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Abstract

Background: Delirium inintensive care unit (ICU) patients poses a significant challenge, affecting patient outcomes and health
care efficiency. Developing an accurate, real-time prediction model for delirium represents an advancement in critical care,
addressing needs for timely intervention and resource optimization in ICUs.

Objective: We aimed to create a novel machine learning model for delirium prediction in ICU patients using only continuous
physiological data.

Methods: We developed models integrating routinely available clinical data, such as age, sex, and patient monitoring device
outputs, to ensure practicality and adaptability in diverse clinical settings. To confirm the reliability of delirium determination
records, we prospectively collected results of Confusion Assessment Method for the ICU (CAM-ICU) eval uations performed by
qualified investigators from May 17, 2021, to December 23, 2022, determining Cohen k coefficients. Participants were included
inthe study if they were aged 218 years at ICU admission, had delirium evaluations using the CAM-1CU, and had data collected
for at least 4 hours before delirium diagnosis or nondiagnosis. The development cohort from Yongin Severance Hospital (March
1, 2020, to January 12, 2022) comprised 5478 records. 5129 (93.62%) records from 651 patients for training and 349 (6.37%)
records from 163 patients for internal validation. For temporal validation, we used 4438 records from the same hospital (January
28, 2022, to December 31, 2022) to reflect potential seasonal variations. External validation was performed using data from 670
patientsat Ajou University Hospital (March 2022 to September 2022). We eval uated machine learning algorithms (random forest
[RF], extra-trees classifier, and light gradient boosting machine) and selected the RF model as the final model based on its
performance. To confirm clinical utility, adecision curve analysis and temporal pattern for model prediction during the ICU stay
were performed.

Results: Thek coefficient between labels generated by |CU nurses and prospectively verified by qualified researcherswas 0.81,
indicating reliable CAM-ICU results. Our final model showed robust performanceininternal validation (area under the receiver
operating characteristic curve [AUROC]: 0.82; areaunder the precision-recall curve [AUPRC]: 0.62) and maintained its accuracy
in temporal validation (AUROC: 0.73; AUPRC: 0.85). External validation supported its effectiveness (AUROC: 0.84; AUPRC:
0.77). Decision curve analysis showed a positive net benefit at all thresholds, and the temporal pattern analysis showed a gradual
increase in the model scores as the actual delirium diagnosis time approached.

Conclusions: We devel oped amachinelearning model for delirium predictionin ICU patients using routinely measured variables,
including physiological waveforms. Our study demonstrates the potential of the RF model in predicting delirium, with consistent
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performance across various validation scenarios. The model uses noninvasive variables, making it applicable to a wide range of

ICU patients, with minimal additional risk.

(J Med Internet Res 2025;27:€59520) doi: 10.2196/59520

KEYWORDS

delirium; intensive care unit; machine learning; prediction model; early prediction

Introduction

Background

Delirium is a complex neuropsychiatric syndrome primarily
characterized by fluctuationsin consciousness and orientation,
including alterations in the perception of dates, places, and
persons[1,2], dueto animbalancein neurotransmitter levelsor
brain inflammation. Delirium is often triggered by medical
illnesses, medications, or environmental factors such as sleep
deprivation, sensory deprivation, and exposure to unfamiliar
surroundings. Patients admitted to theintensive care unit (ICU)
may develop overall cognitive function disorders (eg,
impairment in attention or language skills) and psychotic
disorders.

Delirium is associated with various adverse outcomes,
significantly impacting patient health and health care systems.
A meta-analysis by Witlox et al [3] found that delirium in older
patients was associated with an increased risk of death (odds
ratio 1.95), ingtitutionalization (odds ratio 2.41, 95% ClI,
1.77-3.29), and dementia(oddsratio 12.52, 95% Cl, 1.86-84.21).
Moreover, a study by Ely et a [4] reported that ICU patients
with delirium had a 3.2 times higher 6-month mortality rate
compared with those without delirium. Financially, Vasilevskis
et a [5] estimated that delirium increases ICU costs by US
$17,838 to US $24,584 per patient. Patients with delirium are
at a higher risk for complications, such asfalls, infections, and
pressure ulcers [6]. In addition, given the complexity of the
conditions of patientswith delirium, health care providers caring
for them may experience burnout and job dissatisfaction [7].

Given these significant impacts, early identification and
prevention of delirium are crucia for reducing the burden on
patients and health care systems [8]. Several prediction tools
have been devel oped for this purpose, including PRE-DELIRIC
(prediction model for delirium) and E-PRE-DELIRIC (early
prediction model for delirium). PRE-DELIRIC, using datafrom
the first 24 hours of ICU admission, has shown good
discriminative ability (area under the receiver operating
characteristic curve [AUROC]: 0.87) [9]. The E-PRE-DELIRIC
model, usable within 2 hours of ICU admission, demonstrated
similar performance (AUROC: 0.76) [10].

