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Risk prediction models play a crucial role in advancing healthcare by enabling early detection and
supporting personalized medicine. Nonetheless, polygenic risk scores (PRS) for Parkinson’s disease
(PD) have not been extensively studied across diverse populations, contributing to health disparities.
In this study, we constructed 105 PRS using individual-level data from seven ancestries and compared
two different models. Model 1 was based on the cumulative effect of 90 known European PD risk
variants, weighted by summary statistics from four independent ancestries (European, East Asian,
Latino/Admixed American, and African/Admixed). Model 2 leveraged multi-ancestry summary
statistics using a p-value thresholding approach to improve prediction across diverse populations.
Our findings provide a comprehensive assessment of PRS performance across ancestries and
highlight the limitations of a “one-size-fits-all” approach to genetic risk prediction. We observed
variability in predictive performance between models, underscoring the need for larger sample sizes
and ancestry-specific approaches to enhance accuracy. These results establish a foundation for
future research aimed at improving generalizability in genetic risk prediction for PD.

The heritability attributed to idiopathic Parkinson’s disease (PD) in Eur-
opean populations is estimated to be around 22%'. Genome-wide associa-
tion studies (GWAS) have been key in identifying common loci that
contribute to PD risk. A total of 90 risk variants across 78 independent loci
have been associated with PD risk in European ancestry populations'. More
recently, large-scale efforts are focusing on increasing genetic diversity in PD
to unravel the genetic architecture of the disease across ancestries””. The
first and largest multi-ancestry PD GWAS meta-analysis performed to date
in European, East Asian, Latino/Admixed American, and African ancestry
populations identified a total of 78 loci reaching genome-wide significance,
12 of which had not been previously identified’.

A polygenic risk score (PRS) can be generated to estimate an indivi-
dual’s susceptibility to a binary or a continuous outcome, exploring the

cumulative estimated effect of common genetic variants on an individual’s
phenotype, like PD”®. In this context, PRS alone has not been shown to have
clinical utility in predicting PD risk in European populations, with only
56.9% sensitivity and 63.2% specificity to predict disease at best’. PRS utility
improves both sensitivity (83.4%) and specificity (90.3%) when including
relevant clinical data elements such as olfactory function, family history, age,
and genderg’m. Similarly, the integration of environmental factors, multi-
omics data, and clinical criteria in PRS models boosts performance across
multiple diseases'"™".

Nevertheless, the current focus on European ancestries in PRS devel-
opment highlights a significant research gap. While recent studies™*'* have
begun to explore the application of PRS in PD across variable genetic
ancestries, the predominant reliance on European datasets may introduce
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limits on model generalizability. Using PRS to calculate disease risk in a
single population may exacerbate the performance of the model(s) when
applied globally across ancestries'”"".

Here, we conduct a broad assessment of PRS in PD, comparing seven
ancestries and applying two different methodological approaches, which are
summarized and visualized in Fig. 1. The first approach (here referred to as
Model 1) examines the cumulative effect of the 90 known European PD risk
variants, leveraging population-specific (European, East Asian, Latino/
Admixed American, and African Admixed populations) effect sizes derived
from four summary statistics (base data) (Supplementary Table 1a). This
approach implements PRS models on non-overlapping individual-level
data from the Global Parkinson’s Genetics Program (GP2) (target data)
across seven ancestries (East Asian, Central Asian, Latino/Admixed
American, African, African Admixed, European and Ashkenazi Jewish)
(Table 1, Supplementary Fig. 1). As part of Model 1, we further investigated
potential differences in model performance when adjusting for principal
components or the percentage of ancestral admixture. The second approach
(here referred to as Model 2) utilized summary statistics from a recent PD
multi-ancestry GWAS meta-analysis (Supplementary Table 1b) while
applying a best-fit p-value thresholding approach to the same individual-
level ancestry (target data)’. By doing so, we aimed to explore risk variability
across a global survey of genetic ancestries and evaluate the accuracy and
effectiveness of these models. Due to insufficient clinical data on olfactory
function, family history, and age across diverse ancestries, we did not include
these predictors in our models.

Results

Risk estimates show expected high levels of heterogeneity in
predicting disease status across diverse ancestry populations
In analyzing the distribution patterns of the 90 lead SNPs contributing
to risk from Nalls et al.' across the seven ancestry cohorts under study,
we observed significant heterogeneity among these predictors. Dif-
ferences between ancestries included the number of valid predictors
(defined as the subset of the 90 independent variants present in both
the base and target data across ancestries) (Supplementary Table 2),
directionality, variant frequency, and magnitude of effect, suggesting
substantial population-specific divergences in the genetic architecture
of disease (Fig. 2). The magnitudes of effect and p-values, which offer
context regarding the significance and directionality of each variant’s
effect, are quantified in Supplementary Table 3. Of note, the number of
valid predictors for PRS was found to be fewer than 90 in many non-
European populations. Variants contributing to PRS in European
populations may be rare in other ancestries, making them difficult to
impute accurately. Furthermore, these variants may not align with
haplotypes associated with PD risk across different ancestries due to
variations in linkage disequilibrium (LD) patterns, highlighting the
existence of diverse genetic architectures for disease risk.

Model 1 performance across diverse ancestries

European GWAS-derived PRS models utilizing the 90 risk predictors and
their effect estimates from Nalls et al.', and adjusted by sex, age, and 10
principal components (PCs), exhibited variable predictive accuracy across
ancestries (Table 2, Fig. 3, Supplementary Figs. 2 and 3). Interestingly, these
models generally outperformed PRS models that leveraged summary sta-
tistics from non-European populations, even when implemented on the
same population-specific predicted ancestry cohorts. This observation
further reinforces our hypothesis, as (1) the 90 lead SNPs that contribute to
PD in Europeans do not capture the complexity underlying risk haplotypes
in non-European populations, and (2) non-European summary statistics
are underpowered to detect meaningful effects. In the European population
(positive control), this model achieved an area under the curve (AUC) of
0.63 with a balanced accuracy of 0.59 (Table 2), confirming the expected
predictability in this cohort'. The Ashkenazi Jewish population exhibited the
highest AUC of 0.66 with a balanced accuracy of 0.62 (Table 2), reflecting
strong predictive capability.

