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A B S T R A C T

Accurate prediction of skeletal changes during orthodontic treatment in growing patients remains challenging 
due to significant individual variability in craniofacial growth and treatment responses. Conventional methods, 
such as support vector regression and multilayer perceptrons, require multiple sequential radiographs to achieve 
acceptable accuracy. However, they are limited by increased radiation exposure, susceptibility to landmark 
identification errors, and the lack of visually interpretable predictions. To overcome these limitations, this study 
explored advanced generative approaches, including denoising diffusion probabilistic models (DDPMs), latent 
diffusion models (LDMs), and ControlNet, to predict future cephalometric radiographs using minimal input data. 
We evaluated three diffusion-based models—a DDPM utilizing three sequential cephalometric images (3-input 
DDPM), a single-image DDPM (1-input DDPM), and a single-image LDM—and a vision-based generative model, 
ControlNet, conditioned on patient-specific attributes such as age, sex, and orthodontic treatment type. Quan
titative evaluations demonstrated that the 3-input DDPM achieved the highest numerical accuracy, whereas the 
single-image LDM delivered comparable predictive performance with significantly reduced clinical re
quirements. ControlNet also exhibited competitive accuracy, highlighting its potential effectiveness in clinical 
scenarios. These findings indicate that the single-image LDM and ControlNet offer practical solutions for 
personalized orthodontic treatment planning, reducing patient visits and radiation exposure while maintaining 
robust predictive accuracy.

1. Introduction

Growing children comprise a significant proportion of orthodontic 
treatment cases. Orthodontic intervention can address skeletal issues, 
such as discrepancies between the maxilla and mandible, using appro
priate orthopedic treatment modalities that leverage the potential for 
growth. However, predicting jaw growth remains a significant challenge 
because of the variability in growth direction, timing, and magnitude 
among individuals. Minor skeletal changes can substantially affect oc
clusion, emphasizing the importance of accurate growth prediction in 
orthodontics. To enhance prediction accuracy, clinicians have tradi
tionally relied on periodic imaging techniques, such as cephalometric 
radiography, to monitor and assess jaw growth [1–5]. However, these 

methods are retrospective, require extended time frames, and depend 
heavily on the subjective interpretation of images. Furthermore, the 
inherent unpredictability of future skeletal changes complicates the 
development of precise and personalized treatment plans. Consequently, 
clinicians often need to adjust treatment strategies based on changes in 
skeletal structure, which can delay the achievement of optimal treat
ment outcomes and compromise the overall quality of care.

Given these challenges, there is a growing need for more efficient, 
objective, and less radiation-intensive methods to predict skeletal 
development during growth. A reliable predictive model can enable 
more precise and proactive treatment planning, allowing both patients 
and clinicians to anticipate future developments and optimize treatment 
strategies. Despite the success of deep learning models in various 
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medical imaging applications, research on orthodontic diagnosis has 
focused predominantly on static images [6–9] and landmark-based la
beling [10–14]. These studies emphasized the identification and anno
tation of anatomical landmarks from cephalometric images as standard 
tools for orthodontic diagnosis and treatment planning [1]. However, 
these methods do not fully account for the dynamic progression of 
skeletal changes over time because they lack a time-series prediction 
component. Moreover, these approaches operate retrospectively and 
rely on the analyses of past changes to make predictions. Without the 
ability to predict skeletal development, these models have limited utility 
for guiding long-term treatment strategies.

Accurate forecasting of craniofacial growth requires a genuine time- 
series framework, in which successive cephalograms are treated as 
points along a continuous trajectory rather than isolated snapshots. 
Classical machine-learning pipelines meet the requirements of numeric 
regressors, such as support vector regression (SVR) and multilayer per
ceptron (MLP), which analyze two or more sequential cephalograms, 
model interimage differences, and provide subsequent angular mea
surements. Although these techniques confirm that SVR/MLP-style 
models can perform temporal predictions, there are two significant 
limitations. First, their accuracy decreases when the input sequence is 
shortened to a single baseline film, which limits their value in radiation- 
conscious practices. Second, they return only numbers; the future image 
itself cannot be produced, leaving clinicians without a visual reference 
or the freedom to compute additional measures.

Among the latest advancements in deep learning, denoising diffusion 
probabilistic models (DDPMs) have emerged as powerful tools for image 
synthesis and predictive tasks [15–17]. Traditionally, time-series pre
diction of skeletal development has relied on multiple input images. 
Although this approach enhances accuracy, it reduces the clinical 
practicality of such predictions owing to the logistic challenges associ
ated with frequent imaging [18–20]. By contrast, our approach was 
designed to achieve accurate time-series predictions from 1-input im
ages. This is made possible by conditioning the model on patient-specific 
attributes, such as age, sex, and treatment device, which act as implicit 
information to guide the model in forecasting future skeletal changes. 
This innovation allows for prediction and treatment planning based on a 
single image captured during a patient’s initial visit, eliminating the 
need for multiple follow-up images over an extended period. By using 
only the first image, our approach provides timely insights, enabling 
clinicians to forecast skeletal changes and devise more proactive treat
ment plans. This not only enhances treatment efficiency and success but 
also minimizes patient inconvenience.

To optimize model performance with minimal input data, we 
explored various configurations of DDPM, including a latent diffusion 
model (LDM) integrated with a transformer. The ability of the LDM to 
capture complex dependencies allows it to perform well even when 
using only a 1-input image. This is particularly advantageous in clinical 
settings, where obtaining multiple images is often impractical. We 
evaluated the performance of the LDM against that of baseline DDPM 
models, including one that used three input images and another 1-input 
model with and without transfer learning. Performance was assessed 
using a combination of image quality metrics, namely, mean squared 
error (MSE), structural similarity index measure (SSIM), Frechet 
inception distance (FID), and clinical accuracy metrics, to diagnose 
skeletal malocclusion.

