Check for updates

RESEARCH ARTICLE

Cancer Therapy and Prevention

Hematologic and molecular responses to ropeginterferon alfa-2b therapy of polycythemia vera: 48-week results from a prospective study

Correspondence

Sung-Eun Lee, Department of Hematology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodae-ro, Seocho-Gu, Seoul 06591, Korea. Email: lee86@catholic.ac.kr

Funding information

PharmaEssentia, Taiwan

Abstract

To prevent thrombosis in patients with polycythemia vera (PV), achieving a complete hematologic response (CHR) is highly recommended in practice. In addition, a reduced *JAK2* V617F mutation burden is expected to have a disease-modifying effect, and its molecular response (MR) is currently of significant interest. This study aimed to assess the association between CHR and MR in patients with PV following treatment with ropeginterferon alfa-2b. This phase 2, single-arm, open-label, investigator-initiated trial

Abbreviations: CHR, complete hematologic response; ECOG, Eastern Cooperative Oncology Group; ELN, European LeukemiaNet; Hct, hematocrit; ICTRP, International Clinical Trials Registry Platform; IFNa, interferon-a; MPNs, myeloproliferative neoplasms; MPN-SAF TSS, MPN Symptoms Assessment Form Total Symptom Score; MR, molecular response; PV, polycythemia vera; SAE, serious adverse event; TEAE, treatment-emergent adverse event; TRAE, treatment-related adverse event; WBCs, white blood cells; WHO, World Health Organization.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2025 The Author(s). International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

526 wileyonlinelibrary.com/journal/ijc Int. J. Cancer. 2025;157:526–533.

¹Division of Hematology & Medical Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea

²Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea

³Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Jeollanam-do, Korea

⁴Division of Hematology-Oncology, Department of Internal Medicine, Institute of Health Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Korea

 $^{^5}$ Department of Hematology/Oncology, Kyungpook National University Hospital, Daegu, Korea

⁶Department of Hematology/Oncology, Pusan National University Hospital, Busan, Korea

⁷Division of Hematology/Oncology, Department of Internal Medicine, Daegu Catholic, University Hospital, Daegu Catholic University School of Medicine, Daegu, Korea

⁸Division of Oncology and Hematology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea

⁹Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

¹⁰Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea

¹¹Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea

¹²Departments of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea

¹³Department of Oncology and Hematology, Hanyang University Medical Center Seoul, Seoul, Korea

¹⁴Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea

¹⁵Division of Hematology-Oncology, Department of Internal Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea

¹⁶Department of Hematology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

.0970215, 2025, 3, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ijc.35411 by Yonsei University Med Library, Wiley Online Library on [13/11/2025]. See the Terms

use; OA articles are governed by the applicable Creative Commons

was conducted at 16 sites in South Korea. Ninety-nine patients were treated with ropeginterferon alfa-2b subcutaneously every 2 weeks, at doses of 250 µg (week 1), 350 µg (week 3), and 500 µg (week 5), until week 48. CHRs were 27% (25/94), 46% (40/87), 56% (47/84), and 63% (51/81) at 12, 24, 36, and 48 weeks, respectively. The MR rates were 32% (28/88), 36% (29/81), 49% (38/77), and 57% (42/74) at 12, 24, 36, and 48 weeks, respectively. The Phi Coefficient for the association between CHR and MR was 0.6146 (p < .0001) at 48 weeks. In the subgroup analysis, patients with hydroxyurea resistance or intolerance, and those who were hydroxyurea-naïve, had similar results in terms of the CHR. In conclusion, CHR and MR were observed to be associated in patients with PV treated with ropeginterferon.

KEYWORDS

association, CHR, MR, polycythemia vera, ropeginterferon alfa-2b

What's New?

Current treatment goals for polycythemia vera, a myeloproliferative neoplasm characterized by JAK2 mutations, are mainly to prevent thrombosis. While ropeginterferon alfa-2b treatment also reduces JAK2 mutation burden, the correlation between the hematologic and molecular responses remains to be clarified. This single-arm phase 2 study investigated the treatment response to ropeginterferon alfa-2b as assessed by hematologic parameters and molecular markers and evaluated their association in patients with polycythemia vera requiring cytoreductive therapy. Patients who achieved a hematologic response exhibited a substantially reduced JAK2 mutation burden compared to non-responders. Molecular response was also associated with hydroxyurea-naïve status and being female.

