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A B S T R A C T

Glioblastoma (GBM), the most prevalent primary brain tumor, remains incurable due to the presence of cancer 
stem cells (CSCs), which can be isolated as tumorspheres (TSs) that exhibit classical characteristics of CSCs, 
including stemness and invasiveness. The significantly elevated expression of Bruton’s tyrosine kinase (BTK) in 
GBM tissues identifies BTK as a potential therapeutic target in GBM. Consequently, ibrutinib, an FDA-approved 
BTK inhibitor for hematological malignancies, has been repurposed as a candidate for GBM treatment, 
demonstrating inhibitory effects on the proliferation, stemness, and invasiveness of GBM cell lines and TSs. 
However, its broad-spectrum activity targeting other Tec family kinases and members of the epidermal growth 
factor receptor family, poses potential life-threatening risks, necessitating the development of more selective 
alternatives. To address this shortcoming, we synthesized BTK-selective analogs (SPA1758, SPA1763, SPA8004, 
SPA8007, and SPA8009) specifically designed to target two hallmark features of GBM TSs: stemness and 
invasiveness.

WST and ATP assays identified SPA8007 and SPA8009 as the most effective candidates with superior cytotoxic 
effects in TSs. Additionally, both SPA8007 and SPA8009 significantly inhibited neurosphere formation and 
reduced invasiveness in GBM TSs. Furthermore, SPA8007 demonstrated improved survival rates in a GBM 
xenograft mouse model and significantly reduced the expression of invasiveness markers, as observed in 
immunohistochemistry analysis. These findings highlight SPA8007 as a potential novel chemotherapeutic agent 
with high specificity and efficacy to enhance GBM therapy.

Abbreviations: GBM, Glioblastoma multiforme; CSC, cancer stem cell; TS, tumorsphere; BTK, Bruton’s tyrosine kinase; NHA, normal human astrocyte; ERBB2, erb- 
b2 receptor tyrosine kinase 2; EGFRK, epidermal growth factor receptor kinase; ITK, interleukin-2-inducible T-cell kinase; JAK3, Janus Kinase 3; DMEM, Dulbecco’s 
modified eagle’s medium; EGF, epidermal growth factor; bFGF, basic fibroblast growth factor; DEG, differentially expressed genes.
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Introduction

Glioblastoma (GBM) is the most aggressive and lethal primary brain 
tumor and accounts for 80 % of all central nervous system malignancies 
[11,15]. Despite treatment advances, the median survival remains low, 
at 15 to 20 months, due to the presence of cancer stem cells (CSCs) 
within the tumor, which drive tumor growth and treatment resistance 
[22,32,38,39,47]. Patient-derived GBM tumorspheres (TSs), represent
ing CSCs, can be isolated and cultured from mother tissue, which pre
sents phenotypic features such as stemness and invasiveness [18,37].

Studies have shown that elevated expression of genes associated with 
cancer aggressiveness and stemness is linked to high Bruton’s tyrosine 
kinase (BTK) expression in solid tumors [10,12,23,44,50]. Additionally, 
in GBM, high BTK levels are associated with poor prognosis, making BTK 
a promising therapeutic target [33,53]. BTK, a member of the large Tec 
family of non-receptor tyrosine kinases, plays a critical role in devel
opment, differentiation, and signaling pathways, extending its involve
ment into oncogenic pathways [34,35].

Ibrutinib, a prototype BTK inhibitor and US Food and Drug 
Administration-approved drug for hematological malignancy, has 
shown remarkable efficacy in reducing the proliferation, stemness, and 
invasion of GBM cells in vitro and in vivo, leading to over 400 registered 
clinical trials [9,43,46,55]. However, ibrutinib’s broad spectrum of ac
tion targeting other Tec family kinases and members of the EGFR family 
causes serious side effects, including bleeding, hypertension, and atrial 
fibrillation, leading to therapy discontinuation in up to 32 % of clinical 
trials [6,40,54].

To overcome this drawback, we previously synthesized a set of five 
selective BTK inhibitors in-house by modifying lipophilic groups in the 
ibrutinib structure [24]. Kinase selectivity profiles of these compounds 
exhibited BTK selectivity greater than 92 %, with minimal selectivity 
toward other kinases such as ERBB2, EGFRK, ITK, JAK3, TEC, and TXK 
[2,24]. Furthermore, these compounds demonstrated in vivo efficacy in 
murine models of hematological malignancies, with no significant 
toxicity, as evidenced by clinical and histological assessments [2,24].

