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Background and Objective  Rapid eye movement sleep behavior disorder is a prodromal
stage of alpha-synucleinopathy. Parkinsons disease with rapid eye movement sleep behavior
disorder is associated with more severe symptoms and cerebral pathology compared to Parkin-
son’s disease without rapid eye movement sleep behavior disorder. This study classified idio-
pathic rapid eye movement sleep behavior disorder, Parkinson’s disease with rapid eye move-
ment sleep behavior disorder, and Parkinson’s disease without rapid eye movement sleep
behavior disorder using single-lead electrocardiogram signals from polysomnography.

Methods  Subjects who underwent polysomnography and dopamine transporter positron
emission tomography between January 2010 and December 2021 were retrospectively analyzed.
The study included 4 patients with idiopathic rapid eye movement sleep behavior disorder, 9
with Parkinson’s disease with rapid eye movement sleep behavior disorder, 8 with Parkinsons
disease without rapid eye movement sleep behavior disorder, 9 control subjects, and 15 healthy
controls. Heart rate variability features were extracted from electrocardiogram signals, and ma-
chine learning models classified the groups.

Results  No significant differences in demographics or obstructive sleep apnea severity were
found between the groups, except for healthy controls. Machine learning classifiers effectively
distinguished idiopathic rapid eye movement sleep behavior disorder, Parkinsons disease with
rapid eye movement sleep behavior disorder, and Parkinson’s disease without rapid eye move-
ment sleep behavior disorder based on electrocardiogram features.

Conclusions  This study demonstrated the potential of single-lead electrocardiogram signals
to differentiate idiopathic rapid eye movement sleep behavior disorder, Parkinson’s disease with
rapid eye movement sleep behavior disorder, and insight for future prospective studies to pre-
dict the conversion. Sleep Med Res 2025;16(3):174-184

Keywords  Polysomnography; Sleep, REM; REM sleep behavior disorder; Parkinson disease;
Conversion.

INTRODUCTION

Rapid eye movement (REM) sleep behavior disorder (RBD) has been suggested as a strong
predictor of alpha-synucleinopathies, such as Parkinson’s disease (PD), dementia with Lewy
bodies (DLB), and multiple system atrophy (MSA). The conversion rate from RBD to an
alpha-synucleinopathy has been reported as 6.3% per year, resulting in a 73.5% conversion
after 12 years [1]. The risk is notably high, with a hazard ratio (HR) of 1.54 for REM sleep
without atonia (RWA), which is comparable to the HR of 1.98 for an abnormal dopamine
transporter scan.
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Within PD patients, there are those who have had previous
or concurrent RBD (PDRBD) and those who have never expe-
rienced RBD (PDnoRBD). The difference between these sub-
types is thought to stem from pathological differences in the
two types of PD: the brain-first type and the body-first type.
RBD, with its pathophysiological basis in the degeneration of
the subcoeruleus nucleus and associated circuits in the medulla
and pons, is presumed to be more strongly associated with the
body-first type of PD, in line with its ascending neurodegener-
ation pathway [2]. This distinction is crucial, as the body-first
type of PD is associated with more malignant symptoms and
more severe cerebral pathology [3].

The diagnosis of RBD according to the International Classifi-
cation of Sleep Disorders, Third Edition (ICSD-3) requires doc-
umented repeated episodes of sleep-related vocalization and/or
complex motor behaviors, as well as polysomnography (PSG)
evidence of RWA [4]. While PSG is the gold standard for RBD
diagnosis, the process is labor-intensive and accessibility is lim-
ited in certain areas. These challenges are further compounded
for individuals with gait disturbances or bradykinesia, such as
PD patients.

There have been attempts to classify diseases based on PSG
data utilizing artificial intelligence (AI). Similarly, efforts have
been made to classify diseases using electrocardiogram (ECG)
features from PSG recordings with considerable accuracy [5-9].
However, applying these models remains challenging due to the
heterogeneity of sleep laboratories and PSG software. Given
that ECG is always included in PSG and routine ECG can be
performed more easily, using ECG data from PSG for disease
classification is a promising approach, especially considering the
predictive capabilities of AL. Moreover, alpha-synucleinopathies,
such as PD, are associated with dysautonomia, which is consid-
ered to originate more peripherally than centrally [10].

Autonomic dysfunction has been observed in 83% of patients
with idiopathic RBD (iRBD), intermediate between that of healthy
controls (HCs) and PD patients [11]. Presence of RBD is a stron-
ger predictor of cardiac autonomic dysfunction than PD itself
[12]. More severe baseline cardiovagal autonomic dysfunction
in iRBD has been associated with phenoconversion to DLB but
not PD [13].

Previous studies have reported the potential to discriminate
between RBD and controls using ECG, showing that heart rate
variability (HRV) in iRBD is significantly decreased during wake-
fulness compared to controls [14]. HRV in iRBD has been asso-
ciated with quantified tonic RWA, which is a possible predictor
of phenoconversion [15]. However, in another study none of the
HRYV components was able to predict the presence of iRBD [16].

