
npj | digitalmedicine Article
Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1038/s41746-025-01993-5

Automated AI based identification of
autism spectrum disorder from
home videos

Check for updates

Dong Yeong Kim1,2,24, Ryemi Do3,24, Youmin Shin1,2, Hewoen Sim3, Hanna Kim3, Sungchul Cho3,
Geonhee Lee2,4, Seyeon Park2,5, Boa Jang1,2, Hyojeong Lim3, Sungji Ha6, Jaeeun Yu6, Hangnyoung Choi6,7,
Junghan Lee6,7, Min-Hyeon Park8, Ayeong Cho8, Chan-Mo Yang9,10, Dongho Lee9, Heejeong Yoo11,12,
Yoojeong Lee11, Guiyoung Bong11, Johanna Inhyang Kim13, Haneul Sung14, Hyo-Won Kim15, Eunji Jung16,
Seungwon Chung17, Jung-Woo Son17, Jae Hyun Yoo18, Sekye Jeon18, Jinseong Jang19, You Bin Lim20,
Jeeyoung Chun20, Wooseok Choi20, Sooyeon Lee20, Sohyun Park20, Jisung Ahn20, Chae Rim Lee20,
Keun-Ah Cheon7,21,25 , Young-Gon Kim2,22,23,25 & Bung-Nyun Kim20,25

Autism spectrum disorder (ASD) is a prevalent childhood-onset neurodevelopmental condition. Early
diagnosis remains challenging by the time, cost, and expertise required for traditional assessments,
creating barriers to timely identification. We developed an AI-based screening system leveraging
home-recorded videos to improve early ASDdetection. Three task-based video protocols under 1min
each—name-response, imitation, and ball-playing—were developed, and home videos following
these protocols were collected from 510 children (253 ASD, 257 typically developing), aged 18–48
months, across 9 hospitals in South Korea. Task-specific features were extracted using deep learning
models and combined with demographic data through machine learning classifiers. The ensemble
model achieved an area under the receiver operating characteristic curve of 0.83 and an accuracy of
0.75. This fully automatedapproach, basedonshort home-videoprotocols that elicit children’snatural
behaviors, complements clinical evaluation and may aid in prioritizing referrals and enabling earlier
intervention in resource-limited settings.

Autism spectrum disorder (ASD) is a neurodevelopmental condition
characterized by differences in social communication and interaction, as
well as patterns of restricted and repetitive behaviors that emerge early in
development1. Recent meta-analyses estimate that globally approximately
0.6% of the population is on the autism spectrum2.Moreover, data from the
Global Burden of Disease Study suggest that ASD affected around 61.8
million individuals worldwide in 2021—one in 127 people—placing ASD
among the top causes of non-fatal health burden in children and adolescents
under 203. ASD influences cognitive and socio-emotional functioning
across the lifespan, and early identification is critical for enhancing adaptive
functioning and social outcomes. Initiation of personalized intervention
between 2.5 and 3 years of age was associated with the greatest gains in
cognitive functioning after 1 year, with younger age at onset significantly
predicting improved outcomes4. However, ASD is typically diagnosed at an
average age of 3.5–4 years worldwide5, which is considerably later than the
ideal window for early intervention, generally regarded as before age 2. Such
delays are even more pronounced in low- and middle-income countries,

where the average age of diagnosis is approximately 45.5months, with some
regions inAsia andAfrica reportingmean diagnostic ages exceeding 5 years
due to systemic barriers and limited access to specialized services5.
According to the Centers for Disease Control and Prevention (CDC)6, most
children with ASD in the U.S. are not diagnosed until approximately
54 months of age, with 70% being diagnosed after 51 months. In South
Korea, although developmental screenings are conducted regularly between
4months and 5 years of age, significant delays in diagnosis and intervention
persist evenwhenearlyparental concerns arepresent7,8.At tertiaryhospitals,
thewaiting time for diagnostic evaluation can extend from1–2 years9. Given
the global prevalence and the widespread delays in diagnosis, there is an
urgent international need for scalable, automated screening tools that can
support early identification and intervention.

Conventional diagnostic tools, such as the Autism Diagnostic Obser-
vation Schedule (ADOS)10 and the Autism Diagnostic Interview-Revised
(ADI-R)11, are resource-intensive, reliant on trained professionals, andmay
introduceobserver bias12. These standardized instruments,while considered
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gold standards, require in-person administration, are time-consuming, and
are often limited in accessibility due to high cost and the need for specialized
training. Compared to the diagnostic tool of the ADOS-2, parent-report
screening tools for ASD, such as theM-CHAT and Q-CHAT, demonstrate
limited accuracy, with insufficient sensitivity and positive predictive value13.
In addition, caregiver-report instruments such as the SRS-2 andSCQ-2have
been reported to show limited specificity in distinguishing ASD from other
developmental or psychiatric conditions, indicating their potential risk for
over-identification when used without clinician-administered
assessments14. The reduced accuracy of caregiver-report screening tools
may stem from variability in caregivers’ recall and subjective interpretation
of behaviors, which can influence item responses and compromise diag-
nostic precision. Conversely, although clinician-administered tools like the
ADOS and ADI-R offer higher diagnostic validity, they may not fully
capture behaviors thatmanifest in naturalistic homeor community settings,
as children’s behavior can differ across contexts and over time.

