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Abstract

Purpose Quantitative analysis of PET images in brain PET/CT relies on MRI-derived regions of interest (ROIs). However,
the pairs of PET/CT and MR images are not always available, and their alignment is challenging if their acquisition times dif-
fer considerably. To address these problems, this study proposes a deep learning framework for translating CT of PET/CT to
synthetic MR images (MRgyy) and performing automated quantitative regional analysis using MRgyy-derived segmentation.
Methods In this retrospective study, 139 subjects who underwent brain ['*F]FBB PET/CT and T1-weighted MRI were
included. A U-Net-like model was trained to translate CT images to MRgyy; subsequently, a separate model was trained to
segment MRgyy, into 95 regions. Regional and composite standardised uptake value ratio (SUVr) was calculated in ['*F][FBB
PET images using the acquired ROIs. For evaluation of MRgyy, quantitative measurements including structural similarity
index measure (SSIM) were employed, while for MRgyy-based segmentation evaluation, Dice similarity coefficient (DSC)
was calculated. Wilcoxon signed-rank test was performed for SUVrs computed using MRgyy and ground-truth MR (MRgyp).
Results Compared to MRy, the mean SSIM of MRgyy was 0.974 +0.005. The MRgyn-based segmentation achieved a mean
DSC of 0.733 across 95 regions. No statistical significance (P> 0.05) was found for SUVr between the ROIs from MRy
and those from MRy, excluding the precuneus.

Conclusion We demonstrated a deep learning framework for automated regional brain analysis in PET/CT with MRgyy. Our
proposed framework can benefit patients who have difficulties in performing an MRI scan.
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Introduction

The biological definition of Alzheimer’s disease is char-
acterised by the deposition of f-amyloid (A), pathologic
tau proteins, and neurodegeneration [1]. Among these bio-
markers, the deposition of Af in cortical gray matter can be
Mijin Yun and Jaewon Yang contributed equally to this work. observed via PET/CT images with various radiotracers [2].
However, current clinical practice of interpreting amyloid
PET/CT images relies on the visual analysis of PET images,
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However, SN-based methods have limited effectiveness in
distinguishing amyloid-positive PET images from nega-
tive ones because the ROIs are not designed to specify each
patient’s gray matter [9]. In contrast, segmentation-based
methods can define patient-specific ROIs by segmenting
anatomical MR images with software such as FreeSurfer
[10, 11], which offers greater power for identifying amy-
loid-positive PET images [12]; nonetheless, high-quality 3D
T1-weighted MR images are not always available for all PET
examinees and are vulnerable to susceptibility artifacts and
potential registration errors between MRI and PET [13, 14].

Instead, brain CT images could be an alternative to MRI
for anatomical segmentation [15]. Currently, brain PET/CT
is the standard for brain imaging as PET/MRI devices are
not available in most medical centres. While CT has much
lower soft-tissue contrast compared to MRI in the brain,
CT images have demonstrated the potential for extracting
regional information via deep learning (DL), enabling CT-
based regional brain analysis in PET [16, 17]. Recently, to
overcome the challenge of limited soft-tissue contrast in CT,
a multi-task DL model that simultaneously performs CT
segmentation and CT-to-MR translation has been proposed
for segmenting only gray matter in CT scans [18]. However,
previous studies do not segment gray matter into cortical
structures comparable to the FreeSurfer ROIs and have not
been validated on quantifying PET images.

To address this problem, we aim to develop a DL frame-
work for translating CT of PET/CT to synthetic MR images
(MRgyy) and performing automated regional brain analy-
sis in amyloid PET using MRgy\-based segmentation. The
pipeline of our automated analysis framework consists of
three steps: 1) CT-to-MR translation for MRy generation,
2) automatic segmentation of 95 regions in the brain using
MRy, and 3) SUVr quantification in each ROI. Subse-
quently, the quality of MRgyy, the accuracy of MRgy\-based

Table 1 Subject demographics

Train and validation set Test set
(n=99) (n=33)
Sex
Female 63 20
Male 36 13
Age+SD, years 72.1£8.2 70.0£8.7

brain segmentation, and the quantitative (i.e., SUVr) agree-
ment between ground truth MR images (MRy)-based analy-
sis and MRgy\-based analysis were evaluated at each step.

