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Abstract 

Background  Early detection of amyloid-β (Aβ) pathology is critical for timely intervention in Alzheimer’s disease (AD). 
While Aβ positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarkers are accurate, their high cost 
and limited accessibility hinder routine use. We developed a computed tomography (CT)-based, two-stage workflow 
combining CT-derived atrophy patterns with plasma phosphorylated tau 217 (p-Tau217) to predict Aβ PET positivity.

Methods  In this cohort of 616 participants (521 with mild cognitive impairment (MCI], 95 with early dementia 
of Alzheimer’s type (DAT]; age 60–93 years), CT, p-Tau217 assays, and Aβ PET were performed. A random forest model 
incorporating CT-derived regional W-scores and apolipoprotein E ε4 (APOE ε4) status stratified individuals into low-, 
intermediate-, and high-risk groups. p-Tau217 testing was reserved for the intermediate-risk group.

Results  At a 95% sensitivity/specificity threshold, CT-based stratification yielded a low-risk negative predictive value 
(NPV) of 95.8% (93.0–98.6%) and a high-risk positive predictive value (PPV) of 98.4% (96.8–100.0%), with 28.2% clas-
sified as intermediate-risk. Targeted plasma testing of intermediate-risk group improved the overall PPV to 92.8% 
(88.5–97.1%) and the overall NPV to 88.9% (78.6–99.2%), achieving an overall accuracy of 95.8% (94.2–97.4%). The CT-
based workflow’s accuracy was non-inferior to our MRI-based method (area under the curve 0.96 vs. 0.95; p = 0.14).

Conclusions  This CT-based, two-stage approach is a cost-effective, scalable alternative to MRI-based strategies, leveraging 
routine CT and selective p-Tau217 testing to enhance early AD detection and optimize resource utilization in clinical practice.
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Background
Alzheimer’s disease (AD) is characterized by extracellular 
amyloid-β (Aβ) plaques and intracellular tau neurofibril-
lary tangles, leading to progressive neurodegeneration 
[1–3]. Recent advancements in Aβ-targeted therapies 
highlight the critical importance of timely detection of 
Aβ pathology, particularly in patients with mild cognitive 
impairment (MCI) or early dementia of Alzheimer’s-type 
(DAT) [4–6]. Aβ positron emission tomography (PET) 
remains the only in vivo gold standard for detecting Aβ 
deposition [7–9] and is increasingly available at special-
ized centers; however, its high cost and reliance on cyclo-
tron-produced tracers limit broad clinical deployment 
[10]. Cerebrospinal fluid (CSF) biomarkers provide valu-
able supportive information [11–13] but are not consid-
ered standalone gold standards due to their invasiveness 
and inter-laboratory variability [14]. Plasma biomarkers 
such as phosphorylated tau 217 (p-tau217) have emerged 
as minimally invasive alternatives [15–18], but their 
additional expense limits their practicality for routine 
screening.

Structural imaging, including magnetic resonance 
imaging (MRI) and computed tomography (CT), is rou-
tinely performed in initial clinical assessments of cog-
nitive impairment to rule out potentially reversible 
conditions, such as brain tumors, subdural hematomas, 
or strokes, thus incurring no additional costs [19, 20]. 
AD typically manifests as characteristic regional atrophy 
patterns, including medial temporal and posterior pari-
etal regions, observed as sulcal widening and ventricular 
enlargement [21–24]. Leveraging these distinctive pat-
terns, structural imaging can efficiently stratify patients 
into low-risk and high-risk groups for Aβ pathology, 
reducing unnecessary biomarker tests.

