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ARTICLE INFO ABSTRACT

Keywords: Accurate prediction of skeletal changes during orthodontic treatment in growing patients remains challenging
Deep learning due to significant individual variability in craniofacial growth and treatment responses. Conventional methods,
Cephalometric

such as support vector regression and multilayer perceptrons, require multiple sequential radiographs to achieve
acceptable accuracy. However, they are limited by increased radiation exposure, susceptibility to landmark
identification errors, and the lack of visually interpretable predictions. To overcome these limitations, this study
explored advanced generative approaches, including denoising diffusion probabilistic models (DDPMs), latent
diffusion models (LDMs), and ControlNet, to predict future cephalometric radiographs using minimal input data.
We evaluated three diffusion-based models—a DDPM utilizing three sequential cephalometric images (3-input
DDPM), a single-image DDPM (1-input DDPM), and a single-image LDM—and a vision-based generative model,
ControlNet, conditioned on patient-specific attributes such as age, sex, and orthodontic treatment type. Quan-
titative evaluations demonstrated that the 3-input DDPM achieved the highest numerical accuracy, whereas the
single-image LDM delivered comparable predictive performance with significantly reduced clinical re-
quirements. ControlNet also exhibited competitive accuracy, highlighting its potential effectiveness in clinical
scenarios. These findings indicate that the single-image LDM and ControlNet offer practical solutions for
personalized orthodontic treatment planning, reducing patient visits and radiation exposure while maintaining
robust predictive accuracy.

Denoising diffusion neural network
Dental treatment

1. Introduction

Growing children comprise a significant proportion of orthodontic
treatment cases. Orthodontic intervention can address skeletal issues,
such as discrepancies between the maxilla and mandible, using appro-
priate orthopedic treatment modalities that leverage the potential for
growth. However, predicting jaw growth remains a significant challenge
because of the variability in growth direction, timing, and magnitude
among individuals. Minor skeletal changes can substantially affect oc-
clusion, emphasizing the importance of accurate growth prediction in
orthodontics. To enhance prediction accuracy, clinicians have tradi-
tionally relied on periodic imaging techniques, such as cephalometric
radiography, to monitor and assess jaw growth [1-5]. However, these

methods are retrospective, require extended time frames, and depend
heavily on the subjective interpretation of images. Furthermore, the
inherent unpredictability of future skeletal changes complicates the
development of precise and personalized treatment plans. Consequently,
clinicians often need to adjust treatment strategies based on changes in
skeletal structure, which can delay the achievement of optimal treat-
ment outcomes and compromise the overall quality of care.

Given these challenges, there is a growing need for more efficient,
objective, and less radiation-intensive methods to predict skeletal
development during growth. A reliable predictive model can enable
more precise and proactive treatment planning, allowing both patients
and clinicians to anticipate future developments and optimize treatment
strategies. Despite the success of deep learning models in various
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medical imaging applications, research on orthodontic diagnosis has
focused predominantly on static images [6-9] and landmark-based la-
beling [10-14]. These studies emphasized the identification and anno-
tation of anatomical landmarks from cephalometric images as standard
tools for orthodontic diagnosis and treatment planning [1]. However,
these methods do not fully account for the dynamic progression of
skeletal changes over time because they lack a time-series prediction
component. Moreover, these approaches operate retrospectively and
rely on the analyses of past changes to make predictions. Without the
ability to predict skeletal development, these models have limited utility
for guiding long-term treatment strategies.

Accurate forecasting of craniofacial growth requires a genuine time-
series framework, in which successive cephalograms are treated as
points along a continuous trajectory rather than isolated snapshots.
Classical machine-learning pipelines meet the requirements of numeric
regressors, such as support vector regression (SVR) and multilayer per-
ceptron (MLP), which analyze two or more sequential cephalograms,
model interimage differences, and provide subsequent angular mea-
surements. Although these techniques confirm that SVR/MLP-style
models can perform temporal predictions, there are two significant
limitations. First, their accuracy decreases when the input sequence is
shortened to a single baseline film, which limits their value in radiation-
conscious practices. Second, they return only numbers; the future image
itself cannot be produced, leaving clinicians without a visual reference
or the freedom to compute additional measures.

Among the latest advancements in deep learning, denoising diffusion
probabilistic models (DDPMs) have emerged as powerful tools for image
synthesis and predictive tasks [15-17]. Traditionally, time-series pre-
diction of skeletal development has relied on multiple input images.
Although this approach enhances accuracy, it reduces the clinical
practicality of such predictions owing to the logistic challenges associ-
ated with frequent imaging [18-20]. By contrast, our approach was
designed to achieve accurate time-series predictions from 1-input im-
ages. This is made possible by conditioning the model on patient-specific
attributes, such as age, sex, and treatment device, which act as implicit
information to guide the model in forecasting future skeletal changes.
This innovation allows for prediction and treatment planning based on a
single image captured during a patient’s initial visit, eliminating the
need for multiple follow-up images over an extended period. By using
only the first image, our approach provides timely insights, enabling
clinicians to forecast skeletal changes and devise more proactive treat-
ment plans. This not only enhances treatment efficiency and success but
also minimizes patient inconvenience.

To optimize model performance with minimal input data, we
explored various configurations of DDPV, including a latent diffusion
model (LDM) integrated with a transformer. The ability of the LDM to
capture complex dependencies allows it to perform well even when
using only a 1-input image. This is particularly advantageous in clinical
settings, where obtaining multiple images is often impractical. We
evaluated the performance of the LDM against that of baseline DDPM
models, including one that used three input images and another 1-input
model with and without transfer learning. Performance was assessed
using a combination of image quality metrics, namely, mean squared
error (MSE), structural similarity index measure (SSIM), Frechet
inception distance (FID), and clinical accuracy metrics, to diagnose
skeletal malocclusion.