Given the potential of BTK inhibitors as effective TS targeting drugs, 
we hypothesized that they significantly reduce proliferation, stemness, 
and invasiveness in patient-derived GBM TSs. Indeed, our results 
confirmed the BTK inhibitors markedly reduced these traits both in vitro 
and in vivo, positioning these drugs as a leading candidate for GBM 
treatment.

Materials and methods

Sample isolation and culture

A total of 99 tumor tissues were collected from patients who un
derwent surgical resection at Severance Hospital, Yonsei University 
College of Medicine, Seoul, Republic of Korea. Tumor-free cortex sam
ples were randomly obtained from GBM patients during tumor removal. 
Written informed consent was obtained from all patients for sample 
collection and research purposes. The study was conducted in accor
dance with the ethical standards and guidelines of the Institutional 
Review Board (IRB No. 4–2021–1319) and complied with all applicable 
institutional and national regulations.

Three GBM TSs (TS13–64, TS13–30, and TS15–88) were individually 
isolated from tissue specimens obtained from three separate GBM pa
tients and cultured in TS complete medium comprising Dulbecco’s 
Modified Eagle’s Medium/ nutrient mixture F-12 (DMEM/F-12; Medi
atech, Manassas, VA, USA), supplemented with 20 ng/mL epidermal 
growth factor (EGF; Novoprotein, Summit, NJ, USA), 20 ng/mL basic 
fibroblast growth factor (bFGF; Novoprotein), 50 U/mL penicillin, and 
50 μg/mL streptomycin and 1 × B27 (Invitrogen, San Diego, CA, USA) 
[14,18,30].

Normal human astrocytes (NHA) were obtained commercially 
(Lonza, Walkersville, MD, USA) and cultured in Astrocyte Basal Medium 

supplemented with the Astrocyte Growth Kit (Lonza). Cells were. All in 
vitro experiments were maintained at 37 ◦C in a humidified incubator 
with 5 % CO₂, and the medium was replaced every 3–4 days.

Luc-TS13–64 was generated by incorporating CMV-firefly luciferase 
lentivirus (Cellomics Technology, Thermo Fisher Scientific, Pittsburg, 
PA, USA) into GBM TSs followed by puromycin selection.

Synthesis of BTK inhibitors

The used BTK inhibitors (SPA1758, SPA1763, SPA8004, SPA8007, 
SPA8009) have been previously reported in two scientific publications 
[2,24]. In brief, for pyranochromenone analogs (SPA1758, SPA1763), 
electrophilic warheads were introduced to decursinol via a dicyclohex
ylcarbodiimide coupling reaction. For tetrahydroisoquinoline-linked 
aminopyridine analogs (SPA8004, SPA8007, SPA8009), tetrahy
droisoquinoline intermediate was prepared via Bischler–Napieralski 
cyclization and reduction with lithium aluminum hydride. The purposed 
compounds were obtained through N-alkylation, nucleophilic substitu
tion reactions, and nitro group reduction under mild acidic conditions.

Cell viability and ATP level assays

GBM TSs were dissociated into single cells and plated into a trans
parent 96-well plate for cell viability assays and a black 96-well plate for 
ATP assays at a density of 1 × 104 cells per well. After 24 h of incubation, 
BTK inhibitors (SPA1758, SPA1763, SPA8004, SPA8007, SPA8009) 
were added and incubated for an additional 72 h at 37 ℃. The prolif
erative effect of BTK inhibitors on GBM TSs was assessed using Cell 
Counting Kit-8 (Dongin, Seoul, Korea). Ten microliters of WST reagent 
were added to each well, and absorbance at 450 nm was measured after 
1 h of incubation at 37 ℃. ATP levels were measured using the Cell Titer- 
Glo Luminescent Cell Viability Assay kit (Promega, Fitchburg, WI, USA) 
following the manufacturer’s protocol. One hundred microliters of Cell 
Titer-Glo was added to each well, and luminescence was measured using 
a Centro XS3 LB 960 Spectrometer (PerkinElmer, Waltham, MA, USA) 
after 10 min of incubation at room temperature. Each experiment was 
conducted in triplicate, and the cell viability results were expressed as 
the percentage of viable cells relative to that in the control.

