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Background: High-grade serous ovarian carcinoma (HGSC) exhibits significant heterogeneity, posing challenges for effective clinical categoriza-
tion. Understanding the histomorphological diversity within HGSC could lead to improved prognostic stratification and personalized treatment 
approaches. Methods: We applied the Histomic Atlases of Variation Of Cancers model to whole slide images from The Cancer Genome Atlas 
dataset for ovarian cancer. Histologically distinct tumor clones were grouped into common histomic clusters. Principal component analysis and 
K-means clustering classified HGSC samples into three groups: highly differentiated (HD), intermediately differentiated (ID), and lowly differenti-
ated (LD). Results: HD tumors showed diverse patterns, lower densities, and stronger eosin staining. ID tumors had intermediate densities and 
balanced staining, while LD tumors were dense, patternless, and strongly hematoxylin-stained. RNA sequencing revealed distinct patterns in 
mitochondrial oxidative phosphorylation and energy metabolism, with upregulation in the HD, downregulation in the LD, and the ID positioned 
in between. Survival analysis showed significantly lower overall survival for the LD compared to the HD and ID, underscoring the critical role of 
mitochondrial dynamics and energy metabolism in HGSC progression. Conclusions: Deep learning-based histologic analysis effectively stratifies 
HGSC into clinically relevant prognostic groups, highlighting the role of mitochondrial dynamics and energy metabolism in disease progression. 
This method offers a novel approach to HGSC categorization.
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INTRODUCTION

High-grade serous ovarian carcinoma (HGSC) is the most 
aggressive and prevalent form of ovarian cancer, accounting 
for approximately 70%–80% of ovarian cancer deaths world-
wide [1]. Despite intensive treatment including cytoreduction 
surgery, platinum-based chemotherapy and emerging targeted 
therapies, most patients experience recurrence, with a medi-
an progression-free survival of 13.8 months for those at stage 
III–IV [2]. Although numerous genomic, transcriptomic, and 
proteomic biomarkers have been proposed, none have been 
adopted into standard clinical practice. Determining treatment 
sensitivity or resistance requires several treatment cycles, which 

expose patients to potentially unnecessary adverse events [3,4]. 
The challenge arises from the significant inter- and intratu-
moral heterogeneity of HGSC, which poses a major obstacle to 
stratifying and classifying HGSC patients [5]. Currently, there 
is no World Health Organization recommended effective histo-
logical subclassification for HGSC.

While several tools exist to categorize HGSC, the most wide-
ly accepted classification is based on four molecular subtypes 
derived from The Cancer Genome Atlas (TCGA): immuno-
reactive, differentiated, proliferative, and mesenchymal [6]. 
Previous studies reported that the mesenchymal or proliferative 
subtypes tend to have worse overall survival, whereas the im-
munoreactive patterns often have a more favorable prognosis 
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[7,8]. However, molecular genetic testing is expensive and 
time-consuming, limiting its application to clinical practice.

Additionally, attempts to categorize HGSC into histological 
subtypes based on the molecular classifications have been hin-
dered by poor interobserver agreement, limiting the clinical ap-
plicability [9,10]. However, recent advances in digital pathology 
have enabled new efforts to stratify HGSC based on histological 
findings using deep learning techniques, which can extract 
clinically relevant histological patterns that are not apparent to 
the human eye. For instance, our team developed PathoRiCH, a 
deep learning classifier designed to predict platinum resistance 
based solely on hematoxylin and eosin (H&E) staining images 
[11]. Despite this progress, previous histologic image-based 
deep learning studies have analyzed pre-categorized HGSC 
samples in a simplistic binary classification of HGSC as either 
having a favorable or poor prognosis [12-14]. This oversimpli-
fies the complex heterogeneous nature of HGSC.

