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Deep learning-based histologic analysis effectively stratifies HGSC into clinically relevant prognostic groups, highlighting mitochondrial
dynamics and energy metabolism's role in disease progression. This method offers a novel approach to HGSC categorization.
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Categorizing high-grade serous ovarian carcinoma into
clinically relevant subgroups using deep learning-based

histomic clusters

Byungsoo Ahn, Eunhyang Park

Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea

Background: High-grade serous ovarian carcinoma (HGSC) exhibits significant heterogeneity, posing challenges for effective clinical categoriza-
tion. Understanding the histomorphological diversity within HGSC could lead to improved prognostic stratification and personalized treatment
approaches. Methods: We applied the Histomic Atlases of Variation Of Cancers model to whole slide images from The Cancer Genome Atlas
dataset for ovarian cancer. Histologically distinct tumor clones were grouped into common histomic clusters. Principal component analysis and
K-means clustering classified HGSC samples into three groups: highly differentiated (HD), intermediately differentiated (ID), and lowly differenti-
ated (LD). Results: HD tumors showed diverse patterns, lower densities, and stronger eosin staining. ID tumors had intermediate densities and
balanced staining, while LD tumors were dense, patternless, and strongly hematoxylin-stained. RNA sequencing revealed distinct patterns in
mitochondrial oxidative phosphorylation and energy metabolism, with upregulation in the HD, downregulation in the LD, and the ID positioned
in between. Survival analysis showed significantly lower overall survival for the LD compared to the HD and ID, underscoring the critical role of
mitochondrial dynamics and energy metabolism in HGSC progression. Conclusions: Deep learning-based histologic analysis effectively stratifies
HGSC into clinically relevant prognostic groups, highlighting the role of mitochondrial dynamics and energy metabolism in disease progression.

This method offers a novel approach to HGSC categorization.
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INTRODUCTION

High-grade serous ovarian carcinoma (HGSC) is the most
aggressive and prevalent form of ovarian cancer, accounting
for approximately 70%-80% of ovarian cancer deaths world-
wide [1]. Despite intensive treatment including cytoreduction
surgery, platinum-based chemotherapy and emerging targeted
therapies, most patients experience recurrence, with a medi-
an progression-free survival of 13.8 months for those at stage
HI-IV [2]. Although numerous genomic, transcriptomic, and
proteomic biomarkers have been proposed, none have been
adopted into standard clinical practice. Determining treatment

sensitivity or resistance requires several treatment cycles, which

expose patients to potentially unnecessary adverse events [3,4].
The challenge arises from the significant inter- and intratu-
moral heterogeneity of HGSC, which poses a major obstacle to
stratifying and classifying HGSC patients [5]. Currently, there
is no World Health Organization recommended effective histo-
logical subclassification for HGSC.

While several tools exist to categorize HGSC, the most wide-
ly accepted classification is based on four molecular subtypes
derived from The Cancer Genome Atlas (TCGA): immuno-
reactive, differentiated, proliferative, and mesenchymal [6].
Previous studies reported that the mesenchymal or proliferative
subtypes tend to have worse overall survival, whereas the im-

munoreactive patterns often have a more favorable prognosis
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[7,8]. However, molecular genetic testing is expensive and
time-consuming, limiting its application to clinical practice.

Additionally, attempts to categorize HGSC into histological
subtypes based on the molecular classifications have been hin-
dered by poor interobserver agreement, limiting the clinical ap-
plicability [9,10]. However, recent advances in digital pathology
have enabled new efforts to stratify HGSC based on histological
findings using deep learning techniques, which can extract
clinically relevant histological patterns that are not apparent to
the human eye. For instance, our team developed PathoRiCH, a
deep learning classifier designed to predict platinum resistance
based solely on hematoxylin and eosin (H&E) staining images
[11]. Despite this progress, previous histologic image-based
deep learning studies have analyzed pre-categorized HGSC
samples in a simplistic binary classification of HGSC as either
having a favorable or poor prognosis [12-14]. This oversimpli-
fies the complex heterogeneous nature of HGSC.

