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This study aimed to validate the utility of commercially available vendor-neutral deep learning (DL)
image enhancement software for improving the image quality of multiparametric MRI for gliomas in a
multinational setting. A total of 294 patients from three institutions (NYU, Severance, and SNUH) who
underwent glioma MRI protocols were included in this retrospective study. DL image enhancement
was performed on T2-weighted (T2W), T2 FLAIR, and postcontrast T1-weighted (T1W) imaging

using commercially available DL image enhancement software. Signal-to-noise ratio (SNR) and
contrast-to-noise ratio (CNR) were calculated for both conventional and DL-enhanced images. Three
neuroradiologists, one from each institution, independently evaluated the following image quality
parameters in both images using a 5-point scale: overall image quality, noise, gray-white matter
differentiation, truncation artifact, motion artifact, pulsation artifact, and main lesion conspicuity.
The quantitative and qualitative image parameters were compared between conventional and DL-
enhanced images. Compared with conventional images, DL-enhanced images showed significantly
higher SNRs and CNRs in T2W, T2 FLAIR, and postcontrast TIW imaging (all P<0.001). The average
scores of radiologist assessments in overall image quality, noise, gray-white matter differentiation,
and main lesion conspicuity were significantly higher for DL-enhanced images than conventional
images in T2W, T2 FLAIR, and postcontrast TIW imaging (all P<0.001). Regarding artifacts,
truncation artifacts decreased (all P<0.001), while pre-existing motion and pulsation artifacts were
not further exaggerated in most structural MRI sequences. In conclusion, DL image enhancement
using commercially available vendor-neutral software improved image quality and reduced truncation
artifacts in multiparametric glioma MRI.

Abbreviations

CI Confidence interval
CNR Contrast-to-noise ratio
DL Deep learning

SNR Signal-to-noise ratio

TIW T1-weighted
T2W T2-weighted
WHO  World Health Organization
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Diffuse gliomas account for approximately 26% of brain tumors and are the most common primary intra-axial
brain tumors in adults'. Brain MRI is the fundamental diagnostic imaging modality for preoperative, immediate
postoperative, and follow-up assessments in patients with diffuse gliomas®. The recommended consensus
MRI protocol includes T2-weighted (T2W), T2 FLAIR, 3D precontrast and postcontrast T1-weighted (T1W)
imaging as well as diffusion-weighted imaging®. Accurate image interpretation is crucial in establishing an initial
preliminary diagnosis, predicting prognosis, optimizing treatment planning, and changing treatment regimens
in case of tumor recurrence or progression . Thus, a method to enhance image quality while maintaining clinical
and quantitative integrity in a multinational, multi-vendor setting would be useful for routine clinical practice.
Furthermore, MRIs that fail to meet the standards not only impede clinical assessment but may also hinder
research in broader contexts, including clinical trials and multicenter studies.

Various imaging acquisition and reconstruction techniques, such as parallel imaging or compressed sensing,
have been developed to reduce scan time while maintaining image quality; however, these conventional methods
require a long computational time for iterative reconstruction and may result in suboptimal image quality with
undersampling artifacts’~. Recently, deep learning (DL) has emerged as a paradigm-shifting tool that can be
used as an alternative or in conjunction with preexisting methods for MRI scan acceleration to improve image
quality while decreasing computational power and reconstruction time!%-13,

Unlike conventional acceleration and reconstruction methods, which modify imaging parameters at the
cost of reduced image clarity, DL methods enable improvements in image quality from undersampled data by
learning complex relationships between the undersampled and fully-sampled data. These methods may operate
either directly on the k-space data or on the image domain with the primary functions of reducing noise and
enhancing resolution. Multiple published works have presented the clinical efficacy of DL image enhancement
for preserving image quality in accelerated brain imaging or improving image quality for standard-of-care
imaging including thin-section imaging'>'4"'”. However, their application to glioma imaging and their effect on
radiologists’ image interpretations have not yet been explored. Furthermore, most studies have focused on data
obtained from a single institution, with a limited set of images acquired under uniform acquisition parameters.
Accordingly, it is necessary to rigorously validate whether the DL model consistently shows robust results under
various imaging scenarios from multiple institutions with various MR scanners and imaging protocols in order
to ensure its translation to routine clinical practice.