This preliminary study aims to classify iRBD, PDRBD, and
PDnoRBD from those without RBD or parkinsonism, using
HRYV features extracted from single-lead ECG data obtained
during PSG.

Lee HJ, et al.

METHODS

Selection of Data and Labeling of RBD and PD

This study was a retrospective analysis. Internal electronic health
data were queried to identify participants who had undergone
both PSG and dopamine transporter positron emission tomog-
raphy (PET) between January 1, 2010 and December 31, 2021.
Polysomnographic findings and medical records were reviewed,
and participants were excluded if they met any of the following
criteria: missing raw PSG data, PSG without REM sleep, insuf-
ficient PSG with a total sleep time of less than 1 hour, known
atrial fibrillation (AF) or pacemaker insertion, pseudo-RBD, du-
plicate studies (including titration studies), or PET results indi-
cating an alternative diagnosis other than normal, PD, or par-
kinsonism, such as atypical findings or basal ganglia infarction
(Fig. 1).

Participants were classified into four groups based on PET
results and PSG-documented RBD diagnosis. Positive PET re-
sults were defined as those indicating parkinsonism, while neg-
ative results indicated normal findings. A positive RBD diagno-
sis required PSG-documented RBD according to the American
Academy of Sleep Medicine (AASM) criteria at the time of in-
terpretation. A negative RBD diagnosis was assigned to partici-
pants who did not meet the criteria for RBD and lacked RWA,
regardless of the presence of dream-enactment behaviors (DEB).

Further exclusions based on PET results and medical records
included cases of DLB, MSA, PD dementia, and discordant di-
agnoses, such as scans without evidence of dopaminergic deficit
(SWEDD) or idiopathic PD (IPD) diagnosed despite normal do-
pamine transporter PET results. In summary, PET results were
cross-referenced with electronic medical records to define IPD.

To ensure consistency, a manual matching process based on
age, sex, and obstructive sleep apnea (OSA) severity was per-
formed to select participants for the four study groups. Partici-
pants were categorized as Fig. 1. Matched control (MC) was de-
fined as individuals who were not diagnosed with RBD and had
normal dopamine transporter PET results, despite having un-
dergone testing due to symptoms such as DEB or tremor.

Additionally, the HC group was selected from individuals who
underwent PSG between January 1, 2020 and December 31,
2021. HCs were defined by an Apnea-Hypopnea Index (AHI)
of less than 5 and the absence of comorbidities including hyper-
tension, diabetes, arrhythmia, cardiovascular disease, depres-
sion, insomnia, or a history of parkinsonism, as documented in
medical records.

PSG

In-laboratory overnight sleep recordings were conducted using
Twin PSG Software (GRASS Technologies) from 2010 to 2017,
and Natus Sleepworks (Xltek, Natus Incorporated) from 2017 to
2020. The recordings included electroencephalography (EEG)
from frontal, central, and occipital electrodes, electromyography
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Internal database search for those who had undergone both PSG and dopamine PET
during 2010.01.01-2021.12.31 (n=183)

Excluded (n=94)
- Missing raw PSG data (n=15)
- PSG without REM (n=9)
- TST <1 hr (n=3)

\ 4

- Known AF, pacemaker (n=6)

- Pseudo-RBD (n=4)

- Titration study and duplicate (n=22)

- PET results-alternative diagnosis (n=35)

Y Y

Y Y

PET-RBD+ (n=10) PET-RBD- (n=26)

PET+RBD+ (n=36) PET+RBD- (n=15)

Excluded MSA, PDD, discordant final diagnosis (SWEDD, IPD dx despite normal dopamine PET result)
Matched selection based on age - sex - OSA severity

v v

v v

PET-RBD+: iRBD PET-RBD-: MC
(n=4; ET: 1, DIP: 1) (n=9; ET: 2, MCI: 4,
SCD: 1, none: 1)

PET+RBD+: PDRBD PET+RBD-: PDnoRBD
(n=9; IPD: 9) (n=8; IPD: 8)

Fig. 1. Participants’ selection flow diagram. PET-negative and RBD-positive: iRBD. PET-negative and RBD-negative: MC. PET-positive and
RBD-positive: PDRBD. PET-positive and RBD-negative: PDnoRBD. PSG, polysomnography; PET, positron emission tomography; REM,
rapid eye movement; TST, total sleep time; AF, atrial fibrillation; RBD, REM sleep behavior disorder; MSA, multiple system atrophy; PDD,
Parkinson’s disease dementia; SWEDD, scans without evidence of dopaminergic deficit; IPD, idiopathic Parkinson’s disease; OSA, ob-
structive sleep apnea; iRBD, idiopathic RBD; PDRBD, Parkinson’s disease with REM sleep behavior disorder; PDnoRBD, Parkinson’s dis-
ease without REM sleep behavior disorder; MC, matched control; ET, essential tremor; DIP, drug Induced parkinsonism; MCI, minor cogni-

tive impairment; SCD, subjective cognitive decline.

