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ARTICLE INFO ABSTRACT

Keywords: Glioblastoma (GBM), the most prevalent primary brain tumor, remains incurable due to the presence of cancer
Bruton’s Tyrosine Kinase inhibitor stem cells (CSCs), which can be isolated as tumorspheres (TSs) that exhibit classical characteristics of CSCs,
S;:’gi)aos;oma including stemness and invasiveness. The significantly elevated expression of Bruton’s tyrosine kinase (BTK) in

GBM tissues identifies BTK as a potential therapeutic target in GBM. Consequently, ibrutinib, an FDA-approved
BTK inhibitor for hematological malignancies, has been repurposed as a candidate for GBM treatment,
demonstrating inhibitory effects on the proliferation, stemness, and invasiveness of GBM cell lines and TSs.
However, its broad-spectrum activity targeting other Tec family kinases and members of the epidermal growth
factor receptor family, poses potential life-threatening risks, necessitating the development of more selective
alternatives. To address this shortcoming, we synthesized BTK-selective analogs (SPA1758, SPA1763, SPA8004,
SPA8007, and SPA8009) specifically designed to target two hallmark features of GBM TSs: stemness and
invasiveness.

WST and ATP assays identified SPA8007 and SPA8009 as the most effective candidates with superior cytotoxic
effects in TSs. Additionally, both SPA8007 and SPA8009 significantly inhibited neurosphere formation and
reduced invasiveness in GBM TSs. Furthermore, SPA8007 demonstrated improved survival rates in a GBM
xenograft mouse model and significantly reduced the expression of invasiveness markers, as observed in
immunohistochemistry analysis. These findings highlight SPA8007 as a potential novel chemotherapeutic agent
with high specificity and efficacy to enhance GBM therapy.

SPA8009
Tumorsphere

Abbreviations: GBM, Glioblastoma multiforme; CSC, cancer stem cell; TS, tumorsphere; BTK, Bruton’s tyrosine kinase; NHA, normal human astrocyte; ERBB2, erb-
b2 receptor tyrosine kinase 2; EGFRK, epidermal growth factor receptor kinase; ITK, interleukin-2-inducible T-cell kinase; JAK3, Janus Kinase 3; DMEM, Dulbecco’s
modified eagle’s medium; EGF, epidermal growth factor; bFGF, basic fibroblast growth factor; DEG, differentially expressed genes.
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Introduction

Glioblastoma (GBM) is the most aggressive and lethal primary brain
tumor and accounts for 80 % of all central nervous system malignancies
[11,15]. Despite treatment advances, the median survival remains low,
at 15 to 20 months, due to the presence of cancer stem cells (CSCs)
within the tumor, which drive tumor growth and treatment resistance
[22,32,38,39,47]. Patient-derived GBM tumorspheres (TSs), represent-
ing CSCs, can be isolated and cultured from mother tissue, which pre-
sents phenotypic features such as stemness and invasiveness [18,37].

Studies have shown that elevated expression of genes associated with
cancer aggressiveness and stemness is linked to high Bruton’s tyrosine
kinase (BTK) expression in solid tumors [10,12,23,44,50]. Additionally,
in GBM, high BTK levels are associated with poor prognosis, making BTK
a promising therapeutic target [33,53]. BTK, a member of the large Tec
family of non-receptor tyrosine kinases, plays a critical role in devel-
opment, differentiation, and signaling pathways, extending its involve-
ment into oncogenic pathways [34,35].

Ibrutinib, a prototype BTK inhibitor and US Food and Drug
Administration-approved drug for hematological malignancy, has
shown remarkable efficacy in reducing the proliferation, stemness, and
invasion of GBM cells in vitro and in vivo, leading to over 400 registered
clinical trials [9,43,46,55]. However, ibrutinib’s broad spectrum of ac-
tion targeting other Tec family kinases and members of the EGFR family
causes serious side effects, including bleeding, hypertension, and atrial
fibrillation, leading to therapy discontinuation in up to 32 % of clinical
trials [6,40,54].