1 INTRODUCTION

Polycythemia vera (PV) is one of the most prevalent myeloproliferative neoplasms (MPNs), identified by the presence of activating somatic mutations in the JAK2 gene and characterized by excessive production of red blood cells, platelets, and neutrophils. The JAK2 Val617Phe point mutation was discovered in 2005. This point mutation replaces valine with phenylalanine at codon 617 of the JAK2 gene and is present in 90% or more of patients with PV. It has a significant impact on the manifestation of clinical symptoms and disease progression. Current treatment goals for PV are to prevent thrombosis and manage symptoms. Phlebotomy, with a hematocrit (Hct) target of <45%, and daily low-dose acetylsalicylic acid are considered standards of care for initial therapy regardless of disease risk.²⁻⁴ Ropeginterferon alfa-2b is a recommended regimen for lowrisk patients, as well as high-risk patients, who require cytoreductive therapy.^{3,5}

The mechanism of interferon- α (IFN α) action remains unclear; however, IFNα has an apoptotic effect on JAK2 V617F progenitor cells, leading to a significant and durable reduction in the JAK2 mutation burden. $^{6-11}$ Increasing evidence suggests that IFN α treatment may have disease-modifying potential, 12 likely attributable to its ability to reduce JAK2 mutation burdens, which are integral to the pathogenesis of PV. 13-15 A meta-analysis revealed a robust positive association between JAK2 V617F allele burden and white blood

cells (WBCs) and an increased risk of disease progression to myelofibrosis. 16

Several studies with IFNα, including the ropeginterferon alfa-2b, have reported an association between hematologic response and molecular response (MR).^{17,18} However, the correlation between molecular and clinical response remains to be clarified. Therefore, this study investigated the hematologic response and MR in patients with PV requiring cytoreductive therapy with ropeginterferon alfa-2b. We analyzed the associations between these responses and the safety and tolerability of ropeginterferon alfa-2b.

METHODS

Study design 2.1

This phase 2, single-arm, open-label, investigator-initiated trial was conducted at 16 sites in South Korea. The primary endpoint was the hematologic response and MR to ropeginterferon alfa-2b and the association between the hematological response and MR. The study was designed to enroll 93 patients. The study was originally planned for 48 weeks but has been extended to 168 weeks (3 years) and is ongoing during the extension period. Further information regarding the study protocol, the clinical laboratory, the endpoints of the trial, the interruption of dosing, and additional results can be found in Appendix S1.

0970215, 2025, 3, Downloaded from

library.wiley.com/doi/10.1002/jjc.35411 by Yonsei University Med Library, Wiley Online Library on [13/11/2025]. See the Terms

are governed by the applicable Creative Commons

2.2 | Inclusion and exclusion criteria

Patients who were diagnosed with PV according to the 2016 World Health Organization (WHO) criteria and requiring cytoreductive therapy, regardless of risk and previous treatment, were eligible if they were ≥19 years of age, were historically confirmed *JAK2* V617F positive, and had an elevated hematocrit of over 45% at screening. The exclusion criteria included contraindications to the use of any interferon and pregnant or lactating women. For a comprehensive list of inclusion and exclusion criteria, please refer to Appendix S1.

2.3 | Treatment schedule

Patients were treated with ropeginterferon alfa-2b, subcutaneously every 2 weeks, at a starting dose of 250 mcg, followed by 350 mcg at week 2, 500 mcg at week 4, and then until week 48 for the Core study period. Self-injection was allowed, and patients were required to maintain a self-injection diary to monitor compliance. Dose interruptions and reductions were permitted according to tolerability. Treatment was discontinued in cases of unresolved treatment-related toxicity, loss of treatment efficacy, or withdrawal of consent. All patients received a low dose of acetylsalicylic acid during the study unless contraindicated. Other cytoreductive therapies were not permitted; however, the combination of phlebotomy with P1101 was allowed at the discretion of the investigator.

2.4 | Patient evaluation

Patients were assessed every 12 weeks. Hematological parameters and chemistry were assessed in a local laboratory at each site. Quantitative *JAK2 V617F* allele burden (*JAK2 Val617Phe lpsogen® JAK2 MutaQuant kit*) was assessed centrally. The hydroxyurea resistance and intolerance criteria defined by modified European LeukemiaNet (ELN) criteria were applied in this study. Patient quality of life was evaluated using the Eastern Cooperative Oncology Group (ECOG) score and MPN Symptoms Assessment Form Total Symptom Score (MPN-SAF TSS). Safety was assessed at each patient visit on the basis of reported adverse events, hematology, clinical chemistry, electrocardiography, and chest radiography.

2.5 | Hematologic response criteria

A complete hematologic response (CHR) was defined by ELN criteria category B: durable (lasting at least 12 weeks) peripheral blood count remission, defined as hematocrit lower than 45% without phle-botomies; a platelet count $\leq 400 \times 10^9$ /L. WBC count $\leq 10^9$ /L.