To address the limitations of these approaches and better 
capture the complex intratumoral heterogeneity of HGSC, our 
approach introduces a novel bottom-up classification method 
grounded in classical pathology. Instead of relying on pre-
defined molecular data or survival prognosis information, we 
focus on grouping tumor clusters with similar histopathological 
patterns across different HGSC tumors. We hypothesize that 
different clonal expansions within HGSC may have varying 
effects on clinical prognosis, with certain clonal combina-
tions leading to poor survival and others to a more favorable 
prognosis. To achieve this, we utilized the Histomic Atlases of 
Variation Of Cancers (HAVOC) model pipeline to HGSC [15]. 
Unlike other deep learning tools trained on histopathological 
patterns labeled with predefined molecular data, which may 
limit the generalization of intratumoral heterogeneity, HAVOC 
partitions histological patterns observed in whole slide imag-
es (WSIs) in an unsupervised manner. This allows for a more 
comprehensive exploration of intratumoral heterogeneity.

In this study, we identified various tumor clones present 
within The Cancer Genome Atlas dataset for ovarian cancer 
(TCGA-OV) using the HAVOC model. The detected clones 
were then grouped by similar histopathological patterns into 
common histomic clusters (CHCs). We then categorized 
HGSCs into three different groups based on different CHC 
combinations. Each group’s histomorphologic and molecular 
characteristics were evaluated, and their clinical relevance was 
investigated.

MATERIALS AND METHODS

Study cohort
The TCGA-OV dataset from the Genomic Data Commons 
data portal (https://portal.gdc.cancer.gov/) was used. A total of 
73 cases were selected based on the availability of H&E-stained 
WSI from formalin-fixed paraffin-embedded tissue during the 
primary debulking surgery, along with RNA sequencing data. 
WSI from frozen sections were excluded due to severe freezing 
and ice-crystal artifacts that hinder histomorphological analy-
sis. No additional exclusion criteria were applied. Homologous 
recombination deficiency (HRD) information was obtained 
from Zhang et al. [16], based on the representative HRD algo-
rithm using loss of heterozygosity, telomeric allelic imbalance, 
and large-scale state transitions. The TCGA molecular classifi-
cations were sourced from Verhaak et al. [8].

Histologic clustering to find inter-tumoral CHCs
The 73 HGSC WSIs from the TCGA-OV dataset were pro-
cessed through the HAVOC pipeline. Patch images (258 µm2, 
512 × 512 pixels) were extracted from the WSIs, which were 
then grouped into intratumoral heterogenic tumor clusters 
using the default setting of K = 9 (Fig. 1A) [15]. Subsequent-
ly, these HAVOC-generated histomic variation clusters were 
grouped by hierarchical clustering to identify CHCs across all 
samples, where the elbow method was used for finding the op-
timal number of cluster (k = 100) (Supplementary Fig. S1). The 
patch counts for clusters belonging to each TCGA sample are 
provided in Supplementary Data S1.

Principal component analysis and K-means clustering 
analysis
Two pathologists (B.A. and E.P.) reviewed all CHCs, selecting 
those with more than 10% tumor cells as tumor-containing 
CHCs for further analysis. The percentages of tumor-contain-
ing CHCs within each sample were calculated based on the 
total number of tumor cluster patches present (Supplementary 
Data S1). Principal component analysis (PCA) analysis was per-
formed on this percentage data, followed by K-means clustering 
to categorize the samples into three CHC-categorized groups 
(Fig. 1B). The optimal number of clusters was determined by 
the highest silhouette score (Supplementary Fig. S2).

Histologic analysis
The distribution of each tumor-containing CHC across the 
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three CHC-categorized groups was compared using pairwise 
t-tests. Histologic features of the CHCs were analyzed by two 
pathologists (B.A. and E.P.). For quantitative analysis, Hov-
er-Net with pretrained official fast-PanNuke checkpoint (pan-
optic quality score of 0.4863 for multi-class segmentation on 
TCGA ovary tissues) was used to segment nuclei present in all 
patches generated by the HAVOC pipeline into three cell types: 
tumor cells, stromal cells, and inflammatory cells [17]. Six nu-
cleus shape features (area, circularity, length, maximum diam-
eter, minimum diameter, and solidity) and eight nucleus color 
features (maximum, minimum, mean, and median values for 
both H&E staining) were extracted using QuPath ver. 0.5.1 with 
the default resolution setting of 2 µm per pixel [18]. Descriptive 
statistical analyses for all histologic features were performed 
using KNIME ver. 5.2.3 [19]. The Welch ANOVA test and the 
Games-Howell test were used to determine if each CHC had 
unique histologic features. Immune cell analysis was conducted 
using CIBERSROTx [20].