Machinelearning approaches offer several potential advantages
indelirium prediction. They have the ability to handle complex,
nonlinear relationships between variables [11]; the capacity to
process high-dimensional data, potentially uncovering subtle
patterns not apparent in traditional statistical analyses[12]; and
the flexibility to update predictions in rea time as new data
becomes available [13]. Although the superiority of machine
learning models over traditional scoring systemsin somecritical
care settingsisnot universally established [14,15], their potential
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in delirium prediction remains promising. Studies have
demonstrated machine learning-based models’ efficacy in
predicting delirium across various patient populations, including
postoperative, older hip-arthroplasty, and patientswith extensive
burn [16-18]. These models, using diverse clinical parameters,
have achieved high accuracy (AUROC: 0.84-0.94) [19,20].

Despite numerous attempts to predict delirium onset and
prognosis, significant limitations persist. Missing data and
inconsistent availability of dynamic measures across patients
and settings further hinder model applicability [21,22]. In
addition, real-time inference in clinica settings remains
problematic. The difficulty in ensuring that variablesreflect the
current patient state, coupled with infrequent and inconsi stent
timing of data collection, impedes real-time monitoring and
decision-making in fast-paced clinical environments [23].
Moreover, most existing modelsrely on static datapoints, failing
to capture the dynamic nature of a patient’s condition.

Recent studies have highlighted the potential of machine
learning models using routinely collected |CU datato enhance
patient outcome predictions and clinical decision-making
[24,25]. Existing delirium prediction models have primarily
relied on static variables, whereas the incorporation of
continuous data streams has shown promise in improving
prediction accuracy in other ICU applications. For instance,
Cadtifieira et a [26] demonstrated that including continuous
vital sign data significantly enhanced prediction accuracy for
prolonged intubation stays. Similarly, Shickel et al [27] reported
improved patient health predictions when combining routinely
collected variables with novel data sources. These findings
suggest that a delirium prediction model using continuous
variables routinely collected in the ICU could offer substantial
improvements in accuracy, timeliness, and clinical relevance
compared with existing static variable-based models.

A model that uses only variables routinely monitored in ICUs
should be developed to obtain rea-time inferences.
Electrocardiogram (ECG), photoplethysmogram (PPG), and
respiratory waveforms are particularly suitablefor this purpose.
These noninvasive continuously monitored data streams are not
only richin physiological information but a so readily available
for most patientsin ICUs.

Deliriumisrelated to autonomic nervous system instability [28],
which can cause changesin physiologica signals. In particular,
it is associated with changes in heart rate and blood pressure
[29]. Moreover, autonomic nervous system instability affects
heart rate variability (HRV); thus, HRV serves as an effective
predictor of delirium [30]. A prospective cohort study reported
the association between HRV and delirium [31], and a recent
study showed that delirium could be predicted using HRV
estimated from an ECG [32]. Both the PPG and ECG are
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typically used to estimate the HRV [33,34], and respiratory
waveforms and rates can be incorporated as model inputs,
considering their clinical relevance [35].

Unlike previous studies that relied on static clinical variables,
our approach focuses on continuous, high-frequency datafrom
ECG, PPG, and respiratory waveforms. This dynamic data
capture may allow our model to detect subtle physiological
changes preceding delirium onset, which static models might
miss. Moreover, the ability of machine learning models to
continuously update predictions based on incoming dataaligns
well with the fluctuating nature of delirium symptoms[30].

Objectives
This study aimed to create anovel machine learning model for
real-time delirium prediction in ICU patients using only
routinely monitored variables (ECG, PPG, and respiratory
waveforms).

On the basis of these insights and our research objectives, we
hypothesized that (1) a machine learning model using readily
available, continuously monitored signals (ECG, PPG, and
respiratory waveforms) can effectively predict the onset of
delirium in ICU patients; (2) this model will demonstrate
comparable performance with existing prediction methods,
despiterelying on amore focused set of routinely collected data
rather than complex or less accessible variables; (3) themodd'’s
performance will remain consistent across different patient
populations and time frames, as demonstrated through temporal
and external validation; and (4) by leveraging continuous data
streams, the model will capture subtle physiological changes
preceding delirium onset, potentially enabling earlier detection
and intervention, compared with models using static variables.

By testing these hypotheses, we aimed to develop a practical,
real-time tool for delirium prediction that can be easily

Textbox 1. Patient inclusion criteria.
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integrated into various | CU settings, potentially improving early
detection and management of this critical condition. This
approach aligns with recent advancements in 1CU-based
machine learning models and addresses the need for more
dynamic, widely applicable prediction toolsin critical care.

Methods

Ethical Consider ations

This study was conducted in accordance with ethical research
principles and was approved by the institutional review board
(IRB) of Yongin Severance Hospital. The need for informed
consent for the use of retrospective data was waived
(9-2021-0032); however, prospective data collection was
performed after obtaining informed consent from the patients
(9-2021-0186). In addition, the need for informed consent for
the use of temporal validation datawas waived (9-2024-0023).
For the external validation cohort, ethics approval was obtained
from the [IRB of Ajou University Hospita
(AJOUIRB-OBS-2021-084).

We followed the guidelines for developing and reporting
machinelearning predictive modelsin biomedical research and
the Transparent Reporting of a multivariable prediction model
for Individual Prognosis or Diagnosist+Artificial Intelligence
(TRIPOD+ALI) guidelinesfor transparent reporting [36,37]. The
reporting checklists are available in Multimedia Appendix 1
[38-41].

Data Collection and Study Population

Data were collected from 2 health care institutions, namely,
Yongin Severance Hospital and Ajou University Hospital. The
collected data included electronic medical records from both
hospitals to construct a comprehensive dataset.