2.6 | Molecular response criteria

MR was defined as a partial response on the basis of the 2009 ELN response criteria: (1) a reduction of ≥50% from the baseline value in

patients with <50% mutant allele burden at baseline or (2) a reduction of ≥25% from the baseline value in patients with >50% mutant allele burden at baseline (applies only to a patient with a baseline value of mutant allele burden greater than 10%).

2.7 | Statistical analyses

Primary analyses of the associations between MR and CHR at the last time point in the core study (48 weeks) were performed using the Chi-squared test. Furthermore, the Phi coefficient was calculated to determine the degree of association between CHR and MR. Similarly, a comparison of decreased percentages of JAK2 V617F in hematological responders and non-responders was performed using a twosample t-test or Wilcoxon's rank sum test at every assessment time point. Univariate and multivariate logistic regression analyses were performed to identify associations between clinical factors and MR. Variables with a p value <.05 in the univariable analysis were considered for multivariable analysis. Time-to-event outcomes as secondary endpoints were analyzed using Kaplan-Meier survival analysis. All efficacy endpoints used a full analysis set defined as subjects who received at least one dose of ropeginterferon alfa-2b and met the inclusion/exclusion criteria with all data available for primary endpoint evaluation post-baseline at least once. The safety endpoint was

TABLE 1 Demographics and baseline characteristics.

	Total (n = 95)
Age, years, median (range)	58.0 (25-81)
Sex, no. (%)	
Female	44 (46.3)
Male	51 (53.7)
PV diagnosis, months, median (range)	32.43 (0.03-225.79)
Risk stratification, no. (%)	
Low	54 (56.8)
High	41 (43.2)
Hypertension, no. (%)	39 (41)
Diabetes, no. (%)	15 (16)
Aspirin use, no. (%)	75 (78.9)
Anticoagulant use, no. (%)	7 (7.4)
MPN-SAF TSS score, median (range)	13.0 (0.0-60.0)
Hct (%), median (range)	49.6 (45.1-62.1)
Hgb (g/dL), median (range)	15.6 (12.0-21.0)
Platelets (10 ⁹ /L), median (range)	545.0 (162-1772)
WBC (10 ⁹ /L), median (range)	13.20 (4.91-48.57)
ANC (10 ⁹ /L), median (range)	10.33 (2.67-42.26)
RBC (10 ⁶ /L), median (range)	6.15 (4.23-8.87)
JAK2 V617F mutation (%), range ($n = 94^{a}$)	69.89 (0.44-97.17)

Abbreviations: ANC, absolute neutrophil count; Hct, hematocrit; Hgb, hemoglobin; HU, hydroxyurea; R/I, resistance or intolerance; RBC, red blood cell; WBC, white blood cell.

^aOne patient baseline was omitted.

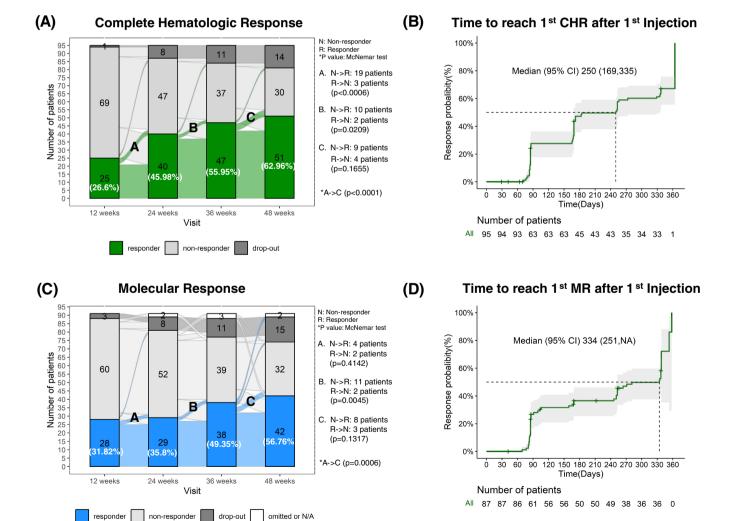
10970215, 2025, 3, Downloaded from https:/

elibrary.wiley.com/doi/10.1002/ijc.35411 by Yonsei University Med Library, Wiley Online Library on [13/11/2025]. See the Term:

on Wiley Online Library for rules

of use; OA articles are governed by the applicable Creative Commons

evaluated with a safety set defined as subjects who received at least one dose of ropeginterferon alfa-2b. If available, the last visit data of patients who dropped out were included at the previous time point of the assessment visit. All analyses were performed using SAS software version 9.4 (SAS Institute, Cary, NC, USA) and R version 4.2.2 (R Foundation For Statistical Computing, Vienna, Austria).