Therefore, our study aimed to validate the utility of commercially available vendor-neutral DL image
enhancement software for improving the image quality of multiparametric MRI for gliomas in a multi-center,
multi-vendor, and multi-reader manner.

Methods

Standard protocol approvals, registrations, and patient consents

This multinational retrospective study was approved by the Institutional Review Boards of the New York
University (NYU) Langone Health, Severance Hospital, and Seoul National University Hospital (SNUH) (IRB
no.: i24-01671, 2308-069-1457, and 2023-1948-004); the requirement for patient consent was waived owing to
the retrospective study design. The study was conducted in accordance with the Declaration of Helsinki.

Patient enrollment

A total of 300 consecutive patients (100 glioma patients from each of the three institutions (NYU, Severance,
and SNUH) who underwent a dedicated MRI protocol for the evaluation of gliomas between April 2007 and
June 2023 were initially enrolled. The inclusion criteria were as follows: (1) Patients who underwent preoperative
glioma MRI protocols between April 2007 and June 2023 and were pathologically confirmed with gliomas and (2)
aged > 18 years. Cases where the required imaging studies or medical records were unavailable or inappropriate
for this study were excluded.

MRI protocol

MRI examinations were performed on 21 different 1.5T and 3.0T systems from major MR scanner vendors
(GE, Philips, and Siemens). The glioma MRI protocols from each institution were in accordance with the
standardized imaging protocol consensus recommendations!® including precontrast TIW, T2W, T2 FLAIR, and
3D postcontrast TIW imaging. The imaging parameters routinely used in participating institutions as part of
their clinical practice varied across institutions. The specific imaging parameters for each of the scanners are
provided in Supplementary Tables 1, 2, and 3.

Molecular classification
All tissues were classified and graded according to the 2021 WHO classification'®. Isocitrate dehydrogenase
(IDH) mutation and 1p/19q codeletion status were routinely assessed according to institutional protocols.

Deep learning-based image enhancement

Commercially available MRI enhancement software (SwiftMR, v3.0.3.0, AIRS Medical) was utilized for image
denoising and enhancing spatial resolution in this study. The software was applied to the obtained images in
a post-processing manner in the Digital Imaging and Communications in Medicine (DICOM) domain. The
software’s DL algorithm is based on the U-Net architecture?®. The foundational U-net consists of an initial
convolutional block with 64 output channels including four stages of down-sampling and up-sampling.
The model also cascades 18 convolutional blocks with layers for down-sampling, up-sampling and feature
concatenation, summing up to three convolutional layers.
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The software performs MR image enhancement in a multi-dimensional approach due to the training inputs
generated through multi-dimensional degradation from raw k-space data. The training process involved
combining noise addition and multiple patterns of undersampling, such as uniform, random, kmax, partial
Fourier and elliptical undersampling. To account for the network’s complexity of learning processes from various
inputs, contextual data for auxiliary input, such as the acquisition parameters defining the k-space sampling and
expected noise reduction factors for each training pair, were also part of the model’s architecture. The modified
U-Net architecture, the Context-Enhanced U-Net (CE U-Net), integrates a dynamic modulation pathway in
order to utilize contextual data as auxiliary input. The images used for model training and those acquired for this
study were mutually exclusive. Detailed information regarding the software can be found in a previous article?!.

The computational time for the image processing was 3 s for T2W, 3 s for T2 FLAIR, and 35 s for postcontrast
T1W images.