In contrast, home videos offer high ecological validity by capturing
children’s behaviors in familiar, everyday settings15. Children spendmost of
their time at home, where they are generally more relaxed and likely to
display their typical behaviors. In contrast, clinical or laboratory settings
may evoke atypical behaviors due to their unfamiliarity. For instance, tod-
dlers on the autism spectrum have been shown to exhibit more repetitive
behaviors in clinical environments compared to the home16. Observing
children during spontaneous interactions in their natural environment
allows for a more representative and context-sensitive assessment of their
developmental functioning17, which also aligns with the neurodiversity
paradigm18,19. Nevertheless, the manual coding of home videos is labor-
intensive and prone to inter-rater variability15. This reduces the scalability
and reliability of video-based assessment.

Recent research has focused on artificial intelligence (AI) and machine
learning (ML) for theautomatedanalysis ofhomevideos,whichoffer scalable
and objective alternatives20. While promising, most AI studies face limita-
tions, such as small sample sizes20–22 or relying on integrating questionnaires
with home videos23 and manually annotating them24–28, which introduces
subjectivity and limits generalizability. Some studieshave adoptedautomated
feature extraction methods, but they typically focus only on specific features
such as stimming behaviors29 or facial analysis20,30 and often require unfa-
miliar environments, such as controlled laboratory settings21,28. Many
approaches depend on specific behavioral categories or constrained proto-
cols, which may fail to capture the variability and complexity of naturalistic
behaviors. These methodological constraints reduce the scalability, objec-
tivity, and ecological validity of automated screening systems, thereby lim-
iting their utility in real-world, early ASD screening contexts.

To overcome these limitations, we developed short, structured home-
video protocols that parents can record in familiar settings to naturally elicit
each child’s uniqueASD-related behaviors. In contrast tomethods based on
manual video coding, our fully automated AI pipelines objectively extract
clinicallymeaningful behavioral indicators from these videos. By combining
parent-friendly, naturalistic behavior elicitation with objective AI-based
feature extraction, our method addresses the objectivity, scalability, and
ecological validity gaps in previous research, offering a practical solution for
earlier and more accessible ASD screening.

Results
Dataset demographic
InTable 1,wepresent the total numberof young children in each class along
with the corresponding (training/testing) allocation for clarity and to ensure
a consistentmodel evaluation across videos. Notably, amale predominance
was observed, with male participants accounting for more than twice the
number of female participants31. This imbalance is consistent with the
higher prevalence ofASD inmales, reflecting the composition of thedataset.

In addition, thenumber of participants varied across the videos.Ninety
childrenwere included in the test dataset. Ten children recorded two videos,
two children recorded all three videos, and the remaining 78 children
recorded only one video. For the final ensemble model, we integrated the

predictions for each child by averaging their model-predicted confidence
scores across one ormore videos to ensure the comprehensive integration of
predictions across scenarios.

To evaluate whether the training and test sets were comparable in
terms of demographic and behavioral variables, we conducted independent
two-sample t-tests across each feature. This analysis was performed to
confirm that any observed performance differences in model evaluation
would not be attributable to confounding population disparities. As shown
in Supplementary Table 1, all p values exceeded 0.05, indicating no statis-
tically significant differences between the training and test sets.

Task-specific classification performance
Table 2 summarizes the classification results across name-response, imita-
tion, and ball-playing tasks, reporting the area under the receiver operating
characteristic curve (AUROC), accuracy (ACC), precision (PRE), and
sensitivity (SEN) for each model. Each model was evaluated with stepwise
inclusion of task-specific features, common clinical features, and demo-
graphic metadata (age and sex) to assess the incremental value of feature
integration.
• For the name-response task, which targets social orienting behaviors

characteristic of ASD, LightGBM32 achieved an AUROC of 0.72
without additional features. Incorporating metadata improved perfor-
mance to an AUROC of 0.81, with accuracy increasing from
0.69 to 0.73.

• For the imitation task, designed to assess differences in social imitation,
the logistic regression model33 improved from an AUROC of 0.65
(baseline) to 0.75 with common features, and further to 0.78with both
common features and metadata.

• For the ball-playing task, measuring reciprocal turn-taking,
LightGBM32 improved from an AUROC of 0.62 to 0.78 with common
features, and ultimately to 0.81 with full feature integration.
These findings demonstrate that incorporating multi-domain social

behavioral features enhances classification performance, reflecting the
multi-faceted nature of ASD symptomatology.

Ensemble model performance
The ensemble model, integrating predictions across videos from multiple
tasks, achieved an AUROC of 0.80 at baseline, increasing to 0.83 with
metadata inclusion. This ensemble approach provided the most robust and
generalizable classification performance, underscoring the benefit of
aggregating diverse behavioral dimensions. External validation on noisy
video samples achieved an AUROC of 0.73, supporting the feasibility of
applying the model under variable home-recording conditions. Detailed
performance metrics are provided in Supplementary Table 2.