3 **RESULTS**

3.1 **Patient characteristics**

The study started in October 2021, and the core treatment period was completed in November 2023. Ninety-nine patients were enrolled, and 79 completed the core treatment (Figure S1). The median age of the patients was 58 years, with 51 males (54%) and 44 females (46%), 43 (45%) of whom were resistant and intolerant to hydroxyurea. There were 54 (57%) and 41 (43%) low and high-risk patients, respectively. The median duration from diagnosis to enrollment was 32.4 months (range, 0.03-225.8) and the details of the baseline characteristics are described in Tables 1 and S4. According to the analysis set definition, 95 patients were included in the full analysis set, and 99 patients were included in the safety analysis set.

3.2 Complete hematologic response

The CHR gradually increased during the treatment period and was 27% (25/94), 46% (40/87), 56% (47/84), and 63% (51/81) at 12, 24, 36, and 48 weeks, respectively (Figure 1A). The median time to reach the 1st CHR following the 1st injection was 250 days (95% CI: 169, 335) (Figure 1B). The average P1101 dose is presented in Table S2. The main reason for being assessed as non-responders was an elevated hematocrit level. Other causes are listed in Table S1. Normalization of hematocrit levels took place after 24 weeks of treatment. Median and mean WBC and platelet counts were normalized after 12 weeks of treatment.

Complete hematology and molecular response. (A) Sankey-style patient flow chart for Complete Hematology Response (CHR) rate by assessment visit. (B) Time to reach 1st CHR after the 1st injection of ropeginterferon alfa-2b. (C) Sankey-style patient flow chart for molecular response (MR) rate by assessment visit. (D) Time to reach 1st MR after the 1st injection of ropeginterferon alfa-2b.

10970215, 2025, 3, Downloaded from

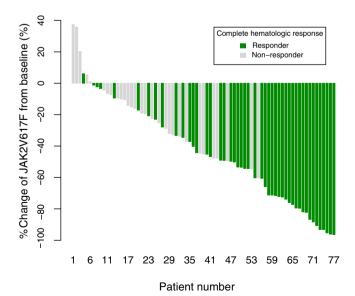
elibrary.wiley.com/doi/10.1002/jjc.35411 by Yonsei University Med Library, Wiley Online Library on [13/11/2025]. See

on Wiley Online Library for rules

of use; OA articles

are governed by the applicable Creative Commons License

INTERNATIONAL JOURNAL of CANCER | CUICC


Overall, the CHR rate increased steadily throughout the treatment period, regardless of subgroups (Figures S3-S5). In particular, a high CHR rate was observed in the hydroxyurea-naïve group at all assessment visits; however, the difference between the two patient groups gradually decreased and was not significant at 48 weeks (71%, 32 out of 45; 53%, 19 out of 36, respectively; p = .0917) (Table \$5).

3.3 Molecular response

Since the evaluation of responders only applied to patients with a baseline value of JAK2 V617F allele burden >10% as per the definition, the total number of evaluated patients differed between CHR and MR. MR showed an increasing trend similar to that of CHR, with 32% (28/88), 36% (29/81), 49% (38/77), and 57% (42/74) at 12, 24, 36, and 48 weeks, respectively (Figure 1C). The median time to achieve the 1st MR after the 1st injection was 334 days (95% CI: 251, NA) (Figure 1D). At 48 weeks, changes in the JAK2 V617F allele burden from baseline were observed depending on whether CHR was achieved (Figure 2). Overall, a trend toward increasing MR and a steady decrease in mean and median absolute JAK2 V617F allele burden were observed during treatment. In contrast, the reduction was slower in the hydroxyurea-resistant or intolerant groups than that in the hydroxyurea-naïve group (Table S6 and Figure S4).

Association between complete hematologic response and molecular response

A statistically significant association was observed between CHR and MR, with a particularly strong association at 48 weeks (Table 2). Furthermore, a greater percentage reduction in JAK2 V617F allele

Waterfall plot of percentage of change from baseline in JAK2 V617F allele burden in patients at 48 weeks based on response to CHR.

burden was observed in CHR responders than in non-responders at each assessment point (-57.40 ± 26.21 vs. -16.14 ± 23.51 , p < .0001 in 48 weeks, CHR responders vs. non-responders) (Table 3, Figure S2). In addition, when CHR was analyzed by its individual parameters, Hct, WBC, and Platelets, a significant association was observed between responders for each parameter and the achievement of MR at 48 weeks. In addition, the responder group had a substantial reduction in the JAK2 V617F allele burden (Table 3).