Quantitative evaluation

Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated for both conventional and DL-
enhanced images by a neuroradiologist (Y.W.P. with 13 years of experience). For SNR calculation, regions of
interest (ROIs) were drawn at the putamen (S,) and internal capsule (S,) on T2W and T2 FLAIR images and
at the caudate nucleus (S,) and corona radiata (S,) on postcontrast TIW images. CNRs were calculated based
on the signal differences between the putamen (S,) and internal capsule (S,) in T2W and T2 FLAIR images
and between the caudate nucleus (S,) and corona radiata (S,) in postcontrast TIW images. Subsequently, the
following formulas were used to calculate the SNRs (SNR, and SNR,) and CNRs, respectively:

M ional i .
SNRy or SN Ry — ean signal intensity at Si or S2

SD of the background noise

|S1 — Sa|

NR —
CNR SD of the background noise

Qualitative evaluation

Three board-certified neuroradiologists from three hospitals (L.S., K.P.S., and Y.H.J., with 10, 2 and 7 years of
experience, respectively) performed the qualitative evaluations. To ensure consistency in qualitative evaluation,
consensus thresholds were established among the three readers during a calibration session using example
cases prior to formal image review. Each reviewer was asked to review both conventional and DL-enhanced
images obtained from the other two institutions to avoid bias. All images were anonymized and blinded in
terms of patient identification, institutional information and origin, and were presented to the readers in a
randomized order. An online image storing and viewing platform (Pacsbin, Orion Medical Technologies, LLC),
a fully-featured picture archiving and communication system (PACS) environment to the web complying with
the Health Insurance Portability and Accountability Act (HIPAA), was utilized to facilitate multi-center data
accessibility.

Each reviewer independently evaluated T2W, T2 FLAIR, postcontrast T1W with the following image quality
criteria in conventional and DL-enhanced images based on a 5-point Likert scale: overall image quality, noise,
gray-white matter differentiation, truncation artifact, motion artifact, pulsation artifact, and main lesion
conspicuity. The overall image quality, noise, and gray-white matter differentiation was assessed as follows: 1,
unacceptable; 2, poor; 3, acceptable; 4, good; and 5, excellent or ideal. Three parameters related to image artifacts
(truncation, motion, and pulsation artifacts) were evaluated as follows: 1, unreadable motion artifact, images of
non-diagnostic quality; 2, severe artifact, images degraded but interpretable; 3, moderate artifact with some, but
not severe, effect on diagnostic quality; 4, minimal artifact, no effect on diagnostic quality; and 5, no artifact.
Truncation artifacts appear as a series of parallel lines at regions with abrupt and intense signal changes, while
motion artifacts are caused by random movement during the image acquisition process, and pulsation artifacts
are caused by periodic motion such as respiratory or vascular pulsation. The lesion conspicuity was scored as
follows: 1, unable to see; 2, blurry but visualized; 3, acceptable; 4, good; and 5, excellent.

Statistical analysis

Statistical analysis was performed by biostatisticians (L.R. and K.H. with 2 and 16 years of experience,
respectively) using R studio (version 4.3.3). The normality of the data was assessed using the Shapiro-Wilk
test. The clinical and imaging characteristics of patients from three institutions were compared using the Chi-
square for categorical variables and Kruskal-Wallis test for continuous variables. The interobserver agreement
was evaluated using the weighted Cohen kappa test (k) and percent agreement. A k value <0.20 indicated slight
agreement; 0.21-0.40, fair agreement; 0.41-0.60, moderate agreement; 0.61-0.80, substantial agreement; and
0.81-1.00, almost perfect agreement. The percent agreement was additionally evaluated to comprehensively
evaluate the interobserver agreement?. A generalized linear mixed model using a cumulative link function was
employed; the reviewers were treated as a fixed effect while patients and the hospitals to which they belonged
were treated as random effects. Owing to the exploratory nature of this study, adjustment for multiple testing
was not performed.