Materials and methods
Patients and data description

139 pairs of ['®F]Florbetaben (['®F]FBB) PET/CT and
T1-weighted MRI studies performed between February 2016
and November 2022 were retrospectively collected at the
dementia clinic at Severance Hospital. The study received
approval from the institutional review board of Severance
Hospital, and the need for informed consent was waived
given the retrospective nature of the study. All data under-
went visual scrutiny with a focus on registration accuracy.
Four pairs were excluded from the study due to susceptibil-
ity artefacts, 2 due to registration error, and 1 due to dispa-
rate MR protocol without 3D T1-weighted MR images. The
inclusion—exclusion criteria for the study are illustrated in
Fig. 1 The data were split into 79 (60%), 20 (15%), and 33
(25%) pairs for training, validation, and testing. The demo-
graphic data for the study dataset are summarised in Table 1.

Fig. 1 Inclusion and exclusion
criteria for the study

Patients with MRI and amyloid
PET/CT studies acquired
within six months (n = 139)

Excluding inappropriate MRI (n = 5)

- Patients with susceptibility
artifacts in MRI (n = 4)
- Patient with contrast-enhanced

MRI (n =1
n=134 (=1
Excluding CT-MR pairs with
registration error (n = 2)
n=132

Training set (n = 79)

Validation set (n = 20)

Test set (n = 33)
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PET/CT acquisition

['8F]FBB PET/CT studies were conducted with Discov-
ery 600 (GE Medical Systems, USA). First, [ISF]FBB was
intravenously injected into patients at a dose of 300 MBq.
PET scanning was performed 90 min after the injection for
20 min in the list mode. The spiral CT scan was performed
with a rotation time of 0.8 s at 120 kVp, 200 mA, 3.75 mm
slice thickness, 10.0 mm collimation, and 9.375 mm table
feed per rotation. Images were reconstructed using the
ordered subset expectation maximization algorithm with
four iterations and 32 subsets. Reconstructed PET images
were then subjected to a Gaussian filter with a full-width at
half-maximum (FWHM) of 4 mm. The resulting PET images
were in a 256 X 256 matrix with a pixel size of 0.98 mm and
a slice thickness of 3.75 mm.

MRI acquisition

High-resolution non-contrast 3D T1-weighted MRI studies
were conducted with a 3 Tesla PHILIPS-JSU1335 scan-
ner (Philips Medical Systems, Best, the Netherlands) with
256 X 256 matrix size, 1 mm slice thickness, 230 to 240 mm
field of view, and 9.9 or 7.5 ms repetition time.

Data preprocessing

All MR and CT images were resampled to voxel sizes of
I mmx1 mmx1 mm. MRg; and [18F]FBB PET images

Fig.2 (Top) training scheme,
and (bottom) pipeline of the
proposed automated analysis
framework. In our pipeline,

a 2.5D generator is used to
translate CT images t o syn-
thetic MR images (MRgyy)-
Then, MRgyy is input to three
independent segmentation
networks in the axial, coronal,
and sagittal planes to predict
the segmentation mask, which
is applied to PET/CT images

to calculate the standardised
uptake value ratio (SUVr). L2
loss was used to train the trans-
lation network, while weighted
cross-entropy and dice loss was
used to train the segmentation
network. Ground truth MR
images (MRgy) and CT images
were skull-stripped due to high
reconstruction error in the skull
regions, which aggravated the
translation performance CcT

Training

Co-registered

Inference

: 2
Reconstruction Loss

2D Generator

2D Generator

were rigidly co-registered to corresponding CT scans using
Statistical Parametric Mapping (SPM12), which was exe-
cuted within MATLAB R2023a, version 9.14 (MathWorks
Inc.). Next, segmentation labels for 95 ROIs were obtained
from MRy using FastSurfer [19]. MRy intensities were
robustly cropped at the 99.99th percentile of voxel intensi-
ties and rescaled to [0, 1] to remove outlier noise, while CT
intensities were clipped between [—100, 200] Hounsfield
units (HU) and rescaled to [0, 1] to isolate brain tissue. The
resulting MRt and CT images were skull-stripped using
SynthStrip to focus on brain tissue [20].