(EMG) from extraocular, chin, and bilateral anterior tibialis mus-
cles, one-lead ECG, nasal airflow and thermistor, oximetry, body
position, chest and abdominal plethysmography, microphones,
and video monitoring. The sampling rate and the low- and high-
frequency filters were configured according to the AASM guide-
lines. Scoring of PSG including RWA, and interpretation were
performed by trained sleep technicians and specialists accord-
ing to the AASM criteria relevant to the time of the PSG. RBD
was defined as repeated DEB documented alongside PSG-con-
firmed RWA. Following the AASM update in June 2020, the re-
vised 2.6 criteria were applied [17].

Dopamine Transporter PET
The participants underwent N-(3-["*F]fluoropropyl)-2p-carbon

ethoxy-3p-(4-iodophenyl) nortropane (**F-FP-CIT) PET be-
tween 2010 and 2020. '*F-FP-CIT PET was acquired using a
Discovery 600 system (General Electric Healthcare).

Processing of ECG Data of PSG and Analysis of HRV
The PSG data was converted into European Data Format files
and ECG signals were extracted for preprocessing. Preprocess-
ing steps included signal reversal, removal of front and end
signals for noise control, ectopic band removal, application of a
bandpass filter, and signal saving based on sleep staging. Addi-
tional artifact removal and signal preprocessing were conducted
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using the NeuroKit2 Python package [18]. Peak detection was
performed using multiple detectors, and the top-performing
detector, the Pan-Tompkins algorithm was selected for further
analysis. QRS complexes were detected without differentiating by
sleep stage, and signals were segmented into 5-minute epochs
with a 30-second overlap. The segments were analyzed and total
of 91 HRV features were extracted. These variables were then
compared, and 3 to 10 fold cross validation was conducted (Fig. 2).
The list of 91 HRV features used in the analysis is presented in
Supplementary Table 1 (in the online-only Data Supplement).
Several machine learning (ML) classifiers were employed,
including Support Vector Machine (SVM), Decision Tree
(DT), Random Forest (RF), K-Nearest Neighbor (KNN), Ada-
Boost, Logistic Regression (LR), and Arithmetic Neural Net-
work (ANN). Classification was conducted in a stepwise man-
ner, with comparisons made between different classes (Fig. 2).

Statistical Analysis

Demographic data were compared using a one-way analysis of
variance for normally distributed variables and Kruskal-Wallis
rank sum test for non-normally distributed variables Fisher’s
exact test was used to analyze categorical variables. All statisti-
cal analyses were conducted using R software (version 4.4.1; R
Foundation for Statistical Computing). A two-sided p-values
of <0.05 was considered statistically significant.
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PSG || Single lead ECG | | HRV Analysis | | Posthoc& | | ML Classification
Pan-Tompkins for QRS complex 91 Features Multi-Comparision
- Two Samples T-Test - Support Vector Machine
‘ — | - One Way ANOVA Test - Decision Tree
| Heart rate variability = dom Forest
. a0\ \«"»»,_ f i - Logistic Regression
I &2 '- 'I\.' i I " v - K-Nearest Neighbors
' . - AdaBoost
- Arithmetic Neural Network

Three Class:

» Discrimination of PD with and without RBD:

Five Class: Discrimination of all classes

Two Class: Binary Classification of the presence or absence of RBD

» Discrimination of iRBD and PDRBD: HC vs iRBD vs PDRBD / Not RBD vs iRBD vs PDRBD
¢ HC vs PDRBD vs PDnoRBD / Not RBD vs PDRBD vs PDnoRBD
Four Class: Discrimination of iRBD, PD with and without RBD
e HC vs iRBD vs PDRBD vs PDnoRBD / Not RBD vs iRBD vs PDRBD vs PDnoRBD

e HC vs Not RBD vs iRBD vs PDRBD vs PDnoRBD

Fig. 2. Diagram of ECG signal processing and analysis process. PSG, polysomnography; ECG, electrocardiogram; HRV, heart rate vari-
ability; ML, machine learning; QRS, QRS complex; ANOVA, analysis of variance; REM, rapid eye movement; RBD, REM sleep behavior
disorder; iRBD, idiopathic RBD; PDRBD, Parkinson’s disease with REM sleep behavior disorder; PDnoRBD, Parkinson’s disease without

REM sleep behavior disorder; HC, healthy control.

Ethical Approval

The present study was approved by the Institutional Review
Board of Severance Hospital, Yonsei University (approval no.
4-2022-0875). The research was conducted in accordance with
the principles of the Declaration of Helsinki. Informed consent
was waived due to the retrospective design of the study.

RESULTS

Participants

A total of 183 datasets from 161 individuals who had undergone
both PSG and "F-FP-CIT PET between January 1, 2010 and De-
cember 31, 2021, were identified through an internal database
search. Of these, 94 participants were excluded. After a second
review of the medical records, individuals diagnosed with MSA,
PDD, DLB, or discordant final diagnoses—such as SWEDD or
IPD diagnosed despite normal dopamine PET results—were
excluded. This process resulted in 4 participants in the iRBD
(PET-negative, RBD-positive) group. For the MC (PET-nega-
tive, RBD-negative), PDRBD (PET-positive, RBD-positive),
and PDnoRBD (PET-positive, RBD-negative) groups, manual
matching based on age, sex, and OSA severity yielded 9, 9, and
8 participants, respectively. The process and specific diagnoses
for each group are detailed in Fig. 1.