To address the limitations of these approaches and better
capture the complex intratumoral heterogeneity of HGSC, our
approach introduces a novel bottom-up classification method
grounded in classical pathology. Instead of relying on pre-
defined molecular data or survival prognosis information, we
focus on grouping tumor clusters with similar histopathological
patterns across different HGSC tumors. We hypothesize that
different clonal expansions within HGSC may have varying
effects on clinical prognosis, with certain clonal combina-
tions leading to poor survival and others to a more favorable
prognosis. To achieve this, we utilized the Histomic Atlases of
Variation Of Cancers (HAVOC) model pipeline to HGSC [15].
Unlike other deep learning tools trained on histopathological
patterns labeled with predefined molecular data, which may
limit the generalization of intratumoral heterogeneity, HAVOC
partitions histological patterns observed in whole slide imag-
es (WSIs) in an unsupervised manner. This allows for a more
comprehensive exploration of intratumoral heterogeneity.

In this study, we identified various tumor clones present
within The Cancer Genome Atlas dataset for ovarian cancer
(TCGA-OV) using the HAVOC model. The detected clones
were then grouped by similar histopathological patterns into
common histomic clusters (CHCs). We then categorized
HGSCs into three different groups based on different CHC
combinations. Each group’s histomorphologic and molecular
characteristics were evaluated, and their clinical relevance was

investigated.
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MATERIALS AND METHODS

Study cohort

The TCGA-OV dataset from the Genomic Data Commons
data portal (https://portal.gdc.cancer.gov/) was used. A total of
73 cases were selected based on the availability of H&E-stained
WSI from formalin-fixed paraffin-embedded tissue during the
primary debulking surgery, along with RNA sequencing data.
WHSI from frozen sections were excluded due to severe freezing
and ice-crystal artifacts that hinder histomorphological analy-
sis. No additional exclusion criteria were applied. Homologous
recombination deficiency (HRD) information was obtained
from Zhang et al. [16], based on the representative HRD algo-
rithm using loss of heterozygosity, telomeric allelic imbalance,
and large-scale state transitions. The TCGA molecular classifi-

cations were sourced from Verhaak et al. [8].

Histologic clustering to find inter-tumoral CHCs

The 73 HGSC WSIs from the TCGA-OV dataset were pro-
cessed through the HAVOC pipeline. Patch images (258 pm?,
512 x 512 pixels) were extracted from the WSIs, which were
then grouped into intratumoral heterogenic tumor clusters
using the default setting of K = 9 (Fig. 1A) [15]. Subsequent-
ly, these HAVOC-generated histomic variation clusters were
grouped by hierarchical clustering to identify CHCs across all
samples, where the elbow method was used for finding the op-
timal number of cluster (k = 100) (Supplementary Fig. S1). The
patch counts for clusters belonging to each TCGA sample are

provided in Supplementary Data S1.

Principal component analysis and K-means clustering
analysis

Two pathologists (B.A. and E.P.) reviewed all CHCs, selecting
those with more than 10% tumor cells as tumor-containing
CHC:s for further analysis. The percentages of tumor-contain-
ing CHCs within each sample were calculated based on the
total number of tumor cluster patches present (Supplementary
Data S1). Principal component analysis (PCA) analysis was per-
formed on this percentage data, followed by K-means clustering
to categorize the samples into three CHC-categorized groups
(Fig. 1B). The optimal number of clusters was determined by
the highest silhouette score (Supplementary Fig. S2).

Histologic analysis
The distribution of each tumor-containing CHC across the
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three CHC-categorized groups was compared using pairwise
t-tests. Histologic features of the CHCs were analyzed by two
pathologists (B.A. and E.P.). For quantitative analysis, Hov-
er-Net with pretrained official fast-PanNuke checkpoint (pan-
optic quality score of 0.4863 for multi-class segmentation on
TCGA ovary tissues) was used to segment nuclei present in all
patches generated by the HAVOC pipeline into three cell types:
tumor cells, stromal cells, and inflammatory cells [17]. Six nu-
cleus shape features (area, circularity, length, maximum diam-
eter, minimum diameter, and solidity) and eight nucleus color
features (maximum, minimum, mean, and median values for
both H&E staining) were extracted using QuPath ver. 0.5.1 with
the default resolution setting of 2 um per pixel [18]. Descriptive
statistical analyses for all histologic features were performed
using KNIME ver. 5.2.3 [19]. The Welch ANOVA test and the
Games-Howell test were used to determine if each CHC had
unique histologic features. Immune cell analysis was conducted
using CIBERSROTx [20].

