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Abstract

Background Early detection of amyloid-(3 (AB) pathology is critical for timely intervention in Alzheimer’s disease (AD).
While AR positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarkers are accurate, their high cost
and limited accessibility hinder routine use. We developed a computed tomography (CT)-based, two-stage workflow
combining CT-derived atrophy patterns with plasma phosphorylated tau 217 (p-Tau217) to predict AR PET positivity.

Methods In this cohort of 616 participants (521 with mild cognitive impairment (MCI], 95 with early dementia

of Alzheimer’s type (DAT]; age 60-93 years), CT, p-Tau217 assays, and AR PET were performed. A random forest model
incorporating CT-derived regional W-scores and apolipoprotein E €4 (APOE €4) status stratified individuals into low-,
intermediate-, and high-risk groups. p-Tau217 testing was reserved for the intermediate-risk group.

Results At a 95% sensitivity/specificity threshold, CT-based stratification yielded a low-risk negative predictive value
(NPV) of 95.8% (93.0-98.6%) and a high-risk positive predictive value (PPV) of 98.4% (96.8—100.0%), with 28.2% clas-
sified as intermediate-risk. Targeted plasma testing of intermediate-risk group improved the overall PPV to 92.8%
(88.5-97.1%) and the overall NPV to 88.9% (78.6-99.2%), achieving an overall accuracy of 95.8% (94.2-97.4%). The CT-
based workflow’s accuracy was non-inferior to our MRI-based method (area under the curve 0.96 vs. 0.95; p=0.14).

Conclusions This CT-based, two-stage approach is a cost-effective, scalable alternative to MRI-based strategies, leveraging
routine CT and selective p-Tau217 testing to enhance early AD detection and optimize resource utilization in clinical practice.
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Background

Alzheimer’s disease (AD) is characterized by extracellular
amyloid-p (AP) plaques and intracellular tau neurofibril-
lary tangles, leading to progressive neurodegeneration
[1-3]. Recent advancements in Ap-targeted therapies
highlight the critical importance of timely detection of
Ap pathology, particularly in patients with mild cognitive
impairment (MCI) or early dementia of Alzheimer’s-type
(DAT) [4-6]. AP positron emission tomography (PET)
remains the only in vivo gold standard for detecting A
deposition [7-9] and is increasingly available at special-
ized centers; however, its high cost and reliance on cyclo-
tron-produced tracers limit broad clinical deployment
[10]. Cerebrospinal fluid (CSF) biomarkers provide valu-
able supportive information [11-13] but are not consid-
ered standalone gold standards due to their invasiveness
and inter-laboratory variability [14]. Plasma biomarkers
such as phosphorylated tau 217 (p-tau217) have emerged
as minimally invasive alternatives [15-18], but their
additional expense limits their practicality for routine
screening.

Structural imaging, including magnetic resonance
imaging (MRI) and computed tomography (CT), is rou-
tinely performed in initial clinical assessments of cog-
nitive impairment to rule out potentially reversible
conditions, such as brain tumors, subdural hematomas,
or strokes, thus incurring no additional costs [19, 20].
AD typically manifests as characteristic regional atrophy
patterns, including medial temporal and posterior pari-
etal regions, observed as sulcal widening and ventricular
enlargement [21-24]. Leveraging these distinctive pat-
terns, structural imaging can efficiently stratify patients
into low-risk and high-risk groups for AP pathology,
reducing unnecessary biomarker tests.

Previously, we introduced a two-stage diagnostic work-
flow combining MRI-derived brain atrophy measures
with plasma p-tau2l7 testing, effectively identifying
ApB-positive patients while optimizing resource utili-
zation [25]. However, MRI has significant limitations,
such as relatively high costs, prolonged scan durations,
and contraindications (e.g., claustrophobia or metallic
implants) [26—28]. Conversely, CT is more accessible,
cost-effective, and widely used clinically, particularly in
initial dementia assessments where MRI may be unavail-
able, contraindicated, or impractical. In many real-world
healthcare settings, especially in Europe, CT serves as
the first-line imaging modality due to its rapid acquisi-
tion and lower cost. Although CT’s limited resolution
previously necessitated subjective visual ratings prone to
variability, recent advances in artificial intelligence, par-
ticularly deep learning-based segmentation, now enable
precise and objective quantification of brain atrophy [29].
We previously validated a CT-based artificial intelligence
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(AI) framework against MRI, demonstrating reliable,
region-specific atrophy measures and accurate differen-
tiation of cognitive stages and dementia subtypes. A brief
description of this work is provided in eNote 1. The tech-
nical implementation of the CT-based model used in this
study, including the W-score derivation, is described in a
previously published validation study [30].