Results

Patient characteristics

Of 300 consecutive patients with gliomas, five patients from NYU dataset were excluded due to incomplete scan
range and one patient from Severance dataset was excluded due to image upload failure to an online image-
sharing platform. As a result, this study included 294 glioma patients (mean age, 55.7 £ 15.7 years, range 16-86

Scientific Reports |

(2025) 15:32857 | https://doi.org/10.1038/541598-025-17993-0 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

years) comprising 168 males and 126 females. There were 30 (10.2%), 61 (20.7%), and 182 (61.9%) patients
with oligodendroglioma, IDH-mutant astrocytoma, and IDH-wildtype glioblastoma, respectively, while the
remaining 21 (7.1%) patients had other miscellaneous types of gliomas such as pediatric-type diffuse high-/low-
grade gliomas or circumscribed astrocytic gliomas. Patients were classified as WHO grade 4 (n=216, 73.5%),
WHO grade 2 (n=39, 13.3%), WHO grade 3 (n=35, 11.9%), and WHO grade 1 (n=3, 1.0%). A definite WHO
grade was not pathologically defined in one patient (0.3%).

Although the distribution of sex was not statistically different between the three institutions, age (P=0.003),
tumor type (P<0.001), and WHO grade (P=0.004) showed significant differences between three institutions,
reflecting the heterogeneity of real-world datasets. The patient characteristics in the multinational dataset are
summarized in Table 1.

Quantitative evaluation

Both SNR, and SNR, values were significantly higher in DL-enhanced images than in the conventional images
for T2W, T2 FLAIR, and postcontrast T1W imaging (all P<0.001) (Fig. 1a and b). Subsequently, the CNR values
of DL-enhanced images were also significantly higher than those of the conventional images across all imaging
sequences (all P<0.001) (Fig. 1c). The measured values for SNR and CNR are shown in Table 2.

Qualitative evaluation

The results of qualitative evaluation for both conventional and DL-enhanced images are summarized in Fig. 1d;
Table 3. The average radiologist assessments of overall image quality, noise, and gray-white matter differentiation
were significantly higher in DL-enhanced images than in the conventional images for T2W, T2 FLAIR, and
postcontrast TIW imaging (all P<0.001). In terms of artifacts, DL-enhanced images showed significantly fewer
truncation artifacts than conventional images in T2W, T2 FLAIR, and postcontrast TIW imaging (all P<0.001).
DL-enhanced images also showed significantly fewer motion artifacts than conventional images in T2W and
postcontrast TIW imaging (all P<0.001). However, no significant difference was observed for motion artifact
on T2 FLAIR (P=0.721) between DL-enhanced and conventional images. DL-enhanced images showed mixed
results in terms of pulsation artifacts. There were significantly fewer pulsation artifacts in postcontrast TIW
imaging compared to conventional images (P<0.001), while the opposite result was observed in T2 FLAIR
(P<0.001). No significant difference was observed for pulsation artifact in T2W imaging (P=0.052). The main
lesion conspicuity was significantly higher in DL-enhanced images than in conventional images for T2W, T2
FLAIR, and postcontrast TIW imaging (all P<0.001). The weighted Cohen k ranged from slight to substantial
agreement (Supplementary Table 4). Specifically, one reader consistently scored more generously, leading to
systematic discrepancies. Conventional and DL-enhanced images of representative cases with gliomas are shown
in Figs. 2,3,4,5.

Discussion
In this study, we investigated the utility of using a commercially available DL image enhancement software for
glioma patients in a large multinational dataset. MRIs often suffer from low SNR and CNR along with image
artifacts when performed within a clinically feasible scan duration with conventional acceleration techniques.
Our study validated that DL image enhancement can improve image quality and reduce truncation artifacts
in routine multiparametric glioma MRI protocols without exaggerating motion or pulsation artifacts among
multiple vendors and scanner models.