Demographic Data

There were no significant differences in sex, age at the time of
PSG, age at the time of PET, or the interval between PET and
PSG among the groups. However, significant differences were
observed in DEB between the groups. Most individuals in the

iRBD and PDRBD groups exhibited DEB except for one in iRBD
group, whereas only half of those without RBD reported DEB.

Regarding PSG parameters, no significant differences were
noted in the AHI or OSA severity across the four groups; how-
ever, the PDRBD group demonstrated a lower median AHI. As
expected, RWA was present only in the iRBD and PDRBD groups,
consistent with the diagnostic criteria for RBD. Phenoconversion
had not occurred during the interval period between PSG and
PET in any participants. The HC group was significantly younger
(29.73+5.38 years, meanztstandard deviation; p<0.001) and had
alower AHI (2.1 [1.7], median [IQR]; p<0.001) compared to the
other groups (Table 1). Because the number of individuals var-
ied across groups, the total PSG recording time as well as the du-
rations of REM and non-rapid eye movement (NREM) sleep
differed between groups (Table 2).

Comparison of HRV Features

There were significant differences in HRV parameters among
the five groups, including HC, across time-domain measures
(mean of normal-to-normal [NN] intervals, standard deviation
of NN intervals), frequency-domain measures (very low frequen-
cy [LF] power, low frequency power, high frequency [HF] pow-
er, total power), and Poincaré plot analysis. The comparison of
selected HRV features—chosen from 91 total features—is pre-
sented in Supplementary Table 2 (in the online-only Data Sup-
plement), and the corresponding post hoc analysis is provided
in Supplementary Table 3 (in the online-only Data Supplement).

Classification Performance by ML Algorithms
The binary classification to discriminate the presence of RBD
using HRV features across various ML algorithms—SVM, DT,
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Table 1. Demographics and polysomnography features of the four groups

iRBD (n=4) MC (n=9) PDRBD (n=9) PDnoRBD (n=8) Total (n=30) p-value

Sex 0.637

Male 2(50.0) 5 (55.6) 7(77.8) 6 (75.0) 20 (66.7)

Female 2 (50.0) 4(44.4) 2(22.2) 2(25.0) 10(33.3)
DEB 0.034

No 1(25.0) 5(55.6) 0(0.0) 4 (50.0) 10(33.3)

Yes 3(75.0) 4(44.4) 9 (100.0) 4 (50.0) 20 (66.7)
PET-PSG interval (day) 114.0 [289.0] 253.0 [1,426.0] 335.0 [390.0] 808.0[1,174.0]  330.0 [1,063.5] 0.367
PET_age (yr) 61.8+13.1 67.0£10.4 66.0£8.5 65.4+12.8 65.6£10.5 0.882
PSG_age (yr) 61.3+13.1 66.3£8.9 65.6£7.5 64.1£10.0 64.8+£9.0 0.822
AHI 31.6 [18.0] 19.9 [7.9] 15.2 [28.7) 30.8 [24.4] 25.5 [27.5] 0.863
OSA_severity 0.242

None 0(0.0) 0(0.0) 3(33.3) 2(25.0) 5(16.7)

Mild 0(0.0) 1(1L.1) 1(1L.1) 0(0.0) 2(6.7)

Moderate 2 (50.0) 6 (66.7) 1(1L.1) 2(25.0) 11 (36.7)

Severe 2 (50.0) 2(22.2) 4 (44.4) 4(50.0) 12 (40.0)
Proportion of epochs with RWA/  36.6 [21.3] 0.0 [0p.0] 22.1[33.1] 0.0 [0.0] 0.0 [21.1] <0.001

total REM epochs (%)

Fisher’s exact test, Kruskal-Wallis rank sum test, and one-way analysis of variance were used as appropriate. Data are presented as the

meanzstandard deviation, median [interquartile range], or number (%).

DEB, dream-enactment behaviors; PET, positron emission tomography; PSG, polysomnography; AHI, Apnea-Hypopnea Index; OSA, ob-
structive sleep apnea; REM, rapid eye movement; RWA, REM sleep without atonia; iRBD, idiopathic REM sleep behavior disorder; MC,
matched control; PDRBD, Parkinsons disease with REM sleep behavior disorder; PDnoRBD, Parkinson’s disease without REM sleep behav-

ior disorder.

Table 2. Duration of REM and NREM sleep in each group

Time of Time of Number of
Group stage_ N stage_R persons in each
(min) (min) group
HC 4,793.5 964.5 15
iRBD 1,454.5 274.0 8
PDRBD 2,303.4 502.0 9
MC 2,591.0 4325 9
PDnoRBD 1,932.4 237.0 4

REM, rapid eye movement; NREM, non-rapid eye movement;
HC, healthy control; PDnoRBD, Parkinson’s disease without REM
sleep behavior disorder; PDRBD, Parkinson’s disease with REM
sleep behavior disorder; MC, matched control; iRBD, idiopathic
REM sleep behavior disorder.