Building upon these developments, this study aims
to validate a clinically feasible two-stage, consisting of
1) Al-supported classification of individuals into low-,
intermediate-, and high-risk of amyloid positivity; and
2) selective p-tau217 testing exclusively for the interme-
diate-risk group. We hypothesized that this CT-based
workflow would achieve diagnostic accuracy comparable
to the MRI-based approach, substantially improving clin-
ical accessibility, economic efficiency, and scalability for
broader real-world implementation.

Methods

Participants

A total of 616 participants (521 with MCI and 95 with
early-stage DAT), aged 60 to 93 years, were recruited
from the Korea-Registries to Overcome Dementia and
Accelerate Dementia Research (K-ROAD) project in
South Korea [31]. A detailed participant selection pro-
cess is illustrated in eFigure 1. Participants with MCI
were diagnosed based on Petersen’s clinical criteria for
amnestic MCI with the following modifications [32, 33]:
subjective memory complaints reported by the patient
or caregiver, no significant impairment in activities of
daily living (ADL), objective cognitive decline below —1.0
standard deviation (SD) of age- and education-matched
norms in neuropsychological tests, and not being
demented. Diagnosis of early-stage DAT was established
according to the 2011 criteria from the National Institute
on Aging and Alzheimer’s Association [34], with a Clini-
cal Dementia Rating (CDR) score of 0.5.

All participants underwent a comprehensive demen-
tia evaluation, including clinical interviews, neurologi-
cal examinations, and standardized neuropsychological
assessments using the Seoul Neuropsychological Screen-
ing Battery (SNSB) [35]. Further assessments included
routine blood tests to exclude medical conditions (vita-
min B12 deficiency, syphilis serology, thyroid, renal, or
hepatic dysfunction), structural brain imaging to identify
lesions such as territorial infarction, intracranial hemor-
rhage, brain tumors, or severe white matter hyperinten-
sities based on the modified Fazekas ischemic scale [36],
apolipoprotein E (APOE) genotyping, and Ap PET-CT
imaging. Participants with cognitive impairment due
to these secondary causes or other neurodegenerative
diseases (progressive supranuclear palsy, corticobasal
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syndrome, frontotemporal dementia, or Lewy body/Par-
kinson’s disease dementias) were excluded.

AB PET acquisition and determination of AP positivity

All participants underwent AB PET using either ['F]
florbetaben (EBB) or [*®F]flutemetamol (FMM) to detect
amyloid in the brain. Following protocols recommended
by the ligand manufactures, a 20 min emission PET scan
with dynamic mode (consisting of 4 x 5 min frames) was
performed 90 min after the injection of a mean dose of
311.5 MBq FBB and 185 MBq FMM, respectively.

PET scans were aligned with the participants’ MRI
images and normalized to the Montreal Neurological
Institute-152 standard using the appropriate transfor-
mation matrix. Following alignment, the gray matter
of the brain was divided into 116 regions based on the
automated anatomical labeling atlas. The entire cerebel-
lum served as the reference region for calculating the
standardized uptake value ratio (SUVR), with regional
masks obtained from the Global Alzheimer’s Associa-
tion Interactive Network (GAAIN) website (https://www.
gaain.org/). We assessed AP burden in FBB and FMM
PET scans using the BeauBrain Amylo software, which
employs image processing methodologies based on
the Centiloid (CL) project [37]. AP PET positivity was
defined using a threshold of 20 CL, which was selected to
enhance sensitivity for early Ap detection, based on prior
studies that validated the use of a lower CL cutoff in pre-
clinical and at-risk populations [38—40].