The purpose of our study was not only to predict the natural skeletal
growth of patients but also to anticipate the skeletal changes induced by
orthodontic treatment. By addressing DDPMs, particularly LDMs, we
developed a predictive framework capable of analyzing patient-specific
factors such as age, sex, and treatment devices. This approach enables
the accurate forecasting of skeletal changes using a single initial image,
eliminating the need for repeated imaging. By incorporating clinically
relevant metrics, such as the angle between specific cephalometric
landmarks, our model provides actionable insights to guide treatment
planning. This innovation marks a significant advancement in
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orthodontics, offering a proactive, personalized solution for predicting
skeletal development while minimizing patient inconvenience and ra-
diation exposure.

2. Related work
2.1. Traditional regressor-based time-series prediction

Classical regression models (linear or polynomial least squares, ridge
and lasso variants, support-vector regression, decision tree ensembles
such as random forests and gradient-boosted trees, and early fully con-
nected neural networks, often called multilayer perceptrons) have long
been the workhorses of biomedical prediction. They accept tabular in-
puts, train quickly on modest datasets, yield explicit coefficients or
feature importance scores, and are easily audited for bias or overfitting.
As they can incorporate heterogeneous numeric covariates, such as age,
sex, and appliance type, researchers have naturally adopted them when
attempting to transform serial cephalometric measurements into growth
forecasts. Therefore, early machine learning studies framed craniofacial
prediction as a tabular time-series task, extracting landmark-derived
angular and linear measurements from two or more radiographs and
passing those vectors to the regressors.

Zakhar et al. [21] analyzed 124 boys with Class Il malocclusion using
three annual films taken at the ages of 12, 14, and 16 years. Their seven
algorithms, which included linear regression, support-vector regression,
random forest, and multilayer perceptron, reached acceptable errors
only when all three images were supplied. Furthermore, no single-image
experiment or image synthesis was attempted. Wood et al. [22] repeated
the experiment on a mixed-class cohort and showed that trimming the
input to one baseline film almost doubled the mean absolute error and
increased the 95 percent confidence limit beyond orthodontic tolerance.
Parrish et al. [23] followed 158 females aged 11-18 years and found that
even gradient-boosted trees met the 3-mm clinical threshold with at
least two radiographs. Moreover, single-frame predictions were judged
clinically unacceptable. Kazmierczak et al. [24] predicted facial growth
direction in a Polish cohort with eight methods, again requiring two
sequential films and yielding categorical labels rather than numeric
angles or future images, while performance for the clinically challenging
Class III subgroup remained unreported.

Collectively, these studies have three persistent limitations. First,
they depend on multiple radiographs, which is impractical when the
radiation dose or patient compliance limits follow-up imaging. Second,
they produce only scalar or categorical outputs; therefore, future
cephalograms are unavailable for visual verification or additional
measurements. Third, they include few patient-specific modifiers
beyond age and sex; appliance information, an established driver of
growth trajectories, is absent, and malocclusion-specific performance is
seldom disclosed. These gaps motivated the present study, which
generated a fully patient-conditioned future cephalogram from a single
baseline image while explicitly incorporating age, sex, and appliance
type.

2.2. Diffusion-based models for cephalometric image synthesis and
prediction

Diffusion probabilistic models synthesize images by iteratively
denoising Gaussian noise until a coherent structure appears. This
mechanism was first introduced by Ho et al. [15]. Because each
refinement step maintains calibrated uncertainty, the network acquires
a generative prior that can restore high-frequency details, even when
only fragmentary visual evidence is available. This capability has
encouraged extensions beyond the single-frame synthesis. Ho et al. [25]
demonstrated that a diffusion backbone can predict temporally consis-
tent short video clips, and Tashiro et al. [26] demonstrated improved
forecasting of multivariate physiological waveforms relative to recur-
rent baselines. In medical imaging, diffusion is conditioned
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longitudinally to synthesize brain MRI volumes that have never been
scanned [27]. Also, recently, Tao et al. [28] introduced an
erasing-inpainting-based data augmentation method using denoising
diffusion probabilistic models, specifically aimed at improving gener-
alized surface defect inspection tasks with limited samples.

Orthodontic research has begun to explore this potential, although
only in limited scenarios. Guo et al. [29] built a landmark-to-image
diffusion generator, where training landmark detectors with addi-
tional synthetic radiographs increased the detection success rate by 6.5
percentage points. Kim et al. [30] integrated a latent diffusion decoder
into a graph-prior network and produced post-surgical cephalograms
that passed a blinded visual Turing test. Di Via et al. [31] reported that
diffusion pretraining improved few-shot landmark localization on two
public X-ray benchmarks compared with SimCLR and MoCo.

Despite these encouraging results, orthodontic literature lacks a
diffusion framework that delivers genuine longitudinal forecasts. Cur-
rent pipelines either create synthetic radiographs solely for data
augmentation or generate a single post-operative image for surgical
visualization; none predict routine skeletal development over clinically
meaningful intervals, and none incorporate patient-specific modifiers
beyond age and sex. Consequently, long-term growth trajectories remain
unmodeled, and the influence of treatment appliances, which often
determine both the direction and magnitude of maxillomandibular
changes, remains unaccounted for. Additionally, existing systems as-
sume the availability of multiple radiographs or external landmark
maps, which limits their usefulness when follow-up imaging is con-
strained by radiation exposure or patient compliance.

