
Vol.:(0123456789)

European Journal of Nuclear Medicine and Molecular Imaging (2025) 52:2959–2967 
https://doi.org/10.1007/s00259-025-07132-2

ORIGINAL ARTICLE

Automated quantification of brain PET in PET/CT using deep 
learning‑based CT‑to‑MR translation: a feasibility study

Daesung Kim1 · Kyobin Choo2 · Sangwon Lee3 · Seongjin Kang3 · Mijin Yun3   · Jaewon Yang4

Received: 7 October 2024 / Accepted: 3 February 2025 / Published online: 18 February 2025 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract
Purpose  Quantitative analysis of PET images in brain PET/CT relies on MRI-derived regions of interest (ROIs). However, 
the pairs of PET/CT and MR images are not always available, and their alignment is challenging if their acquisition times dif-
fer considerably. To address these problems, this study proposes a deep learning framework for translating CT of PET/CT to 
synthetic MR images (MRSYN) and performing automated quantitative regional analysis using MRSYN-derived segmentation.
Methods  In this retrospective study, 139 subjects who underwent brain [18F]FBB PET/CT and T1-weighted MRI were 
included. A U-Net-like model was trained to translate CT images to MRSYN; subsequently, a separate model was trained to 
segment MRSYN into 95 regions. Regional and composite standardised uptake value ratio (SUVr) was calculated in [18F]FBB 
PET images using the acquired ROIs. For evaluation of MRSYN, quantitative measurements including structural similarity 
index measure (SSIM) were employed, while for MRSYN-based segmentation evaluation, Dice similarity coefficient (DSC) 
was calculated. Wilcoxon signed-rank test was performed for SUVrs computed using MRSYN and ground-truth MR (MRGT).
Results  Compared to MRGT, the mean SSIM of MRSYN was 0.974 ± 0.005. The MRSYN-based segmentation achieved a mean 
DSC of 0.733 across 95 regions. No statistical significance (P > 0.05) was found for SUVr between the ROIs from MRSYN 
and those from MRGT, excluding the precuneus.
Conclusion  We demonstrated a deep learning framework for automated regional brain analysis in PET/CT with MRSYN. Our 
proposed framework can benefit patients who have difficulties in performing an MRI scan.
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Introduction

The biological definition of Alzheimer’s disease is char-
acterised by the deposition of β-amyloid (Aβ), pathologic 
tau proteins, and neurodegeneration [1]. Among these bio-
markers, the deposition of Aβ in cortical gray matter can be 
observed via PET/CT images with various radiotracers [2]. 
However, current clinical practice of interpreting amyloid 
PET/CT images relies on the visual analysis of PET images, 
which is prone to inter-rater variability [3]. Consequently, 
active research has focused on machine-assisted quantitative 
measurement of cortical amyloid load in amyloid PET/CT 
scans [4, 5].

Various approaches have been suggested for quantifying 
amyloid load in amyloid PET/CT scans. First, spatial nor-
malization (SN)-based methods register PET images to the 
standard Montreal Neurological Institute (MNI) space [6–8], 
which allows measurement of standardised uptake value 
ratio (SUVr) using predefined regions of interest (ROIs). 
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However, SN-based methods have limited effectiveness in 
distinguishing amyloid-positive PET images from nega-
tive ones because the ROIs are not designed to specify each 
patient’s gray matter [9]. In contrast, segmentation-based 
methods can define patient-specific ROIs by segmenting 
anatomical MR images with software such as FreeSurfer 
[10, 11], which offers greater power for identifying amy-
loid-positive PET images [12]; nonetheless, high-quality 3D 
T1-weighted MR images are not always available for all PET 
examinees and are vulnerable to susceptibility artifacts and 
potential registration errors between MRI and PET [13, 14].