Study design and automated analysis framework

The pipeline consists of three steps (Fig. 2). First, CT images
are translated to MRgyy using a 2.5D residual U-Net imple-
mented in the axial plane, which takes in three-channel
input to predict the middle slice. Detailed description of
the architecture of the translation network is provided in
the Supplementary Fig. 1. Second, the MRgyy is input to
three independent 2.5D segmentation networks, which
takes in seven consecutive slices to predict the segmen-
tation probability map of the middle slice. Each of the
three networks is trained on the axial, sagittal, and coro-
nal views, respectively. To predict the final segmentation
mask of 95 classes, the output probability maps from
each network are ensembled through weighted average:
Pi = 0.4 % puiai + 04 % Doronati + 0.2 % Poggina» Where p;
indicates the probability of the voxel belonging to the class

Segmentation using
FastSurfer

l

Image

Coronal
Model

Axial
Model

Sagittal
Model

FastSurferCNN
for each view
(axial, sag, cor)

ROls from
segmentation

SUVR
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i. The network architecture is illustrated in Fig. 3. Lastly,
the segmentation masks are applied to co-registered PET/
CT images to analyse SUVr in ROIs.

The training of the network comprised two stages. First,
the translation network was trained by minimizing L2 loss
with Adam optimiser (betas =0.5, 0.999) for 250 epochs; the
initial learning rate was set to 10, and the batch size was
16. The segmentation networks were trained by minimising
weighted cross-entropy and Dice loss with Adam optimizer
(betas=0.9, 0.999) for 50 epochs. The initial learning rate
was set to 0.01, which decreased by 70% every 5 epochs, the
batch size to 16, and the weight decay to 5 x 107*. During
training, the number of segmentation labels is reduced from
95 to 78 to merge cortical regions that are adjacent across
hemispheres, which simplifies the training process by reduc-
ing the number of distinct labels. The original 95-class seg-
mentation map is restored by reassigning the merged labels
to their respective hemispheres based on their proximity
to the white matter centroids in each hemisphere [19]. All
networks were implemented in PyTorch (version 2.0.1) and
trained with two NVIDIA RTX A6000 GPUs.

Quantitative evaluation

Each step in the pipeline was evaluated with appropri-
ate metrics. First, normalised root mean squared error
(NRMSE), peak signal-to-noise ratio (PSNR), and structural
similarity index measure (SSIM) were calculated to quantify
similarity between MR and MRgyy. Second, Dice similar-
ity coefficient (DSC) was calculated for ROIs between MR
and MRgyy, where the DSC of region i is given by.

Fig.3 The architecture of the
segmentation network, adapted
from FastSurferCNN [19].

The network takes 7-channel
input of consecutive slices and
predicts the segmentation prob-
ability map of the middle slice.
The output channel ¢, is 79 in
the axial and coronal network,
and 51 in the sagittal network as

7 x 256 x 256

64 x 256 x 256

64 x 128 x 128

the left and right hemispheres 64 x 64 x 64

are indistinguishable in the

sagittal view 64 x 32 X 32
64 x 16 x 16

Ssc 2ROk RO sy
l |ROT, 1| + [ROI, gyy| .

The mean DSC scores of all 95 regions (62 cortical
regions and 33 sub-cortical structures) were calculated.
Subsequently, three representative cases with the lowest,
median, and highest DSC were selected to illustrate the
quality of MRgyy. A brain surface plot featuring NRMSE
and DSC of the cortical structure and the limbic system was
illustrated to visualise the correlation between the translation
performance (i.e., CT-to-MRgyy) and segmentation perfor-
mance (i.e., MRgyyn-to-ROIs).