Determination of inhibitory concentrations

Cell viability was assessed using WST after treatment with increasing 
concentrations of each compound (0–100 μM) for 72 h. The viability at 
each concentration was normalized to that in the untreated control (set 
as 100 %). Dose–response curves were generated and fitted using non- 
linear regression with a four-parameter logistic model (variable slope) 
in the GraphPad Prism 9 software (GraphPad Software, San Diego, CA, 
USA). The concentration necessary to inhibit cell viability by 20 % (IC20) 
and 50 % (IC50) was calculated based on the fitted curve by determining 
the drug concentration corresponding to 80 and 50 % viability, 
respectively.

Neurosphere formation assay

GBM TSs were dissociated, and ten single cells were seeded into each 
well of a transparent 96-well plate. Following 24 h of incubation at 37 
℃, 10 μM BTK inhibitors (SPA8007, SPA8009) were introduced to the 
wells. After 3 weeks of incubation, the number of wells with sphere 
formation was counted and the results were expressed relative to the 
number of wells with sphere formation in the control group. Addition
ally, the average radius of the spheres in each experimental group was 
measured using the ToupView software (x64 v.3.7.1460, ToupTek 
Photonics, Zhejiang, China).
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Three‑dimensional (3D) invasion assays

A Matrigel mixture comprising TS complete medium, Matrigel 
(Corning Life Sciences, Tewksbury, MA, USA), and rat tail collagen type 
I (BD Biosciences, Franklin Lakes, NJ, USA) was dispensed into each well 
of a transparent 96-well plate. Prior to gelation, single GBM TS spheroids 
were seeded into each matrix-filled well and incubated at 37 ℃ for 30 
min. Subsequently, TS complete medium containing BTK inhibitors 
(SPA8007, SPA8009) was added to each well and incubated for 72 h. 
The invaded area was measured using the ToupView image analysis 
software (ToupTek Photonics) and calculated by relating this area to 
that at 0 h.

Western blot

Dissociated 4 × 10⁵ single cells were seeded into a 100-mm culture 
dish and incubated for 24 h. Following this incubation period, 10 μM 
BTK inhibitors (SPA8007, SPA8009) were introduced. After additional 
72 h of incubation, TSs were harvested and collected using sedimenta
tion, followed by protein extraction utilizing cell extraction buffer 
(Invitrogen) supplemented with 1× protease and phosphatase inhibitor 
cocktail (Thermo Fisher Scientific, Waltham, MA, USA). GBM TS lysates 
were then subjected to SDS-polyacrylamide gel electrophoresis. The 
separated proteins were transferred onto nitrocellulose membranes (GE 
Healthcare Life Sciences, Little Chalfont, UK) and incubated in 3 % 
bovine serum albumin blocking solution for 1 h at room temperature 
and incubated overnight at 4 ◦C with specific primary antibodies with 
1:1000 dilution of SOX2, β-catenin (Cell Signaling Technology, Danvers, 
MA, USA), PDPN, GAPDH (Santa Cruz Biotechnology, Santa Cruz, CA, 
USA), Nestin, N-cadherin (Sigma-Aldrich, St. Louis, MO, USA) and ZEB1 
(Abcam, Cambridge, UK). Secondary horseradish peroxidase-conjugated 
IgG antibodies (Santa Cruz Biotechnology) were introduced and allowed 
to incubate for 1 h at room temperature. Western Lightning Plus- 
enhanced chemiluminescence reagent (PerkinElmer) was used for 
detection, and an ImageQuant LAS 4000 mini (GE Healthcare Life Sci
ences) was employed to capture the images. Western blot images were 
minimally processed to improve clarity while maintaining data integ
rity. In certain experiments, lanes corresponding to unrelated treatment 
conditions (e.g., Ibrutinib) were excluded to enhance focus and clarity; 
such modifications are explicitly noted in the respective figure legends. 
Where applicable (Figs. 2b and 3b), splicing boundaries are clearly 
marked by thin vertical lines. The corresponding uncropped and un
processed blots are provided in Supplementary Figs. 5 and 6.