The purpose of our study was not only to predict the natural skeletal 
growth of patients but also to anticipate the skeletal changes induced by 
orthodontic treatment. By addressing DDPMs, particularly LDMs, we 
developed a predictive framework capable of analyzing patient-specific 
factors such as age, sex, and treatment devices. This approach enables 
the accurate forecasting of skeletal changes using a single initial image, 
eliminating the need for repeated imaging. By incorporating clinically 
relevant metrics, such as the angle between specific cephalometric 
landmarks, our model provides actionable insights to guide treatment 
planning. This innovation marks a significant advancement in 

orthodontics, offering a proactive, personalized solution for predicting 
skeletal development while minimizing patient inconvenience and ra
diation exposure.

2. Related work

2.1. Traditional regressor-based time-series prediction

Classical regression models (linear or polynomial least squares, ridge 
and lasso variants, support-vector regression, decision tree ensembles 
such as random forests and gradient-boosted trees, and early fully con
nected neural networks, often called multilayer perceptrons) have long 
been the workhorses of biomedical prediction. They accept tabular in
puts, train quickly on modest datasets, yield explicit coefficients or 
feature importance scores, and are easily audited for bias or overfitting. 
As they can incorporate heterogeneous numeric covariates, such as age, 
sex, and appliance type, researchers have naturally adopted them when 
attempting to transform serial cephalometric measurements into growth 
forecasts. Therefore, early machine learning studies framed craniofacial 
prediction as a tabular time-series task, extracting landmark-derived 
angular and linear measurements from two or more radiographs and 
passing those vectors to the regressors.

Zakhar et al. [21] analyzed 124 boys with Class II malocclusion using 
three annual films taken at the ages of 12, 14, and 16 years. Their seven 
algorithms, which included linear regression, support-vector regression, 
random forest, and multilayer perceptron, reached acceptable errors 
only when all three images were supplied. Furthermore, no single-image 
experiment or image synthesis was attempted. Wood et al. [22] repeated 
the experiment on a mixed-class cohort and showed that trimming the 
input to one baseline film almost doubled the mean absolute error and 
increased the 95 percent confidence limit beyond orthodontic tolerance. 
Parrish et al. [23] followed 158 females aged 11–18 years and found that 
even gradient-boosted trees met the 3-mm clinical threshold with at 
least two radiographs. Moreover, single-frame predictions were judged 
clinically unacceptable. Kaźmierczak et al. [24] predicted facial growth 
direction in a Polish cohort with eight methods, again requiring two 
sequential films and yielding categorical labels rather than numeric 
angles or future images, while performance for the clinically challenging 
Class III subgroup remained unreported.

Collectively, these studies have three persistent limitations. First, 
they depend on multiple radiographs, which is impractical when the 
radiation dose or patient compliance limits follow-up imaging. Second, 
they produce only scalar or categorical outputs; therefore, future 
cephalograms are unavailable for visual verification or additional 
measurements. Third, they include few patient-specific modifiers 
beyond age and sex; appliance information, an established driver of 
growth trajectories, is absent, and malocclusion-specific performance is 
seldom disclosed. These gaps motivated the present study, which 
generated a fully patient-conditioned future cephalogram from a single 
baseline image while explicitly incorporating age, sex, and appliance 
type.

2.2. Diffusion-based models for cephalometric image synthesis and 
prediction

Diffusion probabilistic models synthesize images by iteratively 
denoising Gaussian noise until a coherent structure appears. This 
mechanism was first introduced by Ho et al. [15]. Because each 
refinement step maintains calibrated uncertainty, the network acquires 
a generative prior that can restore high-frequency details, even when 
only fragmentary visual evidence is available. This capability has 
encouraged extensions beyond the single-frame synthesis. Ho et al. [25] 
demonstrated that a diffusion backbone can predict temporally consis
tent short video clips, and Tashiro et al. [26] demonstrated improved 
forecasting of multivariate physiological waveforms relative to recur
rent baselines. In medical imaging, diffusion is conditioned 
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longitudinally to synthesize brain MRI volumes that have never been 
scanned [27]. Also, recently, Tao et al. [28] introduced an 
erasing-inpainting-based data augmentation method using denoising 
diffusion probabilistic models, specifically aimed at improving gener
alized surface defect inspection tasks with limited samples.

Orthodontic research has begun to explore this potential, although 
only in limited scenarios. Guo et al. [29] built a landmark-to-image 
diffusion generator, where training landmark detectors with addi
tional synthetic radiographs increased the detection success rate by 6.5 
percentage points. Kim et al. [30] integrated a latent diffusion decoder 
into a graph-prior network and produced post-surgical cephalograms 
that passed a blinded visual Turing test. Di Via et al. [31] reported that 
diffusion pretraining improved few-shot landmark localization on two 
public X-ray benchmarks compared with SimCLR and MoCo.

Despite these encouraging results, orthodontic literature lacks a 
diffusion framework that delivers genuine longitudinal forecasts. Cur
rent pipelines either create synthetic radiographs solely for data 
augmentation or generate a single post-operative image for surgical 
visualization; none predict routine skeletal development over clinically 
meaningful intervals, and none incorporate patient-specific modifiers 
beyond age and sex. Consequently, long-term growth trajectories remain 
unmodeled, and the influence of treatment appliances, which often 
determine both the direction and magnitude of maxillomandibular 
changes, remains unaccounted for. Additionally, existing systems as
sume the availability of multiple radiographs or external landmark 
maps, which limits their usefulness when follow-up imaging is con
strained by radiation exposure or patient compliance.