Patient inclusion criteria are shown in Textbox 1.

« Aged =18 yearson the day of intensive care unit admission

«  Evaluated for delirium using the Confusion Assessment Method for the ICU

« Having data collected for at least 4 hours before the time of delirium diagnosis or nondiagnosis

Data from Yongin Severance Hospital were obtained both
retrospectively and prospectively. Retrospective datafor model
training and internal validation were collected from March 1,
2020, to January 12, 2022, whereas datafor temporal validation
were obtained from January 28, 2022, to December 31, 2022,
which covers nearly a year. To account for potential seasonal
variations in delirium, the temporal validation set was divided
into fixed quarterly intervals. Q1 (January-March), Q2
(April-June), Q3 (July-September), and Q4 (October-December).
This approach enhances the model’s robustness over time by
performance across different periods and ensures adaptability
to evolving patient demographics ant treatment practices.

Results of the Confusion Assessment Method for the ICU
(CAM-ICU) were collected and analyzed independently and
prospectively from May 17, 2021, to December 23, 2022 for
verification by ICU nurses. For external validation, data from
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Ajou University Hospital, which isgeographically distinct from
the devel opment institution, were retrospectively obtained from
March to September 2022. Patients aged <18 years and those
without CAM-ICU records were excluded from data analysis.

Prediction Variables and Outcome

Our model used features derived from physiological signalsand
basic patient demographics. The variables were selected based
on their potential relevance to delirium prediction, their
continuous availability in ICU settings, and their noninvasive
nature, ensuring broad applicability across ICU patients.

Thefeaturesincluded demographic variables (age and sex) and
parameters derived from ECG lead I, PPG, and respiratory
waveforms. Specifically, we extracted Hjorth parameters
(activity, complexity, and mobility), which provideinformation
about the signal’s time domain properties [42], as well as
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kurtosis and skewness, which can capture abnormalities in
waveform morphology [43]. In addition, we incorporated vital
signs, including heart rate, respiratory rate, and oxygen
saturation (Sp0O,), represented by their median and SD.

The outcome variable was the occurrence of delirium, as
determined by the CAM-ICU assessment.

Park et a

CAM-ICU Evaluation and Reliability Verification

The reliability of CAM-ICU results documented in electronic
medical records was examined. CAM-ICU evaluations were
conducted and verified independently by qualified registered
nurses, adhering to the Vanderbilt CAM-ICU training manual
guidelines[44]. The agreement between the results obtained by
research staff and those generated by | CU nurses was eval uated
using Cohen k statistic (Figure 1) [45].

Figure 1. Development and validation process of the delirium prediction model in 2 hospitals. This flowchart illustrates the process of training the
machine learning model with patients' data (including age, sex, vital signs, and waveforms) from Yongin Severance Hospital, temporal validation of
themodel, and external validation using datafrom Ajou University Hospital. Theresults of 2 independent raters are compared with confirm the reliability
of Confusion Assessment Method for the |CU (CAM-ICU) scores. EMR: electronic medical record; HR: heart rate; RR: respiratory rate; SpO2: oxygen

saturation.
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Feature Extraction and Data Preprocessing

We extracted features from physiological waveform data (ECG
lead Il, PPG, and respiratory waveforms). Before feature
extraction, we implemented a comprehensive noise removal
process, eliminating characteristic patterns indicative of sensor
failure or device error (Multimedia Appendix 1). Following
noise removal, waveforms were preprocessed by normalization
(Multimedia Appendix 2).

To mitigate the impact of extreme values and account for the
inherently noisy nature of physiological signals, we calculated
representative values (medians and SDs) over a 4-hour
predictive window before delirium assessment for each feature
(Multimedia Appendix 3). This approach ensures robust model
operation by minimizing the influence of outliers.

To maximize dataintegrity, we excluded any datawith missing
values. Thisrigorous preprocessing and standardization pipeline
was applied consistently to data from both health care
institutions, ensuring a harmonized dataset for model
development.

https://www.jmir.org/2025/1/e59520
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Algorithm Selection

We focused on tree-based models for our delirium prediction
task due to their ability to handle complex, nonlinear
relationships and their built-in methods for assessing feature
importance. We evaluated the performances of 3 specific
tree-based models: the random forest (RF) classifier [46],
extra-trees classifier [47], and light gradient boosting model
(LightGBM) [48].

In selecting our final model, we prioritized the AUROC. The
AUROC offers several advantages. it isthreshold-independent,
providing a comprehensive evaluation across al possible
classification thresholds [49], and demonstrates robustness to
class imbalance [50]. These characteristics are particularly
valuable in clinical settings where optima intervention
thresholds may vary, and class distributions can be uneven. The
AUROC aso allows for direct comparison between different
models across varying datasets[51], whichiscrucia inclinical
research involving diverse patient populations.

Our emphasis on the AUROC is supported by research
demonstrating its robustness in imbalanced datasets, common
in clinical scenarios such as delirium prediction. Bekkar et al
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[52] highlighted AUROC's stability across different class
distributions, whereas Jeni et al [53] emphasized its advantage
in providing an aggregate measure of performance across all
classification thresholds. These attributes align with our goal
of developing a flexible model adaptable to various clinical
settings. The AUROC guided our model selection, and we also
report additional metrics for acomprehensive eval uation of our
model’s capabilities.

