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Background: Immunoglobulin A nephropathy (IgAN) is a major cause of end-stage kidney disease (ESKD). The International IgA Ne-
phropathy Prediction Tool (IIgAN-PT) predicts IgAN prognosis, but improvement in the prediction performance using machine learning
(ML)-based methods is needed.

Methods: We analyzed 4,425 biopsy-confirmed patients with ISAN and =6 months of follow-up from nine tertiary university hospitals
in Korea. The study population was divided into development and validation cohorts. Using the collected 87 clinicodemographic and
pathological variables, ML-based prediction models for ESKD or estimated glomerular filtration rate decline (50% reduction or <15
mL/min/1.73 m?) were constructed: 1) the conventional CatBoost model, 2) the optimized CatBoost model with Cox proportional
hazards, 3) the deep Cox proportional hazards model, and 4) the deep Cox mixture model. The area under the curve (AUC) and cali-
bration plots were used to investigate the discriminative and calibration performance of the models, which were then compared with
those of the lIgAN-PT full model.

Results: The full model showed excellent performance (AUC [95% confidence interval] for 5-year outcome, 0.896 [0.853-0.940]),
with acceptable calibration results. The ML-based models showed good performance in predicting adverse kidney outcomes and re-
vealed acceptable discrimination performance in the external validation (AUC [95% confidence interval] for the 5-year outcome: 1)
0.829 [0.791-0.866]; 2) 0.847 [0.804-0.890]; 3) 0.823 [0.784-0.862]; and 4) 0.832 [0.794-0.870]), although the models
showed underestimation in calibration analysis of the external validation cohort. With the validation data, the overall performance of
the lIgAN-PT was non-inferior to that of the ML-based model.

Conclusions: Our ML-based models showed good performance in predicting adverse kidney outcomes in patients with IgAN but they
did not outperform the [IgAN-PT.
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Introduction

Immunoglobulin A nephropathy (IgAN) is the most prev-
alent primary glomerulonephritis worldwide [1]. The
clinical presentation and overall prognosis of IgAN are
extremely heterogeneous. IgAN may be worsened by high
blood pressure, significant proteinuria, the presence of kid-
ney dysfunction, or unfavorable pathologic characteristics.
Approximately one-third of patients with IgAN progress to
end-stage kidney disease (ESKD) in their middle age, rank-
ing the disease as one of the important causes of socioeco-
nomic burden related to kidney failure, especially in Asian
countries [2-4]. However, a certain portion of patients
with IgAN exhibit a benign course without notable deteri-
oration of kidney function. Therefore, the current KDIGO
(Kidney Disease: Improving Global Outcomes) guideline
for glomerular diseases recommends stratifying the kidney
progression risk of patients with IgAN based on clinical
and histologic data and quantifying progression risk at
diagnosis using the International IgA Nephropathy Predic-
tion Tool (IIgAN-PT) [5,6]. The IIgAN-PT is the prediction
model that includes the largest number of patients with
IgAN from various regions of the world [5]. The prognostic
performance of the IIgAN-PT has been also validated in
certain external cohorts, including children, supporting the
validity of the model [7-10].

Artificial intelligence (AI) provides an emerging oppor-
tunity to develop automatic clinical/pathological image
annotations, construct clinical decision support systems,
and build robust prediction models. However, the ability
of AI to handle complex high-dimensional data without
being affected by characteristics of parameters or statisti-
cal assumptions remains to be determined [11]. Machine
learning (ML)-based methods, a subfield of Al that teaches
machines to learn from past data without explicit pro-
gramming, have also been trialed for the prognostic IgAN
model [12-14], yet, a widely validated deep learning (DL)-
based model has not been established. Additional studies
implementing the AI approach to integrate the complex
clinicopathological information of patients with [gAN may
improve the performance of prognostic strategies for the
disease.

This study aimed to develop ML-based models to predict
the prognosis of IgAN. We trained and validated ML- and
DL-based models using a comprehensive collection of 87

demographic, clinical, and pathologic variables from a
large-scale multicenter cohort in South Korea. We also val-
idated the full IIgAN-PT model in the Korean population
and compared the performance of the Al models with that
of the IIgAN-PT model derived from the conventional Cox
proportional hazards model.

