiar to clinicians. Moreover, Grad-CAM over-

lays on these generated M-mode images further enhance interpret-

ability by highlighting the precise regions and moments of abnormal 
motion that drive the network’s predictions.

Despite the robust performance demonstrated across internal and 
external datasets, it is important to recognize the trade-off between 
specificity and sensitivity observed at different cutoff values. As noted 
in our analysis, higher cutoffs increase specificity but simultaneously 
reduce sensitivity, potentially leading to missed severe LVOTO cases. 
This trade-off highlights the need for careful consideration when se-

lecting an optimal threshold, particularly in clinical settings where 
the balance between false positives and false negatives must be 
managed according to diagnostic priorities. Unlike fixed Doppler-

based criteria, our DL-based model offers the flexibility to adjust cut-

off values depending on clinical context—for example, prioritizing 
sensitivity in initial screenings or specificity in pretreatment evalua-

tions. Further studies are warranted to explore optimal threshold stra-

tegies tailored to specific clinical scenarios.

This study has several limitations. Although we developed and 
rigorously validated our DL-based model using multicenter data, 
including internal and external validation, all datasets were retro-

spectively collected from tertiary centers in South Korea. As a result, 
caution is required when interpreting the findings and applying 
them to clinical practice. Further validation across diverse popula-

tions and healthcare settings is essential to enhance generalizability. 
Additionally, while the DL model was evaluated using TTE data 
from multiple institutions, its performance in resource-limited envi-

ronments or when used by novice operators remains uncertain. 
Whether DLi-LVOTO will perform reliably on TTE images acquired 
in such settings is yet to be determined. However, given that the 
PLAX view is one of the most fundamental TTE views and is 
more likely to be adequately obtained than a complete multiview 
TTE examination, this suggests that DLi-LVOTO could provide a 
reliable assessment of LVOTO in HCM patients even in less 
advanced settings. Second, LVOTO is not exclusive to HCM pa-

tients and can occur in various clinical settings, such as hyperdy-

namic states and certain cardiac structural variations. Additional 
studies are required to determine whether DLi-LVOTO can accu-

rately detect LVOTO in non-HCM patients. Third, this study also 
examined the changes in DLi-LVOTO in response to Mavacamten 
or surgical myectomy treatment alongside LVOT PG, although the 
analysis was conducted on a relatively small patient cohort. While 
DLi-LVOTO generally reflected treatment-related trends, it did not 
always show close temporal alignment with Doppler-derived PG 
at every time point. This discrepancy may be attributable to physio-

logical variability in PG or differences in what each metric captures. 
Further investigation is needed to evaluate the robustness and repro-

ducibility of DLi-LVOTO as a longitudinal marker of treatment 
response. Lastly, future research should explore whether DLi-

LVOTO can predict clinical outcomes in HCM patients. 
Addressing these aspects will be crucial for further validating the 
clinical utility of this DL-based approach.

In conclusion, our DL-based approach enables the prediction of se-

vere LVOTO using only the PLAX view from TTE, providing a com-

plementary tool in situations where acquiring multiple views or 
Doppler-based LVOT PGs is challenging. Additionally, DLi-LVOTO 
may support the longitudinal monitoring of treatment response by re-

flecting overall trends in LVOTO severity, although it is not intended 
to replace Doppler-based PG measurements. This method has the po-

tential to enhance LVOTO evaluation in select clinical scenarios, sup-

porting rather than replacing traditional assessment methods.
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