To overcome this drawback, we previously synthesized a set of five
selective BTK inhibitors in-house by modifying lipophilic groups in the
ibrutinib structure [24]. Kinase selectivity profiles of these compounds
exhibited BTK selectivity greater than 92 %, with minimal selectivity
toward other kinases such as ERBB2, EGFRK, ITK, JAK3, TEC, and TXK
[2,24]. Furthermore, these compounds demonstrated in vivo efficacy in
murine models of hematological malignancies, with no significant
toxicity, as evidenced by clinical and histological assessments [2,24].

Given the potential of BTK inhibitors as effective TS targeting drugs,
we hypothesized that they significantly reduce proliferation, stemness,
and invasiveness in patient-derived GBM TSs. Indeed, our results
confirmed the BTK inhibitors markedly reduced these traits both in vitro
and in vivo, positioning these drugs as a leading candidate for GBM
treatment.

Materials and methods
Sample isolation and culture

A total of 99 tumor tissues were collected from patients who un-
derwent surgical resection at Severance Hospital, Yonsei University
College of Medicine, Seoul, Republic of Korea. Tumor-free cortex sam-
ples were randomly obtained from GBM patients during tumor removal.
Written informed consent was obtained from all patients for sample
collection and research purposes. The study was conducted in accor-
dance with the ethical standards and guidelines of the Institutional
Review Board (IRB No. 4-2021-1319) and complied with all applicable
institutional and national regulations.

Three GBM TSs (TS13-64, TS13-30, and TS15-88) were individually
isolated from tissue specimens obtained from three separate GBM pa-
tients and cultured in TS complete medium comprising Dulbecco’s
Modified Eagle’s Medium/ nutrient mixture F-12 (DMEM/F-12; Medi-
atech, Manassas, VA, USA), supplemented with 20 ng/mL epidermal
growth factor (EGF; Novoprotein, Summit, NJ, USA), 20 ng/mL basic
fibroblast growth factor (bFGF; Novoprotein), 50 U/mL penicillin, and
50 pg/mL streptomycin and 1 x B27 (Invitrogen, San Diego, CA, USA)
[14,18,30].

Normal human astrocytes (NHA) were obtained commercially
(Lonza, Walkersville, MD, USA) and cultured in Astrocyte Basal Medium
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supplemented with the Astrocyte Growth Kit (Lonza). Cells were. All in
vitro experiments were maintained at 37 °C in a humidified incubator
with 5 % COz, and the medium was replaced every 3-4 days.

Luc-TS13-64 was generated by incorporating CMV-firefly luciferase
lentivirus (Cellomics Technology, Thermo Fisher Scientific, Pittsburg,
PA, USA) into GBM TSs followed by puromycin selection.

Synthesis of BTK inhibitors

The used BTK inhibitors (SPA1758, SPA1763, SPA8004, SPA8007,
SPA8009) have been previously reported in two scientific publications
[2,24]. In brief, for pyranochromenone analogs (SPA1758, SPA1763),
electrophilic warheads were introduced to decursinol via a dicyclohex-
ylcarbodiimide coupling reaction. For tetrahydroisoquinoline-linked
aminopyridine analogs (SPA8004, SPA8007, SPA8009), tetrahy-
droisoquinoline intermediate was prepared via Bischler-Napieralski
cyclization and reduction with lithium aluminum hydride. The purposed
compounds were obtained through N-alkylation, nucleophilic substitu-
tion reactions, and nitro group reduction under mild acidic conditions.

Cell viability and ATP level assays

GBM TSs were dissociated into single cells and plated into a trans-
parent 96-well plate for cell viability assays and a black 96-well plate for
ATP assays at a density of 1 x 10* cells per well. After 24 h of incubation,
BTK inhibitors (SPA1758, SPA1763, SPA8004, SPA8007, SPA8009)
were added and incubated for an additional 72 h at 37 °C. The prolif-
erative effect of BTK inhibitors on GBM TSs was assessed using Cell
Counting Kit-8 (Dongin, Seoul, Korea). Ten microliters of WST reagent
were added to each well, and absorbance at 450 nm was measured after
1 h of incubation at 37 °C. ATP levels were measured using the Cell Titer-
Glo Luminescent Cell Viability Assay kit (Promega, Fitchburg, WI, USA)
following the manufacturer’s protocol. One hundred microliters of Cell
Titer-Glo was added to each well, and luminescence was measured using
a Centro XS° LB 960 Spectrometer (PerkinElmer, Waltham, MA, USA)
after 10 min of incubation at room temperature. Each experiment was
conducted in triplicate, and the cell viability results were expressed as
the percentage of viable cells relative to that in the control.