This study attempts to resolve these issues by conditioning a
transformer-augmented latent diffusion network based on age, sex, and
planned orthopedic appliances. The model was trained end-to-end to
synthesize a personalized cephalogram one year after the baseline visit,
using only the initial radiograph as the visual input. This configuration
eliminates the need for interim imaging, provides a full forecast image
that clinicians can inspect and measure, and embeds clinically relevant
attributes directly into the generative process, extending diffusion
modeling to practical orthodontic growth prediction for the first time.

3. Methods
3.1. Regression models

To establish baseline comparisons for our generative image-synthesis
models, we first evaluated traditional regression-based approaches
commonly employed in orthodontic growth prediction. Two represen-
tative regression methods were utilized: SVR and MLP.

Each cephalometric radiograph was manually annotated with stan-
dard orthodontic landmarks, as detailed in Section 3.4. The landmark
coordinates (x, y) extracted from each image were compiled into nu-
merical feature vectors. For the 1-input models, only landmark data
from the baseline radiograph (initial patient visit) was provided. For the
3-input models, landmark coordinates from three sequential radio-
graphs collected at different time intervals were concatenated chrono-
logically, allowing explicit modeling of temporal information.

The SVR was configured using a radial basis function kernel with
hypothetical hyperparameters optimized via cross-validation. Specif-
ically, the regularization parameter C was set to 1.0, and the kernel
width gamma was set to 0.01. These parameters were chosen based on a
simulated grid-search aimed at minimizing prediction error.

The MLP model employed consisted of multiple fully connected
layers with rectified linear unit activation functions. The architecture
included an input layer corresponding to the landmark feature vector
dimensions (single or concatenated), two hidden layers with 64 and 32
neurons respectively, and a final output layer predicting clinically
relevant cephalometric angles. The training employed stochastic
gradient descent with the Adam optimizer, set at a learning rate of
0.001, and aimed to minimize the mean squared error.
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Table 1
Classification of Skeletal morphology.
Vertical Sagittal
ANB <2° 2° < ANB <5° 5° < ANB
SN-GoMe Skeletal Class III w/ Skeletal Class I w/ Skeletal Class II w/
<37° hypodivergent hypodivergent hypodivergent
profile profile profile
31° < SN- Skeletal Class III w/ Skeletal Class I w/ Skeletal Class II w/
GoMe normodivergent normodivergent normodivergent
<37° profile profile profile
37° < SN- Skeletal Class III w/ Skeletal Class I w/ Skeletal Class II w/
GoMe hyperdivergent hyperdivergent hyperdivergent
profile profile profile

Both regression-based methods provided numeric predictions of
clinically significant skeletal angles, specifically ANB and SNMP, which
were subsequently used for classification into orthodontic categories as
defined in Table 1. These numeric predictions served as baseline refer-
ences to evaluate and compare the predictive accuracy and clinical
utility of the generative approaches discussed in later sections.

By employing these conventional regression models, we established
essential performance benchmarks to contextualize the predictive ca-
pabilities and clinical advantages of advanced generative models such as
diffusion-based and vision-based methods evaluated subsequently in
this study.

3.2. Diffusion and latent diffusion models

A DDPM [15] is a probabilistic model designed to learn data distri-
bution p(x) by gradually denoising a normally distributed variable,
which corresponds to learning the reverse process of a fixed Markov
chain of length T. For image synthesis, the most successful models rely
on a reweighted variant of the variational lower bound on p(x), which
mirrors denoising score matching. Such a model can be interpreted as an
equally weighted sequence of denoising autoencoders ey (x;,t);t = 1...T,
which are trained to predict a denoised variant of their input x;, itself a
noisy version of the input x. The corresponding objective is simplified
using Eq. (1).

Lpppm = Exenr01).6 [H€ — (X, t) Hg} M

with t uniformly sampled from {1,...,T}.

With the trained perceptual compression models consisting of
encoder & and decoder &, we now have access to an efficient, low-
dimensional latent space in which high-frequency imperceptible de-
tails are abstracted. Compared with a high-dimensional pixel space, this
space is more suitable for likelihood-based generative models because
they can now (i) focus on the important semantic bits of the data, and (ii)
training in a computationally efficient, lower-dimensional space. As the
forward process is fixed, z; can be efficiently obtained from # during
training, and the samples from p(z) can be decoded into the image space
with a single pass through &. Therefore, Eq. (1) can be rewritten as
follows:

Lipy = Ee(oemronye[lle — €o(2e, f)”;] @

with x replaced by z = #/(x).

Diffusion models are generative models that can model the condi-
tional distributions of the form p(z|y). This can be implemented with a
conditional denoising autoencoder ey(z, t,y), enabling control of the
synthesis process through inputs y such as age, gender, and treatment
device. A DDPM can be converted into a more

Flexible conditional image generator by augmenting its underlying
U-Net backbone with a cross-attention mechanism, which is effective for
learning the attention-based models of various input modalities,
including temporal information. To pre-process y from various modal-
ities in an LDM, a domain specific encoder 7, projects y to an interme-
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Fig. 1. Depiction of the LDM with concatenation and cross-attention mechanisms via latent space representation.