Despite having the lowest number of valid predictors (87) among the
studied population-specific cohorts, European GWAS-derived Model 1
implemented on the East Asian population cohort achieved an AUC 0f0.62,
odds ratio (OR) of 1.47 (95% CI: 1.35-1.59), and balanced accuracy of 0.59
(Table 2, Supplementary Tables 2 and 4). This implies that a well-chosen set
of predictors can be more impactful than simply increasing the number of
variables included in the model. In contrast, the performance of Model 1 in
African ancestries was the lowest, with an AUC of 0.54, OR of 1.34 (95% CI:
1.22-1.46), and balanced accuracy of 0.54 (Table 2, and Supplementary
Table 4). Of note, the European-centric model performed particularly well
on African Admixed individuals, exhibiting an AUC of 0.65, OR of 1.55
(95% CI: 1.34-1.80), and balanced accuracy of 0.61 (Table 2, and Supple-
mentary Table 4). This may be due in part to their relatively high percentage
of European admixture, thus showing stronger alignment with European
genetic markers. This observation would further support the hypothesis that
the performance of these models can be influenced by how closely the
individuals in the sample resemble the reference population on which the
model was trained.

Further analyses were conducted to determine the individual effect size
contributions of genetic variants to Model 1 using summary statistics from
four ancestries independently within each population. These analyses,
detailed in Supplementary Table 5 for the top five hits per model, uncovered
differences among the 90 variants not only in effect size, as depicted in Fig. 2
and Supplementary Table 3, but also in the extent to which they influence
PRS for each population. Of note, SNCA (rs356182) emerges among the
strongest predictors across ancestries. The effect of SNCA was most pro-
minent for PRS models when using European and African Admixed
summary statistics, as well as with Latino/Admixed American summary
statistics, but was notably absent altogether from the meta-analyzed East
Asian summary statistics. LD differences could account for this observation
in the East Asian population, consistent with Foo et al.?, who nominated
SNCA rs6826785 as the top GWAS hit underlying this locus association.
This signal has an R* = 0.479 with SNCA rs356182, indicating a moderate
correlation. Indeed, applying Model 1 on the East Asian cohort using only
the 11 risk variants identified by Foo et al.” produced a balanced accuracy of
0.573, AUC of 0.60, and OR of 1.35 (95% CI: 1.25-1.46), thus performing
better than the original model using the 87 predictors from Nalls et al.
(Table 2, Supplementary Table 4).

As expected, LRRK2 G2019S (rs34637584) was found to be among the
most relevant predictors in the European, Ashkenazi Jewish, and Latino/
Admixed American populations only when European summary statistics
were incorporated into the model, as it was absent from each other ancestry-
specific summary statistics. This is most likely explained by statistical power
differences, given that LRRK2 G2019S is a less frequent variant compared to
more common GWAS hits, and the European summary statistics were the
most well-powered. As anticipated, GBAI N370S (rs76763715) and GBAI
E326K (tagged by rs35749011) were found to make significant contribu-
tions in the Ashkenazi Jewish and European populations, respectively. The
strong predictive power of the European base data for the Ashkenazi Jewish
population is likely explained by the higher frequency of LRRK2 G2019S
and GBA1 N370S carriers within this population (Supplementary Table 5).

We aimed to further adjust for the potential variability driven by
ancestral admixture patterns. The results, displayed in Supplementary Fig. 4
and Supplementary Table 4, show that the model adjusted by PCs and the
model adjusted by admixture remain consistent across ancestries. This
suggests that adjusting for the percentage of admixture does not provide
additional benefits over PCs for the populations assessed.

Model 2 performance across diverse ancestries

Model 2, based on a best-fit p-value thresholding approach using summary
statistics from the multi-ancestry GWAS meta-analysis conducted by Kim
et al.’ (see “Methods” section for a detailed explanation), demonstrates
varied effectiveness across ancestries (Table 3, Figs. 3 and 4, Supplementary
Figs. 5 and 6). Several trends stand out from the optimal p-value thresholds
identified here. First, the number of valid independent predictors selected by

npj Parkinson’s Disease| (2025)11:201


www.nature.com/npjparkd

https://doi.org/10.1038/s41531-025-00967-4 Article

Target data
000 000
Lo
AFR CAS Al
X Y LY O
T S

EUR AMR AAC EAS

( a. MODEL 1 ) b. MODEL 2

4 N\

Base data: 90 known variants Base data: Full sum stats

EUR (Nalls 2019) AMR (Loesch 2021) + 23andMe
Jo i ;

MULTI-ANCESTRY (Kim 2024)

1og.(F)

P-value . LD
thresholding adjustment
~ ol e e >
-4 .
KON 5:3-.. nf"""-”-'?"‘“(- .
= .
Principal Percentage of PRS at multiple P clumping Selecting the best
components admixture P-value by AUC
. J/
F o o o e e ) 1]
e A
f e
.
T I I I Il I I T 1 ‘ E
Ancestry Disease Magnitudes of Sensitivity &
Comparison Probability Effect Specificity
\ J

Fig. 1 | Schematic study workflow. The study workflow is summarized in three panels.  principal components or percentage of ancestral admixture, leading to the generation of

