
Background: Immunoglobulin A nephropathy (IgAN) is a major cause of end-stage kidney disease (ESKD). The International IgA Ne-
phropathy Prediction Tool (IIgAN-PT) predicts IgAN prognosis, but improvement in the prediction performance using machine learning 
(ML)-based methods is needed. 
Methods: We analyzed 4,425 biopsy-confirmed patients with IgAN and ≥6 months of follow-up from nine tertiary university hospitals 
in Korea. The study population was divided into development and validation cohorts. Using the collected 87 clinicodemographic and 
pathological variables, ML-based prediction models for ESKD or estimated glomerular filtration rate decline (50% reduction or <15 
mL/min/1.73 m2) were constructed: 1) the conventional CatBoost model, 2) the optimized CatBoost model with Cox proportional 
hazards, 3) the deep Cox proportional hazards model, and 4) the deep Cox mixture model. The area under the curve (AUC) and cali-
bration plots were used to investigate the discriminative and calibration performance of the models, which were then compared with 
those of the IIgAN-PT full model. 
Results: The full model showed excellent performance (AUC [95% confidence interval] for 5-year outcome, 0.896 [0.853–0.940]), 
with acceptable calibration results. The ML-based models showed good performance in predicting adverse kidney outcomes and re-
vealed acceptable discrimination performance in the external validation (AUC [95% confidence interval] for the 5-year outcome: 1) 
0.829 [0.791–0.866]; 2) 0.847 [0.804–0.890]; 3) 0.823 [0.784–0.862]; and 4) 0.832 [0.794–0.870]), although the models 
showed underestimation in calibration analysis of the external validation cohort. With the validation data, the overall performance of 
the IIgAN-PT was non-inferior to that of the ML-based model. 
Conclusions: Our ML-based models showed good performance in predicting adverse kidney outcomes in patients with IgAN but they 
did not outperform the IIgAN-PT. 
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Introduction 

Immunoglobulin A nephropathy (IgAN) is the most prev-

alent primary glomerulonephritis worldwide [1]. The 

clinical presentation and overall prognosis of IgAN are 

extremely heterogeneous. IgAN may be worsened by high 

blood pressure, significant proteinuria, the presence of kid-

ney dysfunction, or unfavorable pathologic characteristics. 

Approximately one-third of patients with IgAN progress to 

end-stage kidney disease (ESKD) in their middle age, rank-

ing the disease as one of the important causes of socioeco-

nomic burden related to kidney failure, especially in Asian 

countries [2–4]. However, a certain portion of patients 

with IgAN exhibit a benign course without notable deteri-

oration of kidney function. Therefore, the current KDIGO 

(Kidney Disease: Improving Global Outcomes) guideline 

for glomerular diseases recommends stratifying the kidney 

progression risk of patients with IgAN based on clinical 

and histologic data and quantifying progression risk at 

diagnosis using the International IgA Nephropathy Predic-

tion Tool (IIgAN-PT) [5,6]. The IIgAN-PT is the prediction 

model that includes the largest number of patients with 

IgAN from various regions of the world [5]. The prognostic 

performance of the IIgAN-PT has been also validated in 

certain external cohorts, including children, supporting the 

validity of the model [7–10]. 

Artificial intelligence (AI) provides an emerging oppor-

tunity to develop automatic clinical/pathological image 

annotations, construct clinical decision support systems, 

and build robust prediction models. However, the ability 

of AI to handle complex high-dimensional data without 

being affected by characteristics of parameters or statisti-

cal assumptions remains to be determined [11]. Machine 

learning (ML)-based methods, a subfield of AI that teaches 

machines to learn from past data without explicit pro-

gramming, have also been trialed for the prognostic IgAN 

model [12–14], yet, a widely validated deep learning (DL)-

based model has not been established. Additional studies 

implementing the AI approach to integrate the complex 

clinicopathological information of patients with IgAN may 

improve the performance of prognostic strategies for the 

disease. 

This study aimed to develop ML-based models to predict 

the prognosis of IgAN. We trained and validated ML- and 

DL-based models using a comprehensive collection of 87 

demographic, clinical, and pathologic variables from a 

large-scale multicenter cohort in South Korea. We also val-

idated the full IIgAN-PT model in the Korean population 

and compared the performance of the AI models with that 

of the IIgAN-PT model derived from the conventional Cox 

proportional hazards model. 