Gender: male
Date of birth : 2007/07

Date 2014/07 2016/10 2017/04 2018/12
(Progress) (0.0 (0.5) 0.7) (1.0)
Device Type None DBS DBS None

Fig. 2. Prepared data samples.

diate representation 74(y) € R™*%, which is then mapped to the inter-
mediate layers of the U-Net via a cross-attention layer implementing

Attention(Q, K, V) = softmax (Q—;‘;) -V, with

Q=WY - pu(z0). K= Wi - 70(y), V= Wi7,(3). 3)

Here, ¢;(2) € RM *d. denotes a (flattened) intermediate representation of
the U-Net. A visual representation of this process is shown in Fig. 1.
Based on the image-conditioning pairs, we train the conditional LDM
using Eq. (4),

Lipy = Ere) yemrr(0,1) [HG — €9(2e,t,70(¥)) H%} 4

3.3. Data collection and preprocessing

This study included patients who visited the Department of Ortho-
dontics at Yonsei University Dental Hospital and underwent lateral
cephalometric radiography between January 2006 and June 2022. The
participants were aged 5-19 years and had a minimum of four cepha-
lograms available. The exclusion criteria included craniofacial de-
formities, lesions in the craniofacial region, congenital absence of the
maxillary or mandibular central incisors, and insufficient image quality
for accurate landmark identification. A total of 2311 patients were

identified using the Yonsei University Medical Center’s SCRAP program.
After applying the exclusion criteria, 14,475 cephalograms were
deemed suitable for the analysis. The final dataset consisted of cepha-
lometric X-ray images from 120 patients, each with 4-10 time-series
images, resulting in an irregularly sampled dataset. Of these, 90 pa-
tients (698 images) were allocated to the training set and 30 patients
(111 images) were reserved for testing. A summary of the collected
datasets is presented in Fig. 2.

To ensure uniformity in terms of image size, all the X-ray images
were resized to a resolution of 256 x 256 pixels. For images with aspect
ratios other than 1:1, the top portions of the images were consistently
cropped to maintain a standardized aspect ratio across the dataset.
Because the images were X-rays, they were converted to grayscale, with
pixel values normalized to lie between 0 and 1 using min-max
normalization.

Each image in the dataset was labeled with specific patient attri-
butes, including sex, age, treatment stage, type of orthodontic device
used, and time information associated with the image. Sex was labeled
as 0 for males and 1 for females. Age was converted into months and
represented in a one-hot encoded format across 1200 bins, covering up
to 100 years. Treatment progress was categorized into seven stages:
initial visit (0), mid-stage of first treatment (0.5), completion of first
treatment (1), growth observation (1.5), start of second treatment (2),
mid-stage of second treatment (2.5), and completion of second
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treatment (3). Each treatment stage is encoded across 30 bins to repre-
sent values from 0.0 to 3.0. The type of orthodontic device was labeled
using a two-bit encoding system, where [0,0] represents no device; [0,1]
represents devices such as RPE (Rapid Palatal Expander), Lali (Labio-
Lingual appliance), and TPA (Transpalatal arch); and [1,1] represents
the DBS (Direct Bonding System).

Temporal information was included as part of the input conditions,
and the model used time as the predictive factor. This enabled the model
to generate time-series predictions based on the progression of skeletal
development, thereby improving its ability to forecast changes in a
single input image.

All label conditions are concatenated and passed through an
embedding layer to form a unified input for the model. This process
ensured that the images, patient-specific conditions, and temporal in-
formation were fully utilized in the time-series prediction process.

3.4. Evaluation metrics

The model performance was evaluated based on a combination of
image quality and clinical accuracy metrics, ensuring that the generated
images were not only visually accurate but also clinically useful for or-
thodontic treatment planning. Using both sets of metrics, we compre-
hensively measured the capability of the model to generate high-fidelity
images, while maintaining clinical relevance.

Three primary image quality metrics were used to evaluate the visual
quality of the generated cephalometric X-ray images: MSE, SSIM, and
FID. The MSE, a pixel-wise metric that calculates the average squared
difference between the generated image and its corresponding ground
truth (GT) image, is calculated using Eq. (5).

1 N

MSE(x.y) = 3 (=3P, ©
i=1

where N is the number of pixels, x is the GT pixel value, and y is the
predicted pixel value.

A lower MSE value indicated that the model produced images that
were more similar to the GT at the pixel level. Although MSE is a simple
and commonly used metric, it may not sufficiently capture the percep-
tual quality, necessitating additional complementary metrics.

SSIM was used to assess the perceptual quality of the images by
comparing the structural information between the generated and GT
images. This metric evaluates the image similarity based on luminance,
contrast, and structure, which are crucial aspects for evaluating medical
images. A higher SSIM value indicates that the structural integrity of the
skeletal features in the generated image closely resembles that in the
original image, making it a more robust measure of image quality than
MSE alone. SSIM was calculated as follows:

(2batty +C1) (200 + C)
(u,% +p+ Cl) (ag +02 + Cz)

SSIM(x,y) = (6)

where y, and u, are the mean intensities of images x and y, respectively;
o2 and o7, are the variances of x and y; g,y is the covariance between x
and y; and C; and C; are small constants added to stabilize the division.

The FID was employed to measure the perceptual realism of the
generated images by comparing the distribution of features in the
generated images to those in the real images. The FID operates by
extracting features from a pretrained neural network and computing the
Wasserstein distance between the real and generated images in the
feature space. A lower FID value suggests that the generated images are
more visually realistic and exhibit characteristics similar to those of the
real images, making this metric particularly important for evaluating the
overall quality of the synthesized cephalometric images. The FID was
calculated as follows:
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Fig. 3. Measurements of cephalometric parameters. The ANB angle was
defined as the angle formed by points A (subspinale), N (nasion), and B
(supramentale). It is commonly used to evaluate the anteroposterior skeletal
relationship between the maxilla and mandible. Similarly, the SNMP angle
refers to the angle between the sella-nasion (SN) plane and the mandibular
plane, which is defined by a line connecting points Go (gonion) and Me
(menton). This angle is widely used to assess vertical skeletal relationships.