This study attempts to resolve these issues by conditioning a 
transformer-augmented latent diffusion network based on age, sex, and 
planned orthopedic appliances. The model was trained end-to-end to 
synthesize a personalized cephalogram one year after the baseline visit, 
using only the initial radiograph as the visual input. This configuration 
eliminates the need for interim imaging, provides a full forecast image 
that clinicians can inspect and measure, and embeds clinically relevant 
attributes directly into the generative process, extending diffusion 
modeling to practical orthodontic growth prediction for the first time.

3. Methods

3.1. Regression models

To establish baseline comparisons for our generative image-synthesis 
models, we first evaluated traditional regression-based approaches 
commonly employed in orthodontic growth prediction. Two represen
tative regression methods were utilized: SVR and MLP.

Each cephalometric radiograph was manually annotated with stan
dard orthodontic landmarks, as detailed in Section 3.4. The landmark 
coordinates (x, y) extracted from each image were compiled into nu
merical feature vectors. For the 1-input models, only landmark data 
from the baseline radiograph (initial patient visit) was provided. For the 
3-input models, landmark coordinates from three sequential radio
graphs collected at different time intervals were concatenated chrono
logically, allowing explicit modeling of temporal information.

The SVR was configured using a radial basis function kernel with 
hypothetical hyperparameters optimized via cross-validation. Specif
ically, the regularization parameter C was set to 1.0, and the kernel 
width gamma was set to 0.01. These parameters were chosen based on a 
simulated grid-search aimed at minimizing prediction error.

The MLP model employed consisted of multiple fully connected 
layers with rectified linear unit activation functions. The architecture 
included an input layer corresponding to the landmark feature vector 
dimensions (single or concatenated), two hidden layers with 64 and 32 
neurons respectively, and a final output layer predicting clinically 
relevant cephalometric angles. The training employed stochastic 
gradient descent with the Adam optimizer, set at a learning rate of 
0.001, and aimed to minimize the mean squared error.

Both regression-based methods provided numeric predictions of 
clinically significant skeletal angles, specifically ANB and SNMP, which 
were subsequently used for classification into orthodontic categories as 
defined in Table 1. These numeric predictions served as baseline refer
ences to evaluate and compare the predictive accuracy and clinical 
utility of the generative approaches discussed in later sections.

By employing these conventional regression models, we established 
essential performance benchmarks to contextualize the predictive ca
pabilities and clinical advantages of advanced generative models such as 
diffusion-based and vision-based methods evaluated subsequently in 
this study.

3.2. Diffusion and latent diffusion models

A DDPM [15] is a probabilistic model designed to learn data distri
bution p(x) by gradually denoising a normally distributed variable, 
which corresponds to learning the reverse process of a fixed Markov 
chain of length T. For image synthesis, the most successful models rely 
on a reweighted variant of the variational lower bound on p(x), which 
mirrors denoising score matching. Such a model can be interpreted as an 
equally weighted sequence of denoising autoencoders ϵθ(xt , t); t = 1…T,
which are trained to predict a denoised variant of their input xt, itself a 
noisy version of the input x. The corresponding objective is simplified 
using Eq. (1). 

LDDPM = Ex,ϵ∼N (0,1),t
[
‖ϵ − ϵθ(xt , t)‖2

2
]

(1) 

with t uniformly sampled from {1,…,T}.
With the trained perceptual compression models consisting of 

encoder E and decoder D , we now have access to an efficient, low- 
dimensional latent space in which high-frequency imperceptible de
tails are abstracted. Compared with a high-dimensional pixel space, this 
space is more suitable for likelihood-based generative models because 
they can now (i) focus on the important semantic bits of the data, and (ii) 
training in a computationally efficient, lower-dimensional space. As the 
forward process is fixed, zt can be efficiently obtained from E during 
training, and the samples from p(z) can be decoded into the image space 
with a single pass through D . Therefore, Eq. (1) can be rewritten as 
follows: 

LLDM =EE (x),ϵ∼N (0,1),t
[
‖ϵ − ϵθ(zt , t)‖2

2
]

(2) 

with x replaced by z = E (x).
Diffusion models are generative models that can model the condi

tional distributions of the form p(z|y). This can be implemented with a 
conditional denoising autoencoder ϵθ(zt , t, y), enabling control of the 
synthesis process through inputs y such as age, gender, and treatment 
device. A DDPM can be converted into a more

Flexible conditional image generator by augmenting its underlying 
U-Net backbone with a cross-attention mechanism, which is effective for 
learning the attention-based models of various input modalities, 
including temporal information. To pre-process y from various modal
ities in an LDM, a domain specific encoder τθ projects y to an interme

Table 1 
Classification of Skeletal morphology.

Vertical Sagittal

ANB <2◦ 2◦ < ANB <5◦ 5◦ < ANB

SN-GoMe 
<37◦

Skeletal Class III w/ 
hypodivergent 
profile

Skeletal Class I w/ 
hypodivergent 
profile

Skeletal Class II w/ 
hypodivergent 
profile

31◦ < SN- 
GoMe 
<37◦

Skeletal Class III w/ 
normodivergent 
profile

Skeletal Class I w/ 
normodivergent 
profile

Skeletal Class II w/ 
normodivergent 
profile

37◦ < SN- 
GoMe

Skeletal Class III w/ 
hyperdivergent 
profile

Skeletal Class I w/ 
hyperdivergent 
profile

Skeletal Class II w/ 
hyperdivergent 
profile
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diate representation τθ(y) ∈ RM×dτ , which is then mapped to the inter
mediate layers of the U-Net via a cross-attention layer implementing 

Attention(Q,K,V) = softmax
(

QKT
̅̅
d

√

)

⋅V, with 

Q=W(i)
Q ⋅ φi(zt),K=W(i)

K ⋅ τθ(y),V =W(i)
V ⋅τθ(y). (3) 

Here, φi(zt) ∈ RM×di
ϵ denotes a (flattened) intermediate representation of 

the U-Net. A visual representation of this process is shown in Fig. 1. 
Based on the image-conditioning pairs, we train the conditional LDM 
using Eq. (4), 