Plasma collection and processing for p-Tau217 analysis
Blood samples were collected from each participant,
placed into 0.5M EDTA-containing tubes, and mixed
for 5 min. The samples were centrifuged at 1,300 g for
10 min, after which plasma was extracted and aliquoted
into 5 or 10 vials, each containing 0.3 mL. These plasma
samples were stored at—75 °C following the guidelines
established by the National Biobank of the Republic of
Korea for human resource collection and registration.
The frozen plasma samples were then shipped at—70 °C
to the Department of Psychiatry and Neurochemistry at
the University of Gothenburg, where plasma concentra-
tions of p-Tau217 were measured using the commercial
ALZpath p-Tau217 immunoassay on the Single Mol-
ecule Array (SIMOA) HD-X instrument, a paramagnetic
microbead-based sandwich enzyme-linked immunosorb-
ent assay system (Quanterix, Billerica, MA).

Image acquisition and preprocessing

CT imaging was performed using a Discovery STe PET-
CT scanner (GE Medical Systems, Milwaukee, W1, USA),
operating in three-dimensional mode and acquiring
47 slices, each 3.3-mm thick, covering the entire brain.
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Additional CT images for attenuation correction were
obtained using a 16-slice helical CT (140 keV, 80 mA,
3.75-mm section width) and reconstructed in a 512x 512
matrix. Voxel size of the PET-CT acquired CT images
was 0.5 mmx0.5 mmX3.27 mm. Signal-to-noise ratio
validation was conducted through a phantom study (120
kVp, 190 mA, 3.75 mm slice thickness). The CT images
underwent standardization to normalize brain tissue
Hounsfield units (HU), following previously validated
methods [41]. Subsequently, standardized CT images
were co-registered to the corresponding T1-weighted
MRI images using Advanced Normalization Tools
(ANTs) [42].

Al-driven CT-based brain atrophy assessment

We performed an Al-powered CT analysis using Beau-
Brain Morph Software [29], which provides quantitative
brain atrophy measurements from noncontrast CT scans.
This fully automated approach delineates 14 anatomi-
cally defined regions—including bilateral cerebrospinal
fluid spaces in the frontal, occipital, parietal, and tempo-
ral lobes and ventricular segments (anterior lateral, pos-
terior, temporal horns)—and generates W-scores, which
are standardized residual derived from linear regression
model that adjust individual regional brain volumes for
age and sex [43]. These scores quantify the degree to
which an individual’s volume deviates from the expected
norm, based on a large, normative reference groups from
the K-ROAD cohort (n=1200; age 24-89 years; 60.7%
female).

Development of a CT-based two-stage workflow for AR
positivity prediction

The model incorporated APOE genotype and CT-derived
brain volumes to stratify the risk of Ap PET positivity.
Specifically, a binary random forest classifier was trained
using APOE e4 carrier status and CT-derived regional
brain volume W-scores as predictors, with PET posi-
tivity defined as a CL value >20. The classifier first pre-
dicted each participant’s probability of being amyloid
positive. These predicted probabilities from this classi-
fier were then used to stratify participants into three risk
groups: low-, intermediate-, and high-risk groups. To
achieve this, two probability thresholds were defined for
each threshold strategy (90%, 95%, and 97.5%): a Lower
threshold to achieve the target sensitivity to reduce false
negatives, and an upper threshold to achieve the target
specificity to reduce false positives. Participants with pre-
dicted probabilities below the Lower threshold were clas-
sified as low risk, those above the upper threshold as high
risk, and those between the two thresholds as intermedi-
ate risk. For example, under the 95%/95% threshold strat-
egy, thresholds for 95% sensitivity and 95% specificity
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were derived from the pooled MCI and DAT cohort and
then applied to each subgroup to confirm consistent
stratification performance. We then calculated the prev-
alence of AB PET negativity in the low-risk group and
positivity in the high-risk group for each threshold strat-
egy. In the second stage, plasma p-Tau2l7 testing was
applied exclusively to participants in the intermediate-
risk group. Using a previously established threshold for
p-Tau217 positivity [44], we assessed concordance with
AP PET status to refine AP positivity predictions. Over-
all diagnostic accuracy was defined as the proportion of
correctly classified cases, and workflow efficiency was
measured by the reduction in the number of participants
requiring additional biomarker testing.