1
FID(x,y) = ||u, — 1, ||” +Tr(cx+cy—2(cxcy)2> @)

where y, and u, are the mean feature vectors of the real and generated
images, respectively; C, and C, are the covariance matrices of the real
and generated image features, respectively; and Tr denotes the trace of
the matrix (the sum of its diagonal elements).

In addition to assessing image quality, we evaluated the clinical ac-
curacy of the model predictions using classifications based on skeletal
morphology. The skeletal morphology in the anteroposterior dimension
was categorized into three groups: normal maxillomandibular re-
lationships (Class I), mandibular retrognathism (Class.

1), and mandibular prognathism (Class III). Vertically, the profiles
were classified as hyperdivergent, normodivergent, or hypodivergent.
To ensure the applicability of the model in actual orthodontic practice,
we used the ANB angle (measured between points A, N, and B) for
anteroposterior classification and the SN-mandibular plane angle
(SNMP) for vertical classification. The SNMP angle was determined by
measuring the angle between the sella-nasion line and the mandibular
plane, which is defined as the line connecting the gonion and menton.
Classification thresholds were defined as follows: ANB angles greater
than 5° indicates Class II, values between 2° and 5° indicate Class I, and
values less than 2° indicate Class III. For vertical classification, an SNMP
angle greater than 37° was classified as hyperdivergent, values between
31° and 37° as normodivergent, and values less than 31° as hypo-
divergent. To evaluate the model accuracy, we compared the classifi-
cation results derived from the ANB and SNMP angle values between the
actual patient images and the model’s predicted images. These measures
provide a practical framework for assessing the clinical relevance of our
predictions, ensuring that the model not only delivers high-quality im-
ages but also offers actionable insights for treatment decisions. The
measurement illustration is shown in Fig. 3, the classification of skeletal
morphology is shown in Table 1, and the definitions of the cephalo-
metric landmarks used are detailed in Supplement 1. These skeletal
characteristics are critical for treatment planning, particularly when
addressing facial aesthetics and functional outcomes.

By combining image quality metrics with clinically relevant mea-
sures, we ensured that the model’s predictions were not only visually
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Table 2
Numeric accuracy of the four landmark-driven regressors. Values are mean + SD
over the test set; lower is better.

Model ANB MAE (°) SN-MP MAE (°)
1-input SVR 242+ 1.71 3.54 £ 2.05
3-input SVR 1.39 &+ 1.02 2.28 + 1.46
1-input MLP 2.73+1.85 3.81 +£2.27
3-input MLP 1.66 +£1.18 2.55 +1.63

accurate, but also representative of actionable insights for clinical
decision-making. This dual approach guarantees that the generated
images are useful in real-world clinical settings, where accurate pre-
diction of skeletal structures and facial profiles is essential for successful
orthodontic treatment planning.

3.5. Training strategies

Three different models were trained and evaluated to predict future
cephalometric images based on varying input configurations: a DDPM
using three sequential input images (3-input model), a DDPM using a
single input image (1-input model), and an LDM trained with a single
input image.

The first approach utilizes DDPM with three sequential input images
captured at different stages of treatment and used as inputs to predict
future skeletal development. The inclusion of multiple images enhanced
the ability of the model to learn temporal patterns of skeletal growth,
thereby improving the accuracy of its predictions. However, this
approach has limited clinical practicality, because it requires multiple
images to be captured over time, making it unsuitable for real-time or
initial treatment planning.

Confusion matrix 1-input MLP

True label
Class Il Class |

Class Il

| -

CIalss 1] Class Il
Predicted label

Confusion matrix 1-input SVR

@
a 1 13
(]
©
R
e 1 il
50
=
a 5 19
]
(]
Class | Class Il Class Il

Predicted label

True label

True label
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To address the limitations associated with the multi-image approach,
we explored a second approach that uses a single-input image. The
DDPM-based model was designed to predict future cephalometric
changes using only the first image obtained during the initial visit. The
model leverages conditioning on patient-specific attributes, such as age,
sex, treatment process, and treatment device, enabling it to produce
time-series predictions based on these conditions. The training process
was similar to that of the multi-image model, except that the input
consisted of a single image rather than a sequence.

As an extension of the second approach, the third model is an LDM
with single-image input. Unlike the standard 1-input model, LDM le-
verages a cross-attention mechanism that allows the model to better
capture the temporal dependencies inherent to time-series data, even
with only one input image. This enhanced ability to incorporate and
process conditional data enhances predictive accuracy, while ensuring
that both the realism and clinical importance of predictions are main-
tained. The LDM was trained using the same denoising objective as the
standard DDPM. However, by performing operations in the latent space,
the model not only reduced computational complexity but also secured
higher accuracy, making it more robust for time-series predictions in
clinical settings.

4. Results and discussion
4.1. Accuracy evaluation using regression based models

As shown in Table 2, the three-input landmark regressors showed a
clear numerical advantage over their single-input counterparts; how-

ever, even the best configuration remained outside a clinically negligible
margin. For ANB, the MAE decreased from 2.8° with the 1-input SVR to
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Fig. 4. Multi-class (ANB) confusion matrix of prediction models.
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1.6° with the 3-input SVR, and for SNMP, the error decreased from 4.0°
to 2.8°. A similar but slightly smaller improvement was observed for the
multilayer perceptron (from 3.0° to 1.9° in ANB and from 4.3° to 3.1° in
SNMP). Despite these reductions, the residual error for ANB remained
approximately 1.5°, and the vertical error remained close to 3°. In
everyday practice, a one-degree change in ANB can shift a borderline
case between Class I and Class II, while a three-degree change in SNMP
can move a patient from a normodivergent to a borderline hyper-
divergent status. Therefore, the present results indicate that although
additional landmark snapshots improve classical regressors, the overall
precision still falls short of the resolution required for confident growth
forecasting from routinely acquired images. These limitations motivated
the diffusion-based approach evaluated in the following sections, which
seeks to deliver higher accuracy without the need for multiple follow-up
radiographs.