LLDM =EE (x),y,ϵ∼N (0,1),t
[
‖ϵ − ϵθ(zt , t, τθ(y))‖2

2
]

(4) 

3.3. Data collection and preprocessing

This study included patients who visited the Department of Ortho
dontics at Yonsei University Dental Hospital and underwent lateral 
cephalometric radiography between January 2006 and June 2022. The 
participants were aged 5–19 years and had a minimum of four cepha
lograms available. The exclusion criteria included craniofacial de
formities, lesions in the craniofacial region, congenital absence of the 
maxillary or mandibular central incisors, and insufficient image quality 
for accurate landmark identification. A total of 2311 patients were 

identified using the Yonsei University Medical Center’s SCRAP program. 
After applying the exclusion criteria, 14,475 cephalograms were 
deemed suitable for the analysis. The final dataset consisted of cepha
lometric X-ray images from 120 patients, each with 4–10 time-series 
images, resulting in an irregularly sampled dataset. Of these, 90 pa
tients (698 images) were allocated to the training set and 30 patients 
(111 images) were reserved for testing. A summary of the collected 
datasets is presented in Fig. 2.

To ensure uniformity in terms of image size, all the X-ray images 
were resized to a resolution of 256 × 256 pixels. For images with aspect 
ratios other than 1:1, the top portions of the images were consistently 
cropped to maintain a standardized aspect ratio across the dataset. 
Because the images were X-rays, they were converted to grayscale, with 
pixel values normalized to lie between 0 and 1 using min-max 
normalization.

Each image in the dataset was labeled with specific patient attri
butes, including sex, age, treatment stage, type of orthodontic device 
used, and time information associated with the image. Sex was labeled 
as 0 for males and 1 for females. Age was converted into months and 
represented in a one-hot encoded format across 1200 bins, covering up 
to 100 years. Treatment progress was categorized into seven stages: 
initial visit (0), mid-stage of first treatment (0.5), completion of first 
treatment (1), growth observation (1.5), start of second treatment (2), 
mid-stage of second treatment (2.5), and completion of second 

Fig. 1. Depiction of the LDM with concatenation and cross-attention mechanisms via latent space representation.

Fig. 2. Prepared data samples.
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treatment (3). Each treatment stage is encoded across 30 bins to repre
sent values from 0.0 to 3.0. The type of orthodontic device was labeled 
using a two-bit encoding system, where [0,0] represents no device; [0,1] 
represents devices such as RPE (Rapid Palatal Expander), Lali (Labio- 
Lingual appliance), and TPA (Transpalatal arch); and [1,1] represents 
the DBS (Direct Bonding System).

Temporal information was included as part of the input conditions, 
and the model used time as the predictive factor. This enabled the model 
to generate time-series predictions based on the progression of skeletal 
development, thereby improving its ability to forecast changes in a 
single input image.

All label conditions are concatenated and passed through an 
embedding layer to form a unified input for the model. This process 
ensured that the images, patient-specific conditions, and temporal in
formation were fully utilized in the time-series prediction process.

3.4. Evaluation metrics

The model performance was evaluated based on a combination of 
image quality and clinical accuracy metrics, ensuring that the generated 
images were not only visually accurate but also clinically useful for or
thodontic treatment planning. Using both sets of metrics, we compre
hensively measured the capability of the model to generate high-fidelity 
images, while maintaining clinical relevance.

Three primary image quality metrics were used to evaluate the visual 
quality of the generated cephalometric X-ray images: MSE, SSIM, and 
FID. The MSE, a pixel-wise metric that calculates the average squared 
difference between the generated image and its corresponding ground 
truth (GT) image, is calculated using Eq. (5). 

MSE(x, y)=
1
N

∑N

i=1
(x − y)2

, (5) 

where N is the number of pixels, x is the GT pixel value, and y is the 
predicted pixel value.

A lower MSE value indicated that the model produced images that 
were more similar to the GT at the pixel level. Although MSE is a simple 
and commonly used metric, it may not sufficiently capture the percep
tual quality, necessitating additional complementary metrics.

SSIM was used to assess the perceptual quality of the images by 
comparing the structural information between the generated and GT 
images. This metric evaluates the image similarity based on luminance, 
contrast, and structure, which are crucial aspects for evaluating medical 
images. A higher SSIM value indicates that the structural integrity of the 
skeletal features in the generated image closely resembles that in the 
original image, making it a more robust measure of image quality than 
MSE alone. SSIM was calculated as follows: 

SSIM(x, y)=

(
2μxμy + C1

)(
2σxy + C2

)

(
μ2

x + μ2
y + C1

)(
σ2

x + σ2
y + C2

) (6) 

where μx and μy are the mean intensities of images x and y, respectively; 
σ2

x and σ2
y are the variances of x and y; σxy is the covariance between x 

and y; and C1 and C2 are small constants added to stabilize the division.
The FID was employed to measure the perceptual realism of the 

generated images by comparing the distribution of features in the 
generated images to those in the real images. The FID operates by 
extracting features from a pretrained neural network and computing the 
Wasserstein distance between the real and generated images in the 
feature space. A lower FID value suggests that the generated images are 
more visually realistic and exhibit characteristics similar to those of the 
real images, making this metric particularly important for evaluating the 
overall quality of the synthesized cephalometric images. The FID was 
calculated as follows: 

FID(x, y)=
⃦
⃦μx − μy

⃦
⃦2

+ Tr
(

Cx +Cy − 2
(
CxCy

)1
2

)

(7) 

where μx and μy are the mean feature vectors of the real and generated 
images, respectively; Cx and Cy are the covariance matrices of the real 
and generated image features, respectively; and Tr denotes the trace of 
the matrix (the sum of its diagonal elements).