RE LR, KNN, AdaBoost, and ANN—showed that SVM achieved
the best performance, with accuracy, sensitivity, precision, and
F1-score of 0.95, 0.95, 0.95, and 0.95, respectively (Fig. 3).

In the three-class classification to discriminate iRBD and PD,
SVM achieved the best performance when classifying HC, iRBD,
and PDRBD. However, approximately half of the iRBD cases
were misclassified. When classifying MC, iRBD, and PDRBD,
SVM again demonstrated the highest performance. For distin-
guishing PD with and without RBD—specifically classifying HC,
PDRBD, and PDnoRBD—RE LR, and ANN achieved the best
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Confusion matrix

Not 0.8
RBD
_ 0.6
[
Na)
=
L
2
= 0.4
RBD
0.2

Not RBD
Predicted label

Fig. 3. Confusion matrix of Support Vector Machine for binary
classification of presence of rapid eye movement sleep behavior
disorder (RBD).

results; however, PDnoRBD cases were frequently misclassified
as HC. In the classification of MC, PDRBD, and PDnoRBD, RF
and KNN showed the highest performance (Table 3 and Fig. 4).

In the four-class classification to discriminate among HC, iRBD,
PDRBD, and PDnoRBD, ANN demonstrated the best perfor-
mance. PDRBD and HC were well classified, whereas classifi-
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Model
SVM, Support Vector Machine; DT, Decision Tree; RE Random Forest; LR, Logistic Regression; KNN, K-Nearest Neighbor; AB, AdaBoost; ANN, Arithmetic Neural Network; HC, healthy

control; REM, rapid eye movement; iRBD, idiopathic REM sleep behavior disorder; PDRBD, Parkinson’s disease with REM sleep behavior disorder; PDnoRBD, Parkinson's disease without

REM sleep behavior disorder; MC, matched control.

Table 3. Machine learning results for 3 class classifications

SVM
DT
RF
LR
AB
ANN

Lee HJ, et al.

cation performance for iRBD and PDnoRBD was lower. In the
classification of MC, iRBD, PDRBD, and PDnoRBD, RF achieved
the highest performance. MC, iRBD, and PDRBD were classi-
fied with relatively high accuracy, while PDnoRBD again showed
lower classification performance (Table 4 and Fig. 5).

Finally; in the five-class classification of HC, MC, iRBD, PDRBD,
and PDnoRBD, SVM demonstrated the best overall performance.
Classification accuracy was high for PDRBD, MC, and HC; how-
ever, performance for iRBD was lower, and all PDnoRBD cases
were misclassified as HC (Table 4 and Fig. 6).

DISCUSSION

The main findings of the present study were as follows: Based
on HRV features derived from PSG-ECG data, the ML classifi-
ers successfully classified: 1) the presence of RBD compared to
controls, 2) iRBD and PDRBD compared to controls, 3) PDRBD
or PDnoRBD compared to controls, and 4) iRBD, PDRBD, and
PDnoRBD compared to controls.

Our study aimed to classify the presence of RBD and differ-
entiate between iRBD and PDRBD using ECG, specifically HRV.
Autonomic dysfunction is frequently reported in alpha-synu-
cleinopathies. Evidence suggests that dysautonomia precedes
both motor and non-motor symptoms of PD. This has been at-
tributed to the ascending pathology of alpha-synuclein and the
gut-brain axis, where pathology spreads from the viscera to the
brainstem via the vagus nerve. As a critical component of the
autonomic nervous system, the vagus nerve plays a key role,
and its dysfunction leads to various dysautonomic symptoms
[2,10,13,19,20]. The cardiac rhythm is partially controlled by the
vagus nerve and regulated through the balance of the sympa-
thetic and parasympathetic nervous systems. Cardiovagal func-
tions have traditionally been assessed using autonomic func-
tion tests [21]. HRV refers to fluctuations in heartbeat intervals
and variations in the time between consecutive heartbeats, re-
flecting the interaction between the sympathetic and parasym-
pathetic systems. The cardio-accelerating centers are innervated
by cardiac sympathetic nerves, including fibers from the cervi-
cothoracic ganglion and the vagus nerve. Normal cardiac vari-
ability depends on the stimulation of the sinoatrial node by these
pathways, which can be assessed through HRV analysis. Conse-
quently, HRV analysis serves as a valuable tool for evaluating au-
tonomic dysfunction. Evidence of dysautonomia and cardiac
dysfunction in RBD has been reported. Autonomic dysfunction
in iRBD patients was intermediate between that of controls and
PD patients [22]. iRBD patients do not exhibit the typical physi-
ological parasympathetic withdrawal and sympathetic domi-
nance observed during the transition from NREM to REM sleep
[22]. REM-related cardiac and respiratory responses were found
to be absent in iRBD [23]. A study by Postuma et al. [12] used
ECG signals from PSG and found that abnormal cardiac auto-