Previously, we introduced a two-stage diagnostic work-
flow combining MRI-derived brain atrophy measures 
with plasma p-tau217 testing, effectively identifying 
Aβ-positive patients while optimizing resource utili-
zation [25]. However, MRI has significant limitations, 
such as relatively high costs, prolonged scan durations, 
and contraindications (e.g., claustrophobia or metallic 
implants) [26–28]. Conversely, CT is more accessible, 
cost-effective, and widely used clinically, particularly in 
initial dementia assessments where MRI may be unavail-
able, contraindicated, or impractical. In many real-world 
healthcare settings, especially in Europe, CT serves as 
the first-line imaging modality due to its rapid acquisi-
tion and lower cost. Although CT’s limited resolution 
previously necessitated subjective visual ratings prone to 
variability, recent advances in artificial intelligence, par-
ticularly deep learning-based segmentation, now enable 
precise and objective quantification of brain atrophy [29]. 
We previously validated a CT-based artificial intelligence 

(AI) framework against MRI, demonstrating reliable, 
region-specific atrophy measures and accurate differen-
tiation of cognitive stages and dementia subtypes. A brief 
description of this work is provided in eNote 1. The tech-
nical implementation of the CT-based model used in this 
study, including the W-score derivation, is described in a 
previously published validation study [30].

Building upon these developments, this study aims 
to validate a clinically feasible two-stage, consisting of 
1) AI-supported classification of individuals into low-, 
intermediate-, and high-risk of amyloid positivity; and 
2) selective p-tau217 testing exclusively for the interme-
diate-risk group. We hypothesized that this CT-based 
workflow would achieve diagnostic accuracy comparable 
to the MRI-based approach, substantially improving clin-
ical accessibility, economic efficiency, and scalability for 
broader real-world implementation.

Methods
Participants
A total of 616 participants (521 with MCI and 95 with 
early-stage DAT), aged 60 to 93  years, were recruited 
from the Korea-Registries to Overcome Dementia and 
Accelerate Dementia Research (K-ROAD) project in 
South Korea [31]. A detailed participant selection pro-
cess is illustrated in eFigure  1. Participants with MCI 
were diagnosed based on Petersen’s clinical criteria for 
amnestic MCI with the following modifications [32, 33]: 
subjective memory complaints reported by the patient 
or caregiver, no significant impairment in activities of 
daily living (ADL), objective cognitive decline below −1.0 
standard deviation (SD) of age- and education-matched 
norms in neuropsychological tests, and not being 
demented. Diagnosis of early-stage DAT was established 
according to the 2011 criteria from the National Institute 
on Aging and Alzheimer’s Association [34], with a Clini-
cal Dementia Rating (CDR) score of 0.5.

All participants underwent a comprehensive demen-
tia evaluation, including clinical interviews, neurologi-
cal examinations, and standardized neuropsychological 
assessments using the Seoul Neuropsychological Screen-
ing Battery (SNSB) [35]. Further assessments included 
routine blood tests to exclude medical conditions (vita-
min B12 deficiency, syphilis serology, thyroid, renal, or 
hepatic dysfunction), structural brain imaging to identify 
lesions such as territorial infarction, intracranial hemor-
rhage, brain tumors, or severe white matter hyperinten-
sities based on the modified Fazekas ischemic scale [36], 
apolipoprotein E (APOE) genotyping, and Aβ PET-CT 
imaging. Participants with cognitive impairment due 
to these secondary causes or other neurodegenerative 
diseases (progressive supranuclear palsy, corticobasal 
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syndrome, frontotemporal dementia, or Lewy body/Par-
kinson’s disease dementias) were excluded.

Aβ PET acquisition and determination of Aβ positivity
All participants underwent Aβ PET using either [18F]
florbetaben (FBB) or [18F]flutemetamol (FMM) to detect 
amyloid in the brain. Following protocols recommended 
by the ligand manufactures, a 20 min emission PET scan 
with dynamic mode (consisting of 4 × 5 min frames) was 
performed 90 min after the injection of a mean dose of 
311.5 MBq FBB and 185 MBq FMM, respectively.