Methods 

Ethics considerations 

The study was approved by the Institutional Review Board 

of Seoul National University Hospital/Seoul National Uni-

versity Bundang Hospital/SMG-SNU Boramae Medical 

Center (No. H-2103-091-1205), Severance Hospital (No. 

4-2021-0376), The Catholic University of Korea, Yeouido St. 

Mary’s Hospital (No. SC21RIDI0090), Asan Medical Center 

(No. 2021-1333), Kyungpook National University Hospital 

(2021-04-036), Chungbuk National University Hospital (No. 

2021-09-004), and Gangwon National University Hospital 

(No. KNUH-A-2021-08-012-001). Data on all study partic-

ipants were collected from each hospital and sent to the 

central analysis laboratory after anonymization using the 

standard protocol. The requirement for informed consent 

was waived because this was a retrospective observational 

study without medical intervention. The study was con-

ducted in accordance with the principles of the Declara-

tion of Helsinki. 

Study setting 

This multicenter study included biopsy-confirmed IgAN 

cases from nine tertiary hospitals throughout Korea. We 

first collected the diverse demographic, clinical, and patho-

logical characteristics of patients with IgAN by reviewing 

their electronic health records. Next, we implemented a 

multiple ML-based approach to construct a prediction 

model for kidney disease progression in IgAN. Finally, we 

compared the discriminative and calibration performances 

of the models with those of IIgAN-PT. 

Study population 

We included all available biopsy-confirmed native IgAN 

cases from the electronic medical records of the study hos-
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pitals (Fig. 1). Patients who progressed to the adverse kid-

ney outcome within 6 months were excluded because such 

acute aggravation is not the target of the current study. The 

development cohort for the ML-based model included pa-

tients with IgAN from Seoul National University Hospital, 

Seoul National University Bundang Hospital, and SMG-

SNU Boramae Medical Center. The three hospitals are all 

affiliated with the Seoul National University College of 

Medicine and may share a distinct medical environment; 

thus, combining the data from other hospitals as the vali-

dation cohort strengthened the external validation cohort. 

Study outcome 

The study outcome included a decrease in estimated glo-

merular filtration rate (eGFR) of less than half of the base-

line or ESKD, defined as kidney replacement therapy or 

eGFR of <15 mL/min/1.73 m2. The study population was 

censored at the time of outcome or loss to follow-up. 

Data collection for model variables 

A total of 87 demographic, clinical, and pathological vari-

ables were collected and included in the model. For in-

stance, we reviewed all variables included in the full IIgAN-

PT model; these were social habits (e.g., smoking), various 

laboratory test results (e.g., serum electrolyte levels, serum 

protein/albumin levels, and complete blood counts includ-

ing white blood cells, hemoglobin, and platelets), anthro-

pometric measures (e.g., body mass index), pathological 

features, including light microscopy findings (e.g., global 

sclerosis, segmental sclerosis, or cellular or fibrocellular 

crescent) and electron or immunofluorescence microsco-

py. Because our longitudinal cohort covered a long period, 

some patients with IgAN were diagnosed before their in-

stitution adopted the Oxford classification for the patho-

logic diagnosis of IgAN. The pathologic parameters were 

assessed by each pathologist in the study hospitals and we 

retrospectively collected the pathology reports. Supple-

mentary Table 1 (available online) provides a complete list 

of the collected variables. 

Machine learning-based model construction 

We used two ML-based and two DL-based models to 

construct a prognostic prediction model for IgAN. For 

the ML-based model, the conventional CatBoost [15] and 

optimized CatBoost with the Cox proportional hazards 

were trained using the collected data. CatBoost is a gradi-

ent-boosted decision tree model [16] with ordered target 

statistics and boosting and is a powerful tool for classifica-

tion and regression. As a decision tree-based algorithm, it 

is well-suited to ML tasks involving categorical, heteroge-

neous data and can also compute feature importance [17]. 

CatBoost with the Cox proportional hazards is a model 

with a modified loss function for survival regression. Un-

like common supervised tasks in which the target variable 

is known and observed during the entire period in the 

training dataset, survival regression can handle partially 

observed or censored target variables. Therefore, unlike 

the CatBoost method, which requires the development of 
Figure 1. Study flow diagram.
FU, follow-up; IgAN, immunoglobulin A nephropathy. 