www.sleepmedres.org 179



Prediction of RBD, PD With PSG ECG

Confusion matrix Confusion matrix
HC Not RBD
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Fig. 4. Confusion matrix of 3 class classifications by machine learning methods. A: HC vs. iRBD vs. PDRBD, SVM. B: MC vs. iRBD vs.
PDRBD, SVM. C: HC vs. PDRBD vs. PDnoRBD, Random Forest. D: MC vs. PDRBD vs. PDnoRBD, K-Nearest Neighbor. HC, healthy con-
trol; iRBD, idiopathic rapid eye movement sleep behavior disorder; PDRBD, Parkinson’s disease with rapid eye movement sleep behavior
disorder; PDnoRBD, Parkinson’s disease without rapid eye movement sleep behavior disorder; SVM, Support Vector Machine; MC,

matched control.

nomic measures were evident in PDRBD but not in PDnoRBD
when compared to controls, suggesting that RBD, rather than
PD, is associated with cardiac autonomic denervation. The find-
ings in our study are also consistent with PDnoRBD frequently
being misclassified as HC. However, interpretation is limited
by the fact that MC, which was intended to serve as a control
group, was well differentiated from HC.

The notion that RBD is more closely associated with auto-
nomic dysfunction is further supported by a study evaluating
B[-metaiodobenzylguanidine uptake, which was found to be
more markedly reduced in iRBD than in early-stage PD patients.
This suggests that cardiac autonomic dysfunction is more close-
ly related to RBD itself rather than being a preclinical sign of neu-
rodegenerative disease [16]. Another study reported reduced
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tonic and phasic HRV during sleep in RBD patients, suggesting
that autonomic evaluation during sleep may detect impairments
earlier than traditional autonomic testing conducted during
wakefulness [24]. These findings support the rationale for eval-
uating RBD using HRV derived from ECG of PSG.

Our study successfully discriminated RBD from controls us-
ing ML methods and HRV features derived from ECG. Accord-
ing to the ICSD-3 criteria [4], the diagnosis of RBD requires re-
peated dream enactment behaviors and PSG-documented RWA.
The assessment of RWA during PSG does not incorporate ECG
signals. However, given the close relationship between cardiac
autonomic dysfunction and RBD [12], predicting RBD using
ECG may be a reasonable approach. Additionally, performing
PSG requires significant resources, and accessing a hospital for



Table 4. Machine learning results for 4 and 5 class classifications
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HC vs. iRBD vs. PDRBD vs. PDnoRBD

HC vs. MC vs. iRBD vs.

MC vs. iRBD vs. PDRBD vs. PDnoRBD

Model PDRBD vs. PDnoRBD
Accuracy Recall Precision Fl-score Accuracy Recall Precision Fl-score Accuracy Recall Precision Fl-score

SVM 0.87 0.87 0.88 0.85 0.86 0.86 0.87 0.84 0.93 0.93 0.93 0.92
DT 0.86 0.86 0.85 0.84 0.75 0.75 0.80 0.76 0.86 0.86 0.87 0.86
RF 0.87 0.87 0.89 0.85 091 091 0.92 091 0.92 0.92 091 091
LR 0.87 0.87 0.86 0.84 0.89 0.89 0.90 0.88 0.89 0.89 0.87 0.88
KNN 0.85 0.85 0.83 0.82 0.88 0.88 0.89 0.86 0.90 0.90 0.89 0.89
AB 0.40 0.40 0.76 0.44 0.71 0.71 0.77 0.73 0.81 0.81 0.80 0.77
ANN 0.92 0.92 0.91 0.91 0.86 0.86 0.87 0.86 091 0.91 0.91 0.91

SVM, Support Vector Machine; DT, Decision Tree; RE Random Forest; LR, Logistic Regression; KNN, K-Nearest Neighbor; AB, AdaBoost;
ANN, Arithmetic Neural Network; HC, healthy control; REM, rapid eye movement; iRBD, idiopathic REM sleep behavior disorder; PDRBD,
Parkinsons disease with REM sleep behavior disorder; PDnoRBD, Parkinson’s disease without REM sleep behavior disorder; MC, matched

control.
1.0
Confusion matrix Confusion matrix
HC 0.0000 0.0000 0.0000 Not RBD 08
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Fig. 5. Confusion matrix of 4 class classification by machine learning methods. A: HC vs. iRBD vs. PDRBD vs. PDnoRBD, Arithmetic Neu-
ral Network. B: Matched control vs. iRBD vs. PDRBD vs. PDnoRBD, Random Forest. HC, healthy control; iRBD, idiopathic rapid eye move-
ment sleep behavior disorder; PDRBD, Parkinson’s disease with rapid eye movement sleep behavior disorder; PDnoRBD, Parkinson’s dis-

ease without rapid eye movement sleep behavior disorder.

PSG is more challenging for individuals with parkinsonism or
gait disturbances. In contrast, a routine ECG is a simpler proce-
dure that takes less time and can be conducted outside of a sleep
laboratory. Although further research is needed to establish the
feasibility of predicting RBD from routine ECG, our study us-
ing nighttime ECG provides valuable insights for future inves-
tigations.