MRI acquisition and processing for comparative analysis
For comparison with the CT-based two-stage diag-
nostic workflow, MRI scans were acquired in the same
participant cohort using a 3.0 T MRI scanner (Philips
3.0 T Achieva) and a 3D T1 turbo field-echo sequence
(1.0 mm sagittal slices with 50% overlap; TR 9.9 ms; TE
4.6 ms; flip angle 8°; reconstructed matrix 480x480
pixels; field of view 240 mm). CT and MRI exams were
performed within a median interval of 2.6 months (IQR
0.9-4.7 months). Using methods previously described
in detail [30], MRI images underwent quantitative brain
atrophy measurements targeting the same 14 regions of
interest (ROIs) as used in the CT analysis, generating
age- and sex-adjusted regional W-scores. Furthermore,
as previously detailed [45], a two-stage workflow inte-
grating MRI-derived W-scores with plasma p-Tau2l7
was conducted to directly evaluate the comparative per-
formance relative to the CT-based approach.

Statistical analysis

All statistical analyses were conducted using R software
(version 4.0.2; http://www.r-project.org). Descriptive sta-
tistics were computed to summarize demographic and
clinical characteristics of the study population. Group
differences in continuous variables were assessed using
analysis of variance (ANOVA), with Tukey’s post hoc
tests applied where appropriate. Categorical variables
were compared using chi-square tests, and Bonferroni
correction was employed for multiple pairwise compari-
sons as needed.

For the classifier development described above, pre-
dictive modeling was performed in Python (version 3.8)
using the scikit-learn (https://scikit-learn.org/stable/
index.html) library for machine learning. The primary
predictive features included APOE €4 carrier status and
CT-derived regional W-scores, which were selected
based on their known associations with A pathology.
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Model performance was evaluated through k-fold cross-
validation (with k=5) and quantified using accuracy,
positive predictive value (PPV), and negative predictive
value (NPV) metrics. For each fold in the cross valida-
tion procedure, the model was trained on a subset of the
data (training set) and evaluated on the corresponding
held-out test set. This process was repeated across all five
folds to assess predictive performance. Hyperparameter
optimization was conducted via grid search with inter-
nal cross-validation applied within each training fold to
ensure test fold remained unseen during model selection.
Key parameters of the random forest model were tuned,
including n_estimators, max_depth, min_samples_split,
min_samples leaf, and max_features. The same mode-
ling pipeline was applied consistently across all iterations
to ensure robustness and reproducibility.

Risk stratification thresholds were established based
on target sensitivity and specificity levels (90%, 95%, and
97.5%), and were used to classify participants into low-,
intermediate-, and high-risk groups. For individuals in
the intermediate-risk group, plasma p-Tau217 data were
incorporated to refine Ap PET status predictions, and
the concordance between plasma biomarker results and
AP PET status was evaluated. The McNemar’s test was
used to compare accuracy, sensitivity, and specificity,
while PPV and NPV were compared using a bootstrap-
ping-based test. The statistical significance was evaluated
using a two-tailed test with an alpha level of 0.05.

Results

Participant characteristics

The demographics of participants are presented in
Table 1. A total of 616 participants were included in
the study. The median age was 73.0 years, with 60.6%
female and 47.0% APOE &4 carriers. The median plasma
p-Tau217 concentration was 0.7 pg/mL (IQR 0.3-1.1 pg/
mL). AB PET positivity was observed in 63.9% of partici-
pants, and the median CDR-SOB score was 1.5.

Primary risk stratification via CT-based brain atrophy
patterns

In the first stage, CT-based atrophy measures strati-
fied participants into low-, intermediate-, and high-risk
groups for AP PET positivity (Fig. 1A). At sensitivity/
specificity thresholds of 90%, 95%, and 97.5%, the CT
model achieved NPVs of 94.9%, 95.8%, and 96.4% (low-
risk) and PPVs of 97.6%, 98.4%, and 99.1% (high-risk),
with 21.3%, 28.2%, and 36.5% of participants in the inter-
mediate-risk group, respectively. Detailed demographics
at this threshold are provided in supplementary material
(eTable 1). We selected the 95% threshold as optimal, bal-
ancing predictive accuracy and Limiting the intermedi-
ate-risk cohort to 28.2%, thereby minimizing downstream
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Table 1 Demographics of study participants