Bulk RNA sequencing

For TS bulk RNA sequencing, single 4 × 10⁵ cells were seeded in 100- 
mm culture dishes. After 24 h of incubation, 10 μM BTK inhibitors 
(SPA8007, SPA8009) were added and incubated for an additional 72 h. 
TSs were then harvested and treated with Trizol for RNA extraction. 
Total RNA samples were assessed using an Agilent 2100 Bioanalyzer 
(Agilent Technologies, Santa Clara, CA, USA). Fastq files were generated 
using bcl2fastq (v2.2) and quality was checked using FastQC (v.0.11.9). 
Next, the Illumina TruSeq adapter sequences were trimmed out from the 
read files using Skewer (v.0.2.2) with paired-end mode default param
eters. The reads were mapped to the human reference genome (GRCh38) 
using STAR aligner (v.2.7.10a). Gene counts were normalized to tran
scripts per million criteria with R. The cell effect was corrected using the 
sva R package and genes with a log2-fold change > 0.5 and an adjusted 
p-value < 0.05 were selected as differentially expressed genes (DEGs). 
DEG analyses were conducted using DESeq2 R package [27] and visu
alized using the pheatmap R package. To find associations of genes and 
biological pathway terms, DEG lists were run using the enrichR R 
package. Gene Ontology Biological Process 2023 was used as the 
reference term set (accession number: GSE288022).

Mouse orthotopic xenograft model

In vivo experiments and animal care were approved by the Com
mittee for the Care and Use of Laboratory Animals at Yonsei University 
College of Medicine (approval no. 2023–0237) and were conducted 
following the guidelines established by the US National Institutes of 
Health. The reporting of animal experiments in this study adheres to the 
ARRIVE guidelines.

Male athymic nude mice aged 6–8 weeks (Central Lab. Animal Inc., 
Seoul, Korea) were used after 1 week of acclimatization under controlled 
environmental conditions, including humidity (55 ± 5), lighting (12-h 
light/ dark cycle), and temperature (22 ± 2 ◦C). Luc-TS13–64 cells were 
dissociated and plated in a 100-mm culture plate and treated with 10 μM 
of SPA8007 for 72 h following a standardized protocol [5,19,26,28,29,
36,37,45,49]. Subsequently, 1 × 10⁵ cells/mouse were injected into the 
right frontal lobe of mice using a guide-screw system [21], ensuring an 
injection depth of 4.5 mm. Mice with 15 % body weight reduction were 
euthanized following the guidelines of the American Veterinary Medical 
Association, which was reflected in the survival curve.

Bioluminescence imaging

The mice were anesthetized with 2.5 % isoflurane, and 100 μl of d- 
Luciferin / 20 g of mouse (30 mg/ml; dissolved in DPBS, Promega) was 
administered via the intraperitoneal route 10 to 15 min prior to biolu
minescence image acquisition. Images were captured using an IVIS im
aging system and the Living Image v4.2 software (Caliper Life Sciences, 
Hopkinton, MA, USA).

Immunohistochemistry

Paraffin-embedded brain tissue blocks were cut at a thickness of 4 μm 
using a microtome and mounted onto adhesive slides. An automated 
instrument (Discovery XT, Ventana Medical Systems, Tucson, AZ, USA) 
was employed for antigen retrieval and antibody binding, while a 
peroxidase/3,3ʹ-diaminobenzidine staining system was utilized to detect 
Nestin and ZEB1.

Statistical analysis

Significant differences between the control and treatment groups 
were calculated using one-way analysis of variance with Tukey’s post 
hoc test for multiple comparisons. Survival analysis was conducted 
utilizing the Kaplan-Meier method and comparisons performed through 
log-rank tests. All graphical and statistical analyses were performed 
using GraphPad Prism 9 software (GraphPad Software Inc., San Diego, 
CA, USA), with p-values < 0.05 (*), < 0.01 (**), and < 0.001 (***) 
considered statistically significant.