5,075 Biopsy confirmed IgAN cases 
from nine tertiary hospitals

IgAN cases for model development 
and validation (n = 4,425)

Development and validation for IgAN prognosis

Development and validation with Oxford classification

IgAN cases with complete Oxford
classification information (n = 2,365)

Development data 
(n = 2,439)

Validation data 
(n = 1,986)

Development data 
(n = 1,240)

Validation data 
(n = 1,125)

650 Cases with 6 mo of FU

2,060 Cases with incomplete Oxford classification

804 www.krcp-ksn.org

Kidney Res Clin Pract 2025;44(5):802-813

https://www.krcp-ksn.org/upload/media/j-krcp-23-212-Supplementary-Table-1.pdf
https://www.krcp-ksn.org/upload/media/j-krcp-23-212-Supplementary-Table-1.pdf


a separate model for each time section to handle censored 

data, CatBoost with the Cox proportional hazards can 

handle various time sections using a single model that op-

timizes the log partial likelihood derived from the hazard 

function for Cox proportional hazards. 

For the DL-based model, deep logistic hazards [18] and 

deep Cox mixture [19] were used for survival regression. 

Deep logistic hazard is a discrete-time survival prediction 

method with neural networks that parameterizes discrete 

hazards and optimizes the survival likelihood. We use a 

multilayer perceptron with two hidden layers to implement 

deep logistic hazards. The deep Cox mixture is another sur-

vival prediction method that generalizes the proportional 

hazards assumption via a mixture model by assuming that 

there are latent groups and that within each group, the pro-

portional hazards assumption holds. This method is not re-

stricted by the strong assumption of proportional hazards, 

which allows the model to choose these latent groups and 

build a more expressive survival prediction model. 

The variables that contributed to the prognostic ability of 

the models were weighted by feature importance analysis 

in the ML-based models, including the CatBoost model for 

5-year adverse kidney outcomes and the CatBoost model 

with Cox proportional hazards. 

During the model production, we preprocessed the orig-

inal data, including missing value filling, data standard-

ization, and data normalization. Both CatBoost and the 

CatBoost with the Cox proportional hazards were imple-

mented using PyCaret [20] and the official CatBoost Python 

package. Deep logistic hazards and deep Cox mixtures were 

implemented using the pycox python [18] package and the 

official deep Cox mixture repository. Missing values were 

masked (categorical) or averaged (numerical) according to 

the data type to maintain simplified method for further ap-

plication in external datasets. The training/validation ratio 

for the DL methods was 9:1, and performance stability was 

assessed by bootstrapping. The assessment of Cox assump-

tion of the Cox-based DL models used visualization of the 

Kaplan-Meier survival curves and checked whether the 

survival curves crossed in follow-up duration which may 

indicate violation of the assumption (Supplementary Fig. 1, 

available online). 

Statistical analysis 

For validation, the prediction scores extracted from the 

ML-based models were used to inspect the discriminative 

and calibration performance of the validation set. For the 

CatBoost model with the Cox proportional hazards func-

tion, the predictor for survival analysis was available as 

the IIgAN-PT, allowing calculation of the c-index. All four 

models provided prediction scores at specific time points 

of the outcomes, and we extracted the prediction scores 

to calculate the receiver-operating characteristic area un-

der the curve (ROC-AUC) values at the 1-, 3-, 5-, and 10-

year points to assess discriminative power. Calibration was 

performed using a calibration plot to assess the true and 

expected risks for 5-year adverse outcomes. The ROC-AUC 

values were directly compared to those of the IIgAN-PT 

calculated by the full model, within those with complete 

information on the variables required to apply the IIgAN-

PT (e.g., Oxford classification) using the Delong test. As a 

sensitivity analysis, we additionally constructed ML-based 

models within those with complete information for the 

IIgAN-PT application and again compared the results in 

the validation set with the available data. Statistical signif-

icance was set at p < 0.05 significance. Clinical statistical 

analysis was performed using R software (version 3.6.2; R 

Foundation for Statistical Computing). Censoring of the 

data was considered to occur in a random manner.  

Results  

Baseline characteristics 

A total of 5,075 biopsy-confirmed IgAN cases were 

screened in this study. Supplementary Table 2 (available 

online) summarizes the characteristics of the cohort. The 

overall characteristics differed between the study hospitals, 

and the median age of patients ranged from 32 to 44 years. 