Participants (n=616)

Diagnosis, MCl n (%) 521 (84.6)

Age, years 73.0 (68.0-78.0)
Sex, female n (%) 373 (60.6)
Education, years 12.0 (8.0-16.0)
APOE 4 carriers, n (%) 289 (46.9)

AR PET positive, n (%) 393 (63.8)
Plasma p-Tau217, pg/ml * 0.7 (0.3-1.1)
CDR-SOB 1.5(1.0-3.0)
Median interval between CT and MRI scans, 2.6(09-4.7)
months

Data are presented as n (%) for categorical variables and median with
interquartile range (IQR) for continuous variables. Abbreviations: MCI, mild
cognitive impairment; APOE, apolipoprotein E; AR PET, amyloid-beta positron
emission tomography; p-Tau217, phosphorylated tau 217; CDR-SOB, clinical
dementia rating—sum of boxes; CT, computed tomography; MRI, magnetic
resonance imaging

testing costs (Fig. 2). At this threshold, 74.8% of MCI par-
ticipants in the intermediate-risk group and 98.0% in the
high-risk group were Ap PET positive, while only 3.3% of
those in the low-risk group were positive. Among DAT
participants, 94.9% in the intermediate-risk group and
100% in the high-risk group were AB PET positive, com-
pared to 22.2% in the low-risk group (Table 2).

As a supportive comparator, an MRI-based model pro-
duced comparable performance (NPV 98.2%, PPV 98.3%,
34.3% intermediate-risk at 95% threshold; Fig. 1B), with
no statistically significant differences (AUC: p=0.14,
NPV: p=0.82, and PPV: p=0.57) when compared to
the CT-based model, thereby confirming that CT-based
stratification alone offers robust predictive power with
the advantage of greater accessibility and lower cost.

CT
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Refining AP PET status with p-Tau217 in CT-identified
intermediate-risk participants

In the second stage of our CT-first workflow, plasma
p-Tau217 testing was applied only to the 28.2% of par-
ticipants in the CT-based intermediate-risk group
(Fig. 3A). At the 95% sensitivity/specificity threshold,
this yielded a PPV of 96.9% and NPV of 74.7%, within
the intermediate-risk group. Across the entire cohort,
targeted plasma testing of the intermediate-risk group
improved the overall PPV to 92.8% (95% CI: 88.5—
97.1%) and the overall NPV to 88.9% (95% CI: 78.6—
99.2%), boosting overall two-stage accuracy to 95.8%
(95% CI: 94.2-97.4%) and reducing further biomarker
testing by 71.8%. The one-step CT-only model achieved
an AUC of 0.81 for predicting amyloid positivity. Incor-
porating plasma p-Tau2l7 (two-step CT +p-Tau2l7)
increased the AUC to 0.96 (DeLong’s test, p<0.001;
Fig. 4A) and significantly improved PPV and NPV
within the CT intermediate subgroup (McNemar’s test,
p<0.01; Fig. 4C).

For comparison, plasma p-Tau217 applied to the 34.3%
MRI-based intermediate group (Fig. 3B) yielded a PPV of
96.3%, an NPV of 70.6%, and an overall two-stage accu-
racy of 95.2%. The one-step MRI-only model had an AUC
of 0.81, which rose to 0.95 with the addition of plasma
p-Tau217 (p <0.001; Fig. 4B).

Discussion

In this study, we developed and validated a two-stage
diagnostic workflow integrating CT-derived brain atro-
phy patterns and plasma p-Tau2l7 testing to predict AP
PET positivity in individuals with MCI or mild demen-
tia. Our major findings were as follows: First, CT-based
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Fig. 1 Distribution and thresholds of AB (+) probability based on brain atrophy patterns in the K-ROAD cohort. Predictions based on CT-derived A
and MRI-derived B brain atrophy patterns. Blue dots represent AR PET negative individuals, and red dots represent AR PET positive individuals. The
right y-axis shows predicted probabilities of AR probability, with thresholds corresponding to sensitivity(Se) and specificity(Sp) levels of 90%, 95%,
and 97.5%. These thresholds define the boundaries for low-, intermediate-, and high-risk groups. Abbreviations: AB, amyloid-beta; PET, positron
emission tomography; CT, computed tomography; MRI, magnetic resonance imaging; Se, sensitivity; Sp, specificity
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Table 2 Risk stratification for A g PET positivity using different threshold strategies across cognitive staging