Instead, brain CT images could be an alternative to MRI 
for anatomical segmentation [15]. Currently, brain PET/CT 
is the standard for brain imaging as PET/MRI devices are 
not available in most medical centres. While CT has much 
lower soft-tissue contrast compared to MRI in the brain, 
CT images have demonstrated the potential for extracting 
regional information via deep learning (DL), enabling CT-
based regional brain analysis in PET [16, 17]. Recently, to 
overcome the challenge of limited soft-tissue contrast in CT, 
a multi-task DL model that simultaneously performs CT 
segmentation and CT-to-MR translation has been proposed 
for segmenting only gray matter in CT scans [18]. However, 
previous studies do not segment gray matter into cortical 
structures comparable to the FreeSurfer ROIs and have not 
been validated on quantifying PET images.

To address this problem, we aim to develop a DL frame-
work for translating CT of PET/CT to synthetic MR images 
(MRSYN) and performing automated regional brain analy-
sis in amyloid PET using MRSYN-based segmentation. The 
pipeline of our automated analysis framework consists of 
three steps: 1) CT-to-MR translation for MRSYN generation, 
2) automatic segmentation of 95 regions in the brain using 
MRSYN, and 3) SUVr quantification in each ROI. Subse-
quently, the quality of MRSYN, the accuracy of MRSYN-based 

brain segmentation, and the quantitative (i.e., SUVr) agree-
ment between ground truth MR images (MRGT)-based analy-
sis and MRSYN-based analysis were evaluated at each step.

Materials and methods

Patients and data description

139 pairs of [18F]Florbetaben ([18F]FBB) PET/CT and 
T1-weighted MRI studies performed between February 2016 
and November 2022 were retrospectively collected at the 
dementia clinic at Severance Hospital. The study received 
approval from the institutional review board of Severance 
Hospital, and the need for informed consent was waived 
given the retrospective nature of the study. All data under-
went visual scrutiny with a focus on registration accuracy. 
Four pairs were excluded from the study due to susceptibil-
ity artefacts, 2 due to registration error, and 1 due to dispa-
rate MR protocol without 3D T1-weighted MR images. The 
inclusion–exclusion criteria for the study are illustrated in 
Fig. 1 The data were split into 79 (60%), 20 (15%), and 33 
(25%) pairs for training, validation, and testing. The demo-
graphic data for the study dataset are summarised in Table 1.

Fig. 1   Inclusion and exclusion 
criteria for the study Patients with MRI and amyloid 

PET/CT studies acquired 
within six months (n = 139)

n = 134

Validation set (n = 20)

Excluding inappropriate MRI (n = 5)
- Patients with susceptibility 

artifacts in MRI (n = 4)
- Patient with contrast-enhanced 

MRI (n = 1)

Excluding CT-MR pairs with 
registration error (n = 2)

n = 132

Training set (n = 79) Test set (n = 33)

Table 1   Subject demographics

Train and validation set
(n = 99)

Test set
(n = 33)

Sex
  Female 63 20
  Male 36 13
Age ± SD, years 72.1 ± 8.2 70.0 ± 8.7
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PET/CT acquisition

[18F]FBB PET/CT studies were conducted with Discov-
ery 600 (GE Medical Systems, USA). First, [18F]FBB was 
intravenously injected into patients at a dose of 300 MBq. 
PET scanning was performed 90 min after the injection for 
20 min in the list mode. The spiral CT scan was performed 
with a rotation time of 0.8 s at 120 kVp, 200 mA, 3.75 mm 
slice thickness, 10.0 mm collimation, and 9.375 mm table 
feed per rotation. Images were reconstructed using the 
ordered subset expectation maximization algorithm with 
four iterations and 32 subsets. Reconstructed PET images 
were then subjected to a Gaussian filter with a full-width at 
half-maximum (FWHM) of 4 mm. The resulting PET images 
were in a 256 × 256 matrix with a pixel size of 0.98 mm and 
a slice thickness of 3.75 mm.

MRI acquisition

High-resolution non-contrast 3D T1-weighted MRI studies 
were conducted with a 3 Tesla PHILIPS-JSU1335 scan-
ner (Philips Medical Systems, Best, the Netherlands) with 
256 × 256 matrix size, 1 mm slice thickness, 230 to 240 mm 
field of view, and 9.9 or 7.5 ms repetition time.