Interpretation of model predictions
SHapleyAdditive exPlanations (SHAP)34 analysis was conducted to identify
key feature contributions aligned with clinically recognized ASD behaviors:
• Name-response task (Fig. 1b): longer response latency and elevated

variability in parental calling attempts were strongly associated with
ASD predictions, reflecting the ability to orient to social stimuli.

• Imitation task (Fig. 1d): reduced eye contact duration, diminished
physical engagement, anddelayed imitation responseswere keydrivers
of ASD classification, consistent with behaviors inmotor imitation and
joint attention.

• Ball-playing task (Fig. 1f): prolonged turn-taking durations and
reduced eye contact contributed to ASD predictions, reflecting ability
to engage in reciprocal social engagement and coordination.

Behavioral signature of ASD in extracted features
Significant group-level differences were observed between ASD and TD
children inboth task-specific and commonclinical features (Tables 3 and4).
• For task-specific features (Table 3): children with ASD demonstrated

significantly longer response latencies during name-response
(5.29 ± 5.66 vs. 3.62 ± 3.25 s; p = 0.017). Although similar trends were
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observed in imitation and ball-playing tasks, these differences did not
reach statistical significance (p = 0.064 and p = 0.116, respectively).

• For common clinical features (Table 4): children with ASD exhibited
greater lack of eye contact (4.25 ± 6.47 vs. 1.30 ± 3.78 s; p < 0.001),
increased non-engaged movements (2.59 ± 9.23 vs. 0.69 ± 5.94 s;
p < 0.001), and prolonged physical contact duration (3.78 ± 7.69 vs.
0.69 ± 2.52 s; p = 0.026).
These results statistically support the discriminativeutility of both task-

specific and common behavioral features, reflecting a coherent profile of
delayed and disrupted social engagement in ASD.

Clinical evaluation of misclassified cases
To further examine model behavior, clinical experts reviewed misclassified
test videos (104 participants: 52 ASD, 52 TD), categorized into true positive
(TP), true negative (TN), false positive (FP), and false negative (FN) groups.
TD children (TNandFP) consistently outperformedASDchildren (TP and
FN) across psychological assessments. Notably, within the ASD group, FN
cases exhibited milder symptom profiles compared to TP, particularly on
CBCL35 domains assessing withdrawal and internalizing problems. These
observations suggest that the model may exhibit sensitivity to subthreshold
behavioral phenotypes and may capture a broader risk spectrum, sup-
porting its potential utility for early identification of at-risk children even in
borderline cases (Supplementary Note 1 and Supplementary Tables 3–5).

Discussion
This studypresents a fully automatedAImodel for the early identificationof
ASD using short home videos based on a large cohort of young children,
without relying on manual coding or parent-report measures. We devel-
oped structured videos protocols, each under 1min, recorded by parents in
familiar settings to elicit core social behaviors relevant for ASD screening.
The research team predefined key features—such as response latency,
parental attempts, sequential turn-taking, and gaze—which were extracted
from three videos tasks (name-response, imitation, and ball-playing) using

deep learning, and then used in machine learning classifiers to build an AI
model for ASD classification. Feature integration across these tasks resulted
in robust diagnostic performance (AUROC= 0.83 for the ensemblemodel).
Critically, the extracted features were not only discriminative but aligned
with core clinical constructs of ASD, including reduced social orienting,
diminished eye contact, and delayed imitation. SHAP-based feature attri-
bution analyses confirmed that response latency and differences in gaze
behavior consistently emerged as key discriminators across tasks, reinfor-
cing their clinical relevance. Beyond discriminative performance, our
approach demonstrated strong practical feasibility for real-world deploy-
ment, with an average inference time of approximately 14.2 s per video on
standard GPU-equipped systems (RTX 3090 Ti, 24 GB VRAM). The
pipeline relies entirely on open-source models—including COCO-based
pose estimation, YOLOv8 for object detection, andWhisper for speech-to-
text—enabling rapid, cost-free, and license-independent ASD risk estima-
tion. In contrast to traditional diagnostic pathways such asADOSorADI-R,
which require hours of expert-administered testing in clinical settings, our
model offers fully automatedASD risk estimation in approximately 14 s per
video, substantially improving accessibility and scalability.