RNA sequencing analysis
Differential gene expression (DEG) analysis was performed 

using edgeR [21] with a cutoff of p ≤ 0.01 and log (fold change) 
≥ 1.0. Enrichment analysis was conducted using fgsea [22] and 
Gene Ontology Biological Process (GO:BP) terms with a cutoff 
of false discovery rate (FDR) ≤ 0.01 and log (fold change) ≥ 0.2.

Statistical analysis
Chi-squared test was used to evaluate correlations between 
categorical variables. Kaplan-Meier survival curves and mul-
tivariable Cox proportional hazards regression analyses were 
used for survival analyses. Two-tailed p-values < 0.05 were 
considered statistically significant for all analyses. All data were 
analyzed using Python (ver. 3.10).

RESULTS

Cohort characteristics
The clinicopathologic characteristics of the 73 TCGA samples 
are shown in Table 1. Most samples (77%) were in International 
Federation of Gynecology and Obstetrics (FIGO) stage IIIC, 
followed by stage IV (21%) and stage IIC (1.4%). The molecular 
classifications were 25% differentiated, 14% immunoreactive, 

Table 1. Clinicopathologic information of all samples and three histologic subgroups in high-grade serous ovarian carcinoma from the TC-
GA-OV dataset

Characteristic All samples (n = 73)
Group A Group B Group C

p-valuea

HD group (n = 22) ID group (n = 27) LD group (n = 24)
Age (yr) .471
  <63 34 (46.6) 8 (36.4) 13 (48.1) 13 (54.2)
  ≥63 39 (53.4) 14 (63.6) 14 (51.9) 11 (45.8)
FIGO stage .651
  IIC 1 (1.4) 0 1 (3.7) 0
  IIIC 56 (76.7) 18 (81.8) 19 (70.4) 19 (79.2)
  IV 15 (20.5) 4 (18.2) 7 (25.9) 4 (16.7)
  Unknown 1 (1.4) 0 0 1 (4.2)
Molecular classification .523
  Differentiated 18 (24.7) 5 (22.7) 9 (33.3) 4 (16.7)
  Immunoreactive 10 (13.7) 4 (18.2) 3 (11.1) 3 (12.5)
  Mesenchymal 16 (21.9) 6 (27.3) 4 (14.8) 6 (25.0)
  Proliferative 29 (39.7) 7 (31.8) 11 (40.7) 11 (45.8)
HRD status .471
  HRD 34 (46.6) 9 (40.9) 15 (55.6) 10 (41.7)
  Non-HRD 34 (46.6) 10 (45.5) 10 (37.0) 14 (58.3)
  Unknown 5 (6.8) 3 (13.6) 2 (7.4) 0

Values are presented as number (%).
TCGA-OV, The Cancer Genome Atlas dataset for ovarian cancer; HD, highly differentiated; ID, intermediately differentiated; LD, lowly differentiated; 
FIGO, International Federation of Gynecology and Obstetrics; HRD, homologous recombination deficiency.
aChi-squared test of independence was used to compare the three common histomic cluster–categorized groups.
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22% mesenchymal, and 40% proliferative. HRD status showed 
47% as HRD-positive, 47% as non-HRD, and 6.8% as unknown.

Finding CHC-categorized groups
As illustrated in Fig. 1A, we identified various histologically 
distinct tumor clones within HGSC samples in the TCGA-OV 
datasets using the HAVOC pipeline. Hierarchical clustering 
of the mean feature values for each tumor clone was then 
employed to group them into 100 unique CHCs, of which 40 
CHCs contained more than 10% tumor cells. Using the per-
centage of tumor-containing CHCs for each sample, we applied 
PCA and K-means clustering to categorize the TCGA samples 
into three distinct groups: temporarily named groups A, B, and 
C (Fig. 1B). In terms of clinicopathologic characteristics, no 
significant differences in patient age, FIGO stage, molecular 
classification, or HRD status were observed across the three 
CHC-categorized groups (Table 1).