Determination of inhibitory concentrations

Cell viability was assessed using WST after treatment with increasing
concentrations of each compound (0-100 pM) for 72 h. The viability at
each concentration was normalized to that in the untreated control (set
as 100 %). Dose-response curves were generated and fitted using non-
linear regression with a four-parameter logistic model (variable slope)
in the GraphPad Prism 9 software (GraphPad Software, San Diego, CA,
USA). The concentration necessary to inhibit cell viability by 20 % (IC20)
and 50 % (ICs() was calculated based on the fitted curve by determining
the drug concentration corresponding to 80 and 50 % viability,
respectively.

Neurosphere formation assay

GBM TSs were dissociated, and ten single cells were seeded into each
well of a transparent 96-well plate. Following 24 h of incubation at 37
°C, 10 uM BTK inhibitors (SPA8007, SPA8009) were introduced to the
wells. After 3 weeks of incubation, the number of wells with sphere
formation was counted and the results were expressed relative to the
number of wells with sphere formation in the control group. Addition-
ally, the average radius of the spheres in each experimental group was
measured using the ToupView software (x64 v.3.7.1460, ToupTek
Photonics, Zhejiang, China).
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Three-dimensional (3D) invasion assays

A Matrigel mixture comprising TS complete medium, Matrigel
(Corning Life Sciences, Tewksbury, MA, USA), and rat tail collagen type
I (BD Biosciences, Franklin Lakes, NJ, USA) was dispensed into each well
of a transparent 96-well plate. Prior to gelation, single GBM TS spheroids
were seeded into each matrix-filled well and incubated at 37 °C for 30
min. Subsequently, TS complete medium containing BTK inhibitors
(SPA8007, SPA8009) was added to each well and incubated for 72 h.
The invaded area was measured using the ToupView image analysis
software (ToupTek Photonics) and calculated by relating this area to
that at 0 h.

Western blot

Dissociated 4 x 10° single cells were seeded into a 100-mm culture
dish and incubated for 24 h. Following this incubation period, 10 pM
BTK inhibitors (SPA8007, SPA8009) were introduced. After additional
72 h of incubation, TSs were harvested and collected using sedimenta-
tion, followed by protein extraction utilizing cell extraction buffer
(Invitrogen) supplemented with 1x protease and phosphatase inhibitor
cocktail (Thermo Fisher Scientific, Waltham, MA, USA). GBM TS lysates
were then subjected to SDS-polyacrylamide gel electrophoresis. The
separated proteins were transferred onto nitrocellulose membranes (GE
Healthcare Life Sciences, Little Chalfont, UK) and incubated in 3 %
bovine serum albumin blocking solution for 1 h at room temperature
and incubated overnight at 4 °C with specific primary antibodies with
1:1000 dilution of SOX2, p-catenin (Cell Signaling Technology, Danvers,
MA, USA), PDPN, GAPDH (Santa Cruz Biotechnology, Santa Cruz, CA,
USA), Nestin, N-cadherin (Sigma-Aldrich, St. Louis, MO, USA) and ZEB1
(Abcam, Cambridge, UK). Secondary horseradish peroxidase-conjugated
IgG antibodies (Santa Cruz Biotechnology) were introduced and allowed
to incubate for 1 h at room temperature. Western Lightning Plus-
enhanced chemiluminescence reagent (PerkinElmer) was used for
detection, and an ImageQuant LAS 4000 mini (GE Healthcare Life Sci-
ences) was employed to capture the images. Western blot images were
minimally processed to improve clarity while maintaining data integ-
rity. In certain experiments, lanes corresponding to unrelated treatment
conditions (e.g., Ibrutinib) were excluded to enhance focus and clarity;
such modifications are explicitly noted in the respective figure legends.
Where applicable (Figs. 2b and 3b), splicing boundaries are clearly
marked by thin vertical lines. The corresponding uncropped and un-
processed blots are provided in Supplementary Figs. 5 and 6.