Compared to prior research, our study offers several distinct metho-
dological improvements that can provide an objective, low-cost, and eco-
logically valid approach for early ASD risk detection. Unlike earlier studies,
which frequently depended on subjective assessments such as parent-
reported questionnaires23,26,27 or manual annotation of videos24,25,27,28, our
approach implements a fully automated pipeline for feature extraction,
significantly reducing human biases and inter-rater variability while
remaining interpretable and clinically grounded. Furthermore, whereas
recent automated methods predominantly target specific body features or
rely on controlled laboratory settings20,21,28–30, our method utilizes deep
learning to comprehensively analyze rich, full-body behavioral indicators
captured in naturalistic home settings. By integrating multiple tasks, our
model successfully captures ASD-related behaviors, thereby substantially
enhancing ecological validity and accessibility. These innovations enable

Table 1 | Demographics of the final dataset used for AI analysis

Videos Training data/Test data number Age (month) Sex (M/F)

TD ASD Total

Name-response 89 (71/18) 88 (70/18) 177 (141/36) 37.3 ± 8.0 124/53

Imitation 84 (67/17) 82 (65/17) 166 (132/34) 39.4 ± 6.9 117/49

Ball-playing 84 (67/17) 83 (66/17) 167 (133/34) 39.2 ± 6.9 116/51

Total 257 (205/52) 253 (201/52) 510 (406/104) 38.6 ± 7.3 357/153

Age was recorded as the mean and standard deviation in months.
TD typically developing, ASD autism spectrum disorder, AI artificial intelligence.

Table 2 | Machine-learning model results

Meta info (sex, age) Common clinical features Unique clinical features AUROC ACC PRE SEN

Name-response ✓ 0.72 ± 0.04 0.69 ± 0.04 0.67 ± 0.05 0.77 ± 0.08

Name-response ✓ ✓ 0.81 ± 0.02 0.73 ± 0.03 0.72 ± 0.03 0.77 ± 0.05

Imitation ✓ 0.65 ± 0.00 0.65 ± 0.02 0.64 ± 0.02 0.69 ± 0.02

Imitation ✓ ✓ 0.75 ± 0.00 0.69 ± 0.06 0.71 ± 0.08 0.69 ± 0.02

Imitation ✓ ✓ ✓ 0.78 ± 0.01 0.74 ± 0.02 0.73 ± 0.02 0.78 ± 0.04

Ball-playing ✓ 0.62 ± 0.02 0.55 ± 0.02 0.54 ± 0.02 0.76 ± 0.02

Ball-playing ✓ ✓ 0.78 ± 0.03 0.69 ± 0.05 0.69 ± 0.09 0.72 ± 0.06

Ball-playing ✓ ✓ ✓ 0.81 ± 0.03 0.75 ± 0.03 0.72 ± 0.03 0.84 ± 0.04

Ensemble ✓ ✓ 0.80 ± 0.02 0.74 ± 0.02 0.76 ± 0.04 0.77 ± 0.05

Ensemble ✓ ✓ ✓ 0.83 ± 0.01 0.75 ± 0.02 0.76 ± 0.01 0.80 ± 0.02

The mean and standard deviation of each value were calculated.
ACC accuracy, AUROC area under the receiver operating characteristic curve, PRE precision, SEN sensitivity.
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cost-effective, scalable deployment in diverse, real-world environments and
advance the democratization of neurodevelopmental screening by extend-
ing interpretable, clinically grounded AI tools to settings with limited spe-
cialty resources.

Another key strength of this study was the use of a standardized video
recording protocol and large-scale data collection. Our sample comprised
510 children aged 18–48 months (253 with ASD and 257 typically devel-
oping), systematically recruited from9hospitals and community sites across
South Korea, providing a relatively diverse cohort that enhances the gen-
eralizability of our findings. Unlike studies using preexisting datasets with
small sample sizes22,29, broad age ranges, or age imbalances between
groups24,36, our protocol ensured consistency in data quality and demo-
graphics. Detailed video-recording instructions delivered via a mobile app
further improved data uniformity.While some studies provide only general
guidelines (e.g., keeping the child’s face visible, using toys, and including
social interactions)24,25,36, our study emphasizes the importance of struc-
tured, standardized instruction to reduce variability in home video
environments15.

This study has several limitations that should be addressed in future
research. First, the sample included only children with ASD and TD, with
limited clinical diversity and demographic representation (e.g., pre-
dominantly male and under age four). This may restrict the generalizability
of findings, as early-diagnosed children often show more pronounced

Fig. 1 | Feature importance and SHAPexplainability for eachmodel. a, c, e illustrate the relative feature importance, representing each feature’s contribution to themodel’s
overall predictions. b, d, f display SHAP values, providing detailed insights into how individual features affect specific predictions. SHAP SHapley Additive exPlanations.

Table 3 | Analysis of extracted unique features

Response
latency (second)

p
value

Parent attempts
(number)