Methods
Ethics considerations

The study was approved by the Institutional Review Board
of Seoul National University Hospital/Seoul National Uni-
versity Bundang Hospital/SMG-SNU Boramae Medical
Center (No. H-2103-091-1205), Severance Hospital (No.
4-2021-0376), The Catholic University of Korea, Yeouido St.
Mary’s Hospital (No. SC21RIDI0090), Asan Medical Center
(No. 2021-1333), Kyungpook National University Hospital
(2021-04-036), Chungbuk National University Hospital (No.
2021-09-004), and Gangwon National University Hospital
(No. KNUH-A-2021-08-012-001). Data on all study partic-
ipants were collected from each hospital and sent to the
central analysis laboratory after anonymization using the
standard protocol. The requirement for informed consent
was waived because this was a retrospective observational
study without medical intervention. The study was con-
ducted in accordance with the principles of the Declara-
tion of Helsinki.

Study setting

This multicenter study included biopsy-confirmed IgAN
cases from nine tertiary hospitals throughout Korea. We
first collected the diverse demographic, clinical, and patho-
logical characteristics of patients with IgAN by reviewing
their electronic health records. Next, we implemented a
multiple ML-based approach to construct a prediction
model for kidney disease progression in IgAN. Finally, we
compared the discriminative and calibration performances
of the models with those of IIgAN-PT.

Study population

We included all available biopsy-confirmed native IgAN
cases from the electronic medical records of the study hos-
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pitals (Fig. 1). Patients who progressed to the adverse kid-
ney outcome within 6 months were excluded because such
acute aggravation is not the target of the current study. The
development cohort for the ML-based model included pa-
tients with IgAN from Seoul National University Hospital,
Seoul National University Bundang Hospital, and SMG-
SNU Boramae Medical Center. The three hospitals are all
affiliated with the Seoul National University College of
Medicine and may share a distinct medical environment;
thus, combining the data from other hospitals as the vali-
dation cohort strengthened the external validation cohort.

Study outcome

The study outcome included a decrease in estimated glo-
merular filtration rate (eGFR) of less than half of the base-

5,075 Biopsy confirmed IgAN cases
from nine tertiary hospitals

— 650 Cases with 6 mo of FU

\ 4

IgAN cases for model development
and validation (n = 4,425)

Development and validation for IgAN prognosis

A\ 4

Validation data
(n =1,986)

Development data
(n=2,439)

— 2,060 Cases with incomplete Oxford classification

\ 4

IgAN cases with complete Oxford
classification information (n = 2,365)

Development and validation with Oxford classification

»
>

Validation data
(n=1,125)

Development data
(n =1,240)

Figure 1. Study flow diagram.
FU, follow-up; IAN, immunoglobulin A nephropathy.
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line or ESKD, defined as kidney replacement therapy or
eGFR of <15 mL/min/1.73 m®. The study population was
censored at the time of outcome or loss to follow-up.

Data collection for model variables

A total of 87 demographic, clinical, and pathological vari-
ables were collected and included in the model. For in-
stance, we reviewed all variables included in the full IIgAN-
PT model; these were social habits (e.g., smoking), various
laboratory test results (e.g., serum electrolyte levels, serum
protein/albumin levels, and complete blood counts includ-
ing white blood cells, hemoglobin, and platelets), anthro-
pometric measures (e.g., body mass index), pathological
features, including light microscopy findings (e.g., global
sclerosis, segmental sclerosis, or cellular or fibrocellular
crescent) and electron or immunofluorescence microsco-
py- Because our longitudinal cohort covered a long period,
some patients with IgAN were diagnosed before their in-
stitution adopted the Oxford classification for the patho-
logic diagnosis of IgAN. The pathologic parameters were
assessed by each pathologist in the study hospitals and we
retrospectively collected the pathology reports. Supple-
mentary Table 1 (available online) provides a complete list
of the collected variables.