Model Development

We used an automated machine learning workflow to streamline
our model development process. Thisapproach included several

key steps:

1. Datapreparation—we preprocessed the dataset by handling
missing values, encoding categorical variables, and
normalizing features. The data were split into training and
validation setsto ensure that our model would be evaluated
on unseen data.

2. |Initial model training—wetrained aninitial RF model using
default hyperparametersto establish baseline performance.

3. Addressing class imbalance—given the nature of delirium
occurrence in ICU settings, our dataset exhibited an
imbalance between delirium and nondelirium cases. To
address thisimbalance and ensure our model’s performance
was hot biased toward the majority class, we implemented
severa strategiesin our RF (Multimedia Appendix 1).

After optimizing the hyperparameter, the model was trained
using the entiretraining cohort. Thisphase also included internal
validation to refine and adjust the prediction model. Data for
training and internal validation were carefully divided at the
patient level at an 8:2 ratio, while ensuring that records from
the same patients were not repeated between the datasets. The
development cohort comprised 5478 records, with 5129
(93.62%) records from 651 patients allocated for training and
349 (6.37%) records from 163 patients alocated for internal
validation.

Model Validation

In addition to the aforementioned internal validation, further
validation efforts were expended, including both temporal and
external validations. Thetemporal validation approach involved
an analysis of data from a distinct period not used during the
model’s initial development phase. This strategy was
deliberately selected to ensure that the dataset for validation did
not overlap with the dataset for devel opment, thereby enhancing
the generalizability and relevance of the model in real-world
settings. For this purpose, 4438 records from ICUs were
identified using a time frame different from that of the initial
model training. Such temporal validation presented substantial
benefits. First, it enabled the evaluation of the model’s ability
to adapt to changes in clinical patterns, patient demographics,
or treatment protocols over time, which is essential in the
ever-evolving health care sector. Second, testing the model with
data from various periods aids in diminishing the risk of
overfitting to the specific characteristics of the initial training
set, thereby ensuring a more dependable and robust model.
Third, this method is particularly aligned with ongoing

https://www.jmir.org/2025/1/€59520
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developments in medical practices and patient care, providing
insights into the model’s long-term performance.

Data from Ajou University Hospital were used for external
validation. Initially, a cohort of 1332 patients was screened for
delirium; of these patients, 670 (50.3%) were selected for
inclusion after a detailed review process. The meticulous
selection bolstered the robustness and reliability of the model
by omitting cases that lacked complete clinical data or had
missing waveform data. The implementation of such rigorous
exclusion criteria was imperative to ensure that our analysis
was conducted on the most accurate and comprehensive dataset
possible and to confirm the validity of the model in a practical
clinical environment.

Decision Curve Analysis

A decision curve analysis [54] was performed to assess the
clinical utility of our prediction model. The primary concept in
decision curve analysis is “net benefit,” which compares the
advantage of correct positive predictionsto the disadvantage of
fal se positive predictions, weighted by the threshold probability.

Thethreshold probability is representing the point at which the
potential benefits or treatment equal the potential risks. For
example, athreshold probability of 0.2 suggests that treatment
would be recommended if a patient has a 20% or greater
probability of developing the condition (in this case, delirium).

We plotted the net benefit of our prediction model acrossarange
of threshold probabilities and compared it with 2 baseline
strategies. “treat al” (assumeall patientswill develop delirium)
and “treat none” (assume no patients will develop delirium).
These dtrategies represent the extremes of clinica
decision-making and provide a context for evaluating our
model’s performance. The “treat all” strategy correspondsto a
threshold probability of O, whereas“treat none” correspondsto
athreshold probability of 1.

Our model is considered clinically useful if it demonstrates a
higher net benefit than both baseline strategies across a range
of clinically relevant threshold probabilities. This approach
helps to determine the range of threshold probabilities where
using our model’s predictions would lead to better clinical
decisions than uniformly treating al patients or no patients.

The primary parameter we aimed to optimize in this analysis
was the net benefit of our model across different threshold
probabilities. By comparing our model’s net benefit to the
baseline strategies, we can identify the range of threshold
probabilities where our model provides the most clinical value
in guiding delirium prevention or early intervention strategies
(Multimedia Appendix 1).

Statistical Analysis

We used statistical methods to analyze our data and evaluate
model performance. To compare categorical variables between
groups, we used chi-sguare tests. Continuous variables were
compared using 2-tailed independent t tests for normally
distributed data or Mann-Whitney U tests for nonnormally
distributed data. Normality was assessed using the Shapiro-Wilk
test.
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In addition, we analyzed correlations so that we could intuitively
examine the relationship between each variable we considered
and the outcome.

The AUROC, senditivity, positive predictive value, and accuracy
at a threshold were measured to compare the performance of
different models. Data processing was performed using Python
version 3.6.13. The machinelearning model was devel oped and
validated using the PyCaret library version 2.3.10.

Results

Population Characteristics

The training and internal validation cohorts comprised 5478
CAM-ICU records. The tempora validation cohort consisted

https://www.jmir.org/2025/1/€59520
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of 4438 CAM-ICU records, whereas the external validation
cohort consisted of 670 CAM-ICU records. Each cohort
comprised distinct patient popul ations.