PET scans were aligned with the participants’ MRI 
images and normalized to the Montreal Neurological 
Institute-152 standard using the appropriate transfor-
mation matrix. Following alignment, the gray matter 
of the brain was divided into 116 regions based on the 
automated anatomical labeling atlas. The entire cerebel-
lum served as the reference region for calculating the 
standardized uptake value ratio (SUVR), with regional 
masks obtained from the Global Alzheimer’s Associa-
tion Interactive Network (GAAIN) website (https://​www.​
gaain.​org/). We assessed Aβ burden in FBB and FMM 
PET scans using the BeauBrain Amylo software, which 
employs image processing methodologies based on 
the Centiloid (CL) project [37]. Aβ PET positivity was 
defined using a threshold of 20 CL, which was selected to 
enhance sensitivity for early Aβ detection, based on prior 
studies that validated the use of a lower CL cutoff in pre-
clinical and at-risk populations [38–40].

Plasma collection and processing for p‑Tau217 analysis
Blood samples were collected from each participant, 
placed into 0.5M EDTA-containing tubes, and mixed 
for 5  min. The samples were centrifuged at 1,300  g for 
10 min, after which plasma was extracted and aliquoted 
into 5 or 10 vials, each containing 0.3 mL. These plasma 
samples were stored at − 75  °C following the guidelines 
established by the National Biobank of the Republic of 
Korea for human resource collection and registration. 
The frozen plasma samples were then shipped at − 70 °C 
to the Department of Psychiatry and Neurochemistry at 
the University of Gothenburg, where plasma concentra-
tions of p-Tau217 were measured using the commercial 
ALZpath p-Tau217 immunoassay on the Single Mol-
ecule Array (SIMOA) HD-X instrument, a paramagnetic 
microbead-based sandwich enzyme-linked immunosorb-
ent assay system (Quanterix, Billerica, MA).

Image acquisition and preprocessing
CT imaging was performed using a Discovery STe PET-
CT scanner (GE Medical Systems, Milwaukee, WI, USA), 
operating in three-dimensional mode and acquiring 
47 slices, each 3.3-mm thick, covering the entire brain. 

Additional CT images for attenuation correction were 
obtained using a 16-slice helical CT (140  keV, 80  mA, 
3.75-mm section width) and reconstructed in a 512 × 512 
matrix. Voxel size of the PET-CT acquired CT images 
was 0.5  mm × 0.5  mm × 3.27  mm. Signal-to-noise ratio 
validation was conducted through a phantom study (120 
kVp, 190 mA, 3.75 mm slice thickness). The CT images 
underwent standardization to normalize brain tissue 
Hounsfield units (HU), following previously validated 
methods [41]. Subsequently, standardized CT images 
were co-registered to the corresponding T1-weighted 
MRI images using Advanced Normalization Tools 
(ANTs) [42].

AI‑driven CT‑based brain atrophy assessment
We performed an AI-powered CT analysis using Beau-
Brain Morph Software [29], which provides quantitative 
brain atrophy measurements from noncontrast CT scans. 
This fully automated approach delineates 14 anatomi-
cally defined regions—including bilateral cerebrospinal 
fluid spaces in the frontal, occipital, parietal, and tempo-
ral lobes and ventricular segments (anterior lateral, pos-
terior, temporal horns)—and generates W-scores, which 
are standardized residual derived from linear regression 
model that adjust individual regional brain volumes for 
age and sex [43]. These scores quantify the degree to 
which an individual’s volume deviates from the expected 
norm, based on a large, normative reference groups from 
the K-ROAD cohort (n = 1200; age 24–89  years; 60.7% 
female).