The baseline characteristics of patients who achieved MR differed according to sex, subgroup related to hydroxyurea, and baseline JAK2 V617F allele burden, but no other clinical or hematologic variables were significantly different. In particular, baseline JAK2 V617F allele burden was significantly lower in MR non-responders (60.0% \pm 24.3%) than in responders (71.5% \pm 15.5%) (p = .023). Achievement of CHR, hematocrit response, platelet response at 48 weeks, and early achievement of CHR at 12 weeks of treatment were significantly different between MR responders and non-responders (Table 2).

We then performed univariable and multivariable analyses of factors potentially impacting the achievement of MR. Univariable analysis disclosed female gender (OR 3.76; 95% CI 1.44-10.5; p = .009), hydroxyurea naïve (OR 0.27; 95% CI 0.10-0.70; p = .008), CHR responder (OR 20.9: 95% CI 6.39-85.1: p < .001), hematocrit responder (OR 16.7: 95% CI 4.79-79.6; p < .001), platelet responder (OR 9.46; 95% CI 1.50-184; p = .043), CHR responder at 12 weeks (OR 9.23; 95% CI 2.34-61.9; p = .005), and baseline JAK2 V617F allele burden (OR 1.03; 95% CI 1.01-1.06; p = .019) were significantly associated with MR. Female gender, hydroxyurea naïve, CHR responder, and CHR responder at 12 weeks were significantly associated with the achievement of MR in multivariable analysis. Hematocrit and platelet responders were excluded from the multivariable analysis model due to their multicollinearity with CHR responders (Table 4).

Safety and tolerability

In terms of safety, 192 treatment-emergent adverse events (TEAEs) and 110 treatment-related adverse events (TRAEs) were reported. In addition, 76% of patients experienced at least one TEAE, but most were mild or moderate in intensity. The most common TRAEs (%, n/99) were alopecia (13%, n = 13) and hepatobiliary-related adverse events (35%, n = 35). The onset of TRAEs varied during the treatment period. TRAEs related to the hepatobiliary system and alopecia were frequently reported during the 85-168 days of treatment following the first injection of ropeginterferon alfa-2b, whereas general disorders (e.g., Flu-like syndrome, fatigue, and asthenia) were frequently reported during all time points of treatment. A total of 16 serious adverse events (SAEs) were reported, five of which were assessed as drug-related adverse events (anemia, stable angina, hepatotoxicity, increased triglyceride levels, and bipolar disorder). No Grade 4 or 5 adverse events were observed. Treatment was discontinued in two patients due to TRAEs. Details of the adverse events are summarized in Table S3 and Figure S6. There were no deaths reported, and one patient reported disease progression during the core treatment period.

Factors including baseline clinical, hematologic characteristics and response at 48 weeks for association analysis by molecular response.

	All patients (N = 74)	Molecular response		p value
Parameters		Responder (n = 42)	Non-responder (n = 32)	
Age, years, mean ± SD	55.2 ± 11.8	54.1 ± 13.1	56.7 ± 10.0	.355
Sex, no. (%)				
Male	40 (54.1%)	17 (40.5%)	23 (71.9%)	.014
Female	34 (45.9%)	25 (59.5%)	9 (28.1%)	
Disease risk, no. (%)				
Low	44 (59.5%)	27 (64.3%)	17 (53.1%)	.466
High	30 (40.5%)	15 (35.7%)	15 (46.9%)	
Hydroxyurea, no. (%)				
Naïve	41 (55.4%)	29 (69.0%)	12 (37.5%)	.014
R/I	33 (44.6%)	13 (31.0%)	20 (62.5%)	
Baseline Hct (%), median [Q1; Q3]	49.7 [47.2; 52.6]	50.2 [47.4; 54.0]	48.5 [46.9; 51.4]	.181
Baseline WBC (10 ⁹ /L), median [Q1; Q3]	13.3 [10.7; 16.7]	13.6 [12.3; 16.9]	11.8 [9.5; 16.5]	.144
Baseline platelet (10 ⁹ /L), median [Q1; Q3]	562.0 [425.0; 688.0]	562.0 [396.0; 682.0]	566.5 [437.5; 716.0]	.806
Baseline JAK2 V617F mutation (%), mean ± SD	66.5 ± 20.5	71.5 ± 15.5	60.0 ± 24.3	.023
Baseline WBC >10 × 10 ⁹ /L				
Yes	58 (78.4%)	35 (83.3%)	23 (71.9%)	.367
No	16 (21.6%)	7 (16.7%)	9 (28.1%)	
Baseline WBC >15 × 10 ⁹ /L				
Yes	27 (36.5%)	16 (38.1%)	11 (34.4%)	.932
No	47 (63.5%)	26 (61.9%)	21 (65.6%)	
Baseline platelet >1000 × 10 ⁹ /L				
Yes	5 (6.8%)	3 (7.1%)	2 (6.2%)	1.000
No	69 (93.2%)	39 (92.9%)	30 (90.8%)	
CHR, no. (%)	Phi coefficient 0.6146	, , ,	,	
Yes	48 (64.9%)	38 (90.5%)	10 (31.2%)	.000
No	26 (35.1%)	4 (9.5%)	22 (68.8%)	
Hct responder, no. (%)	Phi coefficient 0.5396	. (,	(==:=:,	
Yes	53 (71.6%)	39 (92.9%)	14 (43.8%)	.000
No	21 (28.4%)	3 (7.1%)	18 (56.2%)	
WBC responder, no. (%)	Phi coefficient 0.2739	- (,	(= ====,	
Yes	70 (94.6%)	42 (100.0%)	28 (87.5%)	.031
No	4 (5.4%)	0 (0.0%)	4 (12.5%)	.551
Platelet responder, no. (%)	Phi coefficient 0.2771	3 (0.070)	. (22.070)	
Yes	67 (90.5%)	41 (97.6%)	26 (81.2%)	.038
No	7 (9.5%)	1 (2.4%)	6 (18.8%)	.000
Early CHR achievement, no. (%)	, (,,,,,,,	± \±. 1/0/	3 (10.070)	
Yes	18 (24.3%)	16 (38.1%)	2 (6.2%)	.004
No	56 (75.7%)	26 (61.9%)	30 (93.8%)	.00-1