RNA sequencing analysis
Differential gene expression (DEG) analysis was performed

Al-based categorizing of HGSC

using edgeR [21] with a cutoff of p < 0.01 and log (fold change)
> 1.0. Enrichment analysis was conducted using fgsea [22] and
Gene Ontology Biological Process (GO:BP) terms with a cutoff
of false discovery rate (FDR) < 0.01 and log (fold change) > 0.2.

Statistical analysis

Chi-squared test was used to evaluate correlations between
categorical variables. Kaplan-Meier survival curves and mul-
tivariable Cox proportional hazards regression analyses were
used for survival analyses. Two-tailed p-values < 0.05 were
considered statistically significant for all analyses. All data were

analyzed using Python (ver. 3.10).

RESULTS

Cohort characteristics

The clinicopathologic characteristics of the 73 TCGA samples
are shown in Table 1. Most samples (77%) were in International
Federation of Gynecology and Obstetrics (FIGO) stage IIIC,
followed by stage IV (21%) and stage IIC (1.4%). The molecular

classifications were 25% differentiated, 14% immunoreactive,

Table 1. Clinicopathologic information of all samples and three histologic subgroups in high-grade serous ovarian carcinoma from the TC-

GA-QV dataset

Group A

Group B Group C

Characteristic All samples (n = 73) HD group (n = 22) ID group (n = 27) LD group (n = 24) p-value®
Age (yr) A7
<63 34 (46.6) 8(36.4) 13 (48.1) 13 (54.2)
>63 39 (53.4) 14 (63.6) 14 (51.9) 11 (45.8)
FIGO stage .651
[IC 1(1.4) 0 1(3.7) 0
lc 56 (76.7) 18 (81.8) 19 (70.4) 19 (79.2)
\ 15 (20.5) 4(18.2) 7 (25.9) 4(16.7)
Unknown 1(1.4) 0 0 1(4.2)
Molecular classification 523
Differentiated 18 (24.7) 5(22.7) 9(33.3) 4(16.7)
Immunoreactive 10 (13.7) 4(18.2) 3(11.1) 3(12.5)
Mesenchymal 16 (21.9) 6(27.3) 4(14.8) 6 (25.0)
Proliferative 29 (39.7) 7 (31.8) 11 (40.7) 11 (45.8)
HRD status AT71
HRD 34 (46.6) 9 (40.9) 15 (55.6) 10 (41.7)
Non-HRD 34 (46.6) 10 (45.5) 10 (37.0) 14 (58.3)
Unknown 5(6.8) 3(13.6) 2 (7.4) 0

Values are presented as number (%).

TCGA-0V, The Cancer Genome Atlas dataset for ovarian cancer; HD, highly differentiated; ID, intermediately differentiated; LD, lowly differentiated;
FIGO, International Federation of Gynecology and Obstetrics; HRD, homologous recombination deficiency.
*Chi-squared test of independence was used to compare the three common histomic cluster-categorized groups.
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22% mesenchymal, and 40% proliferative. HRD status showed
47% as HRD-positive, 47% as non-HRD, and 6.8% as unknown.

Finding CHC-categorized groups

As illustrated in Fig. 1A, we identified various histologically
distinct tumor clones within HGSC samples in the TCGA-OV
datasets using the HAVOC pipeline. Hierarchical clustering
of the mean feature values for each tumor clone was then
employed to group them into 100 unique CHCs, of which 40
CHC:s contained more than 10% tumor cells. Using the per-
centage of tumor-containing CHCs for each sample, we applied
PCA and K-means clustering to categorize the TCGA samples
into three distinct groups: temporarily named groups A, B, and
C (Fig. 1B). In terms of clinicopathologic characteristics, no
significant differences in patient age, FIGO stage, molecular
classification, or HRD status were observed across the three

CHC-categorized groups (Table 1).

Histologic analysis by pathologists reveals unique
morphological differences in highly differentiated,
intermediately differentiated, and lowly differentiated
groups

Using a pairwise t-test, we compared the percentage of the 40
tumor-containing CHCs across the three CHC-categorized
groups (Supplementary Fig. S3) and identified significantly
present CHCs for each group: six in group A, five in group B,
and four in group C (Fig. 2).