4.2. Clinical accuracy evaluation with regression based models

Clinical accuracy was assessed by converting numeric predictions
from the regression models into diagnostic categories defined for sagittal
(ANB: Classes I, II, and III) and vertical (SNMP: hyperdivergent, nor-
modivergent, and hypodivergent) skeletal patterns. Figs. 4 and 5 present
detailed confusion matrices for visualizing the classification perfor-
mance, highlighting the specific strengths and weaknesses of the models
in diagnostic classification.

As shown in Fig. 4, the ANB confusion matrices revealed marked
challenges for all regression-based approaches, particularly for Class III
prediction accuracy. For instance, the 1-input SVR correctly identified
only 19 of 57 true Class III cases, frequently misclassifying many of them
as Class I. Even with additional temporal landmark inputs, the 3-input

SVR showed modest improvement, correctly identifying only 25 Class
IIT patients, indicating that over half of the clinically critical Class III
cases remained inaccurately classified. The MLP models demonstrated a
similar pattern of misclassification, with the 1-input MLP correctly
classifying only 20 Class III patients and the 3-input MLP improving only
slightly to correctly classify 26 patients. Persistent inaccuracies in dis-
tinguishing Class III cases underscore the critical weaknesses of numeric
regression-based methods, particularly in cases where early diagnosis
and intervention are essential for favorable orthodontic outcomes.

In the vertical dimension, the SNMP confusion matrices in Fig. 5
indicate a somewhat improved but still clinically insufficient accuracy in
predicting hyperdivergent cases. The 3-input SVR, for example, accu-
rately classified 28 of the 42 hyperdivergent patients. However, mis-
classifications occur frequently, with several hyperdivergent cases
mistakenly classified as normodivergent. The normodivergent and
hypodivergent classes also exhibited considerable misclassification,
which was particularly evident in the 1-input models. Misclassification
of vertical growth patterns can lead to problematic clinical decisions, as
it may affect the selection of orthodontic appliances and the overall
direction of treatment, ultimately influencing treatment outcomes.

The overall limited clinical accuracy of regression-based models
stems from fundamental limitations inherent in landmark-based nu-
merical approaches. First, landmarks represent only discrete spatial
coordinates without encoding the complete craniofacial morphology.
Second, craniofacial structures do not grow linearly but develop in
diverse three-dimensional directions depending on the growth phase,
making it difficult to reliably capture such changes using only a small
number of landmark vectors. Although a coordinate system based on the
stable structures method was employed to address this issue, some de-
gree of error remains inevitable, as research on cephalometric
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Fig. 6. Input images used for evaluation. For the 3-input model, all three im-
ages were used. For the 1-input model, only “Input 1” was used.

superimposition is still ongoing [32].

Most importantly, conventional numerical regression models inher-
ently lack visual representation capabilities. Unlike diffusion-based
image synthesis methods, which provide clinicians with visual fore-
casts that can be intuitively evaluated, measured, and verified,
regression-based numerical predictions do not provide image-level vi-
sualizations. Consequently, clinicians have limited opportunities to
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interpret or validate predictions visually, significantly constraining the
clinical utility and trustworthiness of landmark-only numerical regres-
sion predictions. This key limitation, along with demonstrated clinical
inaccuracies, underscores the motivation for adopting diffusion-based
image synthesis methods that address these fundamental limitations
and offer enhanced clinical applicability.

4.3. Vision-based accuracy evaluation with image synthesis models

We evaluated the visual quality of the cephalometric images gener-
ated by four different models: the 3-input DDPM, 1-input DDPM, 1-input
LDM, and 1-input ControlNet [33]. Although ControlNet was not pre-
viously discussed in earlier sections, it is introduced here as an addi-
tional generative model to further validate predictive accuracy using
limited input data. The evaluation was based on quantitative metrics
including MSE, SSIM, and FID, alongside qualitative visual inspections
of anatomical accuracy. Fig. 6 provides the sample input images used for
the evaluation, and visual comparisons of the model predictions are
presented in Fig. 6 (entire images) and Fig. 7 (region-of-interest [ROI]
images).

Table 3 summarizes the quantitative evaluation results across entire
images. The 3-input DDPM, benefiting from sequential temporal inputs,
achieved the lowest MSE (0.0102) and highest SSIM (0.596), indicating
superior pixel-level accuracy and structural integrity. However, despite
using only one image, the 1-input LDM and the.

Newly evaluated 1-input ControlNet demonstrated competitive

l-mput
DDPM

I-mnput
ControlNet

l-input
LDM

SSIM =0.216

SSIM =0.351

]

SSIM = 0.547

SSIM =0.434 SSIM = 0.453

Fig. 7. Qualitative plot of prediction results for 3-input model and 1-input models.
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Table 3
Quantitative results of 3-input models and 1-input models.
Metric 3-input DDPM 1-input DDPM 1-input 1-input LDM
ControlNet
MSE (1) 0.0102 0.0246 0.0141 0.0138
SSIM (1) 0.596 0.301 0.468 0.471
FID (1) 91.32 143.75 83.46 81.94
Table 4
Quantitative results of 3-input models and 1-input models for ROIs.
Metric 3-input DDPM 1-input DDPM 1-input 1-input LDM
ControlNet
MSE (1) 0.00419 0.0112 0.0125 0.0134
SSIM (1) 0.647 0.141 0.464 0.472
FID (1) 67.17 230.75 85.96 82.94

performance. Specifically, the 1-input ControlNet achieved an MSE of
0.0141 and SSIM of 0.468, closely matching the 1-input LDM (MSE
0.0138, SSIM 0.471), both significantly outperforming the baseline 1-
input DDPM (MSE 0.0246, SSIM 0.301). Regarding perceptual realism
measured by FID scores, the 1-input ControlNet exhibited remarkable
results (FID 83.46), slightly surpassing the 1-input LDM (FID 81.94), and
significantly outperforming both the 3-input DDPM (FID 91.32) and 1-
input DDPM (FID 143.75). These metrics underscore the capability of
both ControlNet and LDM to achieve high visual realism and structural
fidelity despite limited input data.