Data preprocessing

All MRGT and CT images were resampled to voxel sizes of 
1 mm × 1 mm × 1 mm. MRGT and [18F]FBB PET images 

were rigidly co-registered to corresponding CT scans using 
Statistical Parametric Mapping (SPM12), which was exe-
cuted within MATLAB R2023a, version 9.14 (MathWorks 
Inc.). Next, segmentation labels for 95 ROIs were obtained 
from MRGT using FastSurfer [19]. MRGT intensities were 
robustly cropped at the 99.99th percentile of voxel intensi-
ties and rescaled to [0, 1] to remove outlier noise, while CT 
intensities were clipped between [−100, 200] Hounsfield 
units (HU) and rescaled to [0, 1] to isolate brain tissue. The 
resulting MRGT and CT images were skull-stripped using 
SynthStrip to focus on brain tissue [20].

Study design and automated analysis framework

The pipeline consists of three steps (Fig. 2). First, CT images 
are translated to MRSYN using a 2.5D residual U-Net imple-
mented in the axial plane, which takes in three-channel 
input to predict the middle slice. Detailed description of 
the architecture of the translation network is provided in 
the Supplementary Fig. 1. Second, the MRSYN is input to 
three independent 2.5D segmentation networks, which 
takes in seven consecutive slices to predict the segmen-
tation probability map of the middle slice. Each of the 
three networks is trained on the axial, sagittal, and coro-
nal views, respectively. To predict the final segmentation 
mask of 95 classes, the output probability maps from 
each network are ensembled through weighted average: 
pi = 0.4 ∗ paxial,i + 0.4 ∗ pcoronal,i + 0.2 ∗ psagittal,i, where pi 
indicates the probability of the voxel belonging to the class 

Fig. 2   (Top) training scheme, 
and (bottom) pipeline of the 
proposed automated analysis 
framework. In our pipeline, 
a 2.5D generator is used to 
translate CT images t o syn-
thetic MR images (MRSYN). 
Then, MRSYN is input to three 
independent segmentation 
networks in the axial, coronal, 
and sagittal planes to predict 
the segmentation mask, which 
is applied to PET/CT images 
to calculate the standardised 
uptake value ratio (SUVr). L2 
loss was used to train the trans-
lation network, while weighted 
cross-entropy and dice loss was 
used to train the segmentation 
network. Ground truth MR 
images (MRGT) and CT images 
were skull-stripped due to high 
reconstruction error in the skull 
regions, which aggravated the 
translation performance
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i. The network architecture is illustrated in Fig. 3. Lastly, 
the segmentation masks are applied to co-registered PET/
CT images to analyse SUVr in ROIs.

The training of the network comprised two stages. First, 
the translation network was trained by minimizing L2 loss 
with Adam optimiser (betas = 0.5, 0.999) for 250 epochs; the 
initial learning rate was set to 10–4, and the batch size was 
16. The segmentation networks were trained by minimising 
weighted cross-entropy and Dice loss with Adam optimizer 
(betas = 0.9, 0.999) for 50 epochs. The initial learning rate 
was set to 0.01, which decreased by 70% every 5 epochs, the 
batch size to 16, and the weight decay to 5 × 10–4. During 
training, the number of segmentation labels is reduced from 
95 to 78 to merge cortical regions that are adjacent across 
hemispheres, which simplifies the training process by reduc-
ing the number of distinct labels. The original 95-class seg-
mentation map is restored by reassigning the merged labels 
to their respective hemispheres based on their proximity 
to the white matter centroids in each hemisphere [19]. All 
networks were implemented in PyTorch (version 2.0.1) and 
trained with two NVIDIA RTX A6000 GPUs.