Note: p value calculated t-test or Mann-Whitney U-test in continuous variables depend on Shapiro-Wilk test results. Chi-square test was performed for p value in categorical variables, Fisher's exact test was performed if expected cell value <5.

DISCUSSION

A previous study of ropeginterferon alfa-2b, the PROUD/ CONTINUATION trial, did not evaluate the correlation between molecular responses and outcomes. 13,19 In our study, we found an association between CHR and MR. Specifically, the group that achieved CHR during treatment had a reduced burden of the JAK2 V617F allele compared with the group that did not achieve CHR.

	Mean ± SD (min, max) (N = 77)			
	Responder	Non-responder	p value	
CHR	-57.40 ± 26.21 (-96.36, 6.05)	-16.14 ± 23.51 (-54.27, 37.37)	<.0001	
Hematocrit group	-53.06 ± 28.91 (-96.36, 6.05)	-17.14 ± 24.45 (-54.27, 37.37)	<.0001	
WBC group	-44.47 ± 30.60 (-96.36, 37.37)	5.68 ± 22.78 (-19.35, 35.81)	.0019	
Platelet group	-45.64 ± 29.93 (-96.36, 20.23)	-4.02 ± 30.79 (-44.59, 37.37)	.0008	

TABLE 3 % change of JAK2 V617F allele burden by CHR and each hematologic parameters responder versus non-responder at 48 weeks.

Note: p value calculated by two-sample *t*-test.

TABLE 4 Univariate and multivariable logistic regression analysis of factors associated with achievement of molecular response at 48 weeks.

	Univariable		Multivariable	
Variables	OR (95% CI)	p value	OR (95% CI)	p value
Female gender	3.76 (1.44-10.5)	.009	5.65 (1.35-29.9)	.025
HU R/I versus naïve	0.27 (0.10-0.70)	.008	0.19 (0.04-0.76)	.026
Baseline JAK2 V617F mutation	1.03 (1.01-1.06)	.019	1.06 (1.02-1.11)	.009
Complete hematologic response at 48 weeks	20.9 (6.39-85.1)	<.001	26.5 (5.54-190)	<.001
Hematocrit responder at 48 weeks	16.7 (4.79-79.6)	<.001		
Platelet responder at 48 weeks	9.46 (1.50-184)	.043		
Early CHR achievement at 12 weeks	9.23 (2.34-61.9)	.005	4.61 (0.69-47.0)	.144

Abbreviations: CHR, complete hematologic response; CI, confidence interval; OR, odds ratio.