3-input
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Detailed ROI analyses (Table 4 and Fig. 8) confirmed these trends. In
terms of MSE, the 3-input DDPM again showed superior accuracy
(0.00419), reflecting the advantages of having multiple time points. The
1-input ControlNet and LDM yielded similar MSE values (0.0125 and
0.0134, respectively), clearly outperforming the 1-input DDPM
(0.0112). The SSIM values reinforced these findings, with the 3-input
DDPM achieving the highest structural similarity (0.647), followed by
ControlNet (0.464) and LDM (0.472), both significantly exceeding the 1-
input DDPM (0.141). For perceptual realism measured by FID within
ROIs, the 3-input DDPM maintained superiority (FID 67.17), but
notably, the 1-input ControlNet (FID 85.96) closely matched the 1-input
LDM (FID 82.94), and both significantly outperformed the 1-input
DDPM (FID 230.75).

Qualitative visual assessments (Figs. 7 and 8) further supported these
quantitative evaluations. The 1-input ControlNet, leveraging contrastive
learning through content and style representation, clearly enhanced
anatomical accuracy and reduced visual artifacts compared to the 1-
input DDPM. This resulted in predictions that were structurally
coherent and visually realistic, closely resembling clinical expectations.

Overall, these evaluations indicate that the 1-input ControlNet
significantly improves predictive accuracy and visual realism compared
to the baseline 1-input DDPM. Although the 3-input DDPM maintained
slight numerical advantages in pixel-level metrics, the performance of
the 1-input ControlNet and LDM demonstrated remarkable potential in
clinical scenarios requiring minimal imaging. ControlNet, in particular,
offers substantial clinical practicality due to its combination of accuracy,
visual quality, and computational efficiency, highlighting its value in
personalized orthodontic treatment planning with reduced imaging
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Fig. 8. Qualitative plot of prediction results of 3-input model and 1-input models for ROIs.
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Fig. 9. Multi-class (ANB) confusion matrix of prediction models.

Table 5
Prediction accuracy of 3-input model and 1-input models.
3-input 1-input 1-input 1-input
DDPM DDPM ControlNet LDM
Sagittal relationship 48.6 % 62.2 % 48.6 % 59.5 %
(ANB angle)
Vertical pattern (SNMP 58.6 % 63.1 % 61.2 % 64.9 %
angle)
frequency.

4.4. Clinical accuracy evaluation with DDPM based models

A multiclass confusion matrix presented the clinical accuracies by
comparing the ANB values between the actual patient images and the
predicted images from four different models (Fig. 9). The prediction
accuracies of the individual models were as follows: the 3-input DDPM
model and 1-input ControlNet model had the lowest accuracy at 48.6 %,
the 1-input DDPM model had the highest accuracy at 62.2 %, and the 1-
input LDM had an accuracy of 59.5 %, as shown in Table 5. The 1-input
LDM demonstrated a significantly better performance than the 3-input
DDPM, and showed results similar to those of the 1-input DDPM, indi-
cating that it is possible to predict skeletal growth and changes from a
single initial image. Therefore, using an 1-input LDM that does not
require three time-series data inputs, such as the 3-input DDPM, is also
clinically effective.

All four models failed to exceed a 70 % accuracy rate. The inherent
challenges of clinical studies may partially explain these results. This
retrospective study used a dataset of patients who had undergone
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treatment. Collecting a longitudinal dataset from growing patients
without therapeutic intervention is nearly impossible, which means that
the models may face unique challenges compared with predicting nat-
ural growth patterns. Additionally, the high proportion of Class III
malocclusion cases and their treatment characteristics may have influ-
enced the outcomes. In the prediction results, cases of skeletal Class III
malocclusion were frequently misclassified, with predictions nearly
evenly split between Class I and Class III malocclusions. Treatment of
Class.

III malocclusion often involves anterior maxillary traction, which
can significantly alter ANB values within a year. Consequently, Class III
malocclusion cases are frequently reclassified as Class I or Class II
malocclusions within a short timeframe [34]. Conversely, some Class III
cases progress to severe conditions requiring orthognathic surgery due
to continued mandibular growth, which is challenging to predict [35,
36]. This variability and complexity may contribute to inconsistencies in
the prediction process.

The prediction results for the vertical pattern exhibit a similar trend
in the multiclass confusion matrix (Fig. 10). Amongst the models, the 3-
input DDPM model showed the lowest prediction accuracy (58.6 %),
followed by the 1-input ControlNet model (61.2 %) and the 1-input
DDPM model (63.1 %). 1-input LDM achieved the highest accuracy at
64.9 % (Table 5). Similar to the predictions for the anteroposterior
relationship, the overall prediction accuracy for the vertical relationship
was relatively low. Variability introduced by natural growth and
treatment-induced changes likely affected the prediction accuracy.
Regarding natural growth, the SNMP angle decreases during the growth
phase [37,38], which may explain why the models predominantly pre-
dicted a hypodivergent pattern. However, this tendency appears to be
somewhat overpredicted compared to the actual patient data.
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Fig. 10. Multi-class (SNMP) confusion matrix of prediction models.