Development of a CT‑based two‑stage workflow for Aβ 
positivity prediction
The model incorporated APOE genotype and CT-derived 
brain volumes to stratify the risk of Aβ PET positivity. 
Specifically, a binary random forest classifier was trained 
using APOE ε4 carrier status and CT-derived regional 
brain volume W-scores as predictors, with PET posi-
tivity defined as a CL value ≥ 20. The classifier first pre-
dicted each participant’s probability of being amyloid 
positive. These predicted probabilities from this classi-
fier were then used to stratify participants into three risk 
groups: low-, intermediate-, and high-risk groups. To 
achieve this, two probability thresholds were defined for 
each threshold strategy (90%, 95%, and 97.5%): a Lower 
threshold to achieve the target sensitivity to reduce false 
negatives, and an upper threshold to achieve the target 
specificity to reduce false positives. Participants with pre-
dicted probabilities below the Lower threshold were clas-
sified as low risk, those above the upper threshold as high 
risk, and those between the two thresholds as intermedi-
ate risk. For example, under the 95%/95% threshold strat-
egy, thresholds for 95% sensitivity and 95% specificity 
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were derived from the pooled MCI and DAT cohort and 
then applied to each subgroup to confirm consistent 
stratification performance. We then calculated the prev-
alence of Aβ PET negativity in the low-risk group and 
positivity in the high-risk group for each threshold strat-
egy. In the second stage, plasma p-Tau217 testing was 
applied exclusively to participants in the intermediate-
risk group. Using a previously established threshold for 
p-Tau217 positivity [44], we assessed concordance with 
Aβ PET status to refine Aβ positivity predictions. Over-
all diagnostic accuracy was defined as the proportion of 
correctly classified cases, and workflow efficiency was 
measured by the reduction in the number of participants 
requiring additional biomarker testing.

MRI acquisition and processing for comparative analysis
For comparison with the CT-based two-stage diag-
nostic workflow, MRI scans were acquired in the same 
participant cohort using a 3.0  T MRI scanner (Philips 
3.0  T Achieva) and a 3D T1 turbo field-echo sequence 
(1.0 mm sagittal slices with 50% overlap; TR 9.9 ms; TE 
4.6  ms; flip angle 8°; reconstructed matrix 480 × 480 
pixels; field of view 240 mm). CT and MRI exams were 
performed within a median interval of 2.6 months (IQR 
0.9–4.7  months). Using methods previously described 
in detail [30], MRI images underwent quantitative brain 
atrophy measurements targeting the same 14 regions of 
interest (ROIs) as used in the CT analysis, generating 
age- and sex-adjusted regional W-scores. Furthermore, 
as previously detailed [45], a two-stage workflow inte-
grating MRI-derived W-scores with plasma p-Tau217 
was conducted to directly evaluate the comparative per-
formance relative to the CT-based approach.

Statistical analysis
All statistical analyses were conducted using R software 
(version 4.0.2; http://​www.r-​proje​ct.​org). Descriptive sta-
tistics were computed to summarize demographic and 
clinical characteristics of the study population. Group 
differences in continuous variables were assessed using 
analysis of variance (ANOVA), with Tukey’s post hoc 
tests applied where appropriate. Categorical variables 
were compared using chi-square tests, and Bonferroni 
correction was employed for multiple pairwise compari-
sons as needed.

For the classifier development described above, pre-
dictive modeling was performed in Python (version 3.8) 
using the scikit-learn (https://​scikit-​learn.​org/​stable/​
index.​html) library for machine learning. The primary 
predictive features included APOE ε4 carrier status and 
CT-derived regional W-scores, which were selected 
based on their known associations with Aβ pathology. 

Model performance was evaluated through k-fold cross-
validation (with k = 5) and quantified using accuracy, 
positive predictive value (PPV), and negative predictive 
value (NPV) metrics. For each fold in the cross valida-
tion procedure, the model was trained on a subset of the 
data (training set) and evaluated on the corresponding 
held-out test set. This process was repeated across all five 
folds to assess predictive performance. Hyperparameter 
optimization was conducted via grid search with inter-
nal cross-validation applied within each training fold to 
ensure test fold remained unseen during model selection. 
Key parameters of the random forest model were tuned, 
including n_estimators, max_depth, min_samples_split, 
min_samples_leaf, and max_features. The same mode-
ling pipeline was applied consistently across all iterations 
to ensure robustness and reproducibility.