The first panel presents the individual-level datasets (target data) from seven diverse 56 scores; and b Model 2 implements a best-fit p-value thresholding PRS along with
ancestry groups: African Admixed (AAC), African (AFR), Ashkenazi Jewish (A]), variant-specific weights based on the multi-ancestry summary statistics from Kim et al.’
Latino/Admixed American (AMR), Central Asian (CAS), East Asian (EAS), and Eur- (pruned using default parameters). This approach generated a total of 49 PRS. The third
opean (EUR). The second panel compares the two implemented models: a Model 1 panel includes visualizations used to interpret results: heatmaps for ancestry comparison,
evaluates the cumulative effect of the 90 Parkinson’s disease (PD) risk variants identified  density plots for disease probability, forest plots for effect size, and Receiver Operating
by Nalls et al.', across the target data, weighted by effect sizes from four population- Characteristic (ROC) plots to evaluate model sensitivity and specificity.

specific summary statistics (base data) (EUR, AAC, AMR, EAS) and adjusted by
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Table 1 | Demographic and clinical characteristics of the studied cohorts

Cases Controls
Cohort Total Male (n, %) n AAO (mean + SD) n Age (mean = SD)
EUR 31799 18936 (59.54%) 22093 58.94 +11.75 9706 62.39 + 13.01
AAC 1144 476 (41.60%) 325 58.60 +12.29 819 64.89 +11.45
AMR 3358 1590 (47.35%) 1928 54.34 +13.54 1430 59.91 +8.47
EAS 4167 2683 (64.39%) 1819 56.85 +12.35 2348 62.42 +11.09
AFR 2606 1440 (55.25%) 954 57.08 £12.73 1652 63.08 + 15.46
AJ 1819 1228 (67.50%) 1396 62.46 +11.87 423 67.78 £9.80
CAS 905 408 (45.08%) 582 53.43 +11.46 323 54.98 +6.11
For controls, age represents age at sample collection, and for cases, age at onset (AAO), both presented as mean + Standard Deviation (SD).
AFR African, AJ Ashkenazi Jewish, CAS Central Asian, AAC African Admixed, AMR Latino/Admixed American, EAS East Asian, EUR European.
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Fig. 2 | Upset plot showing risk heterogeneity across ancestries. Case-control
association analysis results for the 90 risk variants across ancestries. The Y-axis lists
the ancestry populations — African Admixed (AAC), African (AFR), Ashkenazi
Jewish (AJ]), Latino/Admixed American (AMR), Central Asian (CAS), East Asian
(EAS), and European (EUR)—while the X-axis shows the 90 risk variants. The color
bar indicates the magnitude of effect as the log of the odds ratio (beta value) and its

directionality, with red representing negative directionality and blue representing
positive directionality, after standardizing the effect allele for each estimate. Note:
the directionality of effect for variants with non-significant association p-values
(>0.05) should be interpreted with caution and considered only as a potential trend.
Variant p-values can be found in Supplementary Table 3. Empty slots represent
variants that were not present in cases or controls within the corresponding ancestry.

PRSice for Model 2 is higher in populations with historically smaller hap-
lotype blocks compared to other populations at the same p-value thresholds.
For example, African populations tend to have smaller haplotypes than
European populations due to their greater genetic diversity, higher
recombination rates, and longer evolutionary history. In contrast, European
populations have longer haplotype blocks, resulting from genetic bottle-
necks and lower historical recombination rates. This is reflected by the
elevated number of independent SNPs included at a threshold of p = 5e-07
for the African population (506) than for the European population (267)
(Table 3).

Additionally, more stringent p-value thresholds appear to produce the
best-performing models in populations with generally smaller haplotype
blocks, such as admixed populations. At more lenient thresholds, admixed
populations like African Admixed and Latino/Admixed Americans exhib-
ited overfitting (Supplementary Fig. 6). This may be due in part to the
representation of these ancestries in the base data — each of the ancestries for
which the most stringent (5e-08) p-value threshold yielded the best-fit
model (East Asian, African Admixed, and Latino/Admixed American) were
included in the multi-ancestry summary statistics from Kim et al.®Ttis, thus,
more likely that risk variants contributing to disease in these populations
would be found to be significant in the base data, while prediction models
for other ancestries would require the inclusion of more SNPs.

Overall, Model 2 performed best on the Ashkenazi Jewish cohort and
worst on the African and East Asian cohorts, with AUCs ranging from 0.58
t0 0.67 (Table 3, Fig. 4). These results are comparable to the European base
data implementation of Model 1, with Model I generally performing better
on East Asian, African Admixed, and European populations, Model 2
performing better on Ashkenazi Jewish, Central Asian, and African popu-
lations, and inconclusive results with the Latino/ Admixed American cohort
based on ORs and balanced accuracy (Tables 2 and 3, Supplementary Table
4). When comparing AUCs using DeLong’s test, Model I performs sig-
nificantly better for three ancestries (European, East Asian, and African

Admixed) while Model 2 performs significantly better for the African
ancestry (Fig. 5, Supplementary Table 6).

Alternatively, Model 2 consistently outperforms Model 1 when using
non-European base data. Notably, Model 2 produced more robust predic-
tions than Model I weighted by East Asian, African, and Latino/Admixed
American base data when applied to those three ancestries, respectively,
based on ORs, AUCs, and balanced accuracies (Tables 2 and 3, Fig. 5,
Supplementary Fig. 5, and Supplementary Table 4). This parallels afore-
mentioned findings from Model 1 using European base data, similarly
underscoring the importance of utilizing well-powered summary statistics
in PRS analyses.

Discussion

This study represents the first comprehensive assessment of PRS in pre-
dicting PD risk across diverse ancestries. While previous genetic research
has primarily focused on populations of European ancestry, our study builds
upon this by providing an extensive global landscape of PRS contributing to
PD. We employed two distinct methodological approaches for PRS calcu-
lation: Model 1 focused on 90 European-centric risk variants while lever-
aging four population-specific summary statistics, and Model 2 was based
on best-fit p-value thresholding applied to multi-ancestry summary statis-
tics. Additionally, we tested various covariate adjustments (principal com-
ponents versus percentage of admixture) and utilized different base datasets
(single population-specific summary statistics versus combined multi-
ancestry GWAS meta-analysis).

