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A B S T R A C T

Objective: Sintering is a critical step in fabricating 3D-printed zirconia (3Dp/ZrO2) restorations

and is significantly influenced by gravity. Additionally, the layer-by-layer structure of 3Dp/

ZrO2 introduces anisotropy. Therefore, this study aims to investigate the influence of sinter-

ing placement orientation on themechanical properties andmicrostructure of 3Dp/ZrO2.

Materials and Methods: A digital light processing-type 3D printer and ZrO2 slurry were used

to fabricate green bodies, after which one-step sintering was used to create sintered 3Dp/

ZrO2 products. Group-A: Sintered with the printing layer orientation parallel to the hori-

zontal plane. Group-B: Sintered with the printing layer orientation perpendicular to hori-

zontal plane, with the short axis aligned vertically. Group-C: Sintered with the printing

layer orientation perpendicular to horizontal plane, with the long axis aligned vertically.

Shrinkage ratio, bulk density, three-point and biaxial flexure tests, scanning electron

microscopy with energy dispersive spectrometry, X-ray diffraction, and micro-computed

tomography were used to determine the physical, mechanical, andmicrostructural proper-

ties of the sintered 3Dp/ZrO2 specimens.

Results: Group-B (558.28§ 102.01 MPa) and Group-C (423.47§ 38.46 MPa) showed a significantly

lower flexure strength than Group-A (789.25 § 57.10 MPa). More grain boundary defects and

microdefects were observed in Group-B and Group-C. Different sintering placement orienta-

tions did not cause significant differences in shrinkage ratio, density, phase, or grain size.

Conclusions: The sintering placement orientation of 3Dp/ZrO2 influenced its mechanical

properties andmicrostructure. Sintering with the printing layer orientation parallel to hori-

zontal plane showed superior mechanical properties. In contrast, the perpendicular orien-

tation showed compromised performance, likely due to loose grain boundaries and

internal microdefects observed within 3Dp/ZrO2.

Clinical Significance: This study provides practical guidance for dental professionals by demon-

strating how sintering placement orientation affects the microstructure of 3Dp/ZrO2. Consid-

ering placement orientation during sintering process can help reduce defects and improve the

mechanical properties of zirconia-based restorations for better clinical outcomes.

� 2025 The Authors. Published by Elsevier Inc. on behalf of FDIWorld Dental Federation. This

is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

Zirconia (ZrO2) has gained significant attention in dentistry

because of its outstanding mechanical properties, corro-

sion resistance, and biocompatibility.1 Currently, the most

commonly used technique for processing ZrO2 is milling.

However, the post-processing methods associated with

milling can compromise the mechanical properties of ZrO2

and do not produce complex, customized geometries. The

emergence of 3D-printing technology offers a solution to

these problems, enabling the creation of intricate geomet-

ric designs with high precision, material efficiency, speed,

and personalisation.2 These advantages have made 3D

printing a popular choice in dentistry for applications

such as crowns, scaffolds, surgical guides, and denture

bases.3 As research on zirconia-based 3D printing advan-

ces, techniques such as stereolithography, digital light

processing (DLP), inkjet printing, material extrusion robo-

casting, and direct ink writing have become more promi-

nent.4 In particular, DLP-type 3D printers have drawn

significant attention owing to their exceptional efficiency

and accuracy, making them well-suited for dental

applications.5,6

DLP technology enables the production of highly pre-

cise ZrO2 dental restorations by curing a slurry composed

of ZrO2 powder and photopolymer resin. It builds the

green body layer by layer, followed by debinding and sin-

tering to produce dense 3D-printed ZrO2 (3Dp/ZrO2).

According to previous studies, DLP-type 3D printers have

been used to successfully print dental crowns.7,8 However,

although the flexural strength of 3Dp/ZrO2 surpasses the

minimum requirements of the ISO 6872 standards for clin-

ical use, the mechanical properties of 3Dp/ZrO2 are typi-

cally lower than those of milling groups.4 According to a

study9, although the mean values of the biaxial flexural

strength of 3Dp/ZrO2 are similar to those of milled ZrO2,

the standard deviations of 3Dp/ZrO2 are greater than those

of conventionally milled ZrO2. The mechanical properties

of 3Dp/ZrO2 are affected by various factors, including

printing technique,10-12 exposure time,13 slurry composi-

tion,14 cleaning solution,15 sintering rate,16 and surface

treatment.17 Therefore, a clear demonstration of improve-

ments to the mechanical properties and stability of 3Dp/

ZrO2 is still required.