Risk stratification thresholds were established based 
on target sensitivity and specificity levels (90%, 95%, and 
97.5%), and were used to classify participants into low-, 
intermediate-, and high-risk groups. For individuals in 
the intermediate-risk group, plasma p-Tau217 data were 
incorporated to refine Aβ PET status predictions, and 
the concordance between plasma biomarker results and 
Aβ PET status was evaluated. The McNemar’s test was 
used to compare accuracy, sensitivity, and specificity, 
while PPV and NPV were compared using a bootstrap-
ping-based test. The statistical significance was evaluated 
using a two-tailed test with an alpha level of 0.05.

Results
Participant characteristics
The demographics of participants are presented in 
Table  1. A total of 616 participants were included in 
the study. The median age was 73.0  years, with 60.6% 
female and 47.0% APOE ε4 carriers. The median plasma 
p-Tau217 concentration was 0.7 pg/mL (IQR 0.3–1.1 pg/
mL). Aβ PET positivity was observed in 63.9% of partici-
pants, and the median CDR-SOB score was 1.5.

Primary risk stratification via CT‑based brain atrophy 
patterns
In the first stage, CT-based atrophy measures strati-
fied participants into low-, intermediate-, and high-risk 
groups for Aβ PET positivity (Fig.  1 A). At sensitivity/
specificity thresholds of 90%, 95%, and 97.5%, the CT 
model achieved NPVs of 94.9%, 95.8%, and 96.4% (low-
risk) and PPVs of 97.6%, 98.4%, and 99.1% (high-risk), 
with 21.3%, 28.2%, and 36.5% of participants in the inter-
mediate-risk group, respectively. Detailed demographics 
at this threshold are provided in supplementary material 
(eTable 1). We selected the 95% threshold as optimal, bal-
ancing predictive accuracy and Limiting the intermedi-
ate-risk cohort to 28.2%, thereby minimizing downstream 
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testing costs (Fig. 2). At this threshold, 74.8% of MCI par-
ticipants in the intermediate-risk group and 98.0% in the 
high-risk group were Aβ PET positive, while only 3.3% of 
those in the low-risk group were positive. Among DAT 
participants, 94.9% in the intermediate-risk group and 
100% in the high-risk group were Aβ PET positive, com-
pared to 22.2% in the low-risk group (Table 2).

As a supportive comparator, an MRI-based model pro-
duced comparable performance (NPV 98.2%, PPV 98.3%, 
34.3% intermediate-risk at 95% threshold; Fig. 1B), with 
no statistically significant differences (AUC: p = 0.14, 
NPV: p = 0.82, and PPV: p = 0.57) when compared to 
the CT-based model, thereby confirming that CT-based 
stratification alone offers robust predictive power with 
the advantage of greater accessibility and lower cost.

Refining Aβ PET status with p‑Tau217 in CT‑identified 
intermediate‑risk participants
In the second stage of our CT-first workflow, plasma 
p-Tau217 testing was applied only to the 28.2% of par-
ticipants in the CT-based intermediate-risk group 
(Fig.  3 A). At the 95% sensitivity/specificity threshold, 
this yielded a PPV of 96.9% and NPV of 74.7%, within 
the intermediate-risk group. Across the entire cohort, 
targeted plasma testing of the intermediate-risk group 
improved the overall PPV to 92.8% (95% CI: 88.5–
97.1%) and the overall NPV to 88.9% (95% CI: 78.6–
99.2%), boosting overall two-stage accuracy to 95.8% 
(95% CI: 94.2–97.4%) and reducing further biomarker 
testing by 71.8%. The one-step CT-only model achieved 
an AUC of 0.81 for predicting amyloid positivity. Incor-
porating plasma p-Tau217 (two-step CT + p-Tau217) 
increased the AUC to 0.96 (DeLong’s test, p < 0.001; 
Fig.  4 A) and significantly improved PPV and NPV 
within the CT intermediate subgroup (McNemar’s test, 
p < 0.01; Fig. 4 C).

For comparison, plasma p-Tau217 applied to the 34.3% 
MRI-based intermediate group (Fig. 3B) yielded a PPV of 
96.3%, an NPV of 70.6%, and an overall two-stage accu-
racy of 95.2%. The one-step MRI-only model had an AUC 
of 0.81, which rose to 0.95 with the addition of plasma 
p-Tau217 (p < 0.001; Fig. 4B).