Machine learning-based model construction

We used two ML-based and two DL-based models to
construct a prognostic prediction model for IgAN. For
the ML-based model, the conventional CatBoost [15] and
optimized CatBoost with the Cox proportional hazards
were trained using the collected data. CatBoost is a gradi-
ent-boosted decision tree model [16] with ordered target
statistics and boosting and is a powerful tool for classifica-
tion and regression. As a decision tree-based algorithm, it
is well-suited to ML tasks involving categorical, heteroge-
neous data and can also compute feature importance [17].
CatBoost with the Cox proportional hazards is a model
with a modified loss function for survival regression. Un-
like common supervised tasks in which the target variable
is known and observed during the entire period in the
training dataset, survival regression can handle partially
observed or censored target variables. Therefore, unlike
the CatBoost method, which requires the development of
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a separate model for each time section to handle censored
data, CatBoost with the Cox proportional hazards can
handle various time sections using a single model that op-
timizes the log partial likelihood derived from the hazard
function for Cox proportional hazards.

For the DL-based model, deep logistic hazards [18] and
deep Cox mixture [19] were used for survival regression.
Deep logistic hazard is a discrete-time survival prediction
method with neural networks that parameterizes discrete
hazards and optimizes the survival likelihood. We use a
multilayer perceptron with two hidden layers to implement
deep logistic hazards. The deep Cox mixture is another sur-
vival prediction method that generalizes the proportional
hazards assumption via a mixture model by assuming that
there are latent groups and that within each group, the pro-
portional hazards assumption holds. This method is not re-
stricted by the strong assumption of proportional hazards,
which allows the model to choose these latent groups and
build a more expressive survival prediction model.

The variables that contributed to the prognostic ability of
the models were weighted by feature importance analysis
in the ML-based models, including the CatBoost model for
5-year adverse kidney outcomes and the CatBoost model
with Cox proportional hazards.

During the model production, we preprocessed the orig-
inal data, including missing value filling, data standard-
ization, and data normalization. Both CatBoost and the
CatBoost with the Cox proportional hazards were imple-
mented using PyCaret [20] and the official CatBoost Python
package. Deep logistic hazards and deep Cox mixtures were
implemented using the pycox python [18] package and the
official deep Cox mixture repository. Missing values were
masked (categorical) or averaged (numerical) according to
the data type to maintain simplified method for further ap-
plication in external datasets. The training/validation ratio
for the DL methods was 9:1, and performance stability was
assessed by bootstrapping. The assessment of Cox assump-
tion of the Cox-based DL models used visualization of the
Kaplan-Meier survival curves and checked whether the
survival curves crossed in follow-up duration which may
indicate violation of the assumption (Supplementary Fig. 1,
available online).

Statistical analysis

For validation, the prediction scores extracted from the
ML-based models were used to inspect the discriminative
and calibration performance of the validation set. For the
CatBoost model with the Cox proportional hazards func-
tion, the predictor for survival analysis was available as
the IIgAN-PT, allowing calculation of the c-index. All four
models provided prediction scores at specific time points
of the outcomes, and we extracted the prediction scores
to calculate the receiver-operating characteristic area un-
der the curve (ROC-AUC) values at the 1-, 3-, 5-, and 10-
year points to assess discriminative power. Calibration was
performed using a calibration plot to assess the true and
expected risks for 5-year adverse outcomes. The ROC-AUC
values were directly compared to those of the IIgAN-PT
calculated by the full model, within those with complete
information on the variables required to apply the IIgAN-
PT (e.g., Oxford classification) using the Delong test. As a
sensitivity analysis, we additionally constructed ML-based
models within those with complete information for the
IIgAN-PT application and again compared the results in
the validation set with the available data. Statistical signif-
icance was set at p < 0.05 significance. Clinical statistical
analysis was performed using R software (version 3.6.2; R
Foundation for Statistical Computing). Censoring of the
data was considered to occur in a random manner.

Results
Baseline characteristics

A total of 5,075 biopsy-confirmed IgAN cases were
screened in this study. Supplementary Table 2 (available
online) summarizes the characteristics of the cohort. The
overall characteristics differed between the study hospitals,
and the median age of patients ranged from 32 to 44 years.
Approximately 5% and 30%-40% of the study participants
had diabetes mellitus and hypertension, respectively. The
treatment history of immunosuppressive drugs at the time
of biopsy was mostly less than 10%, while the proportion of
those treated with renin-angiotensin-aldosterone blockade
ranged from 24% to 58%.