The layered structure of 3Dp/ZrO2 is its most impor-

tant characteristic. The manufacturing process and

microstructure of 3Dp/ZrO2 differ completely from those

of conventional technologies, which brings about chal-

lenges in controlling its material properties. A study

reported that flexural strength of 3Dp/ZrO2 was signifi-

cantly higher when the load orientation was parallel to

the printing layer orientation than when it was perpen-

dicular.17 And another study reported that the Weibull

characteristic strength was 920.22 MPa when the

shorter-axis was vertical to ground in printing process,

while it was 219.59 MPa when the longer-axis was verti-

cal to ground.18 Also, fatigue test confirmed that per-

pendicular printed specimens generated lower survival

probabilities than parallel.19 Such studies suggested

that the 3Dp/ZrO2 was not anisotropy. In sintering
stage, the shrinkage in the Z-axis is considerably higher

than that in the X- and Y-axes, even double as reported

in one study.20

The anisotropy of 3Dp/ZrO2 is inseparable from its

microstructure. A previous study developed a sintering

model for the numerical prediction of sintering process,

with a lower viscosity in the Z-axis direction, further justi-

fying the greater shrinkage in that direction.21 They found

more porous structures in the interlayer region, demon-

strating that the origin of the shrinkage was a result of

the structured porous microstructure. It was demonstrated

the formation of interconnected channels during the sin-

tering of ceramics by measuring the sintered products at

different temperature and analysing their microstruc-

ture.22 And the study suggested that by ensuring the

smooth discharge of the melted binder and gaseous

decomposition products during the low-temperature

debinding stage, gas expansion leading to cracks could be

avoided by reasonable temperature control during the

high-temperature debinding stage. Driving force23, built-in

stress24, and decomposition force24 have also been found

to affect the final grain boundaries and defect generation.

It was found that during sintering, gravity causes distor-

tions and deflections in the center of samples with higher

aspect ratios and overhang configurations,25 indicating

that although the layered structure disappears after sinter-

ing, particle rearrangement during sintering could cause

significant variations in the shape and properties of the

product.

During the debinding and sintering stages, the particle

rearrangement and gas escape processing may vary depend-

ing on whether the printing layer orientation is parallel or

perpendicular to gravity. However, none of the studies have

reported how the specimen placement orientation was con-

trolled during the debinding and sintering processes,

although the anisotropy of 3Dp/ZrO2 has been extensively

investigated. Also, supports inside the restorations have to be

avoided, as they are difficult to remove and polish. This con-

straint limits the choice of printing orientation and necessi-

tates a specific orientation that minimizes internal supports.

However, some restorations without supports cannot be

debinded and sintered with the printing layer orientation par-

allel to the horizontal plane because of their specific shapes,

such as the central incisor, lateral incisor, and canine.

In this study, we evaluated the effect of different sintering

placement orientations on the mechanical properties and

microstructure of 3Dp/ZrO2. The null hypothesis of this study

was that the sintering placement orientation does not influ-

ence the characterisation, mechanical properties, or micro-

structure of 3Dp/ZrO2. The shrinkage ratio, density and X-ray

diffraction (XRD) analysis were conducted to characterise

3Dp/ZrO2. Three-point and biaxial flexure tests were per-

formed to determine the mechanical properties. Scanning

electron microscopy (SEM) with energy dispersive spectrome-

try (EDS) and micro-computed tomography (micro-CT) were

used to investigate the microstructural variations induced by

different sintering placement orientations. Finally, by sys-

tematically analysing the results, we sought to develop guide-

lines for optimising the sintering placement of 3Dp/ZrO2 to

improve its application especially in dentistry.



z i r c on i a s i n t e r i ng p l a c ement or i en ta t i on 3
Materials andmethods

Specimens’ fabrication

A ZrO2 slurry (INNI-CERA, AON Co., Ltd.) was used as the raw

material in this study. All specimens for each experiment

were designed using CAD software (3D Builder, Microsoft)

and exported as STL files. The STL models were enlarged

according to the manufacturer’s instructions (X-axis:

128.29%, Y-axis: 129.11%, Z-axis: 133.88%). The models were

then sliced using sliced software (ZiproS, AON Co., Ltd.), with

the layer thickness set to 0.05 mm with a printing speed of

6 mm/h. A DLP-type 3D printer (ZIPRO Dental, AON Co., Ltd.,

Korea) with lateral resolution 40 mmwas used to fabricate the

specimens. (Figure 1A) The light source was a 405 nm-wave-

length ultraviolet LED. After printing, the supports were

removed, and isopropyl alcohol was used to remove the

remaining slurry from the specimen surface. Bar specimens

with dimensions of 4 £ 4 £ 10 mm3 were used for the charac-

terisations analysis and microstructure observation. In accor-

dance with ISO 6872:2015, 3 £ 4 £ 25 mm3 bar specimens

were used for the three-point flexure tests, while 14.2 mm-

diameter and 1.2 mm-thick disc specimens were used for the

biaxial flexure tests.

Debinding and sintering

We used a conventional box-type electric furnace (CERA-

FUR, AON, Korea) to improve the universality and repro-

ducibility of the results. The furnace chamber is

cylindrical (heating zone: 105 mm diameter £ 100 mm

height). The furnace type is radiation-based resistance

heating and heating is provided by molybdenum disilicide

resistive heating elements, exposed on the side walls.

To investigate the influence of sintering placement ori-

entation on the mechanical properties and microstructure

of 3DP/ZrO2, specimens were debinded and sintered in

three orientations, as illustrated in Figure 1B. Group-A:

The specimens were placed with the printing layer orien-

tation parallel to the horizontal plane. Group-B: The
Fig. 1 – (A) Illustration of the printing layer orientation. Lateral su

face indicates the center surface of Z-axis. (B) Illustration of the s
specimens were placed with the printing layer orientation

perpendicular to horizontal plane, with the specimen’s

short axis aligned vertically (parallel to gravity). Group-C:

The specimens were placed with the printing layer orien-

tation perpendicular to horizontal plane, with the spec-

imen’s long axis aligned vertically (parallel to gravity).

And since there are only two possible sintering placement

orientations of the disc, only two groups, Group-A and

Group-B, were included in the biaxial flexure test. A spe-

cific one-step sintering procedure (including debinding

and sintering process) was used in this study (Figure 2).

After sintering, specimens were progressively polished

from grade #400 to grade #1000 using diamond grinding

discs and finally polished with colloidal silica polishing

suspension with a nominal abrasive size of 0.06 mm (Mas-

terMet, BUEHLER, USA). The specimens were then rinsed

with ethyl alcohol and blow-dried.
Shrinkage ratio, density and phase compositions

For shrinkage ratios, the X, Y, and Z lengths were measured

before (L0) and after (L) sintering. The shrinkage ratio of 3Dp/

ZrO2 specimens was calculated using Eq. (1). (N = 6)

Shrinkage ratio ¼ L0 � L
L0

� 100%: ð1Þ

For density test, the 3Dp/ZrO2 specimens were firstly dried

for 3 h in a furnace at 110°C before measuring the dry mass

(m1). Subsequently, the specimens were placed in distilled

water and boiled for 3 h. The soaked specimens were main-

tained in 20°C environment. The masses of the immersed test

specimens (m2) and the mass of the soaked specimens (m3)

were measured. The density of each specimen was calculated

using Eq. (2). (N = 6)

r ¼ m1

m3 �m2
� rl; ð2Þ

where rl = 998.2 kg/m3.

XRD analyses (Ultima IV, Rigaku, Japan) of the printing and

lateral surfaces of all groups were performed. The specimens
rface indicates the center surface in Y-axis and printing sur-

intering placement orientation.



Fig. 2 –Debinding and sintering curve of 3Dp/ZrO2.
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were scanned using Cu/Ka (40 kV, 40 mA) irradiation from 20°
to 90°with a step size of 0.02° for 3 s.
Three-point flexure test

All 3Dp/ZrO2 specimens were loaded to fracture using a Uni-

versal Test Machine (UTM, INSTRON) with a crosshead speed

of 1 mm/min and 20 mm spacing between the support roller

centers. The flexural strength and modulus of each specimen

were calculated using Eqs. (3) and (4). (N = 6)

Flexural Strength ¼ 3Fl
2wh2

; ð3Þ

Flexural Modulus ¼ Fl3

4wh3d
; ð4Þ

where F is the breaking load (N), l is the test span (20 mm cen-

ter-to-center between the support roller), w is the width of

the specimen (mm), h is the thickness of the specimen (mm),

and d is the deflection at F (mm).
Biaxial flexure test

All 3Dp/ZrO2 specimens were loaded to fracture using a UTM

with a crosshead speed of 1 mm/min. The radius of the three

support balls was 6 mm, and that of the load rod was 0.6 mm.