Table 1 summarizes the baseline characteristics of the training
and validation cohorts. The mean agewas 65.9 (SD 15.6) years
inthetraining and internal validation sets, 70.2 (SD 15.7) years
in the temporal validation set, and 58.6 (SD 21.3) yearsin the
external validation set, with a significant difference in age
distribution among the cohorts (P<.001). In addition to age, the
cohorts exhibited significant differences in sex and other
variables used as model inputs. The internal validation set and
temporal validation set included both medical and surgical
patients from general hospital 1CUs, whereas the external
validation set included patients from only atrauma |CU.
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Table 1. Characteristics of datasets from the 2 hospitals.

Training and internal validation sets  Temporal validation set External validation set

Patients, n 5478 4438 670

Patients per room, n (%)

Medical 1CU2 3160 (57.7) 2734 (62.1) _b

Surgical ICU 2318 (42.3) 1667 (37.9) —

TraumalCU — — 670 (100.0)

Missing — 37(0.8) —
Primary outcome ratio, n 0.6 0.7 04
Sex, n (%)

Male 3203 (58.5) 2619 (59.0) 582 (86.9)

Female 2275 (41.5) 1819 (41.0) 88(13.1)
Age (y), mean (SD) 66.0 (15.5) 70.2 (15.7) 58.6 (21.3)
ECG lead |1 (Hjorth activity), mean (SD) 4.2(10.0) 30(43 4.0(3.8)
PPGY (Hjorth activity), mean (SD) 05(1.2) 05(0.9) 05(0.2)
Respiratory waveform (Hjorth activity), mean (SD) 0.4 (0.2) 0.5(0.3) 0.6 (0.4)
ECG lead Il (Hjorth complexity), mean (SD) 2.3(0.8) 4.4 (0.9) 1.7(0.2)
ECG lead Il (Hjorth mobility), mean (SD) 0.4 (0.1) 0.3(0.1) 0.3(0.0)
ECG lead 11 (kurtosis), mean (SD) 15.9 (14.8) 9.6 (6.1) 11.3(6.2)
PPG (kurtosis), mean (SD) -0.7 (0.5) -0.3(0.9) -0.4(1.0)
Respiratory waveform (kurtosis), mean (SD) -1.0(0.4) -0.5(1.5) -0.1(0.8)
ECG lead Il (skewness), mean (SD) 2.8(1.9) 2.1(1.4) 2.8(1.3)
PPG (skewness), mean (SD) 0.4(0.3) 0.4(0.3) 0.5(0.3)
Respiratory waveform (skewness), mean (SD) 0.4 (0.3 0.4 (0.3) 0.9(0.3)
HRE (median), mean (SD) 81.6 (17.6) 835 (17.1) 90.1(18.1)
RR' (median), mean (SD) 18.2 (4.6) 18.8 (4.4) 18.9 (5.3)
Sp0,? (median), mean (SD) 98.8 (1.6) 98.7 (2.1) 99.1(1.4)
HR (SD), mean (SD) 5.1(4.3) 4.8(3.3) 4.6 (2.7)
RR (SD), mean (SD) 2.3(1.1) 2.5(1.1) 37(2.1)
SpO, (SD), mean (SD) 0.5 (0.6) 1.1(L7) 0.9 (0.9)

3 CU: intensive care unit.
BNot applicable.

®ECG: electrocardiogram.
4ppG: photoplethysmogram.
®HR: heart rate.

RR: respiratory rate.

9500,: oxygen saturation

- results. Furthermore, the degree of agreement between these 2
Reliability of CAM-1CU Results types of observations was quantified using Cohen k (Table 2).
A comparative analysis between the outcomesrecorded by ICU  Thek coefficient was 0.81, indicating ahigh agreement between
nurses and those independently evaluated by the research staff  observers. This robust agreement implied the reliability of
was performed to evaluate thereliability of predictive CAM-ICU  predicted CAM-ICU results and validated our findings.
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Table 2. Agreement between intensive care unit nurses and qualified research staff.

Negative Positive Unable to assess
Negative 326 2 0
Positive 14 38 3
Unable to assess 0 1 64
. classification thresholds. This marginally outperformed the
M odel Selection gnaty’ oLip

Among the tree-based models evaluated (RF, extra-trees, and
LightGBM), all 3 models showed competitive performance
across various metrics (Table 3). However, the RF classifier
demonstrated slightly superior performancein key areas.

The RF model achieved the highest AUROC of 0.757, indicating
the best overall discriminative ability across al possible

Table 3. Performance of tree-based models before hyperparameter tuning.

extra-trees (AUROC: 0.748) and LightGBM (AUROC: 0.745).
In terms of precision, the RF model excelled, with a score of
0.725, which was dlightly higher than those of the extra-trees
(0.724) and LightGBM (0.720). Thishigher precision indicates
alower false positive rate, which is crucial in clinical settings
to avoid unnecessary interventions.