Bulk RNA sequencing

For TS bulk RNA sequencing, single 4 x 10° cells were seeded in 100-
mm culture dishes. After 24 h of incubation, 10 pM BTK inhibitors
(SPA8007, SPA8009) were added and incubated for an additional 72 h.
TSs were then harvested and treated with Trizol for RNA extraction.
Total RNA samples were assessed using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA). Fastq files were generated
using bcl2fastq (v2.2) and quality was checked using FastQC (v.0.11.9).
Next, the [llumina TruSeq adapter sequences were trimmed out from the
read files using Skewer (v.0.2.2) with paired-end mode default param-
eters. The reads were mapped to the human reference genome (GRCh38)
using STAR aligner (v.2.7.10a). Gene counts were normalized to tran-
scripts per million criteria with R. The cell effect was corrected using the
sva R package and genes with a log2-fold change > 0.5 and an adjusted
p-value < 0.05 were selected as differentially expressed genes (DEGS).
DEG analyses were conducted using DESeq2 R package [27] and visu-
alized using the pheatmap R package. To find associations of genes and
biological pathway terms, DEG lists were run using the enrichR R
package. Gene Ontology Biological Process 2023 was used as the
reference term set (accession number: GSE288022).
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Mouse orthotopic xenograft model

In vivo experiments and animal care were approved by the Com-
mittee for the Care and Use of Laboratory Animals at Yonsei University
College of Medicine (approval no. 2023-0237) and were conducted
following the guidelines established by the US National Institutes of
Health. The reporting of animal experiments in this study adheres to the
ARRIVE guidelines.

Male athymic nude mice aged 6-8 weeks (Central Lab. Animal Inc.,
Seoul, Korea) were used after 1 week of acclimatization under controlled
environmental conditions, including humidity (55 + 5), lighting (12-h
light/ dark cycle), and temperature (22 + 2 °C). Luc-TS13-64 cells were
dissociated and plated in a 100-mm culture plate and treated with 10 pM
of SPA8007 for 72 h following a standardized protocol [5,19,26,28,29,
36,37,45,49]. Subsequently, 1 x 10° cells/mouse were injected into the
right frontal lobe of mice using a guide-screw system [21], ensuring an
injection depth of 4.5 mm. Mice with 15 % body weight reduction were
euthanized following the guidelines of the American Veterinary Medical
Association, which was reflected in the survival curve.

Bioluminescence imaging

The mice were anesthetized with 2.5 % isoflurane, and 100 pl of d-
Luciferin / 20 g of mouse (30 mg/ml; dissolved in DPBS, Promega) was
administered via the intraperitoneal route 10 to 15 min prior to biolu-
minescence image acquisition. Images were captured using an IVIS im-
aging system and the Living Image v4.2 software (Caliper Life Sciences,
Hopkinton, MA, USA).

Immunohistochemistry

Paraffin-embedded brain tissue blocks were cut at a thickness of 4 pm
using a microtome and mounted onto adhesive slides. An automated
instrument (Discovery XT, Ventana Medical Systems, Tucson, AZ, USA)
was employed for antigen retrieval and antibody binding, while a
peroxidase/3,3'-diaminobenzidine staining system was utilized to detect
Nestin and ZEB1.

Statistical analysis

Significant differences between the control and treatment groups
were calculated using one-way analysis of variance with Tukey’s post
hoc test for multiple comparisons. Survival analysis was conducted
utilizing the Kaplan-Meier method and comparisons performed through
log-rank tests. All graphical and statistical analyses were performed
using GraphPad Prism 9 software (GraphPad Software Inc., San Diego,
CA, USA), with p-values < 0.05 (*), < 0.01 (**), and < 0.001 (***)
considered statistically significant.