Discussion
In this study, we developed and validated a two-stage 
diagnostic workflow integrating CT-derived brain atro-
phy patterns and plasma p-Tau217 testing to predict Aβ 
PET positivity in individuals with MCI or mild demen-
tia. Our major findings were as follows: First, CT-based 

Table 1  Demographics of study participants

Data are presented as n (%) for categorical variables and median with 
interquartile range (IQR) for continuous variables. Abbreviations: MCI, mild 
cognitive impairment; APOE, apolipoprotein E; Aβ PET, amyloid-beta positron 
emission tomography; p-Tau217, phosphorylated tau 217; CDR-SOB, clinical 
dementia rating–sum of boxes; CT, computed tomography; MRI, magnetic 
resonance imaging

Participants (n = 616)

Diagnosis, MCI n (%) 521 (84.6)

Age, years 73.0 (68.0–78.0)

Sex, female n (%) 373 (60.6)

Education, years 12.0 (8.0–16.0)

APOE ε4 carriers, n (%) 289 (46.9)

Aβ PET positive, n (%) 393 (63.8)

Plasma p-Tau217, pg/ml * 0.7 (0.3–1.1)

CDR-SOB 1.5 (1.0–3.0)

Median interval between CT and MRI scans, 
months

2.6 (0.9–4.7)

Fig. 1  Distribution and thresholds of Aβ (+) probability based on brain atrophy patterns in the K-ROAD cohort. Predictions based on CT-derived A 
and MRI-derived B brain atrophy patterns. Blue dots represent Aβ PET negative individuals, and red dots represent Aβ PET positive individuals. The 
right y-axis shows predicted probabilities of Aβ probability, with thresholds corresponding to sensitivity(Se) and specificity(Sp) levels of 90%, 95%, 
and 97.5%. These thresholds define the boundaries for low-, intermediate-, and high-risk groups. Abbreviations: Aβ, amyloid-beta; PET, positron 
emission tomography; CT, computed tomography; MRI, magnetic resonance imaging; Se, sensitivity; Sp, specificity
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stratification accurately differentiated low-, interme-
diate-, and high-risk groups for amyloid positivity, 
achieving predictive values comparable to previously val-
idated MRI-based approaches. Second, targeted plasma 
p-Tau217 testing significantly refined diagnostic accu-
racy within the intermediate-risk group, resulting in high 
PPV and clinically acceptable NPV. Finally, the proposed 
CT-based workflow demonstrated high overall accuracy 
(95.8%) while substantially reducing the number of par-
ticipants requiring additional invasive biomarker testing. 

Collectively, these results highlight the clinical feasibility, 
practicality, and scalability of CT-based two-stage strate-
gies for amyloid risk assessment.

Our first major finding demonstrated that CT-based 
regional atrophy measures reliably stratified Aβ PET 
positivity risk into clearly defined risk groups. At the 
optimal threshold (95% sensitivity/specificity), the CT-
based stratification achieved PPVs of 98.4% in the high-
risk group and NPVs of 95.8% in the low-risk group, 
closely matching the performance of previously validated 

Fig. 2  Workflow performance and cost evaluation based on risk stratification thresholds. A Overall accuracy of the CT-based two-step 
classification workflow, including accuracy within the low- and high-risk groups, as well as the classification accuracy using plasma p-Tau217 
in the intermediate-risk group. Error bars represent 95% confidence intervals. B Proportion of individuals assigned to the intermediate-risk group 
under different risk threshold strategies. C Estimated total cost for each strategy, incorporating the added expense of plasma p-Tau217 testing 
for individuals in the intermediate-risk group. Abbreviations: p-Tau217, phosphorylated tau 217

Table 2  Risk stratification for A β PET positivity using different threshold strategies across cognitive staging