Quantitative evaluation

Each step in the pipeline was evaluated with appropri-
ate metrics. First, normalised root mean squared error 
(NRMSE), peak signal-to-noise ratio (PSNR), and structural 
similarity index measure (SSIM) were calculated to quantify 
similarity between MRGT and MRSYN. Second, Dice similar-
ity coefficient (DSC) was calculated for ROIs between MRGT 
and MRSYN, where the DSC of region i is given by.

The mean DSC scores of all 95 regions (62 cortical 
regions and 33 sub-cortical structures) were calculated. 
Subsequently, three representative cases with the lowest, 
median, and highest DSC were selected to illustrate the 
quality of MRSYN. A brain surface plot featuring NRMSE 
and DSC of the cortical structure and the limbic system was 
illustrated to visualise the correlation between the translation 
performance (i.e., CT-to-MRSYN) and segmentation perfor-
mance (i.e., MRSYN-to-ROIs).

Third, the regional and composite SUVr of [18F]FBB images 
was measured in the ROIs of the frontal, parietal, lateral tem-
poral, anterior cingulate, posterior cingulate, precuneus, and 
whole cerebellum in the independent test set, following the 
common ROIs in the amyloid PET radiotracer. The regional 
and composite SUVr values were calculated as follows:

Statistical analysis

A Bland–Altman plot was used to assess the agreement of 
regional and composite SUVr values calculated using ROIs 
derived from MRGT and MRSYN. Wilcoxon signed-rank test 
was used to compare the mean difference of regional and 
composite SUVr between MRGT and MRSYN. All statistical 
analyses were performed using IBM SPSS for Windows 26.0 

DSCi =

2|ROIi,GT ∩ ROIi,SYN|

|
|ROIi,GT

|
| + |ROIi,SYN|

.

Regional SUVr =
mean counts of ROI

mean counts of whole cerebellum
,

Composite SUVr =
mean counts of all ROIs

mean counts of whole cerebellum
.

Fig. 3   The architecture of the 
segmentation network, adapted 
from FastSurferCNN [19]. 
The network takes 7-channel 
input of consecutive slices and 
predicts the segmentation prob-
ability map of the middle slice. 
The output channel cout is 79 in 
the axial and coronal network, 
and 51 in the sagittal network as 
the left and right hemispheres 
are indistinguishable in the 
sagittal view
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(IBM Corp., Armonk, NY, USA). P < 0.05 was considered 
statistically significant.

Results

Compared to MRGT, the mean NRMSE, PSNR, and SSIM 
of MRSYN were 0.206 ± 0.072 (mean ± SD), 30.23 ± 1.64, 
and 0.974 ± 0.005, respectively, demonstrating high simi-
larity between MRGT and MRSYN. Figure 4 illustrates over-
all quality of segmentation results from three representa-
tive cases. Compared to the ROIs of MRGT, the mean and 
standard deviation of DSC scores of all 95 regions, 62 
cortical regions, and 33 sub-cortical structures of MRSYN 

were 0.733 ± 0.090, 0.691 ± 0.054, and 0.808 ± 0.092, 
respectively. All cortical regions had mean DSC greater 
than 0.600 except cuneus (left hemisphere: DSC = 0.590, 
right hemisphere: DSC = 0.598), lingual (left hemisphere: 
DSC = 0.595, right hemisphere: DSC = 0.590), and peri-
calcarine (left hemisphere: DSC = 0.541, right hemisphere: 
DSC = 0.552). Meanwhile, substantial agreement of segmen-
tation was observed in the subcortical structures, such as 
ventricle, basal ganglia, and brainstem. Relatively weaker 
agreement was observed in the cortical regions, especially 
in the occipital lobe and the temporal lobe.