Model Accuracy Areaunder Recall Precision F1- score K coefficient Matthew correla-  Training time
the curve tion coefficient  (seconds)

RF2 0.682 0.757° 0.687 0.725 0.701 0.361 0.366 0.317

Extra-treesclassifi- 0.687 0.748 0.704 0.724 0.711 0.370 0.373 0.210

er

LightGBM® 0.672 0.745 0.670 0.720 0.689 0.342 0.347 0.053

3RF: random forest.

Btalics indicate the model with the best performance in the algorithm selection process.

CLightGBM: light gradient boosting model.

In addition, after applying our model’s development processto
each benchmark model and comparing AUROC and area under
the precision-recall curve (AUPRC), our model showed the best
performance (Multimedia Appendix 4). On the basis of these
results, particularly the superior area under the curve and
precision scores, the RF classifier was selected as our find
model for delirium prediction. This selection aligns with our
methodology of prioritizing overall discriminative ability and
minimizing false positives in clinical applications, while aso
considering the balance between precision and recal | asreflected
in the F,- score.

https://www.jmir.org/2025/1/€59520

M odel Performance

In the internal validation cohort, the RF showed strong
performance, with an AUROC of 0.82 and an AUPRC of 0.62
for the overal cohort (Figure 2). The model achieved an
AUROC of 0.73 and an AUPRC of 0.85 in the tempora
validation cohort, where consistent performance metrics were
confirmed across quarterly periods (Q1-Q4; Multimedia
Appendix 5), and an AUROC of 0.82 and AUPRC of 0.77 in
the external validation cohort, indicating its robustness and
generalizability. These results suggested that the model
effectively discriminated between delirium and nondelirium
cases, highlighting its predictive capabilities.
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Figure 2. Mode performance in the internal and external validation cohorts. The performance of the developed model in the internal and external
validation cohorts is shown. (A) The area under the receiver operating characteristic curve (AUROC) and (B) area under the precision-recall curve
(AUPRC) of the model in the internal validation cohort. (C) The AUROC and (D) AUPRC of the model in the temporal validation cohort. (E) The

AUROC and (F) AUPRC of the model in the external validation cohort.
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In addition, the correlation coefficient between each variable
and the outcome did not have a high correlation coefficient
overall but had the highest values for age, PPG-derived
variables, and SpO,-derived variables (Multimedia Appendix
6).

A thorough analysis focusing on the calibration curves and
alignment between predicted probabilities and observed
outcomes was conducted to assess the rdiability of the
prediction model. Figure 3 presents the model’s unfitted
calibration curves on 4 distinct datasets (namely, the training,
internal validation, temporal validation, and external validation
datasets), with the curves showing the concordance between
the model’s estimated probability for the positive class and the
actual occurrence of that class. In the training cohort, the
calibration curve (green line) adhered closely to the ideal

https://www.jmir.org/2025/1/€59520
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calibration line (dotted line), suggesting that the model’s
predicted probabilities strongly agreed with the observed
outcomesin thetraining dataset. Intheinternal validation cohort,
the calibration curve (blue line) primarily resided below the
ideal calibration line, suggesting the propensity of the model to
overpredict positive outcomes. Nevertheless, as the mean
predicted probability approached unity, the calibration of the
model improved, converging toward the ideal calibration line.
In the temporal validation cohort, the calibration curve (orange
line) was mostly above the ideal calibration line, reflecting an
underestimation of positive outcomes by the model. However,
as the mean predicted probability increased, the calibration
became more accurate, moving nearer to the ideal calibration
line. The calibration curve for the external validation cohort
(magentaline) significantly underpredicted in the intermediate
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probability range (0.4-0.7), subsequent calibration techniques
applied to each cohort, as presented in Multimedia Appendix
7, demonstrated substantially improved calibration performance.
Specifically, after applying calibration method using isotonic
regression, the model showed enhanced generalizability across
all datasets, with the calibrated curves exhibiting better

Park et a

alignment with the ideal calibration line. These results suggest
that whiletheinitial predictions may show some deviation from
perfect calibration, appropriate postprocessing techniques can
effectively address these discrepancies, supporting the model’s
robust performance across different populations.

Figure 3. Calibration curve showing the reliability of our delirium prediction model. Calibration curve for the training (blue line), internal validation
(green line), and external validation (red line) datasets. The x-axis represents the predicted probability of delirium as output by our model, whereas the
y-axis represents the observed frequency of delirium in the validation cohorts. The black dashed line indicates perfect calibration, in which the predicted

probabilities exactly match the observed outcomes.
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In general, the prediction score concomitantly increased with
positive CAM-ICU results, signaling the onset of delirium
(Figure 4). Conversdly, the prediction score remained low with
negative CAM-ICU results, which was consistent with the

https://www.jmir.org/2025/1/€59520
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absence of delirium. These findings suggested that our delirium
prediction model could detect the onset of deliriuminreal time,
even among patientswho initially presented with no symptoms.
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Figure 4. Temporal trends for model prediction during the intensive care unit stay. Confusion Assessment Method for the ICU (CAM-ICU) records
of selected patients in the (A) internal validation cohort and (B) external validation cohort are shown. Red stars represent instances with positive
eval uation results, indicating the presence of delirium. Blue stars represent instances with negative eval uation results, indicating the absence of delirium.
Black dots denote the time at which no delirium eval uation was performed, precluding the acquisition of ground truth data. Thered dashed line delineates
the prediction threshold of the model and demarcates the boundary between predicted delirium and nondelirium statuses. |CU: intensive care unit.