Histologic analysis by pathologists reveals unique 
morphological differences in highly differentiated, 
intermediately differentiated, and lowly differentiated 
groups
Using a pairwise t-test, we compared the percentage of the 40 
tumor-containing CHCs across the three CHC-categorized 
groups (Supplementary Fig. S3) and identified significantly 
present CHCs for each group: six in group A, five in group B, 
and four in group C (Fig. 2).

All three groups exhibited poorly differentiated histologic 
features, characterized by high-grade cytologic atypia, nu-
clear pleomorphism, prominent nucleoli, and at least focal 
patternless sheet-like solid morphologies. However, some 
CHCs exhibited unique histomorphological characteristics 
that distinguished the groups. Group A included CHCs with 
high histomorphological variability, predominantly featuring 
more differentiated patterns, such as glandular (CHC36) and 
micropapillary patterns (CHC37), with a relatively low tu-
mor-to-stromal ratio. It also included small islands or cord-like 
patterns within fibrotic stroma (CHC23). Group B exhibited 
more poorly differentiated morphology than the group A, with 
complex glandular to solid cluster patterns of hyperchromatic 
monotonous tumor cells (CHC1, CHC4, and CHC5). In con-
trast, group C consisted entirely of patternless sheet-like hyper-
chromatic monotonous tumor cells with sieve-like spaces and a 
high tumor-to-stromal ratio. Based on these histologic features, 
we named our CHC-categorized groups A–C as highly differ-

entiated (HD), intermediately differentiated (ID), and lowly 
differentiated (LD), respectively.

Quantitative histologic analysis using Hover-Net and 
QuPath confirms unique histomorphologic traits in 
HD, ID, and LD groups
To objectively evaluate the histologic features of CHCs, we 
detected nuclei present in all tumor-containing patches via 
Hover-Net and extracted their histologic features using QuPath 
(Supplementary Fig. S4). A total of 50,050,242 nuclei were seg-
mented and categorized into three cell types: tumor (39,477,010 
cells, 78.9%), stromal (7,857,234 cells, 15.7%), and inflammato-
ry (2,715,998 cells, 5.4%) (Supplementary Data S2). The Welch 
ANOVA and Games-Howell tests showed that 95%–100% of 
the pairwise comparisons of tumor and stromal nuclei features 
between different CHCs were statistically significant (p < .05) 
(Supplementary Data S3, S4). The overall mean values of six 
nucleus shape features and eight color features for tumor-con-
taining CHCs are illustrated in Supplementary Fig. S5.

First, cell densities and cell counts per WSI patches were 
compared in the significant CHCs among the HD, ID, and LD 
groups (Fig. 3A). The HD group was characterized by CHCs 
with low-density tumor nuclei patches (CHC 23, 28, and 31), 
while the LD group included CHCs with high-density tumor 
nuclei (CHC 11 and 14). The ID group’s nuclei density fell 
between those of the other two groups. For stromal cells, all 
three CHC groups showed low stromal cell density, except for 
certain CHCs, such as CHC 23 in the HD group. Regarding 
inflammatory cell count comparisons, there was no difference 
in inflammatory cell density across all three groups, which 
was further confirmed by CIBERSORTx analysis (FDR > 0.05) 
(Supplementary Fig. S6).

Quantitative histologic features of tumor and stromal nuclei 
revealed distinctive patterns among the three CHC groups 
(Fig. 3B, C). The HD group displayed variation in size across 
its CHCs, with some (CHC31 and CHC8) exhibiting larger tu-
mor and stromal nuclei, while others (CHC23) showed smaller 
nuclei. The HD group CHCs were overall irregular in shape, 
exhibiting low circularity and solidity. In contrast, CHCs in the 
ID and LD groups were characterized by larger tumor and stro-
mal nuclei with more regular, circular, and solid shapes, with 
less size variation across CHCs compared to the HD group.