Our study revealed that while our understanding of PD risk is pre-
dominantly derived from European genetic studies, Model 1, utilizing
summary statistics from Europeans, shows to some extent applicability
across diverse populations, including Ashkenazi Jewish (harboring certain
levels of European ancestry and enriched with LRRK2 and GBAI carriers)
and East Asians. Of note, PRS models derived from the 90 risk predictors
originating from European populations and constructed using estimates
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Table 2 | Model 1 performance across ancestries

Target data Base data AUC Accuracy (95% CI) Balanced Accuracy Sensitivity Specificity
EUR AAC 0.554 0.531 (0.525-0.536) 0.539 0.517 0.562
AMR 0.569 0.556 (0.551-0.562) 0.553 0.561 0.545
EAS 0.584 0.558 (0.552-0.563) 0.561 0.553 0.570
EUR 0.632 0.596 (0.590-0.601) 0.595 0.597 0.594
AAC AAC 0.585 0.565 (0.535-0.594) 0.571 0.585 0.557
AMR 0.575 0.612 (0.583-0.640) 0.568 0.468 0.669
EAS 0.622 0.578 (0.549-0.607) 0.604 0.665 0.543
EUR 0.651 0.617 (0.588-0.645) 0.612 0.600 0.624
AMR AAC 0.579 0.561 (0.544-0.578) 0.563 0.553 0.573
AMR 0.505 0.507 (0.490-0.524) 0.511 0.483 0.538
EAS 0.625 0.594 (0.577-0.611) 0.592 0.607 0.577
EUR 0.636 0.597 (0.580-0.614) 0.594 0.613 0.576
EAS AAC 0.58 0.558 (0.542-0.573) 0.560 0.577 0.542
AMR 0.537 0.538 (0.523-0.554) 0.531 0.472 0.590
EAS 0.55 0.539 (0.523-0.554) 0.538 0.529 0.546
EUR 0.618 0.586 (0.571-0.601) 0.590 0.621 0.558
AFR AAC 0.543 0.540 (0.521-0.560) 0.537 0.526 0.548
AMR 0.511 0.520 (0.501-0.539) 0.506 0.455 0.558
EAS 0.536 0.559 (0.540-0.579) 0.535 0.445 0.625
EUR 0.536 0.507 (0.488-0.526) 0.522 0.579 0.465
AJ AAC 0.543 0.504 (0.480-0.527) 0.535 0.476 0.593
AMR 0.545 0.506 (0.483-0.530) 0.553 0.466 0.641
EAS 0.556 0.557 (0.534-0.580) 0.548 0.564 0.532
EUR 0.665 0.615 (0.592-0.637) 0.624 0.607 0.641
CAS AAC 0.557 0.562 (0.529-0.595) 0.553 0.586 0.520
AMR 0.585 0.556 (0.523-0.588) 0.565 0.533 0.598
EAS 0.566 0.536 (0.503-0.569) 0.548 0.505 0.591
EUR 0.591 0.591 (0.558-0.623) 0.579 0.622 0.536

Accuracy metrics for each instance of Model 1, including area under the curve (AUC), accuracy with 95% confidence interval (95% Cl), balanced accuracy, sensitivity, and specificity for each target dataset,
along with corresponding population-specific base data: AFR African, AJ Ashkenazi Jewish, CAS Central Asian, AAC African Admixed, AMR Latino/Admixed American, EAS East Asian, EUR European.

EUR

AJ

* et coeticient

Fig. 3 | Model 1 and Model 2 magnitude of effect for each cohort. Forest plots
comparing the effectiveness of risk prediction across the studied ancestries. Each
panel contrasts individual-level data for the cohorts under study with the Model 1
population-specific summary statistics — European (EUR), East Asian (EAS),

AFR

multi-ancestry data used in Model 2. The X-axis represents the magnitude of

confidence intervals.

Latino/Admixed American (AMR), and African Admixed (AAC) — as well as the

effect, while the Y-axis lists the summary statistics for each group. The dots
symbolize the value of the beta coefficient, and the horizontal lines depict the 95%
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Specificity
0.537
0.599
0.667
0.629
0.555

Sensitivity
0.622
0.538
0.602
0.586
0.557

Balanced accuracy

0.579
0.568

0.635
0.608
0.556

0.586
0.598

Accuracy (95% CI)
0.561 (0.532-0.59)
0.576 (0.557-0.595)
0.617 (0.595-0.64)
0.605 (0.588-0.621)
0.556 (0.54-0.571)

0.578
0.621

0.583
0.67
0.639

AUC
0.591

1.36 (1.18-1.57)
1.37 (1.25-1.50)
2.41 (1.99-2.91)
1.56 (1.44-1.70)
1.44 (1.33-1.57)
1.54 (1.50-1.59)
1.54 (1.30-1.81)

OR (95% Cl)

No. of SNP

273
506
457
206
223

SE

0.073
0.045
0.096
0.042
0.042

Coefficient
0.307
0.314
0.879
0.448
0.368

Null R?
0.112
0.086
0.026
0.172
0.244

Full R
0.122
0.097
0.063
0.193
0.256
0.048

PRS R? adj
0.012
0.012
0.038
0.025
0.015

Threshold
5.00E-08
5.00E-07
5.00E-06
5.00E-08
5.00E-08

Cohort
AAC
MR
EAS
EUR
CAS

AJ

Table 3 | Model 2 performance across ancestries

0.557

0.615
0.62

0.598 (0.592-0.603)
0.604 (0.572-0.636)

267
485

0.013

0.434

0.
Metrics shown here include the best p-value threshold for SNP inclusion (Threshold), the variance in the target phenotype explained by the PRS adjusted by a prevalence set to 0.005 (PRS R? adj), the variance explained by the full-model regression that includes covariates

(Full B9, and the variance explained by the covariates alone (Null R?). Also provided are the regression coefficient (Coefficient), Standard Error (SE), the number of SNPs included in the PRS (No. of SNP), the odds ratios with 95% confidence intervals (OR [95% ClI]), and the area

under the curve (AUC).