Data are presented as n or n (%). The first column indicates each of the evaluated strategies for CT-based risk stratification, along with the corresponding low-, 
intermediate- and high-risk groups for each strategy. The second column shows the number of screened individuals assigned to each risk category, with the 
percentage in the intermediate-risk group presented in parentheses. The third and fourth columns present the Aβ PET positivity rates within each risk group, stratified 
by cognitive stage

Abbreviations: Aβ Amyloid-β, K-ROAD Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer’s Disease, Se Sensitivity, Sp Specificity

K-ROAD

Risk groups Participants in risk group, n (%) Cognitive status

A β PET
positive MCI, n (%)

A β PET
positive DAT, n (%)

90% Se Lower-risk threshold/90% Sp higher-risk threshold

  Low risk 195 (31.7%) 186 (4.3%) 9 (22.2%)

  Intermediate risk 131 (21.3%) 104 (72.1%) 27 (92.6%)

  High risk 290 (47.1%) 231 (97.0%) 59 (100%)

95% Se Lower-risk threshold/95% Sp higher-risk threshold

  Low risk 191 (31.0%) 182 (3.3%) 9 (22.2%)

  Intermediate risk 174 (28.2%) 135 (74.8%) 39 (94.9%)

  High risk 251 (40.7%) 204 (98.0%) 47 (100%)

97.5% Se Lower-risk threshold/97.5% Sp higher-risk threshold

  Low risk 167 (16.9%) 159 (3.1%) 8 (12.5%)

  Intermediate risk 377 (46.7%) 176 (67.0%) 49 (95.9%)

  High risk 224 (36.4%) 186 (98.9%) 38 (100%)
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MRI-based methods. These findings are consistent with 
prior studies emphasizing characteristic atrophy pat-
terns in AD, particularly in the medial temporal and pos-
terior parietal regions. Leveraging routinely performed 
CT scans, our approach offers significant practical 

advantages by avoiding additional costs, making it par-
ticularly suitable for widespread clinical adoption, espe-
cially in resource-limited settings.

Our second major finding highlighted the added 
value of plasma p-Tau217 testing in refining amyloid 

Fig. 3  Two-stage diagnostic workflow for predicting Aβ positivity on PET using CT-based (A) and MRI-based (B) risk stratification followed 
by plasma p-Tau217 testing. The panel A and B illustrate two-stage diagnostic workflows based on the 95% sensitivity and 95% specificity threshold 
strategies. The left side of each panel shows the initial risk stratification using CT and MRI, with individuals categorized into high (red), intermediate 
(yellow), and low (blue) risk groups. The percentage of Aβ PET positive individuals in the high-risk group and the percentage of Aβ PET negative 
individuals in the low-risk group reflects the predictive accuracy of the first step. The right side presents the second step, plasma p-Tau217 testing 
applied only to the intermediate-risk group. Predictive accuracy in this step is indicated by the negative predictive value and positive predictive 
value. Abbreviations: Aβ, amyloid-beta; PET, positron emission tomography; CT, computed tomography; MRI, magnetic resonance imaging; 
p-Tau217, phosphorylated tau 217; Se, sensitivity; Sp, specificity

Fig. 4  Model performance and predictive value across modality. Receiver operating characteristic curves for the CT-based A and MRI-based 
framework B, comparing the performance of the one-step (image-only) model and the proposed two-step model. C Comparison of PPV and NPV 
between the one-step and two-step models within the intermediate-risk groups across modality. Abbreviations: AUC, area under the curve; 
CT, computed tomography; MRI, magnetic resonance imaging; NPV, negative predictive value; PPV, positive predictive value; Se, sensitivity; Sp, 
specificity
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status prediction for the intermediate-risk group. Plasma 
p-Tau217 testing achieved a high PPV (96.9%) and 
acceptable NPV (74.7%), comparable to results from 
MRI-based approaches. This confirms previous evidence 
that plasma p-Tau217 effectively complements structural 
imaging data, providing robust biochemical confirmation 
of amyloid pathology. By selectively employing plasma 
biomarkers for uncertain cases, our two-stage workflow 
significantly enhances diagnostic precision while opti-
mizing resource use and balancing accuracy with eco-
nomic practicality.