The biaxial strength of each specimen was calculated using

Eq. (5). (N = 6)

Biaxial Strength s ¼ � 0:2387P K1� K2ð Þ
b2

; ð5Þ

where P is the total load causing fracture (N), K1 = (1+v)ln

(r2/r3)2+[(1-v)/2](r2/r3)2, and K2 = (1+v)[1+ln(r1/r3)2]+(1-v)

(r1/r3)2. n is Poisson’s ratio (0.25), r1 is the support circle

radius (6 mm), r2 is the loaded area (0.6 mm), r3 is the

specimen radius (7.1 mm), and b is the specimen thick-

ness at the fracture origin (mm).
Microstructure analysis

The green bodies were gently ground using diamond discs from

grade #400 to grade #1000 to smooth the lateral surface for obser-

vation, and the layered structure was confirmed by EDS elemen-

tal mapping of the lateral surface (as shown in Figure 1A). After

sintering, we also analysed the elemental distribution of the lat-

eral surface of sintered 3Dp/ZrO2 specimens. Also, the SEM

images of the printing and lateral surfaces (as shown in

Figure 1A) of the sintered 3Dp/ZrO2 specimens were obtained for

microstructure analysis. Grain sizes weremeasured for each sur-

face using ImageJ software (v.1.54, USA) and each group con-

tained no fewer than 750 measured grains. Before SEM

operation, the sintered 3Dp/ZrO2 specimens were sintered in a

furnace at 1200 °C for 2 hours before coating as thermal etching

treatment. And Pt/Au coating timewas set to 200 seconds.

A representative 3Dp/ZrO2 Specimen from each group were

scanned using micro-CT (SkyScan 1173). The micro-CT scanner

had a 130kV voltage, 60mA current, 360° rotation scan mode,

and 7.14 mm pixel size. Both the 2D slices and 3D files were ana-

lysed by themicro-CT analysis program (CTAn-CTVol 1.10).

Statistical analysis

One-way analysis of variance (ANOVA, Origin2022, OriginLab,

USA) was used for all tests. Tukey’s post-hoc analysis was

performed. The confidence level was set at 95%. And post-

hoc power analysis was performed to confirm reliability of

the results (a = 0.05).
Results

Shrinkage ratio, density and phase compositions

Figure 3A shows the shrinkage ratio of 3Dp/ZrO2. No signifi-

cant differences between Group-A, Group-B and Group-C can



Fig. 3 – (A) Shrinkage ratios of Group-A, Group-B, and Group-C along the X-, Y-, and X-axis; (B) Densities of Group-A, Group-B,

and Group-C. (C) XRD analyses of the printing and lateral surfaces of Group-A, Group-B, and Group-C with reference PDF 01-

075-9645. t: tetragonal phase.
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be observed on the same axis. The shrinkage ratios (%) of

Group-A on the X-, Y-, and Z-axes were 27.72 § 0.07, 28.01 §
0.14, and 34.03 § 0.18, respectively. The shrinkage ratios (%)

of Group-B on the X-, Y-, and Z-axes were 27.69 § 0.11, 27.99

§ 0.10, and 34.03 § 0.12, respectively. The shrinkage ratios (%)

of Group-C on the X-, Y-, and Z-axes were 27.74 § 0.07, 28.02

§ 0.11, and 34.08 § 0.14, respectively. These values are similar

to those provided by the manufacturer.

Figure 3B shows the bulk density of sintered 3Dp/ZrO2. The

densities of Group-A, Group-B, and Group-C were 6.00 § 0.03,

6.02 § 0.01, and 6.00 § 0.01 g/cm3, respectively. The different

sintering placement orientations are thus not expected to

lead to obvious differences in density.

The XRD intensity patterns for all groups are presented in

Figure 3C. Group-A, Group-B, and Group-C only exhibited the

tetragonal phase compositions, indicating that the different

sintering placement orientations did not result in phase com-

position changes.