p
value

Name-
response

TD 3.62 ± 3.25 0.017 1.67 ± 1.36 0.101

ASD 5.29 ± 5.66 2.08 ± 1.88

Imitation TD 2.90 ± 5.82 0.064 1.10 ± 1.43 0.216

ASD 5.48 ± 11.09 0.87 ± 0.89

Ball-
playing

TD 9.79 ± 7.01 0.116 –

ASD 13.42 ± 19.74

The mean and standard deviation of each value were calculated. An independent t-test was
conducted to compare the TD and ASD groups.
TD typically developing, ASD autism spectrum disorder.
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symptoms37, and females with ASD—who may present differently—were
underrepresented31. Future studies should aim to recruit more hetero-
geneous samples, including children with language delays, attention diffi-
culties, or early anxiety symptoms, and ensure a better balance across gender
and age groups. Second, while ASD diagnoses were based on standardized
assessments such as the ADOS38,39, the absence of clinician consensus may
reduce diagnostic certainty. In addition, the TD group was not followed
longitudinally, raising the possibility that some participants may later
receive ASD diagnoses. Incorporating long-term follow-up for all groups
would improve the reliability and clinical applicability of future models.
Third, in terms of data collection, although standardized instructions were
given for video collection, uncontrolled variables in home environments
may have introduced variability. More standardized or semi-structured
recording environments should be considered in future studies to reduce
noise and improve reliability. Moreover, not all children had all three video
tasks available. As a result, the ensemble model utilized between one and
three videos per child, potentially affecting consistency. A more uniform
data collection protocol ensuring complete multimodal input per subject
would strengthen comparative analyses. Fourth, regarding AI analysis,
several technical and performance-related limitations were noted. Com-
paring psychological assessment outcomes with AI model predictions
revealed that children correctly classified as having ASD by the model (true
positives) exhibited more severe symptoms than those misclassified as TD
(false negatives). This suggests the model may currently be optimized for
identifying high-risk cases but is less sensitive to subtler or borderline ASD
presentations. Incorporating data across the full spectrum of ASD features
may improve the accuracy andgeneralizability of futuremodels. In addition,
several task-specific limitations were observed. In name-response videos,
the STT model showed imprecise response timing due to variation in
caregiver speech. In imitation tasks, keypoint-detection errors reduced the
reliability in detecting gestures. In ball-playing tasks, object detection was
inconsistent due to ball variability. Manual review also revealed systematic
overestimation of task duration and occasional misclassifications. Future
studies should consider training domain-adapted STT models using
caregiver-child interaction data. Enhancing pose estimation with child-
specific gesture datasets, standardizing task materials, and implementing
automated quality control for object recognition. Addressing these limita-
tions in future researchwill be critical for advancing clinically applicableAI-
based diagnostic tools for ASD.

In summary, this study demonstrates the feasibility of an automated,
video-based AImodel for early ASD screening using short home videos. By
leveraging deep learning to extract clinically meaningful behaviors from
three types of task videos, our machine learning models provide a scalable
and accessible alternative to traditional assessments. Enhancing diagnostic
validity and sample representativeness in future studies could increase the
practical applicability of AI-driven video analysis as a promising tool to
assist early identification of ASD in real-world settings, particularly where
clinical resources are limited.

Methods
Ethics approval
The research protocol was approved by the Institutional Review Boards
(IRB) of all participating hospitals, including the Seoul National University
College of Medicine/Seoul National University Hospital (IRB No. 2209-
096-1360), Severance Hospital, Yonsei University Health System (IRB No.
4-2022-1468), Bundang Seoul National University Hospital (IRBNo. 2305-

829-401), Hanyang University Hospital (IRB No. 2022-12-007-001),
Eunpyeong St. Mary’s Hospital (IRB No. 2022-3419-0002), Asan Medical
Center (IRBNo. 2023-0114), ChungbukNational University Hospital (IRB
No. 2023-04-034), Wonkwang University Hospital (IRB No. 2022-12-023-
001), and Seoul St. Mary’s Hospital (IRB No. KC24ENDI0198). Written
informed consent was obtained from all parents and/or legal guardians of
participating children.

Study design overview
The study followed a stepwise design described in Fig. 2: home videos were
first screened througha selectionprocess to ensureprotocol complianceand
quality. Screened videos were then processed through deep learning-based
modules, depending on the task: STT (speech-to-text)40 was applied to
capture verbal responses in name-response videos, Key-point Detector
(pose estimation)41 was used to track 17 body keypoints in all three videos,
andBallDetector (object detection)42was employed to detect ball position in
ball-playing videos. These sub-features were subsequently transformed into
clinically meaningful behavioral metrics, developed collaboratively by AI
and clinical experts and informed by prior ASD studies38,43. Finally, the
extracted behavioral features served as inputs tomachine learning classifiers
trained for ASD screening, and predictions were integrated through an
ensemble method based on confidence scores.

The following sections describe the participant recruitment process,
the video collection and selection protocol, clinical feature extraction, and
machine learning classification in detail.

Participants and recruitment
We recruited children aged 18–48 months who visited the pediatric or
psychiatric departments at nine tertiary care hospitals in South Korea
between October 2022 and May 2024. The participating institutions
included Seoul National University Hospital, Severance Hospital,
Eunpyeong St. Mary’s Hospital, Wonkwang University Hospital, Bundang
Seoul National University Hospital, Hanyang University Hospital, Asan
Medical Center, Chungbuk National University Hospital, and Seoul St.
Mary’s Hospital. Recruitment was conducted through outpatient clinics,
community outreach, and online promotions.