A
1.0
* : CAM-ICU negative (nondelirium)
* : CAM-ICU positive (delirium)
0.8
-
=5
o
5
o
o
=]
o
=
0.2
0.0
8h 16h 24h 32h
B CAM-ICU measurement point during ICU stays
1.0

Maodel output

0.2

0.0
8h

16h 24h 32h

CAM-ICU measurement point during ICU stays

Figure 5 shows the decision curve analysis for the prediction
model in which the net benefit is plotted against various
probability thresholds. The model presented anet benefit across
asubstantial spectrum of thresholds. Notably, the model began
toyield agreater net benefit at alow threshold, compared with
uniform treatment strategies (“treat al” and “treat none”),
maintaining this advantage up to a threshold probability of
approximately 0.6. This suggested the potentia utility of the
model in clinical decision-making, particularly when a lower

https://www.jmir.org/2025/1/€59520

probability was sufficient to warrant intervention. At no point
within the examined threshold probabilities did the “treat all”
strategy achieve a higher net benefit, underscoring the
superiority of an individualized approach based on the model’s
predictions. The analysis supported the application of the model
in clinical settings, suggesting that it could enhance
decision-making processes and potentially improve patient
outcomes as compared to more generalized treatment strategies.
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Figure5. Quantified net benefit based on the threshold probability. Decision curve analysis shows the benefits and risks of decision-making regarding
delirium using the delirium prediction model. The x-axis represents the threshold probability, whereas the y-axis represents the net benefit. The curve
denotes the net benefit of using the delirium prediction model as compared to other clinical strategies (“treat all” and “treat none"). The data indicate
that the delirium prediction model yields clinical benefit in clinical decision-making within al critical probability ranges.
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A comprehensive analysis with Shapley additive explanations  measurements and waveform variability significantly contributed
values was performed to evaluate the predictive contributions  to the predictive capacity of the model. These findings

of individual featuresin our model. On the basis of datafrom  underscored the multifaceted and integrative nature of the
theinternal validation cohort, agewasone of themost influential  predictive features harnessed by our algorithm.
predictorsfor the model's predictions, which alignswith existing
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Figure6. Forceplot of Shapley additive explanations (SHAP) valuesin the validation set from the random forest model. The contributions of individual
variables to the model’s predictions are identified and quantified using SHAP values. Age is the most significant predictive factor. The plot shows the
substantial predictive value of various vital sign metrics and waveform variability indexes. ECG: electrocardiogram; HR: heart rate; PPG:
photoplethysmogram; RR: respiratory rate; SHAP: Shapley additive explanations; SpO2: Oxygen saturation.
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Discussion

Principal Findingsand Comparison to Prior Work

In this study, we developed a machine learning-based model
for predicting delirium in real time during ICU stays using a
compact set of routinely monitored variables. Our model
employs ECG, PPG, and respiratory waveforms, addressing the
challenge of data availability and aiming to develop a concise
and broadly applicable model for predicting delirium.

Delirium remains a prevalent issue among |CU patients, often
prolonging ICU stays and increasing mortality rates [55].
Despite being critical for delirium assessment, the CAM-ICU

https://www.jmir.org/2025/1/e59520
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results are not regularly evaluated in several ICUs [56]. Given
its high accuracy and ease of application, our model can
substantially contribute to early delirium detection and prevent
further patient deterioration. Even in ICUs where CAM-ICU
results are regularly assessed, our model can identify at-risk
patients during typically unassessed 8-hour intervals, supporting
continuous monitoring.

Our model offers several advantages over existing delirium
prediction tools. Although previous models such as
PRE-DELIRIC, E-PRE-DELIRIC, and DY NAMIC-ICU show
good initial performance [9,10,57], a recent study found that
their performance dropped in other validation studies[58]. The
detailed comparisons are provided in Table 4.
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Table 4. Comparison of developed model with existing prediction tools.

Park et a

PRE-DELIRIC DYNAMIC-ICU E-PRE-DELIRIC Our model
Algorithm Logistic regression Logistic regression Logistic regression Random forest
Dynamic featuresin- No No Yes (partialy) Yes

cluded

Variable measurement
frequency

Model performance

Once (admission) Once (admission)

Development cohort: 0.87
(95% CI 0.85-0.89), test co-
hort: 0.89 (95% Cl 0.86-0.92)

Features Age, APACHEI| score, ad-

mission group, coma, infec-
tion, metabolic acidosis, use
of sedatives, use of morphine,
ureaconcentration, and urgent
admission

bance

Development cohort: 0.907
(95% CI 0.871-0.944),
validation cohort: 0.900
(95% CI 0.858-0.941)

History of chronic dis-
eases, hearing deficits, in-
fection, higher Apache I
scores, use of sedatives
and analgesics, indwelling
catheter, and sleep distur-

Once (admission), each Routine (continuous)

|aboratory test

Internal validation cohort: 0.83, ex-
ternal validation cohort: 0.84, tem-
poral validation cohort: 0.73

Development cohort: 0.76
(95%Cl 0.73-0.78), vdida-
tion cohort: 0.75 (95% ClI
0.71-0.79)

Age, history of cognitive
impairment, history of aco-
hol abuse, blood ureanitro-
gen, admission category,
urgent admission, mean
arterial pressure, use of
corticosteroids, and respira-
tory failure

Age, sex, ECGP-derived features
(activity, complexity, mobility, kur-
tosis, skewness), PPG®-derived fea-
tures (activity, kurtosis, skewness),
respiratory waveform-derived fea-
tures (activity, kurtosis, skewness),
HRY (median, SD), RR® (median,
SD), and SpO,' (median, SD)

8A PACHE: acute physiology and chronic health evaluation.
beCG: electrocardiogram.