Three-point and biaxial flexural test

Figure 4A-C shows the 3-point flexure results for sintered

3Dp/ZrO2. The flexural strength of the 3 groups differed sig-

nificantly (p < .001) with 100 % power to detect the difference:

789.25 § 57.10 MPa for Group-A, 558.28 § 102.01 MPa for

Group-B, and 423.47 § 38.46 MPa for Group-C. The flexural

modulus of Group-C (13.48 § 1.56 GPa) was lower than and

Group-B (14.18 § 1.00 GPa) those of Group-A (14.52 § 2.98

GPa). This indicated that a sintering with the printing layer

orientation parallel to the horizontal plane is preferable in

terms of three-point flexure.

Figure 4D the biaxial flexural tests. The biaxial strength of

Group-B (952.40 § 199.71 MPa) was lower than that of Group-

A (1001.66 § 199.37 MPa). Although there was no significant

difference in the biaxial flexure tests, the strength of Group-B

was lower than that of Group-A.

Microstructure

As shown in Figure 5A, the green body exhibited a layered

structure. Less Zr can be observed in the bonding region
between the layers, indicating that less ZrO2 was present.

Further, a fuzzy transitional boundary can be observed at the

top of the layer and a clear, straight boundary at the bottom

of the layer. The anisotropy of green body existed not only in

the entire sample but also within the single layer. However,

this phenomenon was observed to disappear after sintering

(Figure 5B). Both the SEM images and EDS analysis revealed a

uniform surface for 3Dp/ZrO2.

The grain size distribution (Figure 6A) for both the printed

and lateral surfaces of 3Dp/ZrO2 exhibited similar results for

all groups. More than 50% of the grain sizes were between 0.3

and 0.6 mm. As indicated by the yellow arrows in Figure 6B,

the grain boundaries in Group-B and Group-C were not as

tight as those in Group-A. Moreover, as indicated by the blue

circles, more lacuna microdefects can be observed in Group-B

and Group-C than in Group-A.

Figure 6C shows no obvious defects in the 2D slices and 3D

files for Group-A, Group-B, and Group-C, as obtained via

micro-CT. This proves that the different sintering placement

orientations did not lead to obvious defects.
Discussion

The purpose of this study was to evaluate the effect of differ-

ent sintering placement orientations on themechanical prop-

erties and microstructure of 3Dp/ZrO2. The shrinkage ratio,

density, flexural strength, element distribution, grain size dis-

tribution, grain boundaries, microdefects, phase composi-

tions, and micro-CT results were analysed. According to the

three-point and biaxial flexure test results, the perpendicular

sintering placement orientation (Group-B and Group-C)

exhibited a significantly lower strength than the parallel sin-

tering placement orientation (Group-A), revealing that sinter-

ing placement orientation influences flexural strength. Note

that sintering placement orientation affected the grain

boundaries, microdefects, and even cracks. Therefore, the

hypothesis that sintering placement orientation does not

influence the mechanical properties and microstructure is

rejected.



Fig. 5 – (A) SEM and EDSmapping images of the lateral surface of the green body. (B) SEM and EDSmapping of the lateral sur-

face of 3Dp/ZrO2. Yellow, red, and blue colors represent Zr, C, and O, respectively.

Fig. 4 – (A-C) Three-point flexure results of Group-A, Group-B, and Group-C. (A) Load−deformation curve. (B) Three-point

flexural strength. (C) Flexural modulus. (D) Biaxial flexural strength.
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Fig. 6 –Microstructure analysis of sintered 3Dp/ZrO2. (A) Grain size distributions for both printing and lateral surfaces of

Group-A, Group-B, and Group-C. (B) Grain boundary andmicrodefects. The observations of the printing and lateral surfaces

are consistent; therefore, only the lateral surface features are presented here. Yellow arrows represent the loose grain

boundary and blue circles represent microdefects. (C) micro-CT 2D slices and 3D images for Group-A, Group-B, and Group-C.
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In experiments evaluating the mechanical properties of