Approximately 5% and 30%–40% of the study participants 

had diabetes mellitus and hypertension, respectively. The 

treatment history of immunosuppressive drugs at the time 

of biopsy was mostly less than 10%, while the proportion of 

those treated with renin-angiotensin-aldosterone blockade 

ranged from 24% to 58%. 

After excluding patients with IgAN and a follow-up of 

less than 6 months, we constructed development and val-
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idation datasets comprising 2,439 and 1,986 patients with 

IgAN, respectively; Table 1 summarized the characteristics 

of these patients. The median follow-up duration was 5.8 

years (interquartile range [IQR], 2.6–10.1 years) with a me-

dian biopsy date of March 2011 (IQR, April 2004–March 

2016). The median follow-up duration in the development 

cohort and that in the validation cohort was 3.8 years (IQR, 

1.5–7.3 years) with a median biopsy date of August 2015 

(IQR, January 2011–June 2018). Among them, 1,240 and 

1,125 patients with IgAN had complete information on 

the Oxford classifications, respectively; thus, they were in-

cluded in the additional analysis with model development 

within the full Oxford classification information (Supple-

mentary Table 3, available online). 

Performance of the IIgAN-PT 

We first applied the IIgAN-PT full model to the collected 

dataset, which contained the complete Oxford classi-

fication information (n = 2,178). In study subjects with 

complete information for IIgAN-PT, IIgAN-PT showed ac-

ceptable performance, with AUC values of 0.836 (95% CI, 

0.752–0.920), 0.873 (95% CI, 0.840–0.906), 0.857 (95% CI, 

0.828–0.885), and 0.799 (95% CI, 0.757–0.840) for 1-, 3-, 5-, 

and 10-year outcomes, respectively. The overall calibration 

was acceptable when inspected using a calibration plot 

(Supplementary Fig. 2, available online). 

Performance of the machine learning-based models 

We then developed an ML-based model for 2,439 patients 

with or without Oxford classification information, and its 

performance was tested in the validation set (n = 1,717). In 

the validation set, the conventional CatBoost, optimized 

CatBoost with the Cox proportional hazards, deep logistic 

hazard, and deep Cox mixture models provided AUC val-

ues mostly ranging from 0.7 to 0.8 (Table 2, Fig. 2). The re-

sult of a single model did not show prominent superiority 

over the others, although the conventional CatBoost model 

showed low discriminative power (AUC, 0.512) toward the 

10-year outcome data. When assessing the calibration of 

the developed models, the four models showed generally 

acceptable calibration results, as no significant deviation 

was identified in the calibration plots. However, a slight 

underestimation of the risk of adverse kidney outcomes 

was identified in the models developed using these four 

methods. When the composite outcome was divided into 

ESKD or eGFR 50% reduction, the performance was bet-

ter towards ESKD outcome than the eGFR 50% reduction 

(Supplementary Table 4, available online). 

Feature importance 

We inspected the feature importance, which refers to the 

Table 1. Baseline characteristics of the discovery and validation 
cohorts

Characteristic Development cohort 
(n = 2,439)

Validation cohort 
(n = 1,986)

Clinical characteristics
  Age (yr) 36.0 (22.0–49.0) 39.0 (29.0–49.0)
  Sex
    Female 1,207 (49.5) 1,068 (53.8)
    Male 1,232 (50.5) 918 (46.2)
  Diabetes mellitus 118 (4.9) 68 (3.5)
  Hypertension 958 (39.4) 584 (29.9)
  Systolic BP (mmHg) 120.0 

(110.0–130.0)
121.0 

(111.0–134.0)
  Diastolic BP (mmHg) 73.0 (67.0–80.0) 80.0 (70.0–86.0)
  eGFR  

(mL/min/1.73 m2)
93.7 (62.6–121.0) 89.7 (64.2–109.7)

  Proteinuria  
(g/g or g/24 hr)

1.1 (0.5–2.1) 0.8 (0.4–1.7)

  ISD 150 (6.4) 125 (6.3)
  RAASB 1,111 (47.5) 912 (46.0)
Pathologic  

characteristics
  M1 829 (64.5) 278 (21.8)
  E1 212 (16.5) 357 (28.0)
  S1 844 (65.7) 859 (67.2)
  T1 334 (26.0) 192 (15.0)
  T2 35 (2.7) 67 (5.2)
  C1 425 (17.8) 226 (21.2)
  C2 22 (0.9) 8 (0.8)
Adverse kidney  

outcome (during total 
follow-up duration)