All three groups exhibited poorly differentiated histologic
features, characterized by high-grade cytologic atypia, nu-
clear pleomorphism, prominent nucleoli, and at least focal
patternless sheet-like solid morphologies. However, some
CHC s exhibited unique histomorphological characteristics
that distinguished the groups. Group A included CHCs with
high histomorphological variability, predominantly featuring
more differentiated patterns, such as glandular (CHC36) and
micropapillary patterns (CHC37), with a relatively low tu-
mor-to-stromal ratio. It also included small islands or cord-like
patterns within fibrotic stroma (CHC23). Group B exhibited
more poorly differentiated morphology than the group A, with
complex glandular to solid cluster patterns of hyperchromatic
monotonous tumor cells (CHC1, CHC4, and CHC5). In con-
trast, group C consisted entirely of patternless sheet-like hyper-
chromatic monotonous tumor cells with sieve-like spaces and a
high tumor-to-stromal ratio. Based on these histologic features,

we named our CHC-categorized groups A-C as highly differ-

https://doi.org/10.4132/jptm.2024.10.23
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entiated (HD), intermediately differentiated (ID), and lowly
differentiated (LD), respectively.

Quantitative histologic analysis using Hover-Net and
QuPath confirms unique histomorphologic traits in
HD, ID, and LD groups

To objectively evaluate the histologic features of CHCs, we
detected nuclei present in all tumor-containing patches via
Hover-Net and extracted their histologic features using QuPath
(Supplementary Fig. S4). A total of 50,050,242 nuclei were seg-
mented and categorized into three cell types: tumor (39,477,010
cells, 78.9%), stromal (7,857,234 cells, 15.7%), and inflammato-
ry (2,715,998 cells, 5.4%) (Supplementary Data S2). The Welch
ANOVA and Games-Howell tests showed that 95%-100% of
the pairwise comparisons of tumor and stromal nuclei features
between different CHCs were statistically significant (p < .05)
(Supplementary Data S3, S4). The overall mean values of six
nucleus shape features and eight color features for tumor-con-
taining CHC:s are illustrated in Supplementary Fig. S5.

First, cell densities and cell counts per WSI patches were
compared in the significant CHCs among the HD, ID, and LD
groups (Fig. 3A). The HD group was characterized by CHCs
with low-density tumor nuclei patches (CHC 23, 28, and 31),
while the LD group included CHCs with high-density tumor
nuclei (CHC 11 and 14). The ID group’s nuclei density fell
between those of the other two groups. For stromal cells, all
three CHC groups showed low stromal cell density, except for
certain CHCs, such as CHC 23 in the HD group. Regarding
inflammatory cell count comparisons, there was no difference
in inflammatory cell density across all three groups, which
was further confirmed by CIBERSORTx analysis (FDR > 0.05)
(Supplementary Fig. S6).

Quantitative histologic features of tumor and stromal nuclei
revealed distinctive patterns among the three CHC groups
(Fig. 3B, C). The HD group displayed variation in size across
its CHCs, with some (CHC31 and CHCS) exhibiting larger tu-
mor and stromal nuclei, while others (CHC23) showed smaller
nuclei. The HD group CHCs were overall irregular in shape,
exhibiting low circularity and solidity. In contrast, CHCs in the
ID and LD groups were characterized by larger tumor and stro-
mal nuclei with more regular, circular, and solid shapes, with
less size variation across CHCs compared to the HD group.

The most striking differences among the groups were in their
nucleus color features. The HD group was characterized by low

hematoxylin and high eosin staining for both tumor and stro-
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Highly Differentiated Group Intermediately Differentiated Group Lowly Differentiated Group
(CHC categorized group A) (CHC categorized group B) (CHC categorized group C)

CHC 1)

| = 5 R 4 = )