Results

BTK expression levels are significantly elevated in both GBM tissues and 
TSs compared to normal brain tissues and normal human astrocytes

Bulk RNA sequencing analysis of tissues from primary GBM patients 
revealed markedly increased (p < 0.001) BTK expression levels in tumor 
tissues (n = 99) compared to tumor-free cortex tissues (n = 42; Fig. 1a) 
consistent with prior studies [17,43]. Supplementary Table 1 and 
supplementary Table 2 contain detailed clinical and histopathological 
information regarding tumor-free cortex and tumor tissues, respectively. 
Additionally, significantly elevated (p < 0.05) BTK expression was 
observed in GBM TSs isolated from the bulk tumor compared to its 
tumor-free counterpart, NHA (Fig. 1b) [3,4,52]. Three representative 
GBM TSs (TS13–30, TS13–64, TS15–88) were selected for further 
investigation. Supplementary Table 3 shows detailed histopathological 
characteristics of GBM tissues and corresponding TSs. Brief information 
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Fig. 1. BTK expression in both GBM tissues and TSs and anti-proliferative effects of new BTK inhibitors. 
a mRNA expression level of BTK in tumor free cortex tissue (n = 42) and GBM tumor tissue (n = 99) obtained from tissue bulk RNA sequencing of severance patients. 
b mRNA expression level of BTK in normal human astrocyte (NHA, n = 5) and TSs (n = 38) derived from patient tumor tissue. c Chemical structure of five newly 
synthesized BTK inhibitors. d Cell viability was measured after treatment of three TSs with the five new BTK inhibitors. e Cell ATP levels were measured after 
treatment of three TSs with the five new BTK inhibitors. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared with the control.
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of the five newly developed BTK inhibitors (SPA1758, SPA1763, 
SPA8004, SPA8007, and SPA8009), validated for their efficacy in earlier 
investigations (Fig. 1c), is provided in supplementary Table 4.

SPA8007 and SPA8009 exhibit superior cytotoxic effects in TSs relative to 
other compounds

To identify the most promising candidate drug, WST and ATP assays 
were performed. Three GBM TSs were treated with each inhibitor for 72 
h at increasing doses to determine the appropriate concentration that 
induces cellular phenomena with minimal effects on cell viability (IC20). 
Sub-cytotoxic concentrations are widely recommended for assessing 
stemness and invasion phenotypes to avoid confounding apoptotic re
sponses [4,8,13,37]. Based on this rationale, 10 μM was selected as the 
experimental concentration for all subsequent assays (Supplementary 
Figs. 1, 2 and Supplementary Table 5). Among the tested compounds, 
SPA8007 and SPA8009 demonstrated the highest cytotoxic effects, 
whereas SPA1758, SPA1763, and SPA8004 exhibited minimal cytotox
icity across all three TSs (Fig. 1d). However, in the ATP assay, only 
SPA8007 reduced ATP levels significantly (p < 0.01) in all three TSs 
(Fig. 1e). Consequently, SPA8007 and SPA8009 were chosen for further 
investigation.

To evaluate tumor selectivity and potential safety, IC20 and IC50 
values of SPA8007, SPA8009, and ibrutinib in NHA and the three GBM 
TSs were determined and compared (Supplementary Fig. 2 and Sup
plementary Table 5). SPA8007 exhibited comparable IC20 values in 
NHA (9.7 μM) and TS13–64 (10 μM), and SPA8009 showed markedly 
reduced toxicity in NHA (44 μM) while retaining strong activity in 
TS13–64 (0.4 μM) whereas ibrutinib was more toxic to NHA (9.2 μM) 
than to TS13–64 (19 μM) with p value of < 0.0001.

Collectively, these findings indicated that the novel BTK inhibitors 
SPA8007 and SPA8009 induce greater cell death in GBM TSs than the 
other three inhibitors and offers a favorable balance of potency and 
selectivity for therapeutic application than ibrutinib.

SPA8007 and SPA8009 significantly reduce the stemness and invasive 
properties of TSs