0.027

0.021

5.00E-07

0.576

0.612

0.084

0.018 0.091 0.075 43

5.00E-06

AFR African, AJ Ashkenazi Jewish, CAS Central Asian, AAC African Admixed, AMR Latino/Admixed American, EAS East Asian, EUR European.

from population-specific summary statistics failed to enhance predictability.
We hypothesized that population-specific summary statistics for a given
ancestry would not necessarily outperform European-based PRS models
when estimating the cumulative effect of the 90 risk variants. Our findings
support this hypothesis, reinforcing the notion that unique population-
specific haplotypes contribute to PD risk across populations. This under-
scores the importance of addressing the current scarcity of robust
population-specific summary statistics.

We sought to reconcile these discrepancies and enhance our ability to
forecast risk by devising a best-fit multi-ancestry PRS approach based on p-
value thresholding, leveraging multi-ancestry GWAS data to select the best
set of cumulative SNPs. This approach yields similar results to Model 1
European-specific summary statistics (performing better on the African
cohort and worse on the European, East Asian, and African Admixed
cohorts), while performing significantly better than models using non-
European summary statistics across nearly all cohorts. This performance
exemplifies the challenge that a ‘one size fits all” approach presents in genetic
research, advocating for more nuanced strategies in precision medicine that
account for more global genetic variability. While both population specifi-
city and statistical power of base datasets seem to contribute to predictive
accuracy, the comparatively strong performance of Model 2 against
ancestry-specific implementations of Model I suggests the latter may be the
prevailing factor.

The results observed in East Asians align with the work reported by Foo
et al.” and support the cross-population applicability of PRS in PD, which
has already been evidenced in this population in the context of Alzheimer’s
disease'’, breast cancer”, and colorectal cancer”'. The major contributor for
the PRS in this cohort was SNCA (rs356182), with an absolute mean effect
twice as high as LRRK2 G2019S, the most significant SNP in Europeans
(Supplementary Table 5). Independent analysis of the 11 risk variants
identified by Foo et al.* is consistent with their reported findings and sug-
gests improved performance when using ancestry-specific datasets. Speci-
fically, this is likely due in large part to the inclusion of SNCA rs6826785,
which was not present in the summary statistics from Nalls et al.' but was
shown to be a significant risk factor within East Asian populations’. This
result is particularly compelling as European and East Asian genetic
ancestries are very different, as illustrated in ancestry prediction models
(Supplementary Fig. 1), contrasting with the hypothesis that the accuracy of
PRS depends on genetic ancestry proximity"’.

Several limitations should be acknowledged. First, the summary sta-
tistics here are substantially comprised of 23andMe self-reported cases and
UK Biobank proxy cases. Although Nalls et al.' reported strong genetic
correlations between summary statistics that include PD cases ascertained
by clinicians compared to 23andMe self-reported cases (genetic correlation
from LDSC (rG) = 0.85, SE = 0.06) and UKB proxy cases (rG = 0.84, SE =

0.134), the inclusion of non-clinically diagnosed cases may be diluting PRS
accuracy to predict disease across all ancestries. Another limitation, given
the scarcity of heritability estimates, disease prevalence, and summary sta-
tistics from non-European data, is that our power calculations were derived
based on estimates from European populations. Consequently, these esti-
mates may lead to biases in the sample size required to predict disease status
across diverse ancestries. Another important constraint is the absence of
individual-level replication datasets per ancestry. The lack of replication
data hampers the robustness and generalizability of our findings across
different individual-level datasets from diverse ancestral populations.
Additionally, we acknowledge that different ancestry prediction approaches
were used for the 23andMe datasets that were meta-analyzed here, which
may have introduced intra-ancestry heterogeneity. A significant limitation
in conducting PRS for highly admixed populations, such as Latino/
Admixed Americans, is the genetic diversity across regions, including
Caribbean Hispanics, Central Americans, and South Americans. The lack of
subpopulation reference panels prevents the separate assessment of these
distinct genetic clusters, reflecting the current constraints in available data.
Finally, although the meta-analyzed base data used for Model 2 featured
multiple diverse ancestries, 83% of the PD cases are of European ancestry.
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Fig. 4 | Model 2 performance for each cohort.

ROC Curves by Group

Receiver operating characteristic (ROC) curves 104
evaluating the performance of Model 2. Each cohort '
is represented by a color-coded curve: African
Admixed (AAC) in blue, African (AFR) in orange,
Ashkenazi Jewish (A]) in green, Latino/Admixed 0.8 1
American (AMR) in red, East Asian (EAS) in purple,
European (EUR) in brown, and Central Asian (CAS) 9
in pink. The Y-axis represents the true positive rate £ 0.6
(sensitivity), and the X-axis shows the false positive .
rate (1-specificity). 2
&
) 0.4
=
0.2 4
0.0 1

Model 2 AAC (AUC = 0.59)
Model 2 AFR (AUC = 0.58)
Model 2 A} (AUC = 0.67)

Model 2 AMR (AUC = 0.64)
Model 2 EAS (AUC = 0.58)
Model 2 EUR (AUC = 0.62)
Model 2 CAS (AUC = 0.61)

0.2 0.4 0.6 0.8 1.0
False Positive Rate

Fig. 5 | Comparison of polygenic risk score per-
formance between Model 1 and Model 2. Heatmap
comparing the performance of the two models
under study based on DeLong’s test. The X-axis
represents the base data for Model 1 being compared
against Model 2, with ancestry-specific summary
statistics adjusted by principal components (PCs),
while the Y-axis indicates the target data. The seven
ancestry groups analyzed include African (AFR),
Ashkenazi Jewish (A]), Central Asian (CAS), Afri-
can Admixed (AAC), Latino/Admixed American
(AMR), East Asian (EAS), and European (EUR).
The color scale represents the difference in AUC
performance between the two models, ranging from
red (Model 1 performs better) to blue (Model 2
performs better). Asterisks (*) indicate statistically
significant differences (p < 0.05) in performance
between the models.