Third, the regional and composite SUVr of ['*F]FBB images
was measured in the ROIs of the frontal, parietal, lateral tem-
poral, anterior cingulate, posterior cingulate, precuneus, and
whole cerebellum in the independent test set, following the
common ROIs in the amyloid PET radiotracer. The regional
and composite SUVr values were calculated as follows:

mean counts of ROI

Regional SUVr =

mean counts of whole cerebellum’

mean counts of all ROIs

Composite SUVr =

mean counts of whole cerebellum *

Statistical analysis

A Bland-Altman plot was used to assess the agreement of
regional and composite SUVr values calculated using ROIs
derived from MR and MRgyy. Wilcoxon signed-rank test
was used to compare the mean difference of regional and
composite SUVr between MR and MRgyy. All statistical
analyses were performed using IBM SPSS for Windows 26.0

Cout X 256 X 256

out

Skip Connection
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(IBM Corp., Armonk, NY, USA). P <0.05 was considered
statistically significant.

Results

Compared to MRy, the mean NRMSE, PSNR, and SSIM
of MRy were 0.206 +0.072 (mean + SD), 30.23 +1.64,
and 0.974 +0.005, respectively, demonstrating high simi-
larity between MRt and MRgy . Figure 4 illustrates over-
all quality of segmentation results from three representa-
tive cases. Compared to the ROIs of MR, the mean and
standard deviation of DSC scores of all 95 regions, 62
cortical regions, and 33 sub-cortical structures of MRgyy

Mean DSC = 0.664

Mean DSC = 0.740

were 0.733 +£0.090, 0.691 +0.054, and 0.808 +0.092,
respectively. All cortical regions had mean DSC greater
than 0.600 except cuneus (left hemisphere: DSC =0.590,
right hemisphere: DSC =0.598), lingual (left hemisphere:
DSC=0.595, right hemisphere: DSC =0.590), and peri-
calcarine (left hemisphere: DSC=0.541, right hemisphere:
DSC=0.552). Meanwhile, substantial agreement of segmen-
tation was observed in the subcortical structures, such as
ventricle, basal ganglia, and brainstem. Relatively weaker
agreement was observed in the cortical regions, especially
in the occipital lobe and the temporal lobe.

The NRMSE and DSC of the cortical structure was
visualised in Fig. 5. Regions that exhibited low NRMSE
(i.e., high similarity between MRt and MRgyy) also

Mean DSC =0.777

Fig.4 Visualisation of CT, MRgyy, MRgr, and the segmentation masks in the test set. Three cases with the lowest (a), median (b), and highest
(¢) mean DSC score are showcased. Dotted squares indicate ROIs with weak agreement

Fig.5 Visualised quantitative
assessment of model perfor-
mance for CT-to-MR translation
and segmentation. In the left,
mean NRMSE for each region
was calculated between MR
and MRgyy, where red indicates
low NRMSE (a). In the right,
mean DSC for each region was
calculated between MR based
segmentation and MRgyy based
segmentation, where lighter
blue indicates higher DSC (b)

b
Left Right

A&a
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demonstrated high DSC (i.e., high similarity between a ROI
derived MR and a ROI derived from MRgyy), such as
insula (DSC =0.805, NRMSE =0.205) and superior fron-
tal (DSC=0.774, NRMSE =0.200). On the other hand,
regions with high NRMSE demonstrated low DSC, such as
pericalcarine (DSC =0.533, NRMSE =0.262) and lingual
(DSC=0.589, NRMSE =0.229).

The comparison of regional and composite SUVr val-
ues between MR and MRy is summarised in Table 2.
No statistical significance was observed in the regional
and composite SUVr values except for the precuneus
(P=0.001), establishing strong agreement between MR
and MRy -based SUVr measurements. Figure 6 shows the
Bland—Altman plots of the regional and composite SUVr
values of ['®F]JFBB images computed with ROIs of MRy
and MRgyy. In the eight sub-figures, the mean differences
were close to zero, and 95% of the points lay within the
limits of agreement. No systematic pattern was observed in
the data. However, one outlier subject exhibited low mean
counts of cerebellum in the ROI of MRgyy. Overall, our
findings suggest that MRgyyn-based SUVr measurement of
['®F]FBB PET/CT can serve as an alternative to MR-based
measurement.