Children were excluded if they met any of the following exclusion
criteria: (1) <18 months or >49 months of age; (2) congenital genetic dis-
orders; (3) history of acquired brain injury (e.g., cerebral palsy); or (4)
seizure disorders or other neurological conditions. After applying these
eligibility criteria, 315 children diagnosed with ASD and 127 children
classified as typically developing (TD) were included.

All participants underwent psychological assessments, including
developmental screenings and ASD-specific evaluations, tailored by age
(Table 5). The screening tools included the Korean Developmental
Screening Test for Infants and Children (K-DST)44, Behavior Development
Screening forToddlers-Interview/play (BeDevel-I/P)7,45,ModifiedChecklist
for Autism in Toddlers (M-CHAT)46, Quantitative Checklist for Autism in
Toddlers (Q-CHAT)47, Sequenced Language Scale for Infants (SELSI)48,
Child Behavior Checklist (CBCL)35, Korean Vineland Adaptive Behavior
Scales (K-VABS)49, Social Communication Questionnaire Lifetime Version
(SCQ-L)50, Social Responsiveness Scale (SRS-2)51, and Preschool Receptive-
Expressive Language Scale (PRES)52. If any screening result exceeded clinical
thresholds, diagnostic evaluations were conducted using the Autism Diag-
nostic Observation Schedule, Second Edition (ADOS-2)38 and the Korean
ChildhoodAutismRatingScale, SecondEdition (K-CARS-2)53.AllADOS-2

Table 4 | Analysis of extracted common features

Lack of eye contact p value Non-engaged movements p value Physical contact p value

TD 1.30 ± 3.78 <0.001 0.69 ± 5.94 <0.001 0.69 ± 2.52 0.026

ASD 4.25 ± 6.47 2.59 ± 9.23 3.78 ± 7.69

The mean and standard deviation of each value were calculated. An independent t-test was conducted to compare the TD and ASD groups.
TD typically developing, ASD autism spectrum disorder.
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assessments were administered by examiners who achieved research relia-
bility under certified supervision.

Children were classified as ASD if they met either of the following: (1)
ADOS-2 score equal toor above the autismspectrumcutoff; or (2)K-CARS-
2 score ≥3053. TD childrenmet all of the following: (1) normal range across
all screening tools; (2) no evidence of language delay; (3) no medical, sur-
gical, or neurological conditions; (4) nofirst-degree relatives diagnosedwith
ASD; and (5) no history of prematurity(gestational age <36 weeks).

Video recording protocol
Following enrollment and diagnostic classification, participants completed
structured home video recordings using a standardized mobile application.
This application was designed to capture core social interaction behaviors
relevant for early ASD screening, informedby validated clinical frameworks
such as the Early Social Communication Scale (ESCS)54 and the ADOS-238.

The mobile application provided parents with comprehensive
recording instructions, embedded instructional videos, automated framing
guides, and upload functions to ensure standardization across home
environments. Detailed technical protocols for device setup, environmental
controls, and task execution are described in Supplementary Note 2.

Parents recorded three structured interaction tasks at home:
• Name-response task: parents called the child’s name from outside the

child’s visual field to assess social orienting. Repetitions or familiar
sounds were used if no response was observed within 5 s.

• Imitation task: parents demonstrated simple motor actions (hand-
raising and clapping) to assess imitation skills, with variations
depending on the child’s age. Multiple prompts were allowed when
necessary.

• Ball-playing task: parents engaged in reciprocal turn-taking by rolling a
ball to the child, initially using non-verbal gestures, followed by verbal
encouragement if needed.

Each video was approximately 1min in duration, and recordings were
restricted from being paused during the first 5 s to capture spontaneous
responses.

All videos were reviewed for protocol compliance and quality control.
Videos with critical protocol deviations or technical issues were excluded.
Re-recordings were permitted when protocol violations were identified.

Only one video per task per child was retained. Vertically recorded videos
were excluded. Following quality control and group balancing through
random sampling, thefinal dataset consisted of 253ASDand257TDvideos
(Fig. 3). An independent validation set containing 158 additional videos (90
ASD and 68 TD) was also prepared for external model evaluation.

Clinical feature extraction overview
We implemented a structured feature extraction pipeline developed colla-
boratively by AI and clinical experts. This process comprised (1) task-
specific feature extraction and (2) common clinical features extraction in
detail.

Task-specific feature extraction
We extracted features from each structured video task, namely name-
response, imitation, and ball-playing, using a combination of gaze-based,
audio-based and motion-based cues, as described below.
• Name-response task: in a name-response video, the child’s response to

the parent’s call can be vocal or behavioral. The STT40 model was used
to convert the video audio into text, and specific keywords in the STT
output were used to identify children’s vocal responses. To evaluate
behavioral responses, we first established a gaze estimation framework:
a “gaze vector” was defined as a line orthogonal to the ear-to-ear axis
and passing through the nose (Fig. 4a), derived from 17 keypoints.
Shifts in the vector’s length andorientationwere interpretedas changes
in gaze direction, serving as a non-intrusive proxy for joint attention
and social engagement. Based on this framework, changes in gaze
direction, indicated by a shortened gaze vector and altered eye
positions, suggested that the child had turned toward the parent.
Response latency was defined as the time from parental prompt to the
child’s initial vocal or behavioral response to initiate a vocal or
behavioral response. Parental attempts were captured by analyzing the
frequency of parents’ calls in the STT output.