Fig. 2. Histologic images of significant common histomic clusters (CHCs) in CHC-categorized groups. (A) CHC-categorized group A (highly
differentiated group) includes CHCs with more differentiated patterns, such as glandular (CHC36) and micropapillary patterns (CHC37) with
a relatively low tumor-to-stromal ratio. It also included small islands or cord-like patterns within fibrotic stroma (CHC23). The rest (CHCS,
28, 31) shows sheet-like patterns of pleomorphic tumor cells with vesicular spaces. (B) CHC-categorized group B (intermediately differen-
tiated group) exhibits CHCs with more poorly differentiated morphology compared to group A (highly differentiated group) with complex
glandular to solid cluster patterns of hyperchromatic monotonous tumor cells (CHC1, CHC4, and CHC5). There is also CHC with micropap-
illary pattern (CHC10) and sheet-like pattern with sieve-like spaces (CHC9). (C) All CHCs in the CHC-categorized group C (lowly differenti-
ated group) shows poorly differentiated, patternless, sheet-like pattern of hyperchromatic, monotonous tumor cells with sieve-like spaces
(CHC3, CHC11, CHC14, and CHC27).
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Fig. 3. Heatmap of quantitative histologic analysis using nuclei detection from Hover-Net across the three common histomic cluster-as-
sociated groups. (A) The heatmap shows mean tumor, stromal, and inflammatory cell counts per patch image across the three common
histomic cluster (CHC)-associated groups. (B) The heatmap shows mean values of six nucleus shape features and eight nucleus color fea-
tures extracted using QuPath for tumor cells across the three CHC-associated groups. (C) The heatmap shows mean values of six nucleus
shape features and eight nucleus color features extracted using QuPath for stromal cells across the three CHC-associated groups.

mal nuclei. The LD group exhibited strong hematoxylin stain-
ing and low eosin staining. Meanwhile, the ID group exhibited
more balanced staining levels, positioning itself between HD
and LD groups.

The quantitative histologic analysis complements the quali-
tative assessments by pathologists. In the HD group, differen-
tiated patterns such as glandular (CHC36) and micropapillary
(CHC37) corresponded with a low tumor-to-stromal ratio.
Additionally, CHC23, marked by fibrotic stroma, was validated
by its high stromal density. Conversely, most CHCs from the
ID and LD groups, characterized by patternless hyperchro-
matic sheet-like patterns (CHC3, 4, 5, 11, 14), were supported
by quantitative findings of a high tumor-to-stromal ratio and

increased hematoxylin staining.

https://doi.org/10.4132/jptm.2024.10.23

DEG and gene enrichment analysis reveal distinctive
molecular characteristics in HD, ID, and LD groups
The RNA sequencing analysis compared the three CHC groups
in a pairwise manner, highlighting significant DEGs with a log2
(fold change) greater than 1 (Fig. 4A). The HD group showed
increased expression of genes involved in genome stability and
calcium signaling, such as TDRD12 and CALML5, compared
to the ID group, suggesting enhanced genomic maintenance
and cellular regulation. It also exhibited upregulation of oxi-
dative phosphorylation (OXPHOS) and mitochondrial-related
genes, such as NDUFC2 and UQCRHL, compared to the LD
group, indicating higher metabolic activity in the HD group.

In contrast, the ID group showed upregulation of genes relat-
ed to vesicle trafficking, cellular communication, and RNA pro-
cessing, including DENND2A, RAB3B, and SRRM3, in compar-
ison to the HD group. Additionally, the ID group demonstrated
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Fig. 4. Differentially expressed genes (DEG) and gene enrichment analysis comparing the three common histomic cluster-associated groups.
(A) Pairwise DEG analysis between the three groups is shown as three volcano plots. Using a cutoff of p < .01 and log (fold change) = 1.0
upregulated genes are highlighted in red, and downregulated genes in blue. In the lowly differentiated (LD) group, no genes were signifi-
cantly upregulated, but ERBB2, marked with an arrow, is noted for its potential clinical significance. (B) Gene enrichment analysis using
gene ontology biological process (GO:BP) terms compared the three CHC-categorized groups, with the intermediately differentiated (ID)
group as a pivot (pink line in the middle) to compare the highly differentiated (HD) (green dots) and LD groups (blue dots). The GO terms
were divided into six categories, many of which showed significant differences between the three CHC-associated groups.
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higher expression of the tumor suppressor gene CPLX2 and the
cancer-associated fibroblast (CAF) protein EMILIN3 compared
to the LD group. These DEGs suggest that interactions and
modulations of the tumor are key mechanisms in the ID group.

Lastly, the LD group did not show any significantly upregu-
lated genes with a log2 (fold change) greater than 1 compared
to the ID and HD groups. However, the upregulation of the on-
cogene ERBB2, despite a lower fold change, hints at its involve-
ment in oncogenic signaling within the LD group.