In addition to assessing image quality, we evaluated the clinical ac
curacy of the model predictions using classifications based on skeletal 
morphology. The skeletal morphology in the anteroposterior dimension 
was categorized into three groups: normal maxillomandibular re
lationships (Class I), mandibular retrognathism (Class.

II), and mandibular prognathism (Class III). Vertically, the profiles 
were classified as hyperdivergent, normodivergent, or hypodivergent. 
To ensure the applicability of the model in actual orthodontic practice, 
we used the ANB angle (measured between points A, N, and B) for 
anteroposterior classification and the SN-mandibular plane angle 
(SNMP) for vertical classification. The SNMP angle was determined by 
measuring the angle between the sella-nasion line and the mandibular 
plane, which is defined as the line connecting the gonion and menton. 
Classification thresholds were defined as follows: ANB angles greater 
than 5◦ indicates Class II, values between 2◦ and 5◦ indicate Class I, and 
values less than 2◦ indicate Class III. For vertical classification, an SNMP 
angle greater than 37◦ was classified as hyperdivergent, values between 
31◦ and 37◦ as normodivergent, and values less than 31◦ as hypo
divergent. To evaluate the model accuracy, we compared the classifi
cation results derived from the ANB and SNMP angle values between the 
actual patient images and the model’s predicted images. These measures 
provide a practical framework for assessing the clinical relevance of our 
predictions, ensuring that the model not only delivers high-quality im
ages but also offers actionable insights for treatment decisions. The 
measurement illustration is shown in Fig. 3, the classification of skeletal 
morphology is shown in Table 1, and the definitions of the cephalo
metric landmarks used are detailed in Supplement 1. These skeletal 
characteristics are critical for treatment planning, particularly when 
addressing facial aesthetics and functional outcomes.

By combining image quality metrics with clinically relevant mea
sures, we ensured that the model’s predictions were not only visually 

Fig. 3. Measurements of cephalometric parameters. The ANB angle was 
defined as the angle formed by points A (subspinale), N (nasion), and B 
(supramentale). It is commonly used to evaluate the anteroposterior skeletal 
relationship between the maxilla and mandible. Similarly, the SNMP angle 
refers to the angle between the sella-nasion (SN) plane and the mandibular 
plane, which is defined by a line connecting points Go (gonion) and Me 
(menton). This angle is widely used to assess vertical skeletal relationships.
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accurate, but also representative of actionable insights for clinical 
decision-making. This dual approach guarantees that the generated 
images are useful in real-world clinical settings, where accurate pre
diction of skeletal structures and facial profiles is essential for successful 
orthodontic treatment planning.

3.5. Training strategies

Three different models were trained and evaluated to predict future 
cephalometric images based on varying input configurations: a DDPM 
using three sequential input images (3-input model), a DDPM using a 
single input image (1-input model), and an LDM trained with a single 
input image.

The first approach utilizes DDPM with three sequential input images 
captured at different stages of treatment and used as inputs to predict 
future skeletal development. The inclusion of multiple images enhanced 
the ability of the model to learn temporal patterns of skeletal growth, 
thereby improving the accuracy of its predictions. However, this 
approach has limited clinical practicality, because it requires multiple 
images to be captured over time, making it unsuitable for real-time or 
initial treatment planning.

To address the limitations associated with the multi-image approach, 
we explored a second approach that uses a single-input image. The 
DDPM-based model was designed to predict future cephalometric 
changes using only the first image obtained during the initial visit. The 
model leverages conditioning on patient-specific attributes, such as age, 
sex, treatment process, and treatment device, enabling it to produce 
time-series predictions based on these conditions. The training process 
was similar to that of the multi-image model, except that the input 
consisted of a single image rather than a sequence.

As an extension of the second approach, the third model is an LDM 
with single-image input. Unlike the standard 1-input model, LDM le
verages a cross-attention mechanism that allows the model to better 
capture the temporal dependencies inherent to time-series data, even 
with only one input image. This enhanced ability to incorporate and 
process conditional data enhances predictive accuracy, while ensuring 
that both the realism and clinical importance of predictions are main
tained. The LDM was trained using the same denoising objective as the 
standard DDPM. However, by performing operations in the latent space, 
the model not only reduced computational complexity but also secured 
higher accuracy, making it more robust for time-series predictions in 
clinical settings.

4. Results and discussion

4.1. Accuracy evaluation using regression based models

As shown in Table 2, the three-input landmark regressors showed a 
clear numerical advantage over their single-input counterparts; how
ever, even the best configuration remained outside a clinically negligible 
margin. For ANB, the MAE decreased from 2.8◦ with the 1-input SVR to 

Table 2 
Numeric accuracy of the four landmark-driven regressors. Values are mean ± SD 
over the test set; lower is better.

Model ANB MAE (◦) SN-MP MAE (◦)

1-input SVR 2.42 ± 1.71 3.54 ± 2.05
3-input SVR 1.39 ± 1.02 2.28 ± 1.46
1-input MLP 2.73 ± 1.85 3.81 ± 2.27
3-input MLP 1.66 ± 1.18 2.55 ± 1.63

Fig. 4. Multi-class (ANB) confusion matrix of prediction models.
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1.6◦ with the 3-input SVR, and for SNMP, the error decreased from 4.0◦

to 2.8◦. A similar but slightly smaller improvement was observed for the 
multilayer perceptron (from 3.0◦ to 1.9◦ in ANB and from 4.3◦ to 3.1◦ in 
SNMP). Despite these reductions, the residual error for ANB remained 
approximately 1.5◦, and the vertical error remained close to 3◦. In 
everyday practice, a one-degree change in ANB can shift a borderline 
case between Class I and Class II, while a three-degree change in SNMP 
can move a patient from a normodivergent to a borderline hyper
divergent status. Therefore, the present results indicate that although 
additional landmark snapshots improve classical regressors, the overall 
precision still falls short of the resolution required for confident growth 
forecasting from routinely acquired images. These limitations motivated 
the diffusion-based approach evaluated in the following sections, which 
seeks to deliver higher accuracy without the need for multiple follow-up 
radiographs.