• Imitation task: in the imitation video, the parent performed gestures,
such as clapping and arm-raising, which the child was encouraged to
imitate.Movementswere recognized basedonpredefined rules applied
to key point configurations, particularly arm-raising actions. The
alignment of the key points for thewrist, elbow, and shoulder along the
Y-axis, the angle between the elbow and shoulder, and the elbow-wrist

Fig. 2 | Overview of our AI approach. Each home video first undergoes a selection
process to ensure protocol compliance and quality. Selected videos are then pro-
cessed through deep learning (DL)-based modules such as STT (speech-to-text),
Key-point Detector (pose estimation), and Ball Detector (object detection) to extract
sub-features. These sub-features are then transformed into clinically interpretable

behavioral features. The extracted features are used to train machine learning (ML)
classifiers for each of the three structured video tasks (name-response, imitation, and
ball-playing). Finally, predictions from the task-specific models are integrated
through an ensemble method based on confidence scores to yield the prob-
ability of ASD.
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Fig. 4 | Examples of scenarios from the three video types.Our study utilizes three
types of scenario videos: a an example of a “name-response” video with a gaze vector
overlaid, b an example of a “imitation” video showing key points for the wrist, elbow,

and shoulder, and c an example of a “ball-playing” videowith bounding boxes drawn
around each participant and the ball.

Table 5 | Age-specific psychological assessments for participant selection

Age Screening test Additional assessment

ASD screening tests Language and functional level assessment ASD diagnostic assessment (If above screening cutoff)

18–23 months K-DST, BeDevel, M-CHAT, Q-CHAT SELSI, CBCL 1.5-5, K-VABS ADOS-2

24–29 months K-DST, BeDevel, M-CHAT, Q-CHAT, SCQ SELSI or PRES, CBCL 1.5-5, K-VABS ADOS-2, K-CARS-2

30 months K-DST, BeDevel, M-CHAT, Q-CHAT, SCQ, SRS SELSI or PRES, CBCL 1.5-5, VABS ADOS-2, K-CARS-2

31–42 months K-DST, BeDevel, SCQ, SRS SELSI or PRES, CBCL 1.5-5, VABS ADOS-2, K-CARS-2

43–48 months K-DST, SCQ, SRS-2 SELSI or PRES, CBCL 1.5-5, VABS ADOS-2, K-CARS-2

ADOS-2Autism Diagnostic Observation Schedule,K-CARSKorean version of the Childhood Autism Rating Scale, Second Edition,K-DSTKorean Developmental Screening Test for Infants and Children,
BeDevel-I/P Behavior; Development Screening for Toddlers-Interview/play,M-CHATModified Checklist for Autism in Toddlers,Q-CHATQuantitative Checklist for Autism in Toddlers, SELSI Sequenced
Language Scale for Infants,CBCLKorean version of the Child Behavior Checklist 1.5–5,K-VABSKorean VinelandAdaptive Behavior Scales, Second Edition,SCQ-LSocial CommunicationQuestionnaire
Lifetime Version, SRS-2 Social Responsiveness Scale, Second Edition, Preschool version, PRES Preschool Receptive-Expressive Language Scale.

Fig. 3 | Dataset workflow. ASD autism spectrum disorder, TD typically developing.
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vectors (Fig. 4b)wereused todetect arm-raising gestures.The extracted
features included the number of parental attempts before the child
successfully imitated the action and the response latency from the start
of the parent’s action to the child’s imitation.

• Ball-playing task: in the ball-playing video, the parents placed a ball
between themselves and the child, observing whether the child would
pass the ball back throughhand extensionwithout verbal prompts (Fig.
4c). A pre-trained object detector42 based on the COCO55 dataset was
used to detect the position of the ball, and ownership was determined
by calculating the intersection over union (IoU) values between the
bounding boxes of the child, parent, and ball. A valid interaction was
defined as a sequential transfer of the ball from the child to the parent.
The time taken for the ball to be transferred from the child to the parent
was recorded, along with whether the action was performed.

Common clinical features extraction
In addition to task-specific features, several common behavioral markers
were extracted across imitation and ball-playing tasks, capturing broader
social engagement indicators such as lack of eye contact, non-engaged
movements, and physical contact.
• Lack of eye contact: reduced eye contact is a well-established early

indicator of ASD, reflecting difficulties in social attention and joint
engagement56. Using the previously defined gaze vector in the name-
response, we estimated the child’s visual attention toward the parent.
When the child focusedon theparent, thedotproduct of the gaze vector
increased. The cumulative duration forwhich the child did not focus on
the parent was recorded as the clinical feature. This unobtrusive
approach allowed for consistent estimation of gaze direction across
videos without requiring specialized eye-tracking hardware.