After excluding patients with IgAN and a follow-up of
less than 6 months, we constructed development and val-
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idation datasets comprising 2,439 and 1,986 patients with
IgAN, respectively; Table 1 summarized the characteristics
of these patients. The median follow-up duration was 5.8
years (interquartile range [IQR], 2.6-10.1 years) with a me-
dian biopsy date of March 2011 (IQR, April 2004-March
2016). The median follow-up duration in the development
cohort and that in the validation cohort was 3.8 years (IQR,
1.5-7.3 years) with a median biopsy date of August 2015
(IQR, January 2011-June 2018). Among them, 1,240 and

Table 1. Baseline characteristics of the discovery and validation
cohorts

Validation cohort
(n=1,986)

Development cohort

Characteristic (n=2,439)

Clinical characteristics

Age (yr) 36.0 (22.0-49.0)  39.0(29.0-49.0)
Sex
Female 1,207 (49.5) 1,068 (53.8)
Male 1,232 (50.5) 918 (46.2)
Diabetes mellitus 118 (4.9) 8 (3.5)
Hypertension 958 (39.4) 584 (29.9)
Systolic BP (mmHg) 120.0 121.0

(110.0-130.0)
73.0 (67.0-80.0)

(111.0-134.0)

Diastolic BP (mmHg) 80.0 (70.0-86.0)

eGFR 93.7 (62.6-121.0) 89.7 (64.2-109.7)
(mL/min/1.73 m?)
Proteinuria 1.1(0.5-2.1) 0.8 (0.4-1.7)
(g/g or g/24 hr)
ISD 150 (6.4) 125 (6.3)
RAASB 1,111 (47.5) 912 (46.0)
Pathologic
characteristics
M1 829 (64.5) 278 (21.8)
E1l 212 (16.5) 357 (28.0)
S1 844 (65.7) 859 (67.2)
T1 334 (26.0) 192 (15.0)
T2 5 (2.7) 7(5.2)
C1 425 (17.8) 226 (21.2)
c2 2(0.9) 8(0.8)
Adverse kidney 515 (21.1) 308 (15.5)

outcome (during total
follow-up duration)

Data are expressed as median (interquartile range) or number (%). The
total numbers of composite, 50% decline of eGFR, end-stage kidney dis-
ease outcome events were 99/4,199, 60/4,201, 37/4,215 in 1-year,
286/3,303, 241/3,307, 153/3,325 in 3-year, 438/2,679, 394/2,684,
236/2,692, in 5-year, and 689/1,602, 659/1,607, 369/1,594 in 10-year
follow-up period, with censoring the cases that not reach the follow-up end-
point.

BP, blood pressure; eGFR, estimated glomerular filtration rate; ISD, immu-
nosuppressive drug; RAASB, renin-angiotensin-aldosterone blockades.
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1,125 patients with IgAN had complete information on
the Oxford classifications, respectively; thus, they were in-
cluded in the additional analysis with model development
within the full Oxford classification information (Supple-
mentary Table 3, available online).

Performance of the IlgAN-PT

We first applied the IIgAN-PT full model to the collected
dataset, which contained the complete Oxford classi-
fication information (n = 2,178). In study subjects with
complete information for IIgAN-PT, IIgAN-PT showed ac-
ceptable performance, with AUC values of 0.836 (95% CI,
0.752-0.920), 0.873 (95% CI, 0.840-0.906), 0.857 (95% CI,
0.828-0.885), and 0.799 (95% CI, 0.757-0.840) for 1-, 3-, 5-,
and 10-year outcomes, respectively. The overall calibration
was acceptable when inspected using a calibration plot
(Supplementary Fig. 2, available online).

Performance of the machine learning-based models

We then developed an ML-based model for 2,439 patients
with or without Oxford classification information, and its
performance was tested in the validation set (n = 1,717). In
the validation set, the conventional CatBoost, optimized
CatBoost with the Cox proportional hazards, deep logistic
hazard, and deep Cox mixture models provided AUC val-
ues mostly ranging from 0.7 to 0.8 (Table 2, Fig. 2). The re-
sult of a single model did not show prominent superiority
over the others, although the conventional CatBoost model
showed low discriminative power (AUC, 0.512) toward the
10-year outcome data. When assessing the calibration of
the developed models, the four models showed generally
acceptable calibration results, as no significant deviation
was identified in the calibration plots. However, a slight
underestimation of the risk of adverse kidney outcomes
was identified in the models developed using these four
methods. When the composite outcome was divided into
ESKD or eGFR 50% reduction, the performance was bet-
ter towards ESKD outcome than the eGFR 50% reduction
(Supplementary Table 4, available online).