The NRMSE and DSC of the cortical structure was 
visualised in Fig. 5. Regions that exhibited low NRMSE 
(i.e., high similarity between MRGT and MRSYN) also 

Fig. 4   Visualisation of CT, MRSYN, MRGT, and the segmentation masks in the test set. Three cases with the lowest (a), median (b), and highest 
(c) mean DSC score are showcased. Dotted squares indicate ROIs with weak agreement

Fig. 5   Visualised quantitative 
assessment of model perfor-
mance for CT-to-MR translation 
and segmentation. In the left, 
mean NRMSE for each region 
was calculated between MRGT 
and MRSYN, where red indicates 
low NRMSE (a). In the right, 
mean DSC for each region was 
calculated between MRGT based 
segmentation and MRSYN based 
segmentation, where lighter 
blue indicates higher DSC (b)
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demonstrated high DSC (i.e., high similarity between a ROI 
derived MRGT and a ROI derived from MRSYN), such as 
insula (DSC = 0.805, NRMSE = 0.205) and superior fron-
tal (DSC = 0.774, NRMSE = 0.200). On the other hand, 
regions with high NRMSE demonstrated low DSC, such as 
pericalcarine (DSC = 0.533, NRMSE = 0.262) and lingual 
(DSC = 0.589, NRMSE = 0.229).

The comparison of regional and composite SUVr val-
ues between MRGT and MRSYN is summarised in Table 2. 
No statistical significance was observed in the regional 
and composite SUVr values except for the precuneus 
(P = 0.001), establishing strong agreement between MRGT 
and MRSYN.-based SUVr measurements. Figure 6 shows the 
Bland–Altman plots of the regional and composite SUVr 
values of [18F]FBB images computed with ROIs of MRGT 
and MRSYN. In the eight sub-figures, the mean differences 
were close to zero, and 95% of the points lay within the 
limits of agreement. No systematic pattern was observed in 
the data. However, one outlier subject exhibited low mean 
counts of cerebellum in the ROI of MRSYN. Overall, our 
findings suggest that MRSYN-based SUVr measurement of 
[18F]FBB PET/CT can serve as an alternative to MRGT-based 
measurement.

Discussion

In this retrospective study, we developed a DL-based model 
to translate CT of PET/CT to MRSYN and evaluated its 
accuracy quantitatively and qualitatively. Using MRSYN, 
we developed a DL-based segmentation model for auto-
matic regional analysis. Our proposed analysis framework 
using MRSYN demonstrated strong agreement with conven-
tional MRGT-based approach (composite SUVr mean dif-
ference = 0.003 ± 0.018). Our results suggest that MRSYN 

derived from CT images through a DL model can be used 
to derive ROIs for quantitatively analysing [18F]FBB PET 
images when MR images are not available.

Importantly, our approach provides detailed segmen-
tation (95 structured ROIs) in brain PET/CT images 
with promising segmentation performance (mean 
DSC ± SD = 0.733 ± 0.090), which has not been demon-
strated in previous CT-based segmentation approaches due 
to low soft tissue contrast of CT [16–18]. This detailed 
segmentation was enabled by leveraging the segmentation 
labels of MRSYN that provides high soft tissue contrast. 
Based on our promising results, our approach can be applied 
to other brain PET/CT scans such as [18F]FDG, to provide 
quantitative analysis without requiring MR images.

The proposed framework achieved strong agreement in 
composite SUVr (mean difference = 0.003 ± 0.018), indi-
cating that our MRSYN-based approach can serve as an 
alternative to MRGT-based method for quantifying amyloid 
load in [18F]FBB PET/CT scans when MR images are not 
available. Excluding the precuneus, regional SUVr values 
exhibited a mean difference less than 0.01, with no statistical 
significance (P > 0.05). A statistically significant difference 
in mean SUVr values was found in the precuneus, likely 
due to the lower DSC in the region, as it is relatively blurry 
in CT images. Nevertheless, since the precuneus comprises 
a minor part of the ROIs for measuring amyloid load, its 
impact on composite SUVr calculations is minimal.