Results

BTK expression levels are significantly elevated in both GBM tissues and
TSs compared to normal brain tissues and normal human astrocytes

Bulk RNA sequencing analysis of tissues from primary GBM patients
revealed markedly increased (p < 0.001) BTK expression levels in tumor
tissues (n = 99) compared to tumor-free cortex tissues (n = 42; Fig. 1a)
consistent with prior studies [17,43]. Supplementary Table 1 and
supplementary Table 2 contain detailed clinical and histopathological
information regarding tumor-free cortex and tumor tissues, respectively.
Additionally, significantly elevated (p < 0.05) BTK expression was
observed in GBM TSs isolated from the bulk tumor compared to its
tumor-free counterpart, NHA (Fig. 1b) [3,4,52]. Three representative
GBM TSs (TS13-30, TS13-64, TS15-88) were selected for further
investigation. Supplementary Table 3 shows detailed histopathological
characteristics of GBM tissues and corresponding TSs. Brief information
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Fig. 1. BTK expression in both GBM tissues and TSs and anti-proliferative effects of new BTK inhibitors.

a mRNA expression level of BTK in tumor free cortex tissue (n = 42) and GBM tumor tissue (n = 99) obtained from tissue bulk RNA sequencing of severance patients.
b mRNA expression level of BTK in normal human astrocyte (NHA, n = 5) and TSs (n = 38) derived from patient tumor tissue. ¢ Chemical structure of five newly
synthesized BTK inhibitors. d Cell viability was measured after treatment of three TSs with the five new BTK inhibitors. e Cell ATP levels were measured after
treatment of three TSs with the five new BTK inhibitors. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared with the control.
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of the five newly developed BTK inhibitors (SPA1758, SPA1763,
SPA8004, SPA8007, and SPA8009), validated for their efficacy in earlier
investigations (Fig. 1c), is provided in supplementary Table 4.

SPA8007 and SPA8009 exhibit superior cytotoxic effects in TSs relative to
other compounds

To identify the most promising candidate drug, WST and ATP assays
were performed. Three GBM TSs were treated with each inhibitor for 72
h at increasing doses to determine the appropriate concentration that
induces cellular phenomena with minimal effects on cell viability (ICy).
Sub-cytotoxic concentrations are widely recommended for assessing
stemness and invasion phenotypes to avoid confounding apoptotic re-
sponses [4,8,13,37]. Based on this rationale, 10 pM was selected as the
experimental concentration for all subsequent assays (Supplementary
Figs. 1, 2 and Supplementary Table 5). Among the tested compounds,
SPA8007 and SPA8009 demonstrated the highest cytotoxic effects,
whereas SPA1758, SPA1763, and SPA8004 exhibited minimal cytotox-
icity across all three TSs (Fig. 1d). However, in the ATP assay, only
SPA8007 reduced ATP levels significantly (p < 0.01) in all three TSs
(Fig. 1e). Consequently, SPA8007 and SPA8009 were chosen for further
investigation.

To evaluate tumor selectivity and potential safety, IC20 and ICso
values of SPA8007, SPA8009, and ibrutinib in NHA and the three GBM
TSs were determined and compared (Supplementary Fig. 2 and Sup-
plementary Table 5). SPA8007 exhibited comparable ICyy values in
NHA (9.7 pM) and TS13-64 (10 pM), and SPA8009 showed markedly
reduced toxicity in NHA (44 pM) while retaining strong activity in
TS13-64 (0.4 pM) whereas ibrutinib was more toxic to NHA (9.2 pM)
than to TS13-64 (19 pM) with p value of < 0.0001.

Collectively, these findings indicated that the novel BTK inhibitors
SPA8007 and SPA8009 induce greater cell death in GBM TSs than the
other three inhibitors and offers a favorable balance of potency and
selectivity for therapeutic application than ibrutinib.

SPA8007 and SPA8009 significantly reduce the stemness and invasive
properties of TSs