The enrichment analysis using GO:BP terms was conducted
between all three CHC-categorized groups in pairs, with fold
change differences illustrated in Supplementary Fig. S7. To sim-
plify these complex three-way comparisons, which are difficult
to grasp (Fig. 4B) was created: using the LD group as a pivot,
gene enrichments of the HD and ID groups were plotted for a
clearer comparison.

Overall, the HD group deviated the most from the ID group,
particularly in processes related to mitochondrial oxidative
phosphorylation. GO terms, such as mitochondrial ATP syn-
thesis coupled proton transport and mitochondrial respiratory
chain complex assembly, were markedly upregulated, aligning
with DEG analysis. Additionally, the HD group showed up-
regulation of metabolic process, such as glutathione derivative
metabolic process, highlighting heightened metabolic activities
alongside active mitochondrial energy production. Beyond
energy metabolism, the HD group showed significant upregu-
lation of immune processes, as indicated by GO terms such as
positive regulation of immune effector process and regulation
of T cell-mediated cytotoxicity. However, the number of sig-
nificant immune terms was limited to six, many of which were
associated with acute immune responses, such as antibacterial
humoral response and acute inflammatory response.

In contrast, the HD group had significant downregulation in
development and morphogenesis processes, as well as extracel-
lular matrix, compared to the LD and ID groups. Specifically,
for development and morphogenesis, there was marked down-
regulation in GO terms associated with skeletal development
(e.g., embryonic skeletal system morphogenesis, muscle cell dif-
ferentiation) and nervous system development (e.g., presynapse
assembly, neuron migration). Additionally, GO terms related to
the extracellular matrix, such as collagen fibril organization and
extracellular matrix assembly, were also significantly downreg-
ulated.

The ID group consistently positioned at a midpoint between

the HD and LD groups regarding all GO terms related to mi-
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tochondrial and metabolic processes. In terms of extracellular
matrix, development, and morphogenesis, the ID group showed
significant downregulation for all associated GO terms com-
pared to the HD group. Against the LD group, the ID group
showed either no significant difference or slight upregulation.
For immune response, the ID group demonstrated the lowest
enrichment among the three groups. The most striking char-
acteristics for the ID group was the significant upregulation of
metal ion responses related to cadmium, zinc, and copper, as
indicated by GO terms such as response to zinc ion, response to
cadmium ion, and response to copper ion.

Lastly, the LD group exhibited the lowest regulation in mito-
chondrial oxidative phosphorylation, metabolic processes, and
metal ion responses among the three CHC-associated groups,
highlighting the molecular spectrum across them. The most
notable differences were observed in mitochondrial OXPHOS
and metabolism, with biological activity progressively increas-
ing from LD to ID to HD.

Survival analysis reveals clinically significant survival
difference between CHC-categorized groups

The Kaplan-Meier survival curves for the CHC-categorized
groups demonstrated significant differences in overall survival
probabilities (Fig. 1C). The LD group had the lowest survival
probability over time compared to the HD (p = .047) and ID
groups (p = .018). There was no significant survival difference
between the HD and ID groups (p = .602). Table 2 shows sur-
vival, histology, and RNA molecular analysis results for the
three CHC-categorized groups. Additionally, a multivariable
Cox proportional hazards regression analysis was performed
to evaluate the association of various clinicopathologic factors
with survival. The CHC-categorized group was identified as the
only independent prognostic factor (Fig. 5).

DISCUSSION

In this study, we performed histomorphologic clustering of
HGSC, deriving three distinct subgroups based on 40 tu-
mor-containing CHCs. Given HAVOC's success in detecting
intratumoral heterogeneity in high-grade gliomas, a similarly
poorly differentiated tumor, we anticipated its capability to
identify histologically distinct patterns in HGSC. With the
identified CHCs, we categorized tumors in a manner relevant
to clinical prognosis. Through PCA and K-means clustering
analysis of CHCs in 73 TCGA-OV samples, we identified three
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Fig. 5. Multivariable Cox proportional hazards regression analysis. The multivariable Cox proportional hazards regression analysis identifies
the common histomic cluster (CHC)-categorized group as the sole independent prognostic factor, while other factors, including median age,
International Federation of Gynecology and Obstetrics (FIGO) stage, clinicopathological characteristics, The Cancer Genome Atlas molecular
classification, and homologous recombination deficiency (HRD) status, showed no significance. NA, not available.

the ID group positioned in between the other two groups. This
finding aligns with studies indicating that increased OXPHOS
generates reactive oxygen species, enhancing platinum-based
chemotherapy sensitivity and favorable prognosis [25,26]. Ad-
ditionally, a shift from OXPHOS to glycolytic metabolism is
tied to higher invasiveness and poorer survival, as seen in the
LD group [27]. This metabolic shift, causing mitochondrial
fission and repositioning of mitochondria to the cell periphery
leading to lamellipodia formation, may explain the nuclear
shape changes observed in histologic analysis [28,29].