ECG signals have been used to detect periodic limb move-
ments and sleep apnea [5-8]. HRV has previously been used to
identify iRBD. In a study of 72 subjects, including 29 with iRBD,
PSG-derived HRV was analyzed; unfortunately, none of the HRV
components were able to predict the presence of iRBD in the full
cohort [25]. However, this study did not utilize ML methods for

analysis. Additionally, other studies using PSG-derived signals
and ML or DL have successfully classified RBD. Study by Urtna-
san et al. [9] used single-lead ECG signals and a deep learning
algorithm to classify insomnia, periodic leg movement, RBD,
and nocturnal frontal lobe epilepsy. This study differs from ours
in that it compared diseases that are not pathophysiologically
related. RBD has also been assessed using other signals derived
from PSG. A study by Cesari et al. [26] used EEG and EOG sig-
nal-derived features and an ensemble of RF to classify the prob-
ability of RBD in 107 de novo PD patients. When distinguish-
ing between PDnoRBD and PDRBD, they identified RBD with
accuracy, sensitivity, and specificity exceeding 80%. Micro-sleep
instability was the most important feature for RBD identifica-
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Fig. 6. Confusion matrix of 5 class classification by machine learning methods. HC vs. matched control vs. iRBD vs. PDRBD vs. PDnoRBD,
Support Vector Machine. HC, healthy control; iRBD, idiopathic rapid eye movement sleep behavior disorder; PDRBD, Parkinson’s disease
with rapid eye movement sleep behavior disorder; PDnoRBD, Parkinson’s disease without rapid eye movement sleep behavior disorder.

tion. Among PD patients with REM behavioral events, those
with significantly higher RBD probability scores developed def-
inite RBD after 2 years. Other studies have used EMG signals
from PSG along with ML or deep neural networks to detect RWA
or RBD [27,28].

Other sleep disorders may also disrupt cardiovascular auto-
nomic function, potentially confounding HRV. A bidirectional
association exists between sleep disorders and autonomic dys-
function, independent of their relationship with RBD [22]. Ad-
ditionally, disorders such as sleep apnea, insomnia, restless legs
syndrome (RLS), and narcolepsy influence the autonomic ner-
vous system. RBD may be present in narcolepsy, while sleep ap-
nea and insomnia can mimic, coexist with, or exacerbate RBD
[29]. In our study, we attempted to match OSA severity between
groups to minimize confounding factors and address this issue.
While no participants had narcolepsy, the presence of RLS was
not assessed.

As the presence of RBD strongly suggests conversion to alpha-
synucleinopathy [1], diagnosing RBD is a major concern. How-
ever, not all individuals with RBD develop dementia or parkinson-
ism, highlighting the importance of predicting phenoconversion
from iRBD to overt alpha-synucleinopathy as a key issue for RBD
patients.

There were no phenoconverted patients in our study; however,
we successfully discriminated controls from iRBD and PD, sug-
gesting significant differences between iRBD and PDRBD. In a
study by McCarter et al. [13], among 18 patients followed for
3 years, 12 (67%) underwent phenoconversion—6 to PD and 6
to DLB. Of these, 15 exhibited at least mild autonomic dysfunc-
tion. Those who developed DLB had significantly higher total
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and cardiovagal composite autonomic severity scores compared
to those who developed PD. Autonomic dysfunction is widely
observed in iRBD patients, and more severe baseline cardiova-
gal autonomic dysfunction in iRBD has been associated with
phenoconversion to DLB but not PD. Findings from this study
and our study suggest that while a prospective study is needed
to establish a predictive mechanism for phenoconversion, HRV
signals reflecting cardiovagal function may indicate greater dys-
autonomia in iRBD patients and provide foundational evidence
for future research.

The presence of RBD in patients with overt PD is clinically
significant; however, not all PD patients exhibit RBD. This dis-
tinction is currently explained by the brain-first and body-first
subtypes of alpha-synucleinopathy. PD symptoms emerge when
pathological changes reach the basal ganglia and cortex. Regard-
less of the route through which pathology reaches the brainstem,
RBD manifests; however, it is more prevalent and frequent in
the body-first subtype. This subtype, which is hypothesized to
originate from pathology ascending via the vagus nerve, is also
associated with more pronounced autonomic dysfunction and
more severe symptoms. Previous studies have demonstrated a
strong association between RBD and autonomic dysfunction.
For example, orthostatic hypotension has been linked to RBD,
with studies showing greater systolic blood pressure changes dur-
ing orthostasis in affected individuals [30]. More importantly,
HRV differences between PDRBD and PDnoRBD have been
reported [15]. Nocturnal LF and HF spectral power values were
significantly higher in PDRBD than in PDnoRBD (p<0.001 and
p=0.004), and these values were also higher at night than during
the day in PDRBD. Our study successfully classified PDRBD and



PDnoRBD, as well as iRBD and controls, using ML techniques
with single-lead ECG-derived HRV features. Given that PDRBD
is associated with more severe symptoms than PDnoRBD, ear-
ly discrimination may help predict prognosis and guide tailored
treatment strategies. While further prospective studies are need-
ed to confirm these findings, our study suggests that progression
to PDRBD or PDnoRBD may be predicted, potentially allowing
for early intervention and personalized disease management
strategies in the future.