The reduction in the stemness and invasive potential of the selected
drugs in TSs was evaluated using neurosphere formation and 3D inva-
sion assays, respectively. Both SPA8007 and SPA8009 significantly
decreased (p < 0.001) the percentage of wells exhibiting positive
spheres and reduced (p < 0.001) the sphere radius across all three TSs
compared to the respective control groups (Fig. 2a). Additionally,
SPA8007 substantially reduced the stemness-related marker proteins
SOX2 and PDPN in all three TSs, while SPA8009 reduced SOX2 and
PDPN in TS13-64 and TS15-88, as evidenced by western blot analysis
(Fig. 2b). Moreover, bulk RNA sequencing data showed that both
SPA8007 and SPA8009 reduced the number of stemness-related genes
(Fig. 2c). Combined, these data support that these two compounds
suppress the stemness of GBM TSs. In the 3D invasion assay, both
SPA8007 and SPA8009 significantly decreased (p < 0.05) the invasion
capacity of TS13-64 and TS15-88 compared to their respective control
groups (Fig. 3a). Western blot analysis demonstrated that SPA8007
significantly reduced the expression of invasiveness-related marker
proteins, ZEB1, B-catenin, and N-cadherin, in TS13-30, while in
TS13-64 and TS15-88, only ZEB1 and N-cadherin markers were
reduced. While SPA8009 substantially suppressed ZEB1, f-catenin, and
N-cadherin markers in TS15-88, it only suppressed the ZEB1 marker in
TS13-64 (Fig. 3b). Additionally, bulk RNA sequencing data showed that
both SPA8007 and SPA8009 reduced other invasiveness-related markers
(Fig. 3c). These results demonstrate that SPA8007 and SPA8009 effec-
tively inhibit the invasive properties of GBM TSs.
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SPAB8007 significantly increases the survival rate in a mouse xenograft
model

In the mouse orthotopic model, tumor growth in TS13-64, treated
with SPA8007, was compared to that in the TS13-64 control group.
Bioluminescence intensity, estimated based on total flux (photon/s) 3
weeks after injection of cells, indicated that the SPA8007 group
exhibited significantly smaller (p < 0.01) tumor sizes than the control
group (Fig. 4a and b), suggesting that treatment with SPA8007 reduced
the ability of GBM TSs to promote tumor growth in the mouse model.
Furthermore, Kaplan-Meier survival analysis demonstrated that
TS13-64 treated with SPA8007 exhibited significantly prolonged (p <
0.0059) survival compared to the control group (Fig. 4c). Immunohis-
tochemistry analysis revealed significantly reduced (p < 0.05) expres-
sion levels of the invasiveness marker ZEB1 in the SPA8007-treated
group compared to the control (Fig. 4d and e). However, Nestin
expression was not significantly altered in the SPA8007-treated group
(Fig. 4f). Collectively, these results demonstrate that SPA8007 reduced
the tumorigenic capacity of TS13-64.

Discussion

GBM remains an incurable malignancy, highlighting the urgent need
for identifying novel therapeutic targets [7,31]. Previous studies have
identified elevated BTK expression in GBM tumors [7,17,31,43],
consistent with our findings based on the Severance cohort (Fig. 1a),
suggesting that BTK could be a promising therapeutic target. However,
the use of BTK inhibitors to treat GBM has been hampered by their
significant toxicity [6,40], leading to the termination of many clinical
studies [54]. The toxicity of ibrutinib stems from its covalent binding to
a conserved cysteine residue in the ATP-binding domain of non-BTK
tyrosine kinases [1]. It thus inhibits multiple off-target kinases,
including ERBB family members (EGFR, HER2, HER3, HER4), TEC
family kinases (TEC, BTK, BMX, ITK, RLK), and JAK3. Notably, at 1
pM/L, ibrutinib inhibits over 95 % of 16 kinases [41], highlighting its
broad activity and the challenge of reducing off-target effects while
preserving efficacy. To address this issue, we developed more selective
and less toxic BTK inhibitors, ie., SPA1758, SPA1763, SPA8004,
SPA8007, and SPA8009 [2,24]. The pyranochromenone analogs
SPA1758 and SPA1763 exhibited exceptional BTK inhibitory activity
(98.2 % and 95.8 %, respectively) while maintaining minimal off-target
inhibition against ITK (17.3 %), EGFRK (32.9 %), and JAK3 (13.2 %),
and showing no activity against ERBB4 [2]. Additionally, the amino-
pyridine derivatives SPA8004, SPA8007, and SPA8009 demonstrated
similarly potent BTK inhibition (97 %, 98 %, and 92 %, respectively)
with low inhibition against EGFRK, ITK, TEC, and TXK [24]. Moreover,
these compounds were validated in vivo in a murine inflammatory
model, where they significantly reduced (p < 0.001) collagen-induced
arthritis severity in a dose-dependent manner without observable
toxicity. In a hematological malignancy model, they achieved a 47 %
reduction in tumor size compared to that in controls, without adverse
clinical symptoms, significant weight loss, or evidence of liver or kidney
toxicity upon necropsy [2,24]. These previous observations highlight
the therapeutic potential of the tested inhibitors as safer, more selective
alternatives for targeting BTK-driven diseases.