Discussion

In this retrospective study, we developed a DL-based model
to translate CT of PET/CT to MRgyy and evaluated its
accuracy quantitatively and qualitatively. Using MRgyy,
we developed a DL-based segmentation model for auto-
matic regional analysis. Our proposed analysis framework
using MRgyy demonstrated strong agreement with conven-
tional MR -based approach (composite SUVr mean dif-
ference =0.003 +0.018). Our results suggest that MRgyy

Table2 DSC for the ROIs of MRy and MRgyy, mean SUVr dif-
ference, and P-values obtained from the Wilcoxon signed-rank test
between SUVr measurement using ROIs of MR and MRgyy

SUVr
Region DSC (mean+SD) Difference P
(mean +SD)
Frontal 0.768 £0.035 0.002 +0.023 0.711
Parietal 0.722 £0.046 0.0+0.019 0.93
Lateral temporal 0.745 +£0.026 0.005+0.018 0.105
Anterior cingulate  0.747 £0.043 —0.003+0.027 0.242
Posterior cingulate 0.713 +£0.046 —0.001+0.028 1
Precuneus 0.706 +0.042 0.016+0.025 0.001
Whole cerebellum® 0.943+0.012 3.422+35.499 0.458
Composite 0.763 +£0.029 0.003+0.018 0.458

a Raw counts are presented instead of SUVr for whole cerebellum
because it is used as a reference region

@ Springer

derived from CT images through a DL model can be used
to derive ROISs for quantitatively analysing ['*F]FBB PET
images when MR images are not available.

Importantly, our approach provides detailed segmen-
tation (95 structured ROIs) in brain PET/CT images
with promising segmentation performance (mean
DSC +SD=0.733+0.090), which has not been demon-
strated in previous CT-based segmentation approaches due
to low soft tissue contrast of CT [16—18]. This detailed
segmentation was enabled by leveraging the segmentation
labels of MRgyy that provides high soft tissue contrast.
Based on our promising results, our approach can be applied
to other brain PET/CT scans such as ['*F]FDG, to provide
quantitative analysis without requiring MR images.

The proposed framework achieved strong agreement in
composite SUVr (mean difference =0.003 +0.018), indi-
cating that our MRgyy-based approach can serve as an
alternative to MRgr-based method for quantifying amyloid
load in ['®F]FBB PET/CT scans when MR images are not
available. Excluding the precuneus, regional SUVr values
exhibited a mean difference less than 0.01, with no statistical
significance (P >0.05). A statistically significant difference
in mean SUVr values was found in the precuneus, likely
due to the lower DSC in the region, as it is relatively blurry
in CT images. Nevertheless, since the precuneus comprises
a minor part of the ROIs for measuring amyloid load, its
impact on composite SUVr calculations is minimal.

Our framework offers several benefits. First, PET/CT
scans can be quantitatively analysed in the absence of MR
images. Despite the introduction of PET/MRI years ago,
most brain PET examinations are still conducted with PET/
CT due to its affordability. Second, CT scans are less affected
by metallic implants, which can cause susceptibility artefacts
in MR images. Third, since PET images are acquired imme-
diately after the CT scan, the registration between the two
images can be readily achieved. This allows for on-the-spot
analysis of PET/CT scans, when brain MRI is not accessible.
Lastly, the entire analysis framework including both DL-
based MRgyy translation and ROI segmentation runs within
two minutes per PET/CT scan, providing timely assistance
to nuclear medicine physicians in reading PET images.

In this study, a simple L2 norm loss-based U-Net model
was adopted to focus on developing an automated analysis
framework. This decision was based on the observation that
the level of blurring in the MRgyy did not substantially
affect the accuracy of downstream segmentation or the
subsequent quantitative analysis. Moreover, as PET images
exhibit inherently low spatial resolution, the sharpness of
the MRy may be less critical in this context. However, we
acknowledge that recent state-of-the-art (SOTA) methods
for image translation such as diffusion models can poten-
tially reduce the blurring, which could enhance the accu-
racy of segmentation [21]. Future work will address the