Feature importance

We inspected the feature importance, which refers to the
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Table 2. Discriminative performances of the artificial intelli-

gence-based models

Model L'St‘foﬁg('e”(ty?{ AUC (95% Cl)
CatBoost 1 0.741 (0.628-0.854)
3 0.848 (0.803-0.893)
5 0.829 (0.791-0.866)
10 0.561 (0.512-0.610)
CatBoost with the Cox 1 0.775 (0.661-0.889)
proportional hazards 3 0.847 (0.804-0.890)
5 0.850 (0.817-0.883)
10 0.810 (0.772-0.848)
Deep Cox proportional 1 0.779 (0.666-0.893)
hazards 3 0.826 (0.775-0.876)
5 0.823 (0.784-0.862)
10 0.806 (0.768-0.844)
Deep Cox mixture 1 0.779 (0.667-0.891)
3 0.832 (0.783-0.882)
5 0.832 (0.794-0.870)
10 0.825 (0.789-0.861)

AUC, area under the curve; Cl, confidence interval.

A
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- DCPH - DCM

variables that the constructed models mostly referred to
for their prediction (Fig. 3) in the models constructed us-
ing ML-based methods. In the CatBoost model for 5-year
outcomes and the CatBoost model with Cox proportional
hazards, when we tested the results in the discovery cohort
and the cohort with complete information for the IIgAN-
PT, the notable variables included serum creatinine, global
sclerosis (%), eGFR, and proteinuria levels as the variables
ranked among the top five variables. The number of glom-
eruli in the entire biopsy specimen, serum uric acid, blood
urea nitrogen, serum albumin, and segmental sclerosis (%)
were the variables that appeared in the top 20 variables in
all four models.

Performance comparison between the ligAN-PT and ma-
chine learning-based models

We compared the model performance within the valida-
tion dataset (n = 1,125) with the complete information for

8

Observation

Observation

1.00 CatBoost 1.00 CatBoost/Cox
0.751 o 0.75]
kel
T
0.501 g 0.501
(%2}
<)
0.25 0.251
0 0.25 0.50 0.75 1.00 0 025 0.50 0.75 1.00
Prediction Prediction
1.00 DCPH 1.001 DCM
0.75 o 0751
kel
3 |
0.50 g 0.501 \
& \
0.25 0.251 \
0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

Prediction Prediction

Figure 2. Artificial intelligence-based model performances. (A) The graphs show the discriminative performance and area under the
curve value of receiver-operating characteristics curve towards the adverse kidney outcomes censored at four time points. The grey
lines indicate the results by the CatBoost model, the red by CatBoost with the Cox proportional hazards, the green by deep Cox propor-
tional hazards (DCPH), and the blue by deep Cox mixture (DCM), respectively. (B) The graphs are the calibration plots showing the pre-
dicted (x-axis) and observed (y-axis) risk for the 5-year adverse kidney outcomes by the models constructed by the according methods.
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Figure 3. Feature importance of the constructed CatBoost models. The left graphs show the results by CatBoost model for 5-year
adverse kidney outcomes and the right graphs show the results by CatBoost model with Cox proportional hazards. The upper two
graphs show the results in total study samples with >6 months of follow-up, and the lower two graphs show the results within the pop-
ulation with complete information of the Oxford classification and thus included in the analysis for the comparison of performance with
that of the lIgAN-PT. The relative importance value indicates the weighted importance in the prediction models contributing to the over-
all performance of the constructed model. Results from the top 20 variables are listed in the figure.

ACR, albumin-to-creatinine ratio; BP, blood pressure; BUN, blood urea nitrogen; Bx, biopsy; eGFR, estimated glomerular filtration rate;
IF, immunofluorescence; lIAN-PT, International IgA Nephropathy Prediction Tool; IgA, immunoglobulin A; IgG, immunoglobulin G; LDL,
low-density lipoprotein; RBC, red blood cell; WBC, white blood cell.
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the IIgAN-PT (Table 3, Fig. 4). The IIgAN-PT again showed
acceptable discriminative performance within the valida-
tion cohort, as the AUC values ranged from 0.834 to 0.896
for adverse outcomes at 1, 3, 5, and 10 years. The perfor-
mances were similar to those of the ML-based methods,
although no modeling results were statistically superior to
the discriminative performance of the IIgAN-PT. Similarly,
the calibration results were acceptable for both the IIgAN-
PT and ML-based models. However, some underestima-
tion of the risks of adverse kidney outcomes was noted in
all tested ML-driven models.