This study has several limitations. First, due to its retrospective
nature, the actual clinical status of participants at the time of PSG
and PET remains uncertain. Classification into iRBD, PDRBD,
or PDnoRBD was based on review of medical records, raising
the possibility that some participants classified as iRBD may
have been in the early stages of IPD or other parkinsonian syn-
dromes. However, to enhance diagnostic accuracy, we cross-
referenced PSG, EMR, and PET results and excluded ambigu-
ous cases to minimize potential misclassification. Furthermore,
no phenoconversion was observed during the interval between
PSG and PET, supporting the stability of our classification.

Second, the diagnosis of RBD was based on PSG-confirmed
repeated dream enactment behaviors and the loss of RWA, fol-
lowing ICSD-3 criteria. However, different AASM criteria were
applied over the years, reflecting changes in scoring standards
at the time of PSG acquisition. This inconsistency in diagnostic
criteria may have introduced variability in the classification of
RBD cases. Future studies should apply updated PSG scoring
criteria to re-evaluate existing data and ensure consistency in
diagnosis.

Third, the selection of the HC group presents a limitation.
Although categorized as HC, these participants were not entire-
ly asymptomatic; they exhibited symptoms despite not meeting
the criteria for sleep disorders such as OSA or RBD. Addition-
ally, differences in age and OSA severity between the HC group
and other groups could introduce confounding effects when us-
ing HC as a control. However, to mitigate this issue, we includ-
ed an additional control group, MC, for comparison. Our algo-
rithm successfully predicted RBD regardless of whether MC or
HC was used as the control group.

Fourth, although we systematically classified RBD subtypes,
the study population was relatively small, particularly in the iRBD
group. Indeed, in some analyses, classification of iRBD showed
lower accuracy than other groups. Also, the limited number of
participants in each group may affect the generalizability of our
findings. iRBD is known to exhibit decreased "*F-FP-CIT PET
uptake prior to an IPD diagnosis. However, in this study, we ex-
cluded cases with abnormal PET findings if definite parkinson-
ism was not present. While this may have resulted in a smaller
number of iRBD cases, and consequently in shorter PSG time
and imbalanced data, we aimed to exclude ambiguous cases
given the retrospective nature of the study and the potential im-
pact of misclassification on our results. Future studies with larger
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sample sizes are needed to validate our results. Additionally, we
selected patients with similar OSA severity across the groups;
however, this process was not conducted using formal methods
such as propensity score matching, which may introduce poten-
tial bias. Nevertheless, demographic characteristics did not dif-
fer significantly between groups, suggesting that the impact of
this limitation is likely minimal.

Fifth, although we demonstrated classification feasibility us-
ing total HRV features, this approach inevitably lacks specifici-
ty given the variability across sleep stages, which may be a criti-
cal confounder in this study. By not differentiating sleep stages,
our analysis may have overlooked meaningful intra-sleep vari-
ability and potentially higher classification accuracy. However,
this study was intended to be exploratory, focusing on the feasi-
bility of using HRV features to classify iRBD and PDRBD. Addi-
tionally, considering future applications such as daytime routine
ECG or Holter monitoring—which do not currently incorpo-
rate sleep staging—we aimed to evaluate the potential of a more
generalized approach. Still, we acknowledge that this limits both
the validity and potential clinical applicability of our findings.
Future prospective studies with well-curated, balanced datasets
should incorporate sleep-stage-specific HRV features to assess
their added value in classification performance.

Lastly, we did not investigate medications taken by partici-
pants. While we excluded individuals with known AF and pace-
maker insertion, minor arrhythmias such as sinus arrhythmia
and first-degree atrioventricular block were included. These
conditions are typically not treated, but some participants may
have been taking medications for arrhythmias. Additionally, par-
ticipants with tremor may have been prescribed beta blockers.
Medications for DEBs are usually withheld for two weeks prior
to PSG, but we could not confirm whether this protocol was
followed. In participants with PD, dopaminergic medications
were likely continued. These medications may have interfered
with HRV. These factors represent limitations of our study. How-
ever, in a retrospective design, controlling for medication use
and systematically investigating their impact is inherently chal-
lenging. A prospective study with standardized medication
control would provide more robust and reliable results.

Despite these limitations, our study offers new insights into the
early recognition of RBD using ECG-derived HRV features and
ML dlassification. Future prospective studies with larger cohorts
are needed to further validate our findings and enhance predic-
tive models for phenoconversion to overt a-synucleinopathy.

In conclusion, using ML methods, HRV features from single-
lead ECG obtained during PSG successfully classified iRBD,
PDRBD, and PDnoRBD. While our study provides valuable in-
sights into early RBD recognition, larger prospective studies are
required to validate ECG-derived markers for predicting RBD
and phenoconversion, facilitating earlier intervention and risk
stratification.
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