Target data ancestry
EUR EAS AMR Al AFR AAC
)

CAS
1
*

- Model 2 Significantly Better

- Model 1 Significantly Better

1 1
EUR AMR

 §
EAS
Model 1 Base Data Ancestry

To address these limitations, future research should prioritize
larger sample sizes for individual-level datasets per ancestry and sub-
population within ancestries, as well as the availability of well-powered
ancestry-specific summary statistics. Incorporating local ancestry
estimates into PRS™ could substantially improve performance in
highly admixed populations. This approach allows for the use of
summary statistics from the ancestry PRS panel corresponding to the
specific chromosomal region of the individual under risk inference,
mitigating inflation or deflation caused by ancestry-specific risk alleles.
Additionally, methods like PRS-CSx* can integrate data from multiple
sets of summary statistics across different ancestries”. These offer a
promising avenue for improving the transferability and accuracy of
PRS models in diverse populations.

Studying biomarker-defined PD cohorts, rather than those diagnosed
solely by clinical criteria, is also crucial. At least 5% of individuals diagnosed
with PD do not demonstrate neuronal alpha-synuclein, a hallmark required
for definitive diagnosis”. Employing multi-modality machine learning

(ML) approaches'' that combine adjusted transcriptomics, genetics, and
clinical data into a predictive model could provide a more comprehensive
understanding of PD risk and improve prediction accuracy globally. By
leveraging complex patterns not evident in isolated data modalities, ML
algorithms such as deep learning may improve risk prediction, ultimately
enabling more personalized strategies for prevention, diagnosis, and
treatment.

This study presents a comprehensive evaluation of 105 PRS models for
PD risk across seven diverse ancestries, including admixed and under-
represented populations. Our analysis highlights the heterogeneity of PD
risk factors and underscores the bias introduced by predominantly
European-derived genetic data. While some European-based PRS models
demonstrated transferability to other ancestries, their performance varied
significantly across populations, emphasizing the need for larger and more
diverse datasets. Acknowledging these limitations, our results provide data-
driven evidence of the diverse genetic architecture of PD and lay the
groundwork for future research.
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Methods

Our study workflow is highlighted in Fig. 1. We obtained multi-
ancestry individual-level data from the Global Parkinson’s Genetics
Program (GP2) release 9 (https://doi.org/10.5281/zenodo.7904831).
These data (here referred to as target data) were used to test PRS
models and comprised a total of 50,234 participants, including 31,985
individuals diagnosed with PD according to the Movement Disorder
Society (MDS)** or Queen Square Brain Bank (QSBB) diagnostic
criteria”’, and 18,249 controls. After excluding locally-restricted sam-
ples and related individuals (those at the first cousin level or closer) that
could bias our PRS assessments, our dataset comprised a total of 45,799
individuals, of which 29,097 were PD cases and 16,702 controls. The
following genetic ancestries were included: African Admixed, African,
Ashkenazi Jewish, Latino/Admixed American, Central Asian, East
Asian, and European populations (Supplementary Fig. 1). Detailed
demographic and clinical characteristics can be found in Table 1.

We performed genotype data generation according to standard pro-
tocols from GP2’ release 9. In summary, samples were genotyped on the
NeuroBooster array28 (v.1.0, Nllumina, San Diego, CA) that includes
1,914,935 variants encompassing ancestry informative markers, markers for
identity-by-descent determination, and X-chromosome SNPs for sex
determination. Additionally, the array includes 96,517 customized variants.
Automated genotype data processing was conducted on GenoTools”, a
Python pipeline built for quality control (QC) and ancestry estimation of
data. Additional details can be found at https://pypi.org/project/the-real-
genotools/”’. There was no overlap between the base and target data used in
our study. We ensured that all base data used for PRS calculation were
entirely independent of the population-specific individual-level data.

QC was conducted following standard protocols, with adjustments
made to enhance precision and reliability. Samples exhibiting a genotype
call rate below 98% (--mind 0.02), discordant sex determinations (0.25 < sex
F<0.75), or significant heterozygosity (F < —0.25 or F = 0.25) were exclu-
ded from the analysis. Additional QC measures involved the exclusion of
SNPs with a missingness rate above 2%, variants deviating significantly from
Hardy-Weinberg Equilibrium (HWE P-value < 1E-4), and variants show-
ing non-random missingness by case-control status (P < 1E-4) or by hap-
lotype (P < 1E-4 per ancestry).

Ancestry predictions were refined using an updated and expanded
reference panel, which, as of February 2025, comprises samples from the
1000 Genomes Project (https://www.internationalgenome.org/data-portal/
data-collection/phase-1)*, Human Genome Diversity Project’’, and an
Ashkenazi Jewish population dataset™. This panel includes 819 African, 74
African Admixed and Caribbean, 471 Ashkenazi Jewish, 183 Central Asian,
585 East Asian, 534 European, 99 Finnish, 490 Latino/Admixed American,
152 Middle Eastern, and 601 South Asian individuals. Palindromic SNPs
were excluded to improve accuracy (AT/TA or GC/CG). The process
ensured that the variants for ancestry estimations, overlapping between the
reference SNP set panel and the genotyping data from the samples under
study, were subjected to the same QC criteria as all other remaining variants,
including exclusion of palindromic SNPs, filtering for MAF below 0.05,
genotyping call rate less than 0.98, and HWE p-value less than 1E-4. Missing
genotypes were imputed using the mean value of the variant from the
reference panel.