Discussion

In this study, we developed ML-driven prediction models
for the prognosis of IgAN kidneys by incorporating various
clinicopathological variables. The constructed models
demonstrated good discrimination and calibration per-
formance in the external validation. As a reference, the
full IIgAN-PT model showed excellent performance in our

large-scale cohort study. The overall performance of the
[IgAN-PT was non-inferior to that of ML-based models, ad-
ditionally supporting the clinical utility of the IIgAN-PT in
patients with IgAN.

Accurate prediction of IgAN kidney prognosis is crucial
for appropriate risk stratification, scheduling follow-up
visits, determining treatment strategies, and counseling
patients. The IIgAN-PT is the most widely validated prog-
nostic model for IgAN, and the full model includes age,
blood pressure, baseline eGFR, proteinuria amounts, treat-
ment history by renin-angiotensin-aldosterone blockades
or by immunosuppressive drugs, the Oxford classification
and with or without ethnicity [5]. The [IgAN-PT has been
well validated in various cohorts [7-9]. However, the Kore-
an population was not included in the development of the
data, and some underestimation of kidney risk was sus-
pected in a previous report [8]. Herein, we demonstrated
the IIgAN-PT also showed acceptable predictive perfor-
mances in this multicenter Korean IgAN cohort.

There is a relevant question regarding whether Al can

Table 3. Comparisons between the discriminative performance of the lIgAN-PT and the artificial intelligence-based models

Model Time point of outcome (yr) AUC (95% ClI) p-value vs. lIgAN-PT
IIgAN-PT 1 0.834 (0.710-0.958) NA
3 0.885 (0.830-0.941) NA
5 0.896 (0.853-0.940) NA
10 0.850 (0.787-0.913) NA
CatBoost 1 0.700 (0.543-0.858) 0.04
3 0.857 (0.793-0.922) 0.23
5 0.890 (0.851-0.930) 0.71

10 0.662 (0.573-0.751) <0.001

CatBoost with the Cox 1 0.848 (0.719-0.978) 0.59
proportional hazards 3 0.877 (0.811-0.944) 0.67
5 0.854 (0.803-0.904) 0.02
10 0.846 (0.783-0.908) 0.87
Deep Cox proportional hazards 1 0.841 (0.732-0.951) 0.70
3 0.883 (0.817-0.949) 0.93
5 0.860 (0.806-0.913) 0.06
10 0.859 (0.799-0.919) 0.06
Deep Cox mixture 1 0.841 (0.728-0.955) 0.74
3 0.876 (0.806-0.946) 0.72
5 0.860 (0.805-0.914) 0.09
10 0.890 (0.839-0.941) 0.07

The numbers of study subjects with the available outcome data until the designated follow-up period were 874 (13 outcomes), 577 (34 outcomes), 388 (63
outcomes), and 149 (90 outcomes) for the 1-, 3-, 5-, and 10-year outcomes, respectively, within the validation dataset with complete information for the

IgAN-PT.

AUC, area under the curve; Cl, confidence interval; lIAN-PT, International IgA Nephropathy Prediction Tool; NA, not applicable.
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Figure 4. Comparison between the performance by the artificial intelligence-based models and that by the lIgAN-PT within the
dataset with complete information for the Oxford classification. (A) The graphs show the discriminative performance and area
under the curve value of receiver-operating characteristics curve towards the adverse kidney outcomes censored at four time points.
The grey lines indicate the results by CatBoost model, the red by CatBoost with the Cox proportional hazards, the green by deep Cox
proportional hazards (DCPH), the blue by deep Cox mixture (DCM), and the black by the lIgAN-PT, respectively. (B) The graphs are the
calibration plots showing the predicted (x-axis) and observed (y-axis) risk for the 5-year adverse kidney outcomes by the models con-

structed by the according methods.
lIgAN-PT, International IgA Nephropathy Prediction Tool.