The reduction in the stemness and invasive potential of the selected 
drugs in TSs was evaluated using neurosphere formation and 3D inva
sion assays, respectively. Both SPA8007 and SPA8009 significantly 
decreased (p < 0.001) the percentage of wells exhibiting positive 
spheres and reduced (p < 0.001) the sphere radius across all three TSs 
compared to the respective control groups (Fig. 2a). Additionally, 
SPA8007 substantially reduced the stemness-related marker proteins 
SOX2 and PDPN in all three TSs, while SPA8009 reduced SOX2 and 
PDPN in TS13–64 and TS15–88, as evidenced by western blot analysis 
(Fig. 2b). Moreover, bulk RNA sequencing data showed that both 
SPA8007 and SPA8009 reduced the number of stemness-related genes 
(Fig. 2c). Combined, these data support that these two compounds 
suppress the stemness of GBM TSs. In the 3D invasion assay, both 
SPA8007 and SPA8009 significantly decreased (p < 0.05) the invasion 
capacity of TS13–64 and TS15–88 compared to their respective control 
groups (Fig. 3a). Western blot analysis demonstrated that SPA8007 
significantly reduced the expression of invasiveness-related marker 
proteins, ZEB1, β-catenin, and N-cadherin, in TS13–30, while in 
TS13–64 and TS15–88, only ZEB1 and N-cadherin markers were 
reduced. While SPA8009 substantially suppressed ZEB1, β-catenin, and 
N-cadherin markers in TS15–88, it only suppressed the ZEB1 marker in 
TS13–64 (Fig. 3b). Additionally, bulk RNA sequencing data showed that 
both SPA8007 and SPA8009 reduced other invasiveness-related markers 
(Fig. 3c). These results demonstrate that SPA8007 and SPA8009 effec
tively inhibit the invasive properties of GBM TSs.

SPA8007 significantly increases the survival rate in a mouse xenograft 
model

In the mouse orthotopic model, tumor growth in TS13–64, treated 
with SPA8007, was compared to that in the TS13–64 control group. 
Bioluminescence intensity, estimated based on total flux (photon/s) 3 
weeks after injection of cells, indicated that the SPA8007 group 
exhibited significantly smaller (p < 0.01) tumor sizes than the control 
group (Fig. 4a and b), suggesting that treatment with SPA8007 reduced 
the ability of GBM TSs to promote tumor growth in the mouse model. 
Furthermore, Kaplan-Meier survival analysis demonstrated that 
TS13–64 treated with SPA8007 exhibited significantly prolonged (p <
0.0059) survival compared to the control group (Fig. 4c). Immunohis
tochemistry analysis revealed significantly reduced (p < 0.05) expres
sion levels of the invasiveness marker ZEB1 in the SPA8007-treated 
group compared to the control (Fig. 4d and e). However, Nestin 
expression was not significantly altered in the SPA8007-treated group 
(Fig. 4f). Collectively, these results demonstrate that SPA8007 reduced 
the tumorigenic capacity of TS13–64.

Discussion

GBM remains an incurable malignancy, highlighting the urgent need 
for identifying novel therapeutic targets [7,31]. Previous studies have 
identified elevated BTK expression in GBM tumors [7,17,31,43], 
consistent with our findings based on the Severance cohort (Fig. 1a), 
suggesting that BTK could be a promising therapeutic target. However, 
the use of BTK inhibitors to treat GBM has been hampered by their 
significant toxicity [6,40], leading to the termination of many clinical 
studies [54]. The toxicity of ibrutinib stems from its covalent binding to 
a conserved cysteine residue in the ATP-binding domain of non-BTK 
tyrosine kinases [1]. It thus inhibits multiple off-target kinases, 
including ERBB family members (EGFR, HER2, HER3, HER4), TEC 
family kinases (TEC, BTK, BMX, ITK, RLK), and JAK3. Notably, at 1 
μM/L, ibrutinib inhibits over 95 % of 16 kinases [41], highlighting its 
broad activity and the challenge of reducing off-target effects while 
preserving efficacy. To address this issue, we developed more selective 
and less toxic BTK inhibitors, i.e., SPA1758, SPA1763, SPA8004, 
SPA8007, and SPA8009 [2,24]. The pyranochromenone analogs 
SPA1758 and SPA1763 exhibited exceptional BTK inhibitory activity 
(98.2 % and 95.8 %, respectively) while maintaining minimal off-target 
inhibition against ITK (17.3 %), EGFRK (32.9 %), and JAK3 (13.2 %), 
and showing no activity against ERBB4 [2]. Additionally, the amino
pyridine derivatives SPA8004, SPA8007, and SPA8009 demonstrated 
similarly potent BTK inhibition (97 %, 98 %, and 92 %, respectively) 
with low inhibition against EGFRK, ITK, TEC, and TXK [24]. Moreover, 
these compounds were validated in vivo in a murine inflammatory 
model, where they significantly reduced (p < 0.001) collagen-induced 
arthritis severity in a dose-dependent manner without observable 
toxicity. In a hematological malignancy model, they achieved a 47 % 
reduction in tumor size compared to that in controls, without adverse 
clinical symptoms, significant weight loss, or evidence of liver or kidney 
toxicity upon necropsy [2,24]. These previous observations highlight 
the therapeutic potential of the tested inhibitors as safer, more selective 
alternatives for targeting BTK-driven diseases.