The most striking differences among the groups were in their 
nucleus color features. The HD group was characterized by low 
hematoxylin and high eosin staining for both tumor and stro-
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Fig. 2. Histologic images of significant common histomic clusters (CHCs) in CHC-categorized groups. (A) CHC-categorized group A (highly 
differentiated group) includes CHCs with more differentiated patterns, such as glandular (CHC36) and micropapillary patterns (CHC37) with 
a relatively low tumor-to-stromal ratio. It also included small islands or cord-like patterns within fibrotic stroma (CHC23). The rest (CHC8, 
28, 31) shows sheet-like patterns of pleomorphic tumor cells with vesicular spaces. (B) CHC-categorized group B (intermediately differen-
tiated group) exhibits CHCs with more poorly differentiated morphology compared to group A (highly differentiated group) with complex 
glandular to solid cluster patterns of hyperchromatic monotonous tumor cells (CHC1, CHC4, and CHC5). There is also CHC with micropap-
illary pattern (CHC10) and sheet-like pattern with sieve-like spaces (CHC9). (C) All CHCs in the CHC-categorized group C (lowly differenti-
ated group) shows poorly differentiated, patternless, sheet-like pattern of hyperchromatic, monotonous tumor cells with sieve-like spaces 
(CHC3, CHC11, CHC14, and CHC27).

A B C
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Fig. 3. Heatmap of quantitative histologic analysis using nuclei detection from Hover-Net across the three common histomic cluster-as-
sociated groups. (A) The heatmap shows mean tumor, stromal, and inflammatory cell counts per patch image across the three common 
histomic cluster (CHC)–associated groups. (B) The heatmap shows mean values of six nucleus shape features and eight nucleus color fea-
tures extracted using QuPath for tumor cells across the three CHC-associated groups. (C) The heatmap shows mean values of six nucleus 
shape features and eight nucleus color features extracted using QuPath for stromal cells across the three CHC-associated groups.

mal nuclei. The LD group exhibited strong hematoxylin stain-
ing and low eosin staining. Meanwhile, the ID group exhibited 
more balanced staining levels, positioning itself between HD 
and LD groups.

The quantitative histologic analysis complements the quali-
tative assessments by pathologists. In the HD group, differen-
tiated patterns such as glandular (CHC36) and micropapillary 
(CHC37) corresponded with a low tumor-to-stromal ratio. 
Additionally, CHC23, marked by fibrotic stroma, was validated 
by its high stromal density. Conversely, most CHCs from the 
ID and LD groups, characterized by patternless hyperchro-
matic sheet-like patterns (CHC3, 4, 5, 11, 14), were supported 
by quantitative findings of a high tumor-to-stromal ratio and 
increased hematoxylin staining.

DEG and gene enrichment analysis reveal distinctive 
molecular characteristics in HD, ID, and LD groups
The RNA sequencing analysis compared the three CHC groups 
in a pairwise manner, highlighting significant DEGs with a log2 
(fold change) greater than 1 (Fig. 4A). The HD group showed 
increased expression of genes involved in genome stability and 
calcium signaling, such as TDRD12 and CALML5, compared 
to the ID group, suggesting enhanced genomic maintenance 
and cellular regulation. It also exhibited upregulation of oxi-
dative phosphorylation (OXPHOS) and mitochondrial-related 
genes, such as NDUFC2 and UQCRHL, compared to the LD 
group, indicating higher metabolic activity in the HD group.