As the training dataset for commercially available vendor-neutral DL image enhancement software included
MRISs collected from multiple vendors, scanner models, and various imaging sequences with different acquisition

Total (n=294) | NYU (n=95) | Severance (n=99) | SNUH (1n=100) | P-value

Age (years) 55.7+15.7 54.3+16.4 59.7+14.4 53.0+15.5 0.003
Male Sex 168 (57.1) 55 (57.9) 62 (62.6) 51 (51.0) 0.249
Tumor type <0.001

Oligodendroglioma 30 (10.2) 11 (11.6) 2(2.0) 17 (17.0)

IDH-mutant astrocytomas | 61 (20.7) 14 (14.7) 32(32.3) 15 (15.0)

IDH-wildtype glioblastoma | 182 (61.9) 70 (73.7) 60 (60.6) 52 (52.0)

Other glioma 21(7.1) 0(0) 5(5.1) 16 (16.0)
WHO grade 0.004

Grade 1 3(1.0) 0(0) 0 (0) 3(3.0)

Grade 2 39(13.3) 17 (17.9) 7(7.1) 15 (15.0)

Grade 3 35(11.9) 16 (16.8) 5(5.1) 14 (14.0)

Grade 4 216 (73.5) 62 (65.3) 87 (87.9) 67 (67.0)

NA 1(0.3) 0(0) 0(0) 1(1.0)

Table 1. Patient characteristics in the multinational dataset. Data are expressed as the mean + standard
deviation or numbers with percentages in parentheses. 'P-value indicates statistical significance among
the three institutions. IDH =isocitrate dehydrogenase; NA = not available; NYU =New York University;
SNUH = Seoul National University Hospital; WHO = World Health Organization.
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Fig. 1. Comparison of quantitative and qualitative imaging quality scores between conventional and DL-
enhanced images. Mean values of (A) SNR,, (B) SNR,, and (C) CNR in conventional and DL-enhanced
images. Error bars indicate 95% confidence intervals. (D) Comparison of the overall image quality between
conventional and DL-enhanced axial T2-weighted, FLAIR, and postcontrast 3D T1-weighted images.

Each image in 294 patients was rated on a 5-point Likert scale by 2 readers. CNR = contrast-to-noise ratio;
Conven = conventional; DL = deep learning; SNR = signal-to-noise ratio; TIW =T1-weighted; T2W =T2-
weighted.
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T2W T2 FLAIR Postcontrast TIW
Conventional | DL-enhanced | Pvalue | Conventional | DL-enhanced | Pvalue | Conventional | DL-enhanced | P value
« | 112.1 403.6 132.8 394.2 188.2 390.2
SNR, | (845,139.8) | (376.0,4312) | <901 | (1709, 1547) | 372.2,416.0) | %001 | (165.4,211.0) | (359.8, 420.6) | <O-001
« | 739 268.8 100.1 279.3 164.3 336.6
SNR2 (54.4,93.3) (249.3,288.2) <0.001 (83.7,116.6) | (262.9,295.8) <0.001 (144.0, 184.6) | (309.7, 363.5) <0.001
39.4 133.8 36.1 112.8 31.8 65.9
;
CNRT | 291,497) | (1235,1442) | <%0 | (38.4,439) | (105.1,1205) | <001 | (272,363) | (59.8,71.9) | <0001

Table 2. Comparison of SNR and CNR between conventional and DL-enhanced images. Data are mean values
with 95% confidence intervals in parentheses. " SNR, or SNR, = (Mean signal intensity at S, or S,)/(SD of

the background noise) where S, and S, represent the putamen and internal capsule for T2W and T2 FLAIR
images and the caudate nucleus and corona radiata for postcontrast TIW images. " CNR = [S,-S,|/(SD of the
background noise). CNR = contrast-to-noise ratio; DL =deep learning; SNR = signal-to-noise ratio; TIW =T1-
weighted; T2W =T2-weighted.