Among the 38 GBM-TSs isolated, TS13–30, TS13–64, and TS15–88 
were chosen for their superior proliferative capacity [36]. Elevated BTK 
expression in these TSs, which matches the high BTK expression of their 
corresponding tumor tissues (Fig. 1a and b), confirmed that they accu
rately reflect the molecular and functional characteristics of GBM and 
are a suitable model for evaluating drug efficacy. Our findings revealed 
that the newly synthesized SPA8007 and SPA8009 significantly reduced 
(p < 0.001) the proliferative capacity of GBM TSs (Fig. 1d and e) and 
downregulated pathways crucial for the cellular biosynthesis (Supple
mentary Fig. 3). This finding coincides with the anti-proliferative effect 
of ibrutinib in GBM and ovarian cancer cell lines [43,53,55]. Another 
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Fig. 2. Effect of SPA8007 and SPA8009 on stemness of GBM TSs. 
a The abundance of sphere-positive wells were determined after treatment with SPA8007 (10 μM) and SPA8009 (10 μM) relative to the control in three TSs. Changes 
in sphere radii were evaluated after treatment with SPA8007 (10 μM) and SPA8009 (10 μM) relative to the control in three TSs. b Western blot and c heatmaps 
showing changes in stemness-related markers after treatment with SPA8007 and SPA8009 relative to the control in three TSs. Initially, lanes corresponding to 
Control, Ibrutinib, SPA8007, and SPA8009 were loaded; the ibrutinib lane was excluded for clarity, as indicated by a thin vertical line separating Control and 
SPA8007. The uncropped, original immunoblots are provided in Supplementary Fig. 5. Differences among groups were compared using one-way ANOVA with 
Tukey’s post hoc test. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared with the control.
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Fig. 3. Effect of SPA8007 and SPA8009 on invasiveness of GBM TSs. 
a Invasiveness of three TSs was evaluated in a Matrigel/collagen matrix after treatment with SPA8007 (10 μM) and SPA8009 (10 μM) for 72 h. b Western blot and c 
RNA sequencing data displaying invasiveness-related marker changes after SPA8007 (10 μM) and, SPA8009 (10 μM) treatment for 72 h. Initially, lanes corresponding 
to Control, Ibrutinib, SPA8007, and SPA8009 were loaded; the ibrutinib lane was excluded for clarity, as indicated by a thin vertical line separating Control and 
SPA8007. The uncropped, original immunoblots are provided in Supplementary Fig. 6. Differences among groups were compared using one-way ANOVA with 
Tukey’s post hoc test. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared with the control.
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Fig. 4. Therapeutic effect of SPA8007 in a mouse orthotopic xenograft model. 
Luc TS13–64 TSs were treated with SPA8007 (10 μM) for 72 h and harvested viable TSs were injected into the mouse cortex (Control: n = 5, SPA8007: n = 5). a, b 
Tumor volume was assessed through bioluminescence imaging as total photon flux. c Kaplan Meier analysis showing the survival probability of the treated group vs. 
the control group of mice. d H&E staining showing representative brains for each group. IHC analysis was performed in mouse brain sections for evaluation of Nestin 
and ZEB1 expression levels. e Comparison of infiltrated ZEB1+ cells in control and SPA8007-treated groups. f Comparison of Nestin positive cells in control and 
SPA8007-treated groups.
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study showed that both ibrutinib treatment and BTK gene silencing 
inhibited the self-renewal ability of CSCs in ovarian cancer cell lines 
[55]. Similarly, we also observed nearly complete inhibition (p < 0.001) 
of sphere formation capacity after treatment with SPA8007and SPA8009 
in all three TSs after 3 weeks of drug treatment (Fig. 2a). Western blot 
and transcriptomic analysis further supported these results, showing 
substantial reductions in the expression of stemness markers, including 
SOX2, PDPN, and Nestin (Fig. 2b and c). Given the critical role of TSs in 
driving therapy resistance and recurrence, our results suggest that tar