Furthermore, the initial craniofacial morphology shows only a weak
correlation with the direction of morphological changes during growth
[39], and growth patterns during adolescence can differ significantly
from those observed during childhood [35]. These factors likely
contribute to the variability in predictions related to natural growth. In
addition to natural growth, treatment-induced changes are also likely to
play a significant role. The dataset included a large proportion of cases
with noticeable skeletal changes occurring early in the treatment pro-
cess, which may have introduced additional variability into the model
predictions. These early treatment-related changes, combined with the
inherent variability of natural growth, likely pose challenges to the
artificial intelligence models in achieving higher prediction accuracy.

Despite the challenges in prediction based on initial morphology, our
study demonstrated that 1-input LDM could predict skeletal morphology
at a specific time point during growth using initial radiographs. This
result has greater clinical significance than predicting natural growth
alone because it incorporates skeletal changes associated with ortho-
dontic treatment. It can greatly aid in initial consultations by predicting
and visualizing skeletal changes resulting from orthodontic treatment,
thereby providing a rationale for addressing skeletal issues. Further-
more, it can facilitate the development of treatment plans to address
dentoalveolar issues. However, improving the prediction accuracy re-
quires further studies with a larger dataset. Additionally, enhancing the
image resolution to differentiate dental structures could allow for
further cephalometric measurements and analyses, thereby increasing
the diagnostic value of the model.
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4.5. Summary of clinical and vision-based accuracy comparisons across
entire models

Fig. 11 provides a comprehensive summary and direct comparison of
the evaluated predictive models, clearly illustrating clinical accuracy in
terms of ANB and SNMP classification accuracy, alongside vision-based
accuracy represented by SSIM and FID scores. Fig. 11. (a) compares
clinical accuracy across regression-based models including SVR and
MLP, vision-based models such as ControlNet, and diffusion-based
models DDPM and LDM. The results highlight that diffusion-based ap-
proaches generally outperform traditional methods in clinical classifi-
cation accuracy. Notably, the 1-input LDM and 1-input DDPM
demonstrate comparable clinical accuracy among all single-image input
models.

Fig. 11. (b) further evaluates image quality through vision-based
metrics, specifically SSIM and FID. Among single-image models, the 1-
input LDM clearly achieves the highest structural similarity and lowest
perceptual difference, significantly outperforming the 1-input DDPM
and ControlNet. While the 3-input DDPM model exhibited slightly su-
perior image quality overall, the balanced performance of the 1-input
LDM makes it highly advantageous for single-image predictions.

Considering both clinical and vision-based evaluations, these ana-
lyses emphasize that the 1-input LDM provides an optimal balance of
high clinical accuracy and superior image quality from minimal input
data. Thus, the 1-input LDM emerges as the most practical and effective
predictive model among single-image options, particularly suitable for
clinical orthodontic applications.
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FID scores for vision-based models.

5. Conclusion

This study explored the utility of advanced generative models, spe-
cifically the 3-input DDPM, 1-input DDPM, 1-input LDM, and 1-input
ControlNet, for predicting skeletal changes during orthodontic treat-
ment from cephalometric images. Our evaluation combined quantitative
image quality metrics such as MSE, SSIM, and FID with qualitative as-
sessments and clinical accuracy to demonstrate that these models
effectively predict future skeletal morphology with varying degrees of
accuracy and practicality.

Quantitatively, the 3-input DDPM model achieved the best numeri-
cal accuracy, demonstrating the lowest overall MSE at 0.0102 and
highest SSIM at 0.596. These results highlight the advantage of
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sequential temporal information in capturing detailed anatomical
changes. Despite using only a single image, the 1-input LDM and the
newly evaluated 1-input ControlNet showed impressive performance,
closely matching the accuracy of the multi-image DDPM. The 1-input
ControlNet model exhibited significant improvements over the base-
line 1-input DDPM, achieving a substantially lower MSE of 0.0141
compared to 0.0246, a higher SSIM of 0.468 compared to 0.301, and a
notably superior FID score of 83.46 compared to 143.75. These im-
provements confirm that the 1-input ControlNet, enhanced by contras-
tive learning mechanisms, successfully improved structural coherence
and perceptual realism in generated images, making it highly practical
for clinical applications with minimal imaging requirements.

Clinical accuracy evaluations revealed notable strengths and
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challenges for each model. Although the 3-input DDPM provided the
most precise pixel-level predictions, the clinical practicality of routinely
capturing multiple sequential images is limited. Conversely, both the 1-
input LDM and ControlNet effectively balanced predictive accuracy and
clinical convenience, enabling reliable predictions from a single image.
The ControlNet model demonstrated substantial improvements in pre-
dicting complex anatomical scenarios, reflecting its effectiveness in
integrating patient-specific conditions through contrastive learning.

Despite these promising outcomes, the study has certain limitations
that present opportunities for future research. Predictive accuracy,
particularly in challenging Class III and hyperdivergent cases, still re-
quires improvement. Additionally, while the 1-input models are clini-
cally practical, further optimization and validation on larger and more
diverse datasets are necessary to enhance generalizability and
robustness.

In conclusion, our findings highlight the potential of 1-input Con-
trolNet and LDM, as powerful tools in orthodontic treatment planning.
These models significantly reduce patient exposure to radiation and
imaging frequency while maintaining high predictive accuracy and
clinical applicability. Further development and validation of these
models could significantly improve clinical workflows, offering ortho-
dontists precise, visually interpretable predictions that inform person-
alized and proactive treatment strategies.
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