T2W T2 FLAIR Postcontrast TIW

Conventional | DL-enhanced | P value | Conventional | DL-enhanced | P value | Conventional | DL-enhanced | P value
Overall image quality (212131, 4.05) (iigg, 448) | <0001 (;:;Z, 3.49) éi??, 383) | <0001 (2223, 3.99) <3Ii§, 467) | <0001
Noise (ggg 3.92) (iﬁ, 450 | <0001 (gég, 3.46) (iijii, 425) | <0001 (;Zé, 3.78) (igi, 475 | <0001
Gray-white matter differentiation 5133, 4.10) (ﬁg, 438 | <0001 (;:gg, 3.77) éigi, 408) | <0001 (iigg, 432) (igi, a76) | <0001
Truncation artifact éigg, 435) éﬁﬁg, 460) | <0001 (2:22, 3.72) éigg, 401 | <0001 (gigé, 412) (ﬁg, 459) | <0001
Motion artifact (ﬁg, 4.76) (iigg, 487) | <0001 é:g‘;, 417) (gigi a16) | 072 éiﬁg, 453) (3:461;, 488) | <0001
Pulsation artifact (iﬁ, 4.52) (i:ig, 457|002 (gig;, 4.26) (gigg, 429 | <0001 (gg, 4.46) (ﬁi 463) | <0001
Main lesion conspicuity (3:(2)?;, 4.44) (iéﬁ, 463) | <0001 8135, 3.92) (igg, 413) | <0001 (iég, 4.34) <3IZZ, 471y | <0001

Table 3. Comparison of qualitative scores between conventional and DL-enhanced images. Data are mean
values with 95% confidence intervals in parentheses. Higher scores indicate better overall image quality,
including lower noise and artifacts, as well as improved lesion conspicuity. DL=deep learning; TIW =T1-
weighted; T2W =T2-weighted.

parameters®! we expected the DL image enhancement algorithm to be vendor-neutral and robust in our glioma
dataset. Analysis comparing the SNR and CNR improvements after DL application to the conventional MRI
showed a similar trend of SNR and CNR improvement across all institutions and imaging sequences, even
though the acquisition scenarios were heterogeneous. Such results suggest that the DL image enhancement
algorithm has learned generalizable representations of diverse noise patterns to produce high-quality images
across over 20 different MRI scanners and acquisition schemes. To our knowledge, no previous publications
explored the robustness of DL image reconstruction or enhancement algorithms to the extent of this work.
Single-center or single-vendor studies may demonstrate the initial feasibility of a specific DL reconstruction or
enhancement algorithm but lack the rigorous validation process necessary to facilitate clinical translation. DL
algorithms that aim to influence the initial steps in routine clinical practice, such as image acquisition, require
stringent evaluation because the resulting image quality can directly impact subsequent clinical assessments and
decisions.

The reduction in truncation artifacts further highlights the potential of DL image enhancement in clinical
settings, which may be attributed to slice-direction resolution enhancement by the algorithm?!. As the DL model
was trained on pairs of low and high spatial resolution images, it not only boosts apparent resolutions but also
reduces truncation artifacts that become more prominent at lower resolutions. A previous study has also shown
significant reduction in truncation artifacts with another DL algorithm?’. In conventional image reconstruction,
filters are used to reduce noise and truncation artifacts, but this often leads to lower effective spatial resolution
and blurred images. In contrast, our results show that DL image enhancement effectively reduces truncation
artifacts and minimizes image noise while improving lesion conspicuity. Regarding motion and pulsation,
common criticisms of DL image enhancement include artifact generation (hallucination) and exaggeration.
However, our results suggest that the pre-existing motion and pulsation artifacts were not exaggerated in most
structural MRI sequences.