515 (21.1) 308 (15.5)

Data are expressed as median (interquartile range) or number (%). The 
total numbers of composite, 50% decline of eGFR, end-stage kidney dis-
ease outcome events were 99/4,199, 60/4,201, 37/4,215 in 1-year, 
286/3,303, 241/3,307, 153/3,325 in 3-year, 438/2,679, 394/2,684, 
236/2,692, in 5-year, and 689/1,602, 659/1,607, 369/1,594 in 10-year 
follow-up period, with censoring the cases that not reach the follow-up end-
point.
BP, blood pressure; eGFR, estimated glomerular filtration rate; ISD, immu-
nosuppressive drug; RAASB, renin-angiotensin-aldosterone blockades.
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Figure 2. Artificial intelligence-based model performances. (A) The graphs show the discriminative performance and area under the 
curve value of receiver-operating characteristics curve towards the adverse kidney outcomes censored at four time points. The grey 
lines indicate the results by the CatBoost model, the red by CatBoost with the Cox proportional hazards, the green by deep Cox propor-
tional hazards (DCPH), and the blue by deep Cox mixture (DCM), respectively. (B) The graphs are the calibration plots showing the pre-
dicted (x-axis) and observed (y-axis) risk for the 5-year adverse kidney outcomes by the models constructed by the according methods.

Table 2. Discriminative performances of the artificial intelli-
gence-based models

Model Time point of 
outcome (yr) AUC (95% CI)

CatBoost 1 0.741 (0.628–0.854)
3 0.848 (0.803–0.893)
5 0.829 (0.791–0.866)

10 0.561 (0.512–0.610)
CatBoost with the Cox 

proportional hazards
1 0.775 (0.661–0.889)
3 0.847 (0.804–0.890)
5 0.850 (0.817–0.883)

10 0.810 (0.772–0.848)
Deep Cox proportional 

hazards
1 0.779 (0.666–0.893)
3 0.826 (0.775–0.876)
5 0.823 (0.784–0.862)

10 0.806 (0.768–0.844)
Deep Cox mixture 1 0.779 (0.667–0.891)

3 0.832 (0.783–0.882)
5 0.832 (0.794–0.870)

10 0.825 (0.789–0.861)

AUC, area under the curve; CI, confidence interval.

variables that the constructed models mostly referred to 

for their prediction (Fig. 3) in the models constructed us-

ing ML-based methods. In the CatBoost model for 5-year 

outcomes and the CatBoost model with Cox proportional 

hazards, when we tested the results in the discovery cohort 

and the cohort with complete information for the IIgAN-

PT, the notable variables included serum creatinine, global 

sclerosis (%), eGFR, and proteinuria levels as the variables 

ranked among the top five variables. The number of glom-

eruli in the entire biopsy specimen, serum uric acid, blood 

urea nitrogen, serum albumin, and segmental sclerosis (%) 

were the variables that appeared in the top 20 variables in 

all four models. 

Performance comparison between the IIgAN-PT and ma-
chine learning-based models 

We compared the model performance within the valida-

tion dataset (n = 1,125) with the complete information for 
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Figure 3. Feature importance of the constructed CatBoost models. The left graphs show the results by CatBoost model for 5-year 
adverse kidney outcomes and the right graphs show the results by CatBoost model with Cox proportional hazards. The upper two 
graphs show the results in total study samples with >6 months of follow-up, and the lower two graphs show the results within the pop-
ulation with complete information of the Oxford classification and thus included in the analysis for the comparison of performance with 
that of the IIgAN-PT. The relative importance value indicates the weighted importance in the prediction models contributing to the over-
all performance of the constructed model. Results from the top 20 variables are listed in the figure.
ACR, albumin-to-creatinine ratio; BP, blood pressure; BUN, blood urea nitrogen; Bx, biopsy; eGFR, estimated glomerular filtration rate; 
IF, immunofluorescence; IIgAN-PT, International IgA Nephropathy Prediction Tool; IgA, immunoglobulin A; IgG, immunoglobulin G; LDL, 
low-density lipoprotein; RBC, red blood cell; WBC, white blood cell.
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Table 3. Comparisons between the discriminative performance of the IIgAN-PT and the artificial intelligence-based models
Model Time point of outcome (yr) AUC (95% CI) p-value vs. IIgAN-PT
IIgAN-PT 1 0.834 (0.710–0.958) NA