• Non-engaged movements: motor restlessness and lack of sustained
engagement are often observed in childrenwithASD, especially during
social tasks57,58. These behaviorsmay reflect underlying challengeswith
self-regulation or attention.We analyzed the centroid, height-to-width
ratio, and detection status of the child’s bounding box to quantify the
time the child spentmoving during the video. This provided ameasure
of the child’s activity level and inability to remain still. Dynamics of the
bounding box were utilized as a non-intrusive proxy for overall
movement and restlessness in naturalistic conditions.

• Physical contact: during the video tasks, we frequently observed
instances where the child did not follow parental instructions or dis-
engaged from the task (e.g., walking away or becoming unresponsive).

Given that children with ASD often show reduced responsiveness to
verbal instructions and a tendency to disengage from structured tasks,
and that previous studies have found that parents of children with ASD
use more gestures to facilitate engagement59, we frequently observed
parents touching the child’s body, such as gently placing a hand on the
shoulder or arm, while speaking to them or attempting to draw their
attention back to the task. Such instances of physical contact likely
reflect naturalistic parental strategies to manage noncompliance or
disengagement, particularly when verbal or gestural prompts alone are
insufficient. To detect instances of physical contact with the parent
during the interaction, we identified when the parent’s wrist key points
entered the child’s bounding box. The cumulative duration of these
instances was recorded as an indicator of the degree of parental invol-
vement. This measure serves as an indirect proxy for child compliance
and regulation difficulties, as well as the caregiver’s effort to maintain
engagement through physical prompts. The use of 2D wrist keypoints
enables unobtrusive detection of such events in naturalistic home set-
tings without requiring manual annotation or wearable sensors.

ML classification models
As the final step in the analysis pipeline, the extracted task-specific and
common clinical features were aggregated into a tabular dataset for training
ML models, including linear models (logistic regression)60, tree-based
methods (LightGBM,XGBoost, CatBoost, random forest, gradient boosting
classifier, AdaBoost)32,61–65, support vector machines66, k-nearest
neighbors67, and multi-layer perceptron models68.

To determine the optimal model for each task, we performed a stra-
tified 10-fold cross-validation on 80% of the data, reserving 20% as an
independent hold-out test set. The model with the highest mean validation
AUROCwas selected. Separatemodelswere trained for eachvideo type, and
soft ensemble techniques were applied to the children who appeared in two
or more videos in the test set. A detailed explanation of the model selection
process is illustrated in Fig. 5.

Statistical analysis
To assess whether the extracted behavioral metrics differed significantly
between ASD and TD groups, we performed group-level statistical com-
parisons separately for task-specific features (Table 3) and common clinical
features (Table 4). As the two groups were independent, we used inde-
pendent two-sample t-tests for all comparisons. This test was chosen to
evaluatewhether themean value of each featuremetric differed significantly

Fig. 5 | Overview of the model selection process. The dataset was split into a
training-validation set (80%) and an independent hold-out test set (20%). Candidate
models were trained separately for each video task (Name-response, imitation, and
ball-playing) using stratified ten-fold cross-validation, and the model with the

highest mean validation area under the receiver operating characteristic curve
(AUROC) was selected. The selected models were then evaluated on the hold-out
test set. ML machine learning.
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between groups, under the assumption of independent observations. All
analyses were conducted using Python (v3.8.19) with the scikit-learn
(v1.2.2) and SciPy (v.1.10.1) packages. A significance threshold of p < 0.05
(two-tailed) was applied for all tests.

Clinical review of AI model on test videos
Although quantitative metrics such as AUROC provide objective measures
of model performance, they cannot fully capture the nuanced behavioral
interpretations required in real-world pediatric ASD screening. To com-
plement these numerical evaluations and assess themodel’s alignment with
expert clinical judgment, we conducted an independent clinical review of
the AI model’s predictions on the test videos. All test videos were inde-
pendently reviewed by a clinical psychologist (doctoral level) and a pediatric
psychiatry resident (master’s level), classifiedby theAImodel.Weexamined
three aspects: whether the child in the video was ASD or TD, how the child
responded to parental instructions, and how these clinical observations
compared with the AI model’s classification outcomes and evaluation
metrics. The test videos were categorized into four groups based on the
clinical assessment and ML classification: true positive, false negative, false
positive, and true negative. Differences in psychological test results among
the four groups were analyzed, with detailed results provided in Supple-
mentary Note 1 and Supplementary Tables 3–5.

Data availability
The datasets generated and analyzed during the current study are not
publicly available because of privacy and confidentiality concerns, but are
available from the corresponding author upon reasonable request.

Code availability
Theunderlying code for this study is not publicly available, butmaybemade
available to qualified researchers upon reasonable request from the corre-
sponding author. All analyses were conducted using Python 3.8.19 with
PyTorch 2.4.0. Key libraries included Ultralytics 8.2.76, PyCaret 3.2.0,
OpenAI Whisper (20231117), OpenCV-Python 4.10.0.84, and scikit-
learn 1.2.2.
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