To evaluate the efficacy of ancestry estimation, an 80/20 train/test split
was applied to the reference panel samples, and PCs were calculated using
the overlapping SNPs. By applying transformations through UMAP, the
global genetic population substructure and stochastic variation were
visualized. Training a linear support vector classifier on the UMAP-
transformed PCs resulted in consistent predictions, with balanced accura-
cies between 95% and 98%, as verified by 5-fold cross-validation on the test
data from the reference panel. These classifier models were then applied to
the dataset to generate ancestry estimates for all samples. Detailed meth-
odologies for the cloud-based and scalable pipeline employed for genotype
calling, QC, and ancestry estimation are documented in the GenoTools”
GitHub repository (https://doi.org/10.5281/zenodo.10719034).

Following ancestry estimation, we excluded those with second-degree
or closer relatedness (kinship coefficient > 0.0884). PCs that were used as
covariates in the PRS analysis were recalculated per ancestry post-QC and
ancestry determination. The percentage of ancestry was then computed
using the supervised functionality of Neural ADMIXTURE (https://github.
com/ai-sandbox/neural-admixture), leveraging the labeled reference panel
data to estimate ancestry proportions accurately.

Variants with a MAF of less than 0.05 and HWE p-value less than 1E-5
were excluded before submission to the TOPMed Imputation server. The
utilized TOPMed reference panel version, known as r2, encompasses
genetic information from 97,256 reference samples and over 300 million
genetic variants across the 22 autosomes and the X-chromosome. As of
October 2023, the TOPMed panel includes approximately 180,000 parti-
cipants, with 29% of African, 19% of Latino/Admixed American ancestry,
8% of Asian ancestry, and 40% of European ancestry (https://topmed.nhlbi.
nih.gov/). Further details about the TOPMed Study”, Imputation Server™,
and Minimac Imputation” can be accessed at https://imputation.
biodatacatalyst.nhlbi.nih.gov. Following imputation, the resulting files
underwent pruning based on an imputation Rsq value of 0.3.

Model 1

A total of four population-specific summary statistics (base data) were used
to compute PRS versus the seven GP2 individual-level data ancestry cohorts
(target data) (Supplementary Table 1a). We obtained summary statistics
from the largest European PD GWAS meta-analysis to date, conducted by
Nalls and colleagues (2019)" (https://pdgenetics.org/resources). This study
included 1,456,306 individuals, of which 1,400,000 were controls, 37,688
were cases, and 18,618 were proxy cases (defined as having a first-degree
relative with PD). African Admixed summary statistics were obtained from
23andMe, which are based on 194,273 individuals, including 193,985 con-
trols and 288 cases. 23andMe participants, both PD cases and controls, are
self-reported and provided informed consent to participate in the research
online. The study was conducted under a protocol approved by the external
AAHRPP-accredited IRB, Ethical & Independent (E&I) Review Services,
now part of Salus IRB (https://www.versiticlinicaltrials.org/salusirb).

In order to achieve better-powered summary statistics for the East
Asian population, we meta-analyzed two independent summary statistics,
including the largest East Asian PD GWAS meta-analysis to date’ and
23andMe summary statistics from East Asian ancestry, which yielded a total
of 183,802 individuals, including 176,756 controls and 7,046 cases. In a
similar way, we conducted GWAS meta-analysis to generate better-powered
Latino/Admixed American summary statistics, combining the largest
Latino PD GWAS meta-analysis from the LARGE-PD Consortium® with
23andMe Latino/Admixed American summary statistics. This cohort
consisted of a total of 584,660 individuals, of whom 582,220 were controls
and 2440 PD cases.

Briefly, the 23andMe data generation process could be summarized in
the following steps. After the genotyping of 23andMe participants was
completed, an ancestry classifier algorithm was used to determine partici-
pant ancestries based on local ancestry and reference populations. Next,
phasing was performed to reconstruct haplotypes using genotyping
platform-specific panels, followed by imputation of missing genotypes,
expanding the variant dataset using two independent reference panels.
Related individuals were then excluded using a segmental identity-by-
descent estimation algorithm to ensure unrelated participants. Finally, a
GWAS analysis adjusted by covariates age, sex, and PCs was conducted,
followed by GWAS QC measures to flag potential issues with SNPs,
ensuring data integrity. A comprehensive explanation of each step to gen-
erate 23andMe summary statistics, including genotyping, QC, and impu-
tation performed by 23andMe, can be found elsewhere”.

For a detailed description of the methods used to generate East Asian
summary statistics, refer to the study by Foo et al.* Similarly, detailed
information on the Latino/Admixed American summary statistics can be
found in Loesch et al.” The GWAS meta-analysis of each population was
carried out using fixed effects based on beta and standard error values for the
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90 risk variants. This meta-analysis was conducted utilizing the METAL
package, which is accessible at https://genome.sph.umich.edu/wiki/
METAL_Documentation.

For Model 1, we extracted the lead 90 SNPs (here referred to as valid
predictors) previously linked to PD risk in European ancestry populations'
using GP2 individual-level data for each of the seven ancestries (target data).
Scores were weighted by the effect sizes derived from the four population-
specific summary statistics previously mentioned (base data - European,
African Admixed, Latino/Admixed American, East Asian). Logistic
regression analysis was employed to predict PD status adjusted either by
gender, age, and 10 PCs (28 PRS models) or by gender, age, and percentage
of ancestral admixture (28 PRS models) (Fig. 1). Ancestral admixture was
computed using Neural ADMIXTURE, which is described in detail at
https://github.com/ai-sandbox/neural-admixture. PRS was standardized
using Z-score normalization for each model. After calculating the allele
counts of each variant (valid predictor) between cases and controls, we
calculated the mean effect of each variant by multiplying the allele count
difference by the beta coefficient, or effect size, to estimate the average
impact of each variant’s allele count difference on disease phenotype. Similar
approaches have been conducted in previous studies, such as Foo et al..
Finally, UpSet visualizations were used to display heterogeneity estimated
across known loci and multiple ancestries.