3 0.885 (0.830–0.941) NA
5 0.896 (0.853–0.940) NA

10 0.850 (0.787–0.913) NA
CatBoost 1 0.700 (0.543–0.858) 0.04

3 0.857 (0.793–0.922) 0.23
5 0.890 (0.851–0.930) 0.71

10 0.662 (0.573–0.751) <0.001
CatBoost with the Cox  

proportional hazards
1 0.848 (0.719–0.978) 0.59
3 0.877 (0.811–0.944) 0.67
5 0.854 (0.803–0.904) 0.02

10 0.846 (0.783–0.908) 0.87
Deep Cox proportional hazards 1 0.841 (0.732–0.951) 0.70

3 0.883 (0.817–0.949) 0.93
5 0.860 (0.806–0.913) 0.06

10 0.859 (0.799–0.919) 0.06
Deep Cox mixture 1 0.841 (0.728–0.955) 0.74

3 0.876 (0.806–0.946) 0.72
5 0.860 (0.805–0.914) 0.09

10 0.890 (0.839–0.941) 0.07

The numbers of study subjects with the available outcome data until the designated follow-up period were 874 (13 outcomes), 577 (34 outcomes), 388 (63 
outcomes), and 149 (90 outcomes) for the 1-, 3-, 5-, and 10-year outcomes, respectively, within the validation dataset with complete information for the 
IIgAN-PT.
AUC, area under the curve; CI, confidence interval; IIgAN-PT, International IgA Nephropathy Prediction Tool; NA, not applicable.

the IIgAN-PT (Table 3, Fig. 4). The IIgAN-PT again showed 

acceptable discriminative performance within the valida-

tion cohort, as the AUC values ranged from 0.834 to 0.896 

for adverse outcomes at 1, 3, 5, and 10 years. The perfor-

mances were similar to those of the ML-based methods, 

although no modeling results were statistically superior to 

the discriminative performance of the IIgAN-PT. Similarly, 

the calibration results were acceptable for both the IIgAN-

PT and ML-based models. However, some underestima-

tion of the risks of adverse kidney outcomes was noted in 

all tested ML-driven models. 

Discussion 

In this study, we developed ML-driven prediction models 

for the prognosis of IgAN kidneys by incorporating various 

clinicopathological variables. The constructed models 

demonstrated good discrimination and calibration per-

formance in the external validation. As a reference, the 

full IIgAN-PT model showed excellent performance in our 

large-scale cohort study. The overall performance of the 

IIgAN-PT was non-inferior to that of ML-based models, ad-

ditionally supporting the clinical utility of the IIgAN-PT in 

patients with IgAN. 

Accurate prediction of IgAN kidney prognosis is crucial 

for appropriate risk stratification, scheduling follow-up 

visits, determining treatment strategies, and counseling 

patients. The IIgAN-PT is the most widely validated prog-

nostic model for IgAN, and the full model includes age, 

blood pressure, baseline eGFR, proteinuria amounts, treat-

ment history by renin-angiotensin-aldosterone blockades 

or by immunosuppressive drugs, the Oxford classification 

and with or without ethnicity [5]. The IIgAN-PT has been 

well validated in various cohorts [7–9]. However, the Kore-

an population was not included in the development of the 

data, and some underestimation of kidney risk was sus-

pected in a previous report [8]. Herein, we demonstrated 

the IIgAN-PT also showed acceptable predictive perfor-

mances in this multicenter Korean IgAN cohort. 

There is a relevant question regarding whether AI can 
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Figure 4. Comparison between the performance by the artificial intelligence-based models and that by the IIgAN-PT within the 
dataset with complete information for the Oxford classification. (A) The graphs show the discriminative performance and area 
under the curve value of receiver-operating characteristics curve towards the adverse kidney outcomes censored at four time points. 
The grey lines indicate the results by CatBoost model, the red by CatBoost with the Cox proportional hazards, the green by deep Cox 
proportional hazards (DCPH), the blue by deep Cox mixture (DCM), and the black by the IIgAN-PT, respectively. (B) The graphs are the 
calibration plots showing the predicted (x-axis) and observed (y-axis) risk for the 5-year adverse kidney outcomes by the models con-
structed by the according methods.
IIgAN-PT, International IgA Nephropathy Prediction Tool.