From a practical point of view, one of the promising applications of DL image enhancement in a post-
processing manner would be to reduce the scan time while maintaining or even improving the MRI quality in
glioma patients. In patients with glioma, the capacity of anatomical MRI to accurately reveal the underlying tumor

Scientific Reports|  (2025) 15:32857 | https://doi.org/10.1038/s41598-025-17993-0 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Postcontrast T1W

A\

Conventional

DL-enhanced

Fig. 2. A representative case of a 61-year-old female with IDH-wildtype glioblastoma. DL-enhanced T2-
weighted, FLAIR, and postcontrast 3D T1-weighted images (lower row) show better overall image quality with
less noise and better gray-white matter differentiation as compared with conventional images (upper row).
Main mass with complex inner architecture appears more conspicuous in DL-enhanced images (lower row)
than in conventional images (upper row). Note that motion artifacts (arrowheads) are not exaggerated in DL-
enhanced images. DL =deep learning; T1W =T1-weighted; T2W =T2-weighted.

Conventional DL-enhanced

Fig. 3. A representative case of a 52-year-old male with IDH-wildtype glioblastoma. There is reduction of
truncation artifacts (yellow box) on DL-enhanced postcontrast T1-weighted images compared to conventional
images.
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Fig. 4. A representative case of a 76-year-old female with IDH-wildtype glioblastoma. There is no exaggeration
of pre-existing motion artifacts (arrows) on DL-enhanced FLAIR images compared to conventional images.
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Fig. 5. A representative case of a 26-year-old female with WHO grade 4 IDH-mutant astrocytoma. A main
T2 hyperintense mass with heterogeneous contrast enhancement in the right frontal lobe appears more
conspicuous in DL-enhanced images (lower row) than in conventional images (upper row) (especially on

T2 FLAIR and postcontrast TIW images). No new artifacts (hallucinations) were detected in DL-enhanced
images, even in the presence of anatomical distortions due to extensive perilesional edema and postoperative
changes at the right frontal lobe.

Scientific Reports|  (2025) 15:32857 | https://doi.org/10.1038/s41598-025-17993-0 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

biology is limited, and advanced techniques such as perfusion-weighed imaging and diffusion-weighted imaging
are routinely acquired at most institutions® while MR spectroscopy and amide proton transfer imaging may also
have additional clinical value?*. As routinely including all of these various imaging sequences would increase
scan time, multiple acceleration techniques have been proposed to decrease the scan time while maintaining
image quality. However, conventional acceleration techniques such as parallel imaging, simultaneous multi-slice
acquisition, compressed sensing, and adjusting imaging acquisition parameters such as the receiver bandwidth,
number of excitations, and in-plane/through-plane resolution generally reduce the SNR and/or spatial resolution,
degrading image quality®>~%". In contrast, emerging DL image enhancement techniques have potential to reduce
artifacts while improving image quality. Based on these results, we anticipate that this approach could lead to a
reduction in scan time in actual clinical environments.

Our study had some limitations. First, the retrospective nature of this study may introduce selection bias,
and while we included data from multiple international institutions, the findings may need further validation in
prospective multicenter studies to ensure broader applicability. Second, our study did not investigate the utility
of DL image enhancement in sequences such as diffusion-weighted imaging, perfusion-weighted imaging,
or susceptibility-weighted imaging. As these are also commonly acquired sequences in glioma imaging that
reflect the underlying tumor physiology® the utility of DL image enhancement should also be assessed in these
sequences in future studies. Third, SNR and CNR were calculated on a single slice per sequence, which may have
led to errors for images with parallel imaging. Fourth, while no adjustment for multiple testing was performed
due to the exploratory nature of the study, this may have resulted in an overestimation of statistical significance.

Conclusions

In conclusion, DL image enhancement using commercially available vendor-neutral software improved image
quality and reduced truncation artifacts in multiparametric glioma MRI. This approach may be feasible and
useful for clinical evaluation in glioma MRI.

Data availability
The datasets generated or analyzed during the study are available from the corresponding authors upon a rea-
sonable request.
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