K-ROAD
Risk groups Participants in risk group, n (%) Cognitive status
A BPET A BPET
positive MCI, n (%) positive DAT, n (%)
90% Se Lower-risk threshold/90% Sp higher-risk threshold
Low risk 195 (31.7%) 186 (4.3%) 9 (22.2%)
Intermediate risk 131 (21.3%) 104 (72.1%) 27 (92.6%)
High risk 290 (47.1%) 231 (97.0%) 59 (100%)
95% Se Lower-risk threshold/95% Sp higher-risk threshold
Low risk 191 (31.0%) 182 (3.3%) 9 (22.2%)
Intermediate risk 174 (28.2%) 135 (74.8%) 39 (94.9%)
High risk 251 (40.7%) 204 (98.0%) 47 (100%)
97.5% Se Lower-risk threshold/97.5% Sp higher-risk threshold
Low risk 167 (16.9%) 159 (3.1%) 8 (12.5%)
Intermediate risk 377 (46.7%) 176 (67.0%) 49 (95.9%)
High risk 224 (36.4%) 186 (98.9%) 38 (100%)

Data are presented as n or n (%). The first column indicates each of the evaluated strategies for CT-based risk stratification, along with the corresponding low-,
intermediate- and high-risk groups for each strategy. The second column shows the number of screened individuals assigned to each risk category, with the
percentage in the intermediate-risk group presented in parentheses. The third and fourth columns present the AP PET positivity rates within each risk group, stratified

by cognitive stage

Abbreviations: AB Amyloid-3, K-ROAD Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer’s Disease, Se Sensitivity, Sp Specificity

stratification accurately differentiated low-, interme-
diate-, and high-risk groups for amyloid positivity,
achieving predictive values comparable to previously val-
idated MRI-based approaches. Second, targeted plasma
p-Tau217 testing significantly refined diagnostic accu-
racy within the intermediate-risk group, resulting in high
PPV and clinically acceptable NPV. Finally, the proposed
CT-based workflow demonstrated high overall accuracy
(95.8%) while substantially reducing the number of par-
ticipants requiring additional invasive biomarker testing.

Collectively, these results highlight the clinical feasibility,
practicality, and scalability of CT-based two-stage strate-
gies for amyloid risk assessment.

Our first major finding demonstrated that CT-based
regional atrophy measures reliably stratified Ap PET
positivity risk into clearly defined risk groups. At the
optimal threshold (95% sensitivity/specificity), the CT-
based stratification achieved PPVs of 98.4% in the high-
risk group and NPVs of 95.8% in the low-risk group,
closely matching the performance of previously validated
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value. Abbreviations: AB, amyloid-beta; PET, positron emission tomography; CT, computed tomography; MRI, magnetic resonance imaging;

p-Tau217, phosphorylated tau 217; Se, sensitivity; Sp, specificity
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Fig. 4 Model performance and predictive value across modality. Receiver operating characteristic curves for the CT-based A and MRI-based
framework B, comparing the performance of the one-step (image-only) model and the proposed two-step model. C Comparison of PPV and NPV
between the one-step and two-step models within the intermediate-risk groups across modality. Abbreviations: AUC, area under the curve;

CT, computed tomography; MRI, magnetic resonance imaging; NPV, negative predictive value; PPV, positive predictive value; Se, sensitivity; Sp,

specificity

MRI-based methods. These findings are consistent with
prior studies emphasizing characteristic atrophy pat-
terns in AD, particularly in the medial temporal and pos-
terior parietal regions. Leveraging routinely performed
CT scans, our approach offers significant practical

advantages by avoiding additional costs, making it par-
ticularly suitable for widespread clinical adoption, espe-
cially in resource-limited settings.