ceramics, biaxial flexure is typically used because three- or

four-point flexure bars are prone to suffering from defects at

their edges, which often initiates fractures.9 A previous study

suggested that polishing can increase flexural strength by

eliminating surface defects and that the printing/load orien-

tation can influence flexural strength.17 To eliminate the

effects of these surface factors, the bar specimens in this

study were controlled to be printed and loaded with the same

orientation, and all surfaces were polished. Especially, the

layered structure on the lateral outer surface were removed

to avoid the defects. Thus, we assume that the differences in

flexural strength (Group-A > Group-B > Group-C) was caused

by internal microdefects in the specimen. Y2O3 was included

in the slurry, so the sintered zirconia is Y2O3 particle stabi-

lised zirconia (PSZ) in our article. The load-displacement

curve in our study was similar with the PSZ load-displace-

ment curve in the previous articles.26,27 At »0.15 mm, the
yield starts in our study. Phase transformation from tetrago-

nal to monoclinic during the loading would influence the

fracture behavior.28 This phenomenon is also influenced by

the special layered characterisation of 3Dp/ZrO2. Although

the layered structure disappeared in this study after debind-

ing and sintering in 3Dp/ZrO2 according to SEM and EDS

results, we consider that the effects of the layered structure

may still be present in the more microscopic structures.

Although the flexural strength of Group-B was lower than

those of Group-A in both the three-point and biaxial flexure

tests, this effect was more evident in the three-point flexure

test. Disc specimens have fewer layers and smaller volumes,

indicating the interlayer and internal defects of disc speci-

mens are less than bar specimens. Therefore, it is less likely

to lead to fractures. In addition, specimen thickness influen-

ces their mechanical properties.16

In this study, SEM, EDS, and micro-CT were used to investi-

gate the effect of sintering placement orientation on the
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mechanical properties of 3Dp/ZrO2. The SEM image before

debinding and sintering clearly showed the layered structure

generated during the printing process. In addition, less Zr was

observed in the bonding area, indicating a lower distribution

of ZrO2 and higher distribution of resin matrix in this area.

Interestingly, we observed a fuzzy transitional boundary at the

top of the layer and a clear, straight boundary at the bottom. In

a previous study, they observed this structure by analysing the

lamellar structure according to the yellowing phenomenon,

attributing it to “resin enrichment.”29 It was also reported that

ceramic particles sink owing to gravity during layer-by-layer

printing, forming an inhomogeneous single cured layer with

obvious gaps.30 Therefore, this phenomenon may result in

insufficient density and defect generation in zirconia.

The high-speed sintering group exhibited more small

pores at the grain junctions and relatively larger grains and

that the high sintering speeds resulted in reduced density.31

To avoid internal defects and non-compact products, result-

ing from improper sintering, we applied a slow one-step sin-

tering method according to the manufacturer’s instructions.

The SEM images of the sintered 3Dp/ZrO2 revealed that the

grain boundaries of Group-B and Group-C were not as tight as

those of Group-A. Group-B, which had the lower flexural

strength, had more lacuna microdefects with sizes that were

approximately the same as those of the smaller grains. We

speculate that microdefects and loose grain boundaries are

mutually reinforcing. The previous study also observed that

defects are often found at grain boundaries, whereas fewer

defects allow the grains to be more tightly bonded.32 During

sintering, the resin matrix is removed and ZrO2 undergoes

particle rearrangement and atomic diffusion; thus, the inter-

layer gap decreases.30 During this process, 3Dp/ZrO2 is

affected by stress24, gas expansion pressure33, interceramic

bonding forces33, and gravity25. Gravity and internal stresses

promote stronger interlayer bonding when the printing layer

orientation is parallel to the horizontal plane during sinter-

ing, but not when it is perpendicular. Therefore, the inter-

layer bonding process was more difficult in the perpendicular

sintering placement group than in the parallel sintering

placement group.

Although our furnace chamber is relatively small, sur-

rounded by multi-layered refractory insulation and we make

efforts to place both the crucible and the specimens at the

center of the heating zone, we recognise that small deviations

in temperature may still occur due to structural differences

within the furnace. Rippe et al.34 demonstrated that the num-

ber and positioning of specimens within the sintering furnace

significantly affected the biaxial flexural strength of veneered

zirconia, due to uneven heat distribution. Their results

showed that specimens placed closer to the resistance device,

where heat delivery was more efficient, exhibited up to

2.5 times higher flexural strength than those further away.

This highlights the potential impact of thermal gradients

within the chamber, even when using standardised sintering

protocols. However, in our current study, both the three-point

and biaxial flexural strength measurements showed rela-

tively stable values in each group. The standard deviations

were 57.10, 102.01, and 38.46 MPa in the three-point test, and

199.37 and 199.71 MPa in the biaxial test. These values sug-

gest acceptable internal consistency and reproducibility of
the mechanical properties, supporting the assumption that

thermal distribution within our chamber was reasonably uni-

form under the specific experimental conditions.