Among the 38 GBM-TSs isolated, TS13-30, TS13-64, and TS15-88
were chosen for their superior proliferative capacity [36]. Elevated BTK
expression in these TSs, which matches the high BTK expression of their
corresponding tumor tissues (Fig. 1a and b), confirmed that they accu-
rately reflect the molecular and functional characteristics of GBM and
are a suitable model for evaluating drug efficacy. Our findings revealed
that the newly synthesized SPA8007 and SPA8009 significantly reduced
(p < 0.001) the proliferative capacity of GBM TSs (Fig. 1d and e) and
downregulated pathways crucial for the cellular biosynthesis (Supple-
mentary Fig. 3). This finding coincides with the anti-proliferative effect
of ibrutinib in GBM and ovarian cancer cell lines [43,53,55]. Another
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Fig. 2. Effect of SPA8007 and SPA8009 on stemness of GBM TSs.

a The abundance of sphere-positive wells were determined after treatment with SPA8007 (10 pM) and SPA8009 (10 pM) relative to the control in three TSs. Changes
in sphere radii were evaluated after treatment with SPA8007 (10 pM) and SPA8009 (10 pM) relative to the control in three TSs. b Western blot and ¢ heatmaps
showing changes in stemness-related markers after treatment with SPA8007 and SPA8009 relative to the control in three TSs. Initially, lanes corresponding to
Control, Ibrutinib, SPA8007, and SPA8009 were loaded; the ibrutinib lane was excluded for clarity, as indicated by a thin vertical line separating Control and
SPA8007. The uncropped, original immunoblots are provided in Supplementary Fig. 5. Differences among groups were compared using one-way ANOVA with
Tukey’s post hoc test. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared with the control.
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Fig. 3. Effect of SPA8007 and SPA8009 on invasiveness of GBM TSs.
a Invasiveness of three TSs was evaluated in a Matrigel/collagen matrix after treatment with SPA8007 (10 uM) and SPA8009 (10 pM) for 72 h. b Western blot and ¢
RNA sequencing data displaying invasiveness-related marker changes after SPA8007 (10 pM) and, SPA8009 (10 pM) treatment for 72 h. Initially, lanes corresponding
to Control, Ibrutinib, SPA8007, and SPA8009 were loaded; the ibrutinib lane was excluded for clarity, as indicated by a thin vertical line separating Control and
SPA8007. The uncropped, original immunoblots are provided in Supplementary Fig. 6. Differences among groups were compared using one-way ANOVA with
Tukey’s post hoc test. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared with the control.
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Fig. 4. Therapeutic effect of SPA8007 in a mouse orthotopic xenograft model.

Luc TS13-64 TSs were treated with SPA8007 (10 pM) for 72 h and harvested viable TSs were injected into the mouse cortex (Control: n = 5, SPA8007: n = 5). a, b
Tumor volume was assessed through bioluminescence imaging as total photon flux. ¢ Kaplan Meier analysis showing the survival probability of the treated group vs.
the control group of mice. d H&E staining showing representative brains for each group. IHC analysis was performed in mouse brain sections for evaluation of Nestin