European Journal of Nuclear Medicine and Molecular Imaging (2025) 52:2959-2967

2965

SUVR Difference SUVR Difference

SUVR Difference

Raw counts difference

Frontal
0.10
mean diff: 0.002 + 0.023
L]
0.05 -
e o
.
3 ° .,
0.00 2 S e —
o: . * b °
‘e
S [ .
-0.10 . : . v
0.8 11 14 17 2.0
Average SUVR
Lateral temporal
0.10
mean diff: 0.005 + 0.018
L]
oos{
..3 L - : ¢ : *
0.00 *.: . . .. .' .
_______________________ L 2 S
-0.05
-0.10 . . . v
0.8 11 14 17 2.0
Average SUVR
Anterior cingulate
0.10 .
mean diff: -0.003 + 0.027
L
3 s . 2
L]
0.00 ” M S
. ® . .
®* o0 d 4
L ] 3
.
0,05 1 e
-0.10 . - . .
0.8 11 14 17 2.0
Average SUVR
Whole Cerebellum
150
mean diff: 3.422 + 34.957
100 4
__________________________ gmmmmmmmmmmeee
50 . *
L] b ¢ Y
. L4 . LAY
- *
0T % & e o, *o e o .
. . L]
_50 - L ] d
~100 A
\\.

-150

1500 2000 2500 3000 3500 4000 4500
Average raw counts

SUVR Difference

SUVR Difference

SUVR Difference

SUVR Difference

Parietal
0.10
mean diff: 0.0 £ 0.019
0.05 . .
oo
L]
0.'.0 * * o . .
0.00 . -
o :“ . ) * o o
L]
Lo gmmmmmmmmmmmmm e S,
-0.05 -
-0.10 : . r .
0.8 11 14 1.7 2.0
Average SUVR
Precuneus
0.10
mean diff: 0.016 + 0.024
______________________________ SR
0.05 - .
o o ®e )
o _o® - LI . -
0.00 - o . ¢ ¢ ¢
?
Lo e ——————
L]
-0.05 -
-0.10 . - : .
0.8 11 1.4 1.7 2.0
Average SUVR
Posterior cingulate
0.10
mean diff: -0.001 + 0.027
L]
0300 T
'Y L] L]
L
0.00 hd _.._. .. * ... ¢ ..
L
L] o ° * Y o
~0.054 ______ s s o«
-0.10 : - - .
0.8 11 14 1.7 2.0
Average SUVR
Composite SUVR
0.10
\\ mean diff: 0.003 + 0.018
L]
0.05 -
___________________________ gommmmmmmmmmme-
* .. * .. ® ) *
_____ L S
—0.05
-0.10 : - - :
0.8 1.1 1.4 1.7 2.0

Average SUVR

Fig.6 Bland-Altman plot of composite and regional SUVr values across all test sets. The solid and dashed lines indicate the mean and two
standard deviations from the mean, respectively. The red arrows indicate an outlier subject
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impact of incorporating SOTA methods into the CT-to-MR
translation pipeline.

A few limitations are associated with our technique. First,
several ROIs exhibited relatively low DSC, such as perical-
carine (left hemisphere mean DSC=0.541, right hemisphere
mean DSC =0.552). However, these regions are likely attrib-
uted to the low detail encapsulated by dense skulls in brain
CT. To mitigate this issue, the utilisation of diagnostic CT
or photon-counting CT may improve the accuracy of visu-
alising those regions and corresponding translation/segmen-
tation. Second, the overestimation of amyloid burden may
occur in patients with cerebellar infarction. We observed that
the MRgyy-based ROI included cerebellar infarction in the
outlier subject, resulting in low mean counts of the whole
cerebellum, as visualised in Supplementary Fig. 2. To over-
come this problem, cases with infarction should be collected
for training of the network. Lastly, our translation model was
implemented in 2.5D, which introduces inter-slice inconsist-
encies that are visible in the other two planes (i.e., sagittal
and coronal). However, our design of the segmentation net-
work mitigates the inconsistencies by aggregating the prob-
ability maps of the three views. The generation results and
segmentation map from the two other planes are illustrated
in Supplementary Fig. 3.

Conclusion

In this study, we developed a deep learning framework for
accurate quantification of brain PET in PET/CT. Our find-
ings demonstrate that CT of PET/CT can be translated to
MRy images to perform MRgyy-based regional segmenta-
tion for the quantification of amyloid load in ['*F]JFBB PET/
CT. Our proposed framework can benefit patients who have
difficulties in performing MRI scan.
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