develop a more advanced prediction model for IgAN, as
this approach has recently proliferated and opened a new
field of clinical prediction modeling. The ML-based ap-
proach is now actively used in the clinical image reading
systems [21,22] and has shown excellent performance in
risk stratification, combining hundreds of complex clinical
features [23,24]. As the prediction of IgAN kidney prognosis
may be improved from additional medical information,
the Al-based approach is a promising method for devel-
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oping a model with better prognostic performance. A pre-
vious deep learning-based model showed a non-inferior
predictive performance to that of the IIgAN-PT; however,
a superior finding has not yet been reported [11]. In the
current study, we developed multiple ML-based models,
enhanced by deep learning-related approaches, including
a wide range of variables of IgAN patients at the time of
diagnosis. These models generally demonstrated accept-
able performance for the prognosis of IgAN. However, the
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clinical utility of [IgAN-PT was well validated in our cohort,
and its performance was non-inferior to that of the models
despite trialing multiple ML- and DL-based methods. In
addition, the results showing the validity of the IIgAN-PT
for 10-year kidney outcomes support that the model can
be useful in predicting the long-term prognosis of IgAN pa-
tients [9]. Considering the generalizability, interpretability,
and accessibility that had been demonstrated in the IIgAN-
PT model, our current Al models seem to be unable to beat
the I[IgAN-PT model without securing outperformance in
predicting kidney prognosis of IgAN. Therefore, the current
study supports the clinical utility of the IIgAN-PT, as the
model is easy to use without collecting extensive medical
information, unlike AI-based models.

The ML-based models failed to show superior perfor-
mance compared with the IIgAN-PT, despite the inclusion
of a wide range of medical information, which can be ex-
plained by several factors. First, the variables included in
the full IIgAN-PT model are not mere predictors but have
significant causal effects on kidney prognosis or direct-
ly reflect kidney health. Elevated blood pressure or high
amounts of proteinuria are not only common in chronic
kidney disease but also directly damage the kidney [25,26],
and the baseline eGFR reflects the underlying kidney
function impairment. The Oxford classification includes
mesangial proliferation, subsequent glomerular alteration,
or active inflammation such as crescent formation, and
final tubulointerstitial pathology; thus, it reflects the overall
pathophysiologic aspect of IgAN progression from the ini-
tial stages to late pathologic consequences [27]. Construct-
ed from these very important clinicopathologic features,
variables not included in the IIgAN-PT may have only a
minor impact on the prognosis of IgAN; thus, combining
the effects of the variables by ML-based methods may have
only a small advantage. Next, IgAN cohorts are relatively
small compared to big data, which are widely used when
applying Al-based methods. Although some Al-based
methods are targeted at constructing prediction models
for middle-to small-sized data, the superiority of ML- or
DL-based methods may be weakened in datasets with a
few thousand samples. A larger dataset may be required to
develop a superior prognostic model; however, collecting
standardized medical information from multiple cohorts
and countries is challenging.

This study had some limitations that should be ad-

dressed in future research. First, as noted above, the study
sample size may not have been sufficient to develop a su-
perior model for an ML-based approach, even though we
included >3,000 patients with IgAN from multiple hospi-
tals. A multinational consortium may collect a wide range
of clinical information to develop an ML-based prediction
model for IgAN using a larger sample size. Second, Al can
deal with additional complex data, such as digital patho-
logic images, combined multiomics data, and time-se-
quenced information [11]. Rather than the current analysis
using cross-sectional baseline information, additional
studies may include datasets having multiple dimensions
with complex features for which the Al-based approach
has superiority. Third, this study included a population
with a single ethnic background. Similar to the original
multinational cohort used for IIgAN-PT development, the
Al-based approach may also be trialed for those of various
ethnicities. Lastly, some heterogeneity in collection of the
study variables (e.g., pathology parameters) might have ex-
isted because we retrospectively collated the information
from the study hospitals.

In conclusion, the IIgAN-PT performance was validated
in the current large-scale IgAN cohort in Korea. Although
ML-based prediction models may provide acceptable
prediction performance for IgAN prognosis, a prediction
model combining diverse baseline features may not be
sufficient to develop an advanced model that is superi-
or to IIgAN-PT. Future efforts, including large-scale and
high-level data on IgAN, are warranted to improve the per-
formance of the IgAN prognostic prediction models.
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