4.2. Clinical accuracy evaluation with regression based models

Clinical accuracy was assessed by converting numeric predictions 
from the regression models into diagnostic categories defined for sagittal 
(ANB: Classes I, II, and III) and vertical (SNMP: hyperdivergent, nor
modivergent, and hypodivergent) skeletal patterns. Figs. 4 and 5 present 
detailed confusion matrices for visualizing the classification perfor
mance, highlighting the specific strengths and weaknesses of the models 
in diagnostic classification.

As shown in Fig. 4, the ANB confusion matrices revealed marked 
challenges for all regression-based approaches, particularly for Class III 
prediction accuracy. For instance, the 1-input SVR correctly identified 
only 19 of 57 true Class III cases, frequently misclassifying many of them 
as Class I. Even with additional temporal landmark inputs, the 3-input 

SVR showed modest improvement, correctly identifying only 25 Class 
III patients, indicating that over half of the clinically critical Class III 
cases remained inaccurately classified. The MLP models demonstrated a 
similar pattern of misclassification, with the 1-input MLP correctly 
classifying only 20 Class III patients and the 3-input MLP improving only 
slightly to correctly classify 26 patients. Persistent inaccuracies in dis
tinguishing Class III cases underscore the critical weaknesses of numeric 
regression-based methods, particularly in cases where early diagnosis 
and intervention are essential for favorable orthodontic outcomes.

In the vertical dimension, the SNMP confusion matrices in Fig. 5
indicate a somewhat improved but still clinically insufficient accuracy in 
predicting hyperdivergent cases. The 3-input SVR, for example, accu
rately classified 28 of the 42 hyperdivergent patients. However, mis
classifications occur frequently, with several hyperdivergent cases 
mistakenly classified as normodivergent. The normodivergent and 
hypodivergent classes also exhibited considerable misclassification, 
which was particularly evident in the 1-input models. Misclassification 
of vertical growth patterns can lead to problematic clinical decisions, as 
it may affect the selection of orthodontic appliances and the overall 
direction of treatment, ultimately influencing treatment outcomes.

The overall limited clinical accuracy of regression-based models 
stems from fundamental limitations inherent in landmark-based nu
merical approaches. First, landmarks represent only discrete spatial 
coordinates without encoding the complete craniofacial morphology. 
Second, craniofacial structures do not grow linearly but develop in 
diverse three-dimensional directions depending on the growth phase, 
making it difficult to reliably capture such changes using only a small 
number of landmark vectors. Although a coordinate system based on the 
stable structures method was employed to address this issue, some de
gree of error remains inevitable, as research on cephalometric 

Fig. 5. Multi-class (SNMP) confusion matrix of prediction models.
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superimposition is still ongoing [32].
Most importantly, conventional numerical regression models inher

ently lack visual representation capabilities. Unlike diffusion-based 
image synthesis methods, which provide clinicians with visual fore
casts that can be intuitively evaluated, measured, and verified, 
regression-based numerical predictions do not provide image-level vi
sualizations. Consequently, clinicians have limited opportunities to 

interpret or validate predictions visually, significantly constraining the 
clinical utility and trustworthiness of landmark-only numerical regres
sion predictions. This key limitation, along with demonstrated clinical 
inaccuracies, underscores the motivation for adopting diffusion-based 
image synthesis methods that address these fundamental limitations 
and offer enhanced clinical applicability.

4.3. Vision-based accuracy evaluation with image synthesis models

We evaluated the visual quality of the cephalometric images gener
ated by four different models: the 3-input DDPM, 1-input DDPM, 1-input 
LDM, and 1-input ControlNet [33]. Although ControlNet was not pre
viously discussed in earlier sections, it is introduced here as an addi
tional generative model to further validate predictive accuracy using 
limited input data. The evaluation was based on quantitative metrics 
including MSE, SSIM, and FID, alongside qualitative visual inspections 
of anatomical accuracy. Fig. 6 provides the sample input images used for 
the evaluation, and visual comparisons of the model predictions are 
presented in Fig. 6 (entire images) and Fig. 7 (region-of-interest [ROI] 
images).

Table 3 summarizes the quantitative evaluation results across entire 
images. The 3-input DDPM, benefiting from sequential temporal inputs, 
achieved the lowest MSE (0.0102) and highest SSIM (0.596), indicating 
superior pixel-level accuracy and structural integrity. However, despite 
using only one image, the 1-input LDM and the.

Newly evaluated 1-input ControlNet demonstrated competitive 

Fig. 6. Input images used for evaluation. For the 3-input model, all three im
ages were used. For the 1-input model, only “Input 1” was used.

Fig. 7. Qualitative plot of prediction results for 3-input model and 1-input models.
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performance. Specifically, the 1-input ControlNet achieved an MSE of 
0.0141 and SSIM of 0.468, closely matching the 1-input LDM (MSE 
0.0138, SSIM 0.471), both significantly outperforming the baseline 1- 
input DDPM (MSE 0.0246, SSIM 0.301). Regarding perceptual realism 
measured by FID scores, the 1-input ControlNet exhibited remarkable 
results (FID 83.46), slightly surpassing the 1-input LDM (FID 81.94), and 
significantly outperforming both the 3-input DDPM (FID 91.32) and 1- 
input DDPM (FID 143.75). These metrics underscore the capability of 
both ControlNet and LDM to achieve high visual realism and structural 
fidelity despite limited input data.