In contrast, the ID group showed upregulation of genes relat-
ed to vesicle trafficking, cellular communication, and RNA pro-
cessing, including DENND2A, RAB3B, and SRRM3, in compar-
ison to the HD group. Additionally, the ID group demonstrated 
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Fig. 4. Differentially expressed genes (DEG) and gene enrichment analysis comparing the three common histomic cluster-associated groups. 
(A) Pairwise DEG analysis between the three groups is shown as three volcano plots. Using a cutoff of p ≤ .01 and log (fold change) ≥ 1.0, 
upregulated genes are highlighted in red, and downregulated genes in blue. In the lowly differentiated (LD) group, no genes were signifi-
cantly upregulated, but ERBB2, marked with an arrow, is noted for its potential clinical significance. (B) Gene enrichment analysis using 
gene ontology biological process (GO:BP) terms compared the three CHC-categorized groups, with the intermediately differentiated (ID) 
group as a pivot (pink line in the middle) to compare the highly differentiated (HD) (green dots) and LD groups (blue dots). The GO terms 
were divided into six categories, many of which showed significant differences between the three CHC-associated groups.
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higher expression of the tumor suppressor gene CPLX2 and the 
cancer-associated fibroblast (CAF) protein EMILIN3 compared 
to the LD group. These DEGs suggest that interactions and 
modulations of the tumor are key mechanisms in the ID group.

Lastly, the LD group did not show any significantly upregu-
lated genes with a log2 (fold change) greater than 1 compared 
to the ID and HD groups. However, the upregulation of the on-
cogene ERBB2, despite a lower fold change, hints at its involve-
ment in oncogenic signaling within the LD group.

The enrichment analysis using GO:BP terms was conducted 
between all three CHC-categorized groups in pairs, with fold 
change differences illustrated in Supplementary Fig. S7. To sim-
plify these complex three-way comparisons, which are difficult 
to grasp (Fig. 4B) was created: using the LD group as a pivot, 
gene enrichments of the HD and ID groups were plotted for a 
clearer comparison.

Overall, the HD group deviated the most from the ID group, 
particularly in processes related to mitochondrial oxidative 
phosphorylation. GO terms, such as mitochondrial ATP syn-
thesis coupled proton transport and mitochondrial respiratory 
chain complex assembly, were markedly upregulated, aligning 
with DEG analysis. Additionally, the HD group showed up-
regulation of metabolic process, such as glutathione derivative 
metabolic process, highlighting heightened metabolic activities 
alongside active mitochondrial energy production. Beyond 
energy metabolism, the HD group showed significant upregu-
lation of immune processes, as indicated by GO terms such as 
positive regulation of immune effector process and regulation 
of T cell-mediated cytotoxicity. However, the number of sig-
nificant immune terms was limited to six, many of which were 
associated with acute immune responses, such as antibacterial 
humoral response and acute inflammatory response.

In contrast, the HD group had significant downregulation in 
development and morphogenesis processes, as well as extracel-
lular matrix, compared to the LD and ID groups. Specifically, 
for development and morphogenesis, there was marked down-
regulation in GO terms associated with skeletal development 
(e.g., embryonic skeletal system morphogenesis, muscle cell dif-
ferentiation) and nervous system development (e.g., presynapse 
assembly, neuron migration). Additionally, GO terms related to 
the extracellular matrix, such as collagen fibril organization and 
extracellular matrix assembly, were also significantly downreg-
ulated.

The ID group consistently positioned at a midpoint between 
the HD and LD groups regarding all GO terms related to mi-

tochondrial and metabolic processes. In terms of extracellular 
matrix, development, and morphogenesis, the ID group showed 
significant downregulation for all associated GO terms com-
pared to the HD group. Against the LD group, the ID group 
showed either no significant difference or slight upregulation. 
For immune response, the ID group demonstrated the lowest 
enrichment among the three groups. The most striking char-
acteristics for the ID group was the significant upregulation of 
metal ion responses related to cadmium, zinc, and copper, as 
indicated by GO terms such as response to zinc ion, response to 
cadmium ion, and response to copper ion.

Lastly, the LD group exhibited the lowest regulation in mito-
chondrial oxidative phosphorylation, metabolic processes, and 
metal ion responses among the three CHC-associated groups, 
highlighting the molecular spectrum across them. The most 
notable differences were observed in mitochondrial OXPHOS 
and metabolism, with biological activity progressively increas-
ing from LD to ID to HD.