Note that cracks (Figure 7A) were observed in some of the

bar specimens in Group-C that were not used in three-point

flexure test. Figure 7B shows that most cracks were initiated

in and extended from the region between the layers, which is

consistent with the results of a previous study.35 It was

reported that channels form within the green body during

the debinding process to allow decomposition monomers

and carbon dioxide to escape, potentially leading to crack-

ing.22 However, the SEM image of the crack surface

(Figure 7B) reveals that the fracture is intergranular (with a

clear grain boundary), indicating that the grains first bonded

and then fractured. This confirms the incomplete bonding of

the grains in Group-C; thus, fracture occurs during the sinter-

ing/cooling stage (Figure 7C).

Although ZrO2 has a wide range of applications, we inves-

tigated 3Dp/ZrO2 using test methods and specimens com-

monly used in the dental field. Because the shapes of dental

prostheses are particularly complex, the anisotropy of 3Dp/

ZrO2 must be adequately investigated for its application in

the dental field. In this study, the perpendicular sintering

placement orientation resulted in lower mechanical proper-

ties and more microdefects. Therefore, it is recommended to

maintain the printing layer orientation parallel to the hori-

zontal plane during sintering. Even for printing complex

products such as dental crowns, some support objects such

as alumina balls should be utilised to control the sintering

placement orientation. (Figure 1C)

The anisotropy is related to the shape of the particles,

anisotropywill also be retained after sintering owing to the ori-

ented microstructure.21 Numerous researchers have

attempted to use composite particles such as cordierite or

ZrO2 to characterise ceramic printing.36 The spherical ZrO2

particles in the slurry in this study were spherical, avoiding

any influence on the results owing to their shape. Therefore,

complex studies involving different particles and sintering

placement orientations could be further analysed. A limitation

of this study is that we used a one-step sintering procedure,

which made it impossible to analyse the green body. A study

analysed the step-by-step decomposition of resin matrix dur-

ing debinding process by combining the results of the gas

products at different debinding temperatures with the ther-

mogravimetric analysis and differential scanning calorimetry

results.22 Moreover, the raw material used in this study was a

commercial slurry; thus, the unknown resin matrix hindered

the analysis of the debinding process. Two-step sintering and

a known resin matrix can be used to further investigate the

influence of sintering placement orientation on the mechani-

cal properties andmicrostructure of 3Dp/ZrO2.

Furthermore, this study was conducted under in vitro con-

ditions, and the results may be dependent on the specific

experimental setup. Finite element analysis (FEA) has been

widely used in dentistry and it is demonstrated that material

performance can vary significantly based onmultiple interact-

ing parameters.37 Expectmaterial properties, other parameters

such as different specimen sizes, specimen structure and load-

ing technique can also influence material performance.38,39

Therefore, incorporating FEA modeling in future research



Fig. 7 – (A) Photomicrograph of surface cracks on a sintered 3Dp/ZrO2 specimen from Group-C. (B) SEM images of the crack,

including crack initiation (1: yellow arrow), the crack along the layer structure (2: green arrow), and crack surface grains (3:

red arrow). (C) Schematic of the crack process in Group-C. *This specimenwas not used for any test. And the layered structure

are surface textures resulting from the DLP printing process and are not indicative of internal delamination.
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could offer a more comprehensive understanding of stress dis-

tributions and mechanical failure modes under different sin-

tering orientations.
Conclusion

This study demonstrate that the sintering orientation signifi-

cantly influences the mechanical properties and microstructure

of 3Dp/ZrO2. Specimens sintered with printing layer orientation

parallel to the horizontal plane exhibited superior flexural

strength. Those sintered in perpendicular orientations showed

reduced performance, which was attributed to loose grain
boundaries and internal microdefects observed in microstruc-

ture analysis. These findings present the importance of consid-

ering sintering orientation when processing 3Dp/ZrO2 to ensure

the structural reliability and mechanical durability. Also, these

findings offer a clear guideline for optimising processing param-

eters inmanufacturing of 3Dp/ZrO2, andwarrant further investi-

gation on complex geometries and clinical restorations.
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