develop a more advanced prediction model for IgAN, as 

this approach has recently proliferated and opened a new 

field of clinical prediction modeling. The ML-based ap-

proach is now actively used in the clinical image reading 

systems [21,22] and has shown excellent performance in 

risk stratification, combining hundreds of complex clinical 

features [23,24]. As the prediction of IgAN kidney prognosis 

may be improved from additional medical information, 

the AI-based approach is a promising method for devel-

oping a model with better prognostic performance. A pre-

vious deep learning-based model showed a non-inferior 

predictive performance to that of the IIgAN-PT; however, 

a superior finding has not yet been reported [11]. In the 

current study, we developed multiple ML-based models, 

enhanced by deep learning-related approaches, including 

a wide range of variables of IgAN patients at the time of 

diagnosis. These models generally demonstrated accept-

able performance for the prognosis of IgAN. However, the 
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clinical utility of IIgAN-PT was well validated in our cohort, 

and its performance was non-inferior to that of the models 

despite trialing multiple ML- and DL-based methods. In 

addition, the results showing the validity of the IIgAN-PT 

for 10-year kidney outcomes support that the model can 

be useful in predicting the long-term prognosis of IgAN pa-

tients [9]. Considering the generalizability, interpretability, 

and accessibility that had been demonstrated in the IIgAN-

PT model, our current AI models seem to be unable to beat 

the IIgAN-PT model without securing outperformance in 

predicting kidney prognosis of IgAN. Therefore, the current 

study supports the clinical utility of the IIgAN-PT, as the 

model is easy to use without collecting extensive medical 

information, unlike AI-based models.  

The ML-based models failed to show superior perfor-

mance compared with the IIgAN-PT, despite the inclusion 

of a wide range of medical information, which can be ex-

plained by several factors. First, the variables included in 

the full IIgAN-PT model are not mere predictors but have 

significant causal effects on kidney prognosis or direct-

ly reflect kidney health. Elevated blood pressure or high 

amounts of proteinuria are not only common in chronic 

kidney disease but also directly damage the kidney [25,26], 

and the baseline eGFR reflects the underlying kidney 

function impairment. The Oxford classification includes 

mesangial proliferation, subsequent glomerular alteration, 

or active inflammation such as crescent formation, and 

final tubulointerstitial pathology; thus, it reflects the overall 

pathophysiologic aspect of IgAN progression from the ini-

tial stages to late pathologic consequences [27]. Construct-

ed from these very important clinicopathologic features, 

variables not included in the IIgAN-PT may have only a 

minor impact on the prognosis of IgAN; thus, combining 

the effects of the variables by ML-based methods may have 

only a small advantage. Next, IgAN cohorts are relatively 

small compared to big data, which are widely used when 

applying AI-based methods. Although some AI-based 

methods are targeted at constructing prediction models 

for middle-to small-sized data, the superiority of ML- or 

DL-based methods may be weakened in datasets with a 

few thousand samples. A larger dataset may be required to 

develop a superior prognostic model; however, collecting 

standardized medical information from multiple cohorts 

and countries is challenging. 

This study had some limitations that should be ad-

dressed in future research. First, as noted above, the study 

sample size may not have been sufficient to develop a su-

perior model for an ML-based approach, even though we 

included >3,000 patients with IgAN from multiple hospi-

tals. A multinational consortium may collect a wide range 

of clinical information to develop an ML-based prediction 

model for IgAN using a larger sample size. Second, AI can 

deal with additional complex data, such as digital patho-

logic images, combined multiomics data, and time-se-

quenced information [11]. Rather than the current analysis 

using cross-sectional baseline information, additional 

studies may include datasets having multiple dimensions 

with complex features for which the AI-based approach 

has superiority. Third, this study included a population 

with a single ethnic background. Similar to the original 

multinational cohort used for IIgAN-PT development, the 

AI-based approach may also be trialed for those of various 

ethnicities. Lastly, some heterogeneity in collection of the 

study variables (e.g., pathology parameters) might have ex-

isted because we retrospectively collated the information 

from the study hospitals. 

In conclusion, the IIgAN-PT performance was validated 

in the current large-scale IgAN cohort in Korea. Although 

ML-based prediction models may provide acceptable 

prediction performance for IgAN prognosis, a prediction 

model combining diverse baseline features may not be 

sufficient to develop an advanced model that is superi-

or to IIgAN-PT. Future efforts, including large-scale and 

high-level data on IgAN, are warranted to improve the per-

formance of the IgAN prognostic prediction models. 
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