Survival analysis reveals clinically significant survival 
difference between CHC-categorized groups
The Kaplan-Meier survival curves for the CHC-categorized 
groups demonstrated significant differences in overall survival 
probabilities (Fig. 1C). The LD group had the lowest survival 
probability over time compared to the HD (p = .047) and ID 
groups (p = .018). There was no significant survival difference 
between the HD and ID groups (p = .602). Table 2 shows sur-
vival, histology, and RNA molecular analysis results for the 
three CHC-categorized groups. Additionally, a multivariable 
Cox proportional hazards regression analysis was performed 
to evaluate the association of various clinicopathologic factors 
with survival. The CHC-categorized group was identified as the 
only independent prognostic factor (Fig. 5).

DISCUSSION

In this study, we performed histomorphologic clustering of 
HGSC, deriving three distinct subgroups based on 40 tu-
mor-containing CHCs. Given HAVOC's success in detecting 
intratumoral heterogeneity in high-grade gliomas, a similarly 
poorly differentiated tumor, we anticipated its capability to 
identify histologically distinct patterns in HGSC. With the 
identified CHCs, we categorized tumors in a manner relevant 
to clinical prognosis. Through PCA and K-means clustering 
analysis of CHCs in 73 TCGA-OV samples, we identified three 
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histomorphologically unique groups with significant surviv-
al differences (Table 2). The HD and ID groups were associ-
ated with favorable overall survival. The HD group featured 
low tumor density, highly pleomorphic nucleoli, and focal 
glandular and micropapillary patterns with high eosino-
philic staining. The ID group exhibited intermediate tumor 
density and focal complex glandular and solid patterns with 
a balanced H&E staining. In contrast, the LD group demon-
strated significantly lower overall survival and was charac-
terized by high tumor density, large monotonous nuclei, and 
a completely patternless structure with high hematoxylin 
staining.

Our new categorization of HGSC differs from the well-
known TCGA molecular classification. The stromal-rich 
characteristics typical of the mesenchymal subtype (TCGA’s 
poor prognosis group) were not present in the LD group. 
Similarly, the abundant lymphocyte features associated with 
the immunoreactive subtype (favorable prognosis group) 
were absent in both the HD and ID groups. Unlike molec-
ular subtypes, our categorization emphasizes tumor cell 
density and H&E staining intensities of nuclei, as revealed 
by histology analysis. Both cell density and hematoxylin 
staining intensity increased progressively from the HD to ID 
to LD groups, a trend confirmed by both pathologist inter-
pretations and quantitative analysis. Notably, the LD group 
exhibited the poorest overall survival, suggesting that higher 
tumor cell density and strong hematoxylin staining intensity 
are correlated with adverse prognosis in HGSC.

Our results suggest that H&E staining intensities provide 
valuable biological information, as varying nucleus intensi-
ties correlate with different prognostics groups in HGSC. To 
preserve the biological information integrated in the image, 
we opted to not use color normalization in this experiment. 
Currently, there is no universally accepted standard for 
normalization, and different techniques can yield varying 
results [23]. Additionally, normalization can introduce color 
artifacts that can potentially compromise the integrity of the 
image [24].

Gene enrichment analysis offers a new perspective on 
HGSC compared to the TCGA classifications, linking 
CHC-associated groups to energy metabolism, particularly 
mitochondrial dynamics, and OXPHOS. The LD group, 
associated with poor prognosis, showed significant down-
regulation of genes associated with mitochondria and OX-
PHOS compared to those in the ID and HD groups, with 
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the ID group positioned in between the other two groups. This 
finding aligns with studies indicating that increased OXPHOS 
generates reactive oxygen species, enhancing platinum-based 
chemotherapy sensitivity and favorable prognosis [25,26]. Ad-
ditionally, a shift from OXPHOS to glycolytic metabolism is 
tied to higher invasiveness and poorer survival, as seen in the 
LD group [27]. This metabolic shift, causing mitochondrial 
fission and repositioning of mitochondria to the cell periphery 
leading to lamellipodia formation, may explain the nuclear 
shape changes observed in histologic analysis [28,29].