Model 2

For Model 2, we used the latest multi-ancestry PD GWAS summary sta-
tistics from Kim et al.’, which meta-analyzed the aforementioned ancestry-
specific summary statistics from four populations used in Model 1 (Sup-
plementary Table 1b). This comprehensive analysis yielded a total of
2,525,730 individuals, of which 49,049 were PD cases, 18,618 proxy cases,
and 2,458,063 controls, highlighting the substantial scope and diversity of
the data integrated into this meta-analysis.

Model 2 was computed using PRSice-2 v2.3.5°. We implemented a
multi-step process to estimate the cumulative genetic risk attributed to a set
of SNPs based on p-value thresholding for each GP2 ancestry-specific
cohort by using multi-ancestry GWAS summary statistics by Kim et al.’
(Fig. 1). PRSice-2 was used to select independent genetic variants following
default PRSice-2 parameters. This approach includes adhering to standar-
dized values (250 kb clumping window size, population-specific LD esti-
mation using GP2 release 9 individual-level data for each population, and an
LD threshold of r*<0.1) as previously described”, and using p-value
thresholds from 5.00e-08 to 5.00e-02, incrementing by a factor of 10 at each
step. Altogether, this amounts to 49 PRS models that were developed within
the framework of Model 2.

The p-value thresholding approach we implemented facilitated the
evaluation of PRS predictive performance at varying levels of SNP inclusion.
For each model, the PRS was calculated by summing the alleles associated
with PD and weighting them by the effect sizes reported by Kim et al.’. Next,
we determined the best-fit models by considering only p-value thresholds
which preserved fewer SNPs than the number of participants, then selecting
the model which achieved the maximal pseudo (Nagelkerke’s) R* value, for
each respective ancestry. The model was standardized using a consistent
disease prevalence rate of 0.5% (0.005), as reported in previous studies"”,
acknowledging that these estimates are based on European data and may
not generalize to other populations. This approach was necessary due to the
lack of standardized or comparable prevalence rates for PD in non-
European populations™. We further adjusted the model by sex, age, and 10
ancestry-specific PCs.

36

Power calculations

To determine the cutoff for selecting a minimal sample size, we based our
sample size calculation on achieving 80% power with a significance level of
0.05, using the methodology proposed by Dudbridge et al.” (additional
details can be found at https:/github.com/DudbridgeLab/avengeme/).
These initial estimates considered the 90 risk variants and the heritability
reported in Nalls et al.', where the heritability of PD was estimated to be 22%

(h*=22%) at a 0.5% disease prevalence. We determined that a minimum
sample size of 550 individuals was required to reach this power threshold,
assuming the limitation that our estimates are based on prevalence and
heritability parameters from European populations and may not be
applicable to other populations. Based on these approximations, we inclu-
ded only cohorts with more than 500 participants.

Model comparisons

Results for each model were visualized through density plots displaying
predicted probabilities of disease among cases, forest plots for magnitude of
effects comparison, and ROC plots with associated AUC assessments.
Performance metrics such as accuracy, balanced accuracy, sensitivity, and
specificity were computed using the top-leftmost point of each ROC to
determine probability thresholds for predicted case/control stratification of
each respective model.

DeLong’s test was used to quantify statistical significance when com-
paring ROCs. To conduct comparisons within Model 1, this method was
applied to each of the six combinations of base data ancestries. To compare
Model 1 and Model 2, this method was applied to each of the four Model 1
base data ancestries, comparing each of them independently to Model 2.
Results for comparisons between Model 2 and each implementation of
Model 1 were then visualized on a heatmap, with directionality indicating
which model performed better and magnitude representing the degree of
significance.

Data availability

Data was obtained from the Global Parkinson’s Genetics Program (GP2)
and is accessible through a partnership with the Accelerating Medicines
Partnership in Parkinson’s Disease (AMP-PD) and can be requested via the
website’s application process (https://www.amp-pd.org/). GWAS summary
statistics from GP2’s release 9 are available for all datasets. The full GWAS
summary statistics for the 23andMe discovery data are available upon
application (https://research.23andme.com/dataset-access/) to qualified
researchers under an agreement that protects participant privacy. These
datasets are available at no cost for academic use. GenoTools (version 10;
https:/github.com/GP2code/GenoTools)” was used for genotyping,
imputation, quality control, ancestry prediction, and data processing. A
secured workspace on the Verily workbench platform was created to con-
duct genetic analyses using GP2 release 9 data and summary statistics
(https://workbench.verily.com/). Additionally, all scripts used for this study
can be found in the public domain on GitHub (https://github.com/
GP2code/multiancestry-PRS_PRSice; https://doi.org/10.5281/zenodo.
11110944).

Code availability

Data was obtained from the Global Parkinson’s Genetics Program (GP2)
and is accessible through a partnership with the Accelerating Medicines
Partnership in Parkinson’s Disease (AMP-PD) and can be requested via the
website’s application process (https://www.amp-pd.org/). GWAS summary
statistics from GP2’s release 9 are available for all datasets. The full GWAS
summary statistics for the 23andMe discovery data are available upon
application (https://research.23andme.com/dataset-access/) to qualified
researchers under an agreement that protects participant privacy. These
datasets are available at no cost for academic use. GenoTools (version 10;
https:/github.com/GP2code/GenoTools)” was used for genotyping,
imputation, quality control, ancestry prediction, and data processing. A
secured workspace on the Verily workbench platform was created to con-
duct genetic analyses using GP2 release 9 data and summary statistics
(https://workbench.verily.com/). Additionally, all scripts used for this study
can be found in the public domain on GitHub (https://github.com/
GP2code/multiancestry-PRS_PRSice; https://doi.org/10.5281/zenodo.
11110944).
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