The DEG analysis revealed significant ERBB2/HER2 upreg-
ulation in the LD group. A recent study suggested a potential
link between HER2 and OXPHOS, as HER2 can translocate to
mitochondria, stimulating OXPHOS and promoting tumori-
genicity in breast cancer cells [30]. To identify HER2's role in
HGSC, further investigation is needed on the HER2 localiza-
tion and its association with OXPHOS in HGSC tumor cells.

https://doi.org/10.4132/jptm.2024.10.23

Gene enrichment analysis revealed significant upregula-
tion of extracellular matrix-related processes in the LD group
compared to the favorable HD group. Despite no difference
in stromal cell counts from the quantitative analysis, the LD
group, associated with poor prognosis, exhibited larger and
longer stromal nuclei with more intense hematoxylin staining,
suggesting the presence of activated CAF [31].

Gene enrichment showed upregulation of a few immune
terms in the HD group, primarily related to antibacterial and
acute inflammatory responses rather than cancer-related im-
munity. Immune cell counts were comparable across the three
CHC-associated groups, confirmed by CIBERSORT analysis,
suggesting minor immune implications across the three groups.

Based on the overall analysis, we hypothesize that the three
CHC-associated groups represent a spectrum of tumor pro-
gression: HD is the least progressed, LD is the most progressed,

and ID is intermediate. Histomorphologic analysis shows a

101



1l JPTM

progression from less dense differentiated tumors to solid,
high-density cell tumors. Gene analysis supports this, with
the ID group showing intermediate mitochondrial activity
and metabolism. Interestingly, the ID group had survival
rates similar to those of the HD group, suggesting that a
shift from ID to LD may be key to poor prognosis in HGSC.
Notably, the ID group exhibited significant upregulation of
metal ion response genes, particularly those related to zinc,
copper, and cadmium, compared to the other clusters. Both
cadmium and zinc are associated with HGSC and could
potentially play unique roles in its progression [32,33], war-
ranting further investigation.

Our findings offer valuable prognostic insights and could
guide treatment decisions by identifying CHCs linked to
poor prognosis and potential resistance to standard thera-
pies, such as platinum-based chemotherapy and radiation
therapy. Additionally, they could lay the groundwork for de-
veloping digital biomarkers and targeted therapies, including
mitochondria-targeted treatments for the OXPHOS-en-
hanced HD group and HER2-targeted therapies for the LD
group.

The limitations of this study include a small sample size of
73, which may not adequately represent the extensive inter-
and intra-tumoral heterogeneity present in HGSC. A larger
sample size and multiple WSIs per patient are needed for
future studies. Additionally, the genetic analysis relied on
bulk sequencing. A more detailed analysis of the tumor mi-
croenvironment, particularly stromal and immune cell ac-
tivities, would benefit from single-cell or spatial sequencing.
Additionally, the TCGA-OV datasets lack comprehensive
clinical information regarding specific treatments and che-
motherapy regimens received by the patients, which could
potentially serve as confounding factors influencing survival
outcomes. Since this was a pilot study, further research is
planned with larger in-house dataset, including more in-
depth clinical information to better address the histological-
ly distinct entities and their association with mitochondrial
activity to a broader HGSC population.

In this study, we used HAVOC to examine intratumoral
heterogeneity in HGSC with the TCGA-OV dataset, catego-
rizing three histologically distinct groups with varying sur-
vival outcomes. Our findings illustrate a progression from
well-differentiated histological patterns with high OXPHOS
activity in HD, through the ID group, to poorly differentiat-
ed patterns with low OXPHOS in the LD group, indicating
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a potential tumor progression from HD to LD. Despite the lim-
ited sample size, this pilot study lays the groundwork for future
research to validate these histological entities and their link to
mitochondrial activity.
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