Our second major finding highlighted the added
value of plasma p-Tau2l7 testing in refining amyloid
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status prediction for the intermediate-risk group. Plasma
p-Tau217 testing achieved a high PPV (96.9%) and
acceptable NPV (74.7%), comparable to results from
MRI-based approaches. This confirms previous evidence
that plasma p-Tau217 effectively complements structural
imaging data, providing robust biochemical confirmation
of amyloid pathology. By selectively employing plasma
biomarkers for uncertain cases, our two-stage workflow
significantly enhances diagnostic precision while opti-
mizing resource use and balancing accuracy with eco-
nomic practicality.

Our final major finding was the substantial clinical
utility and resource-saving potential of the CT-based
two-stage workflow. Using this approach, we achieved
an overall accuracy of 95.8%, comparable to previously
validated MRI-based workflows, while notably reducing
the need for additional invasive testing by approximately
72%. Unlike MRI, which can be costly, time-consuming,
and contraindicated in certain patient groups, CT imag-
ing is faster, more affordable, and broadly accessible.
Employing advanced Al-based segmentation techniques,
our CT-based workflow addresses critical Limitations
of MRI and PET, making it practical for broader clini-
cal implementation and capable of extending early
amyloid detection beyond specialized centers into com-
munity-based practice. To contextualize the economic
implications of our approach, we estimated the cost of
identifying 1,000 AP-positive individuals. Under a uni-
versal PET strategy, approximately 1,567 individuals
would require scanning at a total cost of USD 6.27 million
(assuming USD 4,000 per scan; 63.8% AP positivity rate).
In contrast, our two-stage workflow restricts plasma bio-
marker testing to the intermediate-risk group, compris-
ing 28.2% of participants, resulting in an estimated cost
of USD 132,600 (assuming USD 300 per plasma test) and
a total cost reduction exceeding USD 6.1 million.

A major strength of our study is the validation of a clin-
ically feasible, Al-driven CT segmentation framework,
offering precise and objective regional atrophy meas-
ures comparable to MRI-based assessments. However,
there are several limitations. First, although our CT-first
two-stage workflow markedly enhanced diagnostic accu-
racy over a CT-only baseline, the incremental gain was
modest, which may temper its clinical impact; nonethe-
less, even small improvements in amyloid detection can
meaningfully guide patient management and therapeu-
tic decisions. Second, regional atrophy patterns—while
characteristic of AD—are not wholly specific and can
occur in other disorders (e.g., Limbic-predominant age-
related TAR DNA-binding protein 43 encephalopathy
or hippocampal sclerosis), underscoring the need for
multimodal confirmation. Third, our model dispropor-
tionately allocated APOE €4 carriers to the high-risk
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group (eTable 1), suggesting potential over-weighting of
this variable (eFigure 2). While the 73.5% €4 carrier fre-
quency among amyloid-positive individuals in our cohort
aligns with prior reports [46], future refinements should
incorporate feature regularization and external valida-
tion to enhance generalizability. Finally, because our
cohort was drawn from a specialized memory clinic, the
workflow may not directly generalizable to settings such
as prevention trials, where neuroimaging is not rou-
tinely performed. In addition, since the cutoff value was
determined using the assessed cohort, the study may not
include a truly independent dataset to evaluate the full
pipeline, which could somewhat limit the generalizability
of the findings. However, in patients with MCI or mild
dementia, the use of structural imaging remains clinically
justified. Future studies in broader, community-based
populations will be essential to establish generalizability.
Nonetheless, given the substantial practical advantages
of our CT-based two-stage diagnostic workflow—high
accuracy, cost-effectiveness, and broad clinical accessibil-
ity—our findings hold significant potential for improving
early and precise diagnosis in real-world clinical settings.

Conclusion

In conclusion, our CT-based two-stage diagnostic
workflow effectively predicts amyloid PET positivity in
patients with MCI and early dementia, demonstrating
diagnostic accuracy comparable to previously validated
MRI-based workflows while substantially enhancing
clinical accessibility, efficiency and scalability. Given its
practicality and potential for broad clinical implementa-
tion, this CT-based approach offers a highly promising
strategy to facilitate early and accurate diagnosis, opti-
mize patient selection for amyloid-targeted therapies,
and improve healthcare resource utilization in real-world
clinical practice.
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