Furthermore, our findings suggest that, in addition to CHR, achievement of MR was also associated with the hydroxyurea-naïve subgroup and female patients. These results are consistent with the findings from the PEGINVERA study. 18 However, in a recent JAK2 inhibitor study from Guglielmelli et al., the occurrence of a CCHR (complete clinical and hematologic response) was poorly correlated with the achievement of molecular responses and main clinical outcomes,²⁰ which is in contrast to the results of our study. We assumed that the mechanism of action of interferon- α may account for this difference. Ropeginterferon alfa-2b is a PEGylated recombinant IFN-α-based agent that selectively inhibits malignant cells that drive neoplasms at the cellular level.²¹ Therefore, it effectively induces a durable response in hematologic and molecular parameters compared with other cytoreductive agents. Notably, the achievement of early CHR at 12 weeks of ropeginterferon alfa-2b treatment was associated with a favorable MR, suggesting that this subgroup of patients may be particularly sensitive to interferon treatment, but further investigation is needed.

Our study has several limitations. Since the discovery of the JAK2 V617F mutation, many studies have demonstrated that the achievement of an MR is associated with slower disease progression and event-free survival. 13,14,20,22 In addition, a high JAK2 V617F allele burden is a strong predictor of thrombosis and negative clinical outcomes,²⁰ and these results suggest that reducing JAK2 V617F is important for preventing thrombosis, which is one of the treatment goals of PV. Furthermore, other factors, such as spleen size, symptom burden, and additional mutations, are associated with progression and overall survival.²⁰ However, the duration of our study was relatively short, and spleen size, bone marrow examination, or other mutations were not evaluated in this study. Owing to the short follow-up period,

it was not possible to definitively establish whether ropeginterferon alfa-2b treatment prevents thrombosis or improves survival rates. An ongoing extension study is being conducted to further evaluate the long-term efficacy and safety of ropeginterferon alfa 2b, as well as event-free and overall survival, as a treatment option for PV. Moreover, some studies have suggested that achieving deep MR could potentially lead to disease modification in PV.^{23,24} Despite the short follow-up period in our study, the observed trend of decreasing JAK2 V617F allele burden suggests the potential for deep or complete MR in the future.

The clinical meaning of JAK2 V617F reduction and achievement of MR remains a subject of ongoing debate.²⁵ Furthermore, the necessity of continuous monitoring of JAK2 V617F allele burden throughout treatment, akin to hematologic parameters, is still contested and is not yet considered a mandatory parameter for routine monitoring. Despite this, our findings support the value of continuous monitoring of JAK2 V617F allele burden, which has clinical benefits in patients with PV treated with ropeginterferon alfa-2b.

In conclusion, an association between CHR and MR has been established, and ropeginterferon alfa 2b has demonstrated favorable clinical results for the treatment of patients with PV who require cytoreductive therapy.

AUTHOR CONTRIBUTIONS

Seug Yun Yoon: Methodology; writing - original draft; investigation; formal analysis; visualization; validation. Sung-Soo Yoon: Investigation; validation. Deok-Hwan Yang: Investigation; validation. Gyeong-Won Lee: Investigation; validation. Sang Kyun Sohn: Investigation; validation. Ho-Jin Shin: Investigation; validation. Sung Hwa Bae: Investigation; validation. Chul Won Choi: Investigation; validation. Eun-Ji Choi: Investigation; validation. June-Won Cheong: Investigation; validation. Soo-Mee Bang: Investigation; validation. Joon Seong Park: Investigation; validation. Suk Joong Oh: Investigation; validation. Yong Park: Investigation; validation. Young Hoon Park: Investigation; validation. Sung-Eun Lee: Conceptualization; methodology; validation; writing review and editing; funding acquisition; supervision.

ACKNOWLEDGEMENTS

This study was funded by a grant sponsored by the PharmaEssentia Corporation (Taipei, Taiwan). We acknowledge the contributions of Suk Joong Oh who sadly passed away during the preparation of this manuscript. We deeply appreciate his dedication to this work.

CONFLICT OF INTEREST STATEMENT

SYL's institution has received research funding from PharmaEssentia. The other authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ETHICS STATEMENT

The trial was approved by the Ministry of Food and Drug Safety (clinical trial no. 33547) and registered in the International Clinical Trials Registry Platform (ICTRP, KCT0006138). Written informed consent was obtained from the patients, and the protocols were approved by the institutional review board or independent ethics committee at each site.