Our final major finding was the substantial clinical 
utility and resource-saving potential of the CT-based 
two-stage workflow. Using this approach, we achieved 
an overall accuracy of 95.8%, comparable to previously 
validated MRI-based workflows, while notably reducing 
the need for additional invasive testing by approximately 
72%. Unlike MRI, which can be costly, time-consuming, 
and contraindicated in certain patient groups, CT imag-
ing is faster, more affordable, and broadly accessible. 
Employing advanced AI-based segmentation techniques, 
our CT-based workflow addresses critical Limitations 
of MRI and PET, making it practical for broader clini-
cal implementation and capable of extending early 
amyloid detection beyond specialized centers into com-
munity-based practice. To contextualize the economic 
implications of our approach, we estimated the cost of 
identifying 1,000 Aβ-positive individuals. Under a uni-
versal PET strategy, approximately 1,567 individuals 
would require scanning at a total cost of USD 6.27 million 
(assuming USD 4,000 per scan; 63.8% Aβ positivity rate). 
In contrast, our two-stage workflow restricts plasma bio-
marker testing to the intermediate-risk group, compris-
ing 28.2% of participants, resulting in an estimated cost 
of USD 132,600 (assuming USD 300 per plasma test) and 
a total cost reduction exceeding USD 6.1 million.

A major strength of our study is the validation of a clin-
ically feasible, AI-driven CT segmentation framework, 
offering precise and objective regional atrophy meas-
ures comparable to MRI-based assessments. However, 
there are several limitations. First, although our CT-first 
two-stage workflow markedly enhanced diagnostic accu-
racy over a CT-only baseline, the incremental gain was 
modest, which may temper its clinical impact; nonethe-
less, even small improvements in amyloid detection can 
meaningfully guide patient management and therapeu-
tic decisions. Second, regional atrophy patterns—while 
characteristic of AD—are not wholly specific and can 
occur in other disorders (e.g., Limbic-predominant age-
related TAR DNA-binding protein 43 encephalopathy 
or hippocampal sclerosis), underscoring the need for 
multimodal confirmation. Third, our model dispropor-
tionately allocated APOE ε4 carriers to the high-risk 

group (eTable  1), suggesting potential over-weighting of 
this variable (eFigure 2). While the 73.5% ε4 carrier fre-
quency among amyloid-positive individuals in our cohort 
aligns with prior reports [46], future refinements should 
incorporate feature regularization and external valida-
tion to enhance generalizability. Finally, because our 
cohort was drawn from a specialized memory clinic, the 
workflow may not directly generalizable to settings such 
as prevention trials, where neuroimaging is not rou-
tinely performed. In addition, since the cutoff value was 
determined using the assessed cohort, the study may not 
include a truly independent dataset to evaluate the full 
pipeline, which could somewhat limit the generalizability 
of the findings. However, in patients with MCI or mild 
dementia, the use of structural imaging remains clinically 
justified. Future studies in broader, community-based 
populations will be essential to establish generalizability. 
Nonetheless, given the substantial practical advantages 
of our CT-based two-stage diagnostic workflow—high 
accuracy, cost-effectiveness, and broad clinical accessibil-
ity—our findings hold significant potential for improving 
early and precise diagnosis in real-world clinical settings.

Conclusion
In conclusion, our CT-based two-stage diagnostic 
workflow effectively predicts amyloid PET positivity in 
patients with MCI and early dementia, demonstrating 
diagnostic accuracy comparable to previously validated 
MRI-based workflows while substantially enhancing 
clinical accessibility, efficiency and scalability. Given its 
practicality and potential for broad clinical implementa-
tion, this CT-based approach offers a highly promising 
strategy to facilitate early and accurate diagnosis, opti-
mize patient selection for amyloid-targeted therapies, 
and improve healthcare resource utilization in real-world 
clinical practice.
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