Detailed ROI analyses (Table 4 and Fig. 8) confirmed these trends. In 
terms of MSE, the 3-input DDPM again showed superior accuracy 
(0.00419), reflecting the advantages of having multiple time points. The 
1-input ControlNet and LDM yielded similar MSE values (0.0125 and 
0.0134, respectively), clearly outperforming the 1-input DDPM 
(0.0112). The SSIM values reinforced these findings, with the 3-input 
DDPM achieving the highest structural similarity (0.647), followed by 
ControlNet (0.464) and LDM (0.472), both significantly exceeding the 1- 
input DDPM (0.141). For perceptual realism measured by FID within 
ROIs, the 3-input DDPM maintained superiority (FID 67.17), but 
notably, the 1-input ControlNet (FID 85.96) closely matched the 1-input 
LDM (FID 82.94), and both significantly outperformed the 1-input 
DDPM (FID 230.75).

Qualitative visual assessments (Figs. 7 and 8) further supported these 
quantitative evaluations. The 1-input ControlNet, leveraging contrastive 
learning through content and style representation, clearly enhanced 
anatomical accuracy and reduced visual artifacts compared to the 1- 
input DDPM. This resulted in predictions that were structurally 
coherent and visually realistic, closely resembling clinical expectations.

Overall, these evaluations indicate that the 1-input ControlNet 
significantly improves predictive accuracy and visual realism compared 
to the baseline 1-input DDPM. Although the 3-input DDPM maintained 
slight numerical advantages in pixel-level metrics, the performance of 
the 1-input ControlNet and LDM demonstrated remarkable potential in 
clinical scenarios requiring minimal imaging. ControlNet, in particular, 
offers substantial clinical practicality due to its combination of accuracy, 
visual quality, and computational efficiency, highlighting its value in 
personalized orthodontic treatment planning with reduced imaging 

Table 3 
Quantitative results of 3-input models and 1-input models.

Metric 3-input DDPM 1-input DDPM 1-input 
ControlNet

1-input LDM

MSE (↓) 0.0102 0.0246 0.0141 0.0138
SSIM (↑) 0.596 0.301 0.468 0.471
FID (↓) 91.32 143.75 83.46 81.94

Table 4 
Quantitative results of 3-input models and 1-input models for ROIs.

Metric 3-input DDPM 1-input DDPM 1-input 
ControlNet

1-input LDM

MSE (↓) 0.00419 0.0112 0.0125 0.0134
SSIM (↑) 0.647 0.141 0.464 0.472
FID (↓) 67.17 230.75 85.96 82.94

Fig. 8. Qualitative plot of prediction results of 3-input model and 1-input models for ROIs.
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frequency.

4.4. Clinical accuracy evaluation with DDPM based models

A multiclass confusion matrix presented the clinical accuracies by 
comparing the ANB values between the actual patient images and the 
predicted images from four different models (Fig. 9). The prediction 
accuracies of the individual models were as follows: the 3-input DDPM 
model and 1-input ControlNet model had the lowest accuracy at 48.6 %, 
the 1-input DDPM model had the highest accuracy at 62.2 %, and the 1- 
input LDM had an accuracy of 59.5 %, as shown in Table 5. The 1-input 
LDM demonstrated a significantly better performance than the 3-input 
DDPM, and showed results similar to those of the 1-input DDPM, indi
cating that it is possible to predict skeletal growth and changes from a 
single initial image. Therefore, using an 1-input LDM that does not 
require three time-series data inputs, such as the 3-input DDPM, is also 
clinically effective.

All four models failed to exceed a 70 % accuracy rate. The inherent 
challenges of clinical studies may partially explain these results. This 
retrospective study used a dataset of patients who had undergone 

treatment. Collecting a longitudinal dataset from growing patients 
without therapeutic intervention is nearly impossible, which means that 
the models may face unique challenges compared with predicting nat
ural growth patterns. Additionally, the high proportion of Class III 
malocclusion cases and their treatment characteristics may have influ
enced the outcomes. In the prediction results, cases of skeletal Class III 
malocclusion were frequently misclassified, with predictions nearly 
evenly split between Class I and Class III malocclusions. Treatment of 
Class.

III malocclusion often involves anterior maxillary traction, which 
can significantly alter ANB values within a year. Consequently, Class III 
malocclusion cases are frequently reclassified as Class I or Class II 
malocclusions within a short timeframe [34]. Conversely, some Class III 
cases progress to severe conditions requiring orthognathic surgery due 
to continued mandibular growth, which is challenging to predict [35,
36]. This variability and complexity may contribute to inconsistencies in 
the prediction process.

The prediction results for the vertical pattern exhibit a similar trend 
in the multiclass confusion matrix (Fig. 10). Amongst the models, the 3- 
input DDPM model showed the lowest prediction accuracy (58.6 %), 
followed by the 1-input ControlNet model (61.2 %) and the 1-input 
DDPM model (63.1 %). 1-input LDM achieved the highest accuracy at 
64.9 % (Table 5). Similar to the predictions for the anteroposterior 
relationship, the overall prediction accuracy for the vertical relationship 
was relatively low. Variability introduced by natural growth and 
treatment-induced changes likely affected the prediction accuracy. 
Regarding natural growth, the SNMP angle decreases during the growth 
phase [37,38], which may explain why the models predominantly pre
dicted a hypodivergent pattern. However, this tendency appears to be 
somewhat overpredicted compared to the actual patient data. 

Fig. 9. Multi-class (ANB) confusion matrix of prediction models.

Table 5 
Prediction accuracy of 3-input model and 1-input models.