geting stemness with the two inhibitors could represent a promising 
therapeutic strategy for GBM patients [16,18]. In addition to their ef
fects on stemness, SPA8007 and SPA8009 also significantly inhibited (p 
< 0.05) GBM TS invasion, which is consistent with the anti-invasive 
effect of ibrutinib in GBM cell lines reported previously [43,53]. Eval
uating invasiveness in TSs is a critical factor in GBM research, as 
numerous studies have highlighted that tumor invasion is predomi
nantly driven by the CSC subpopulation [20,48]. Using a physiologically 
relevant 3D invasion assay, we observed that SPA8007 and SPA8009 
markedly reduced (p < 0.05) radial invasion of GBM TSs within 3 days of 
treatment, without broad cytotoxicity (Fig. 3a). Western blot analysis 
further validated these findings, revealing significant downregulation of 
genes associated with invasiveness such as ZEB1, β-catenin, and 
N-cadherin (Fig. 3b). This molecular evidence coincides with our tran
scriptomic analysis (Fig. 3c) and highlights the potential of SPA8007 
and SPA8009 to disrupt processes critical to GBM progression. More
over, in an orthotopic xenograft model, treatment with SPA8007 
significantly decreased tumor sizes (p < 0.01; Fig. 4a and b) and pro
longed survival (p = 0.0059), as demonstrated by Kaplan–Meier analysis 
(Fig. 4c), further highlighting its therapeutic potential. SPA8007 was 
selected for in vivo study because it showed greater anti-stemness and 
anti-invasiveness activity than SPA8009. TS13–64 cells were singled out 
from the three TSs in the in vivo study because of their high BTK 
expression levels (Fig. 1b), their notably brief mouse survival time, and 
their pronounced aggressiveness within the mouse brain environment 
[37]. To evaluate the intrinsic effects of SPA8007 on tumor cells inde
pendently of systemic pharmacokinetic factors, SPA8007 was adminis
tered as a pre-treatment to the cells prior to implantation. This approach 
was chosen because ibrutinib, the parent compound of SPA8007 and 
SPA8009, has been reported to exhibit very limited penetration into the 
central nervous system despite feasible blood brain barrier permeability 
due to active efflux mechanisms that substantially restrict its brain 
exposure [42]. Furthermore, since SPA8007 and SPA8009 are novel 
compounds with limited pharmacokinetic data available, the 
pre-treatment method was deemed appropriate for this in vivo study. 
Immunohistochemistry analysis was conducted on mouse brain tissue to 
evaluate the impact of SPA8007 on the local microenvironment, 
revealing a significant reduction (p < 0.05) in the levels of invasiveness 
markers in brains treated with SPA8007 compared to those in control 
mouse brains (Fig. 4c and d). Ibrutinib, however, failed to show any 
therapeutic effect in the in vivo setting (Supplementary Fig. 4). As these 
results did not demonstrate statistically significant efficacy, we opted to 
present this data in the Supplementary section.

Combined, these findings highlight the anticancer potential of 
SPA8007 and SPA8009 in human GBM cells. Given that targeting 
stemness and invasiveness has been recognized as a critical therapeutic 
approach for GBM, the outstanding performance of SPA8007 and 
SPA8009 in these aspects, along with their impact on survival, positions 
them as promising strategies to curb the uncontrolled proliferation of 
GBM.

This study has several limitations, including the use of a single in vivo 
model. Future studies should employ multiple TS model in vivo to better 
assess the efficacy and safety profile of the tested inhibitors and to 
validate generalizability. Moreover, the lack of systemic drug adminis
tration is another limitation of this study. Future work should include 
pharmacokinetic analyses and develop strategies to enhance brain dis
tribution and absorption to obtain clinically relevant data. Finally, 

considering the critical role of the origin of GBM cells, our findings 
underscore the need to evaluate the cytotoxic effect of SPA8007 on these 
cells to further elucidate its therapeutic potential in targeting GBM at its 
source [25,51].
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