Our framework offers several benefits. First, PET/CT 
scans can be quantitatively analysed in the absence of MR 
images. Despite the introduction of PET/MRI years ago, 
most brain PET examinations are still conducted with PET/
CT due to its affordability. Second, CT scans are less affected 
by metallic implants, which can cause susceptibility artefacts 
in MR images. Third, since PET images are acquired imme-
diately after the CT scan, the registration between the two 
images can be readily achieved. This allows for on-the-spot 
analysis of PET/CT scans, when brain MRI is not accessible. 
Lastly, the entire analysis framework including both DL-
based MRSYN translation and ROI segmentation runs within 
two minutes per PET/CT scan, providing timely assistance 
to nuclear medicine physicians in reading PET images.

In this study, a simple L2 norm loss-based U-Net model 
was adopted to focus on developing an automated analysis 
framework. This decision was based on the observation that 
the level of blurring in the MRSYN did not substantially 
affect the accuracy of downstream segmentation or the 
subsequent quantitative analysis. Moreover, as PET images 
exhibit inherently low spatial resolution, the sharpness of 
the MRSYN may be less critical in this context. However, we 
acknowledge that recent state-of-the-art (SOTA) methods 
for image translation such as diffusion models can poten-
tially reduce the blurring, which could enhance the accu-
racy of segmentation [21]. Future work will address the 

Table 2   DSC for the ROIs of MRGT and MRSYN, mean SUVr dif-
ference, and P-values obtained from the Wilcoxon signed-rank test 
between SUVr measurement using ROIs of MRGT and MRSYN

a Raw counts are presented instead of SUVr for whole cerebellum 
because it is used as a reference region

SUVr

Region DSC (mean ± SD) Difference 
(mean ± SD)

P

Frontal 0.768 ± 0.035 0.002 ± 0.023 0.711
Parietal 0.722 ± 0.046 0.0 ± 0.019 0.93
Lateral temporal 0.745 ± 0.026 0.005 ± 0.018 0.105
Anterior cingulate 0.747 ± 0.043 −0.003 ± 0.027 0.242
Posterior cingulate 0.713 ± 0.046 −0.001 ± 0.028 1
Precuneus 0.706 ± 0.042 0.016 ± 0.025 0.001
Whole cerebelluma 0.943 ± 0.012 3.422 ± 35.499 0.458
Composite 0.763 ± 0.029 0.003 ± 0.018 0.458
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Fig. 6   Bland–Altman plot of composite and regional SUVr values across all test sets. The solid and dashed lines indicate the mean and two 
standard deviations from the mean, respectively. The red arrows indicate an outlier subject
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impact of incorporating SOTA methods into the CT-to-MR 
translation pipeline.

A few limitations are associated with our technique. First, 
several ROIs exhibited relatively low DSC, such as perical-
carine (left hemisphere mean DSC = 0.541, right hemisphere 
mean DSC = 0.552). However, these regions are likely attrib-
uted to the low detail encapsulated by dense skulls in brain 
CT. To mitigate this issue, the utilisation of diagnostic CT 
or photon-counting CT may improve the accuracy of visu-
alising those regions and corresponding translation/segmen-
tation. Second, the overestimation of amyloid burden may 
occur in patients with cerebellar infarction. We observed that 
the MRSYN-based ROI included cerebellar infarction in the 
outlier subject, resulting in low mean counts of the whole 
cerebellum, as visualised in Supplementary Fig. 2. To over-
come this problem, cases with infarction should be collected 
for training of the network. Lastly, our translation model was 
implemented in 2.5D, which introduces inter-slice inconsist-
encies that are visible in the other two planes (i.e., sagittal 
and coronal). However, our design of the segmentation net-
work mitigates the inconsistencies by aggregating the prob-
ability maps of the three views. The generation results and 
segmentation map from the two other planes are illustrated 
in Supplementary Fig. 3.

Conclusion

In this study, we developed a deep learning framework for 
accurate quantification of brain PET in PET/CT. Our find-
ings demonstrate that CT of PET/CT can be translated to 
MRSYN images to perform MRSYN-based regional segmenta-
tion for the quantification of amyloid load in [18F]FBB PET/
CT. Our proposed framework can benefit patients who have 
difficulties in performing MRI scan.
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