and ZEB1 expression levels. e Comparison of infiltrated ZEB1™" cells in control and SPA8007-treated groups. f Comparison of Nestin positive cells in control and
SPA8007-treated groups.
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study showed that both ibrutinib treatment and BTK gene silencing
inhibited the self-renewal ability of CSCs in ovarian cancer cell lines
[55]. Similarly, we also observed nearly complete inhibition (p < 0.001)
of sphere formation capacity after treatment with SPA8007and SPA8009
in all three TSs after 3 weeks of drug treatment (Fig. 2a). Western blot
and transcriptomic analysis further supported these results, showing
substantial reductions in the expression of stemness markers, including
SOX2, PDPN, and Nestin (Fig. 2b and c). Given the critical role of TSs in
driving therapy resistance and recurrence, our results suggest that tar-
geting stemness with the two inhibitors could represent a promising
therapeutic strategy for GBM patients [16,18]. In addition to their ef-
fects on stemness, SPA8007 and SPA8009 also significantly inhibited (p
< 0.05) GBM TS invasion, which is consistent with the anti-invasive
effect of ibrutinib in GBM cell lines reported previously [43,53]. Eval-
uating invasiveness in TSs is a critical factor in GBM research, as
numerous studies have highlighted that tumor invasion is predomi-
nantly driven by the CSC subpopulation [20,48]. Using a physiologically
relevant 3D invasion assay, we observed that SPA8007 and SPA8009
markedly reduced (p < 0.05) radial invasion of GBM TSs within 3 days of
treatment, without broad cytotoxicity (Fig. 3a). Western blot analysis
further validated these findings, revealing significant downregulation of
genes associated with invasiveness such as ZEB1, B-catenin, and
N-cadherin (Fig. 3b). This molecular evidence coincides with our tran-
scriptomic analysis (Fig. 3c) and highlights the potential of SPA8007
and SPA8009 to disrupt processes critical to GBM progression. More-
over, in an orthotopic xenograft model, treatment with SPA8007
significantly decreased tumor sizes (p < 0.01; Fig. 4a and b) and pro-
longed survival (p = 0.0059), as demonstrated by Kaplan-Meier analysis
(Fig. 4c), further highlighting its therapeutic potential. SPA8007 was
selected for in vivo study because it showed greater anti-stemness and
anti-invasiveness activity than SPA8009. TS13-64 cells were singled out
from the three TSs in the in vivo study because of their high BTK
expression levels (Fig. 1b), their notably brief mouse survival time, and
their pronounced aggressiveness within the mouse brain environment
[37]. To evaluate the intrinsic effects of SPA8007 on tumor cells inde-
pendently of systemic pharmacokinetic factors, SPA8007 was adminis-
tered as a pre-treatment to the cells prior to implantation. This approach
was chosen because ibrutinib, the parent compound of SPA8007 and
SPA8009, has been reported to exhibit very limited penetration into the
central nervous system despite feasible blood brain barrier permeability
due to active efflux mechanisms that substantially restrict its brain
exposure [42]. Furthermore, since SPA8007 and SPA8009 are novel
compounds with limited pharmacokinetic data available, the
pre-treatment method was deemed appropriate for this in vivo study.
Immunohistochemistry analysis was conducted on mouse brain tissue to
evaluate the impact of SPA8007 on the local microenvironment,
revealing a significant reduction (p < 0.05) in the levels of invasiveness
markers in brains treated with SPA8007 compared to those in control
mouse brains (Fig. 4c and d). Ibrutinib, however, failed to show any
therapeutic effect in the in vivo setting (Supplementary Fig. 4). As these
results did not demonstrate statistically significant efficacy, we opted to
present this data in the Supplementary section.

Combined, these findings highlight the anticancer potential of
SPA8007 and SPA8009 in human GBM cells. Given that targeting
stemness and invasiveness has been recognized as a critical therapeutic
approach for GBM, the outstanding performance of SPA8007 and
SPAB8009 in these aspects, along with their impact on survival, positions
them as promising strategies to curb the uncontrolled proliferation of
GBM.

This study has several limitations, including the use of a single in vivo
model. Future studies should employ multiple TS model in vivo to better
assess the efficacy and safety profile of the tested inhibitors and to
validate generalizability. Moreover, the lack of systemic drug adminis-
tration is another limitation of this study. Future work should include
pharmacokinetic analyses and develop strategies to enhance brain dis-
tribution and absorption to obtain clinically relevant data. Finally,

Translational Oncology 63 (2026) 102585

considering the critical role of the origin of GBM cells, our findings
underscore the need to evaluate the cytotoxic effect of SPA8007 on these
cells to further elucidate its therapeutic potential in targeting GBM at its
source [25,51].
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