REFERENCES

- 1. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352: 1779-1790.
- 2. Tefferi A, Barbui T. Polycythemia vera: 2024 update on diagnosis, riskstratification, and management. Am J Hematol. 2023;98:1465-1487.
- 3. National Comprehensive Cancer Network. Myeloproliferative Neoplasms (Version 1.2024). 2024.
- 4. Marchetti M, Vannucchi AM, Griesshammer M, et al. Appropriate management of polycythaemia vera with cytoreductive drug therapy: European LeukemiaNet 2021 recommendations. Lancet Haematol. 2022:9:e301-e311.
- 5. Barbui T, Vannucchi AM, De Stefano V, et al. Ropeginterferon versus standard therapy for low-risk patients with polycythemia vera. NEJM Evid. 2023;2:EVIDoa2200335.
- Stegelmann F, Teichmann LL, Heidel FH, et al. Clinicohematologic and molecular response of essential thrombocythemia patients treated with pegylated interferon-α: a multi-center study of the German study groupmyeloproliferative neoplasms (GSG-MPN). Leukemia. 2023;37:924-928.
- Quintás-Cardama A, Abdel-Wahab O, Manshouri T, et al. Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon α-2a. Blood. 2013;122:893-901.
- Vachhani P, Mascarenhas J, Bose P, et al. Interferons in the treatment of myeloproliferative neoplasms. Ther Adv Hematol. 2024;15:20406 207241229588.
- Barbui T, Vannucchi AM, De Stefano V, et al. Ropeginterferon alfa-2b versus phlebotomy in low-risk patients with polycythaemia vera (low-PV study): a multicentre, randomised phase 2 trial. Lancet Haematol. 2021;8:e175-e184.

- 10. Shimoda K, Qin A, Komatsu N, Kirito K. Efficacy and safety outcomes in Japanese patients with low-risk polycythemia vera treated with ropeginterferon alfa-2b. Int J Hematol. 2024;120:151-156.
- 11. Sørensen AL, Skov V, Kjær L, et al. Combination therapy with ruxolitinib and pegylated interferon alfa-2a in newly diagnosed patients with polycythemia vera. Blood Adv. 2024;8:5416-5425.
- 12. Kirito K, Sugimoto Y, Gotoh A, et al. Long-term safety and efficacy of ropeginterferon alfa-2b in Japanese patients with polycythemia vera. Int J Hematol. 2024;120:675-683.
- 13. Gisslinger H, Klade C, Georgiev P, et al. Event-free survival in patients with polycythemia vera treated with ropeginterferon alfa-2b versus best available treatment. Leukemia. 2023;37:2129-2132.
- 14. Passamonti F, Rumi E, Pietra D, et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia. 2010;24:1574-1579.
- 15. Yoon SY, Kim SY. Long-acting interferon: pioneering disease modification of myeloproliferative neoplasms. Korean J Intern Med. 2023;38:
- 16. Chen CC, Chen JL, Lin AJ, Yu LH, Hou HA. Association of JAK2V617F allele burden and clinical correlates in polycythemia vera: a systematic review and meta-analysis. Ann Hematol. 2024;103:1947-1965.
- 17. Mascarenhas J, Kosiorek HE, Prchal JT, et al. A randomized phase 3 trial of interferon- α vs hydroxyurea in polycythemia vera and essential thrombocythemia. Blood. 2022;139(19):2931-2941. doi:10.1182/ blood.2021012743
- 18. Gisslinger H, Zagrijtschuk O, Buxhofer-Ausch V, et al. Ropeginterferon alfa-2b, a novel IFN α -2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood. 2015;126:1762-1769.
- 19. Gisslinger H, Klade C, Georgiev P, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020;7(3):e196-e208. doi: 10.1016/S2352-3026(19)30236-4
- 20. Guglielmelli P, Mora B, Gesullo F, et al. Clinical impact of mutated JAK2 allele burden reduction in polycythemia vera and essential thrombocythemia. Am J Hematol. 2024;99(8):1550-1559. doi:10.1002/ajh.27400
- 21. Qin A. Mechanism of action of ropeginterferon alfa-2b in polycythemia Vera treatment. Clin Ther. 2024;46:439-440.
- 22. Moliterno AR, Kaizer H, Reeves BN. JAK2 V617F allele burden in polycythemia vera: burden of proof. Blood. 2023;141:1934-1942.
- 23. Abu-Zeinah G, Krichevsky S, Cruz T, et al. Interferon-alpha for treating polycythemia vera yields improved myelofibrosis-free and overall survival. Leukemia. 2021;35:2592-2601.
- 24. Barbui T, Carobbio A, De Stefano V, et al. Ropeginterferon phase 2 randomized study in low-risk polycythemia vera: 5-year drug survival and efficacy outcomes. Ann Hematol. 2024;103:437-442.
- 25. Tefferi A, Pardanani A, Gangat N. Treatment-associated decline in JAK2V617F allele burden in polycythemia vera: what does it mean? Am J Hematol. 2024;99:1459-1461.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Yoon SY, Yoon S-S, Yang D-H, et al. Hematologic and molecular responses to ropeginterferon alfa-2b therapy of polycythemia vera: 48-week results from a prospective study. Int J Cancer. 2025;157(3):526-533. doi:10. 1002/ijc.35411