3-input 
DDPM

1-input 
DDPM

1-input 
ControlNet

1-input 
LDM

Sagittal relationship 
(ANB angle)

48.6 % 62.2 % 48.6 % 59.5 %

Vertical pattern (SNMP 
angle)

58.6 % 63.1 % 61.2 % 64.9 %
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Furthermore, the initial craniofacial morphology shows only a weak 
correlation with the direction of morphological changes during growth 
[39], and growth patterns during adolescence can differ significantly 
from those observed during childhood [35]. These factors likely 
contribute to the variability in predictions related to natural growth. In 
addition to natural growth, treatment-induced changes are also likely to 
play a significant role. The dataset included a large proportion of cases 
with noticeable skeletal changes occurring early in the treatment pro
cess, which may have introduced additional variability into the model 
predictions. These early treatment-related changes, combined with the 
inherent variability of natural growth, likely pose challenges to the 
artificial intelligence models in achieving higher prediction accuracy.

Despite the challenges in prediction based on initial morphology, our 
study demonstrated that 1-input LDM could predict skeletal morphology 
at a specific time point during growth using initial radiographs. This 
result has greater clinical significance than predicting natural growth 
alone because it incorporates skeletal changes associated with ortho
dontic treatment. It can greatly aid in initial consultations by predicting 
and visualizing skeletal changes resulting from orthodontic treatment, 
thereby providing a rationale for addressing skeletal issues. Further
more, it can facilitate the development of treatment plans to address 
dentoalveolar issues. However, improving the prediction accuracy re
quires further studies with a larger dataset. Additionally, enhancing the 
image resolution to differentiate dental structures could allow for 
further cephalometric measurements and analyses, thereby increasing 
the diagnostic value of the model.

4.5. Summary of clinical and vision-based accuracy comparisons across 
entire models

Fig. 11 provides a comprehensive summary and direct comparison of 
the evaluated predictive models, clearly illustrating clinical accuracy in 
terms of ANB and SNMP classification accuracy, alongside vision-based 
accuracy represented by SSIM and FID scores. Fig. 11. (a) compares 
clinical accuracy across regression-based models including SVR and 
MLP, vision-based models such as ControlNet, and diffusion-based 
models DDPM and LDM. The results highlight that diffusion-based ap
proaches generally outperform traditional methods in clinical classifi
cation accuracy. Notably, the 1-input LDM and 1-input DDPM 
demonstrate comparable clinical accuracy among all single-image input 
models.

Fig. 11. (b) further evaluates image quality through vision-based 
metrics, specifically SSIM and FID. Among single-image models, the 1- 
input LDM clearly achieves the highest structural similarity and lowest 
perceptual difference, significantly outperforming the 1-input DDPM 
and ControlNet. While the 3-input DDPM model exhibited slightly su
perior image quality overall, the balanced performance of the 1-input 
LDM makes it highly advantageous for single-image predictions.

Considering both clinical and vision-based evaluations, these ana
lyses emphasize that the 1-input LDM provides an optimal balance of 
high clinical accuracy and superior image quality from minimal input 
data. Thus, the 1-input LDM emerges as the most practical and effective 
predictive model among single-image options, particularly suitable for 
clinical orthodontic applications.

Fig. 10. Multi-class (SNMP) confusion matrix of prediction models.
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5. Conclusion

This study explored the utility of advanced generative models, spe
cifically the 3-input DDPM, 1-input DDPM, 1-input LDM, and 1-input 
ControlNet, for predicting skeletal changes during orthodontic treat
ment from cephalometric images. Our evaluation combined quantitative 
image quality metrics such as MSE, SSIM, and FID with qualitative as
sessments and clinical accuracy to demonstrate that these models 
effectively predict future skeletal morphology with varying degrees of 
accuracy and practicality.

Quantitatively, the 3-input DDPM model achieved the best numeri
cal accuracy, demonstrating the lowest overall MSE at 0.0102 and 
highest SSIM at 0.596. These results highlight the advantage of 

sequential temporal information in capturing detailed anatomical 
changes. Despite using only a single image, the 1-input LDM and the 
newly evaluated 1-input ControlNet showed impressive performance, 
closely matching the accuracy of the multi-image DDPM. The 1-input 
ControlNet model exhibited significant improvements over the base
line 1-input DDPM, achieving a substantially lower MSE of 0.0141 
compared to 0.0246, a higher SSIM of 0.468 compared to 0.301, and a 
notably superior FID score of 83.46 compared to 143.75. These im
provements confirm that the 1-input ControlNet, enhanced by contras
tive learning mechanisms, successfully improved structural coherence 
and perceptual realism in generated images, making it highly practical 
for clinical applications with minimal imaging requirements.

Clinical accuracy evaluations revealed notable strengths and 

Fig. 11. (a) Clinical accuracy comparison for ANB versus SNMP classification accuracy across entire models. (b) Vision-based accuracy comparison of SSIM versus 
FID scores for vision-based models.
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challenges for each model. Although the 3-input DDPM provided the 
most precise pixel-level predictions, the clinical practicality of routinely 
capturing multiple sequential images is limited. Conversely, both the 1- 
input LDM and ControlNet effectively balanced predictive accuracy and 
clinical convenience, enabling reliable predictions from a single image. 
The ControlNet model demonstrated substantial improvements in pre
dicting complex anatomical scenarios, reflecting its effectiveness in 
integrating patient-specific conditions through contrastive learning.

Despite these promising outcomes, the study has certain limitations 
that present opportunities for future research. Predictive accuracy, 
particularly in challenging Class III and hyperdivergent cases, still re
quires improvement. Additionally, while the 1-input models are clini
cally practical, further optimization and validation on larger and more 
diverse datasets are necessary to enhance generalizability and 
robustness.

In conclusion, our findings highlight the potential of 1-input Con
trolNet and LDM, as powerful tools in orthodontic treatment planning. 
These models significantly reduce patient exposure to radiation and 
imaging frequency while maintaining high predictive accuracy and 
clinical applicability. Further development and validation of these 
models could significantly improve clinical workflows, offering ortho
dontists precise, visually interpretable predictions that inform person
alized and proactive treatment strategies.
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