The DEG analysis revealed significant ERBB2/HER2 upreg-
ulation in the LD group. A recent study suggested a potential 
link between HER2 and OXPHOS, as HER2 can translocate to 
mitochondria, stimulating OXPHOS and promoting tumori-
genicity in breast cancer cells [30]. To identify HER2's role in 
HGSC, further investigation is needed on the HER2 localiza-
tion and its association with OXPHOS in HGSC tumor cells.

Gene enrichment analysis revealed significant upregula-
tion of extracellular matrix-related processes in the LD group 
compared to the favorable HD group. Despite no difference 
in stromal cell counts from the quantitative analysis, the LD 
group, associated with poor prognosis, exhibited larger and 
longer stromal nuclei with more intense hematoxylin staining, 
suggesting the presence of activated CAF [31].

Gene enrichment showed upregulation of a few immune 
terms in the HD group, primarily related to antibacterial and 
acute inflammatory responses rather than cancer-related im-
munity. Immune cell counts were comparable across the three 
CHC-associated groups, confirmed by CIBERSORT analysis, 
suggesting minor immune implications across the three groups.

Based on the overall analysis, we hypothesize that the three 
CHC-associated groups represent a spectrum of tumor pro-
gression: HD is the least progressed, LD is the most progressed, 
and ID is intermediate. Histomorphologic analysis shows a 

Fig. 5. Multivariable Cox proportional hazards regression analysis. The multivariable Cox proportional hazards regression analysis identifies 
the common histomic cluster (CHC)-categorized group as the sole independent prognostic factor, while other factors, including median age, 
International Federation of Gynecology and Obstetrics (FIGO) stage, clinicopathological characteristics, The Cancer Genome Atlas molecular 
classification, and homologous recombination deficiency (HRD) status, showed no significance. NA, not available.
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progression from less dense differentiated tumors to solid, 
high-density cell tumors. Gene analysis supports this, with 
the ID group showing intermediate mitochondrial activity 
and metabolism. Interestingly, the ID group had survival 
rates similar to those of the HD group, suggesting that a 
shift from ID to LD may be key to poor prognosis in HGSC. 
Notably, the ID group exhibited significant upregulation of 
metal ion response genes, particularly those related to zinc, 
copper, and cadmium, compared to the other clusters. Both 
cadmium and zinc are associated with HGSC and could 
potentially play unique roles in its progression [32,33], war-
ranting further investigation.

Our findings offer valuable prognostic insights and could 
guide treatment decisions by identifying CHCs linked to 
poor prognosis and potential resistance to standard thera-
pies, such as platinum-based chemotherapy and radiation 
therapy. Additionally, they could lay the groundwork for de-
veloping digital biomarkers and targeted therapies, including 
mitochondria-targeted treatments for the OXPHOS-en-
hanced HD group and HER2-targeted therapies for the LD 
group.

The limitations of this study include a small sample size of 
73, which may not adequately represent the extensive inter- 
and intra-tumoral heterogeneity present in HGSC. A larger 
sample size and multiple WSIs per patient are needed for 
future studies. Additionally, the genetic analysis relied on 
bulk sequencing. A more detailed analysis of the tumor mi-
croenvironment, particularly stromal and immune cell ac-
tivities, would benefit from single-cell or spatial sequencing. 
Additionally, the TCGA-OV datasets lack comprehensive 
clinical information regarding specific treatments and che-
motherapy regimens received by the patients, which could 
potentially serve as confounding factors influencing survival 
outcomes. Since this was a pilot study, further research is 
planned with larger in-house dataset, including more in-
depth clinical information to better address the histological-
ly distinct entities and their association with mitochondrial 
activity to a broader HGSC population.

In this study, we used HAVOC to examine intratumoral 
heterogeneity in HGSC with the TCGA-OV dataset, catego-
rizing three histologically distinct groups with varying sur-
vival outcomes. Our findings illustrate a progression from 
well-differentiated histological patterns with high OXPHOS 
activity in HD, through the ID group, to poorly differentiat-
ed patterns with low OXPHOS in the LD group, indicating 

a potential tumor progression from HD to LD. Despite the lim-
ited sample size, this pilot study lays the groundwork for future 
research to validate these histological entities and their link to 
mitochondrial activity.
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