°PPG: photoplethysmogram.

9HR: heart rate.

RR, respiratory rate.

fSpOZ: oxygen saturation.

In contrast, our model demonstrated robust performance across
both external and temporal validation methods. First, in external
validation, the model maintained high performance (AUROC:
0.84 and AUPRC: 0.77) even when applied to a completely
different patient population. Notably, the model was trained
and developed using data from medical and surgical 1CUs,
whereas the external validation was conducted on trauma ICU
patients, underscoring the model’s robustness across diverse
clinical settings. Second, intemporal validation, which
stability over time, the model continued to exhibit strong
performance (AUROC: 0.73 and AUPRC: 0.85). These results
strongly indicate that our model maintains consistent predictive
capability across varied patient populations and temporal
changes, highlighting its potential for broad clinical
applicability.

ContinuousM onitoring Approach and Clinical Utility

A key distinction of our approach is the use of continuous
real-time data from ECG, PPG, and respiratory waveforms,
unlike existing models that rely on static variables collected at
specific time points. These signals are routinely monitored for
most ICU patients, allowing for continuous data collection.
Importantly, they can be measured noninvasively, minimizing
therisk of adverse effects even if additional measurements are
required. This characteristic is crucial, asit enables our model
to be potentialy implemented for a broad spectrum of 1CU
patients. The continuous nature of these measurements also
allows our model to providereal-time, ongoing risk assessment,
potentially capturing subtle physiological changes that might
precede the onset of delirium. These features collectively
enhance not only the model’s predictive capabilities but also

https://www.jmir.org/2025/1/€59520

its potential for widespread clinical implementation in diverse
ICU settings. This alows for dynamic risk assessment
throughout a patient’s ICU stay, potentially capturing subtle
physiological changes preceding delirium onset that static
models might miss. The efficacy of thisdynamic risk assessment
is well illustrated in Figure 4, which depicts the temporal
progression of the model’s risk score. The figure incorporates
star-shaped markersrepresenting actual CAM-ICU assessments,
with blue and red starsindicating negative and positive delirium
assessments, respectively. Given that delirium assessments are
not conducted hourly or in real time, theintervening data points
represent the model’s computed risk scores. Notably, the model
demonstrates an increase in risk scores as it approaches time
points where positive delirium assessments were made, and
conversely, agradual decreasein risk scores preceding negative
assessments. Thisinverse relationship between the model’srisk
scores and the proximity to actual delirium occurrences or
nonoccurrences underscores the clinical utility of the model in
delirium prediction and risk assessment. By incorporating
multiple physiological waveforms, our model extends beyond
previous studies that found associations between individual
parameters (such as HRV) and delirium but did not develop
predictivemodels[59]. Real-time monitoring data significantly
enhances the delirium prediction capacity. These waveforms
offer several advantages in predicting delirium because they
can reflect valuable information about the autonomic nervous
system and itsinstability related to delirium. For instance, HRV,
awell-established marker of autonomic nervous system function,
can be derived from PPG and ECG data, with reduced HRV
being associated with autonomic nervous system dysregulation
[32-34,60]. HRV metrics provide a window into the balance
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between sympathetic and parasympathetic activities, and
abnormalities of this balance are linked to delirium [61,62].
With respect to respiratory waveforms, their association with
sedatives commonly used in ICUs is particularly important.
Sedatives can alter respiratory function, and these alterations
can be captured in respiratory waveforms. Monitoring of
respiratory impedance becomes crucial, as altered respiratory
patterns can be both a cause and a consequence of sedative use.
Moreover, sedation is a well-known risk factor for delirium
[9,63,64], further emphasizing the need for careful respiratory
monitoring in sedated patients. As shown in our results,
PPG-derived variables, SpO,, and age are among the most
important predictors of delirium. The relationship between
delirium and physiological measures, such as PPG and SpO,,
is complex and multifaceted. Previous studies did not directly
link delirium to PPG or SpO, measurements; however, anaysis
of the relationship between PaO,/Fi O, (ameasure of pulmonary
oxygenation) and delirium revealed a nonlinear relationship,
suggesting that oxygenation status may influence delirium risk
under certain conditions [65].

Age has been widely recognized as a major risk factor for the
development of delirium [66]. The findings of our study
corroborate this, demonstrating that ageisaprimary determinant
in the incidence of delirium, which is consistent with prior
knowledge. Therefore, we evaluated differences in the model
performance according to various age groups (Multimedia
Appendix 8). We considered the entire population, individuals
aged 40 to 60 years, and those aged =60 years to assess the
model’s performance across different age groups. The model
showed consistent performance across these groups, with an
AUROC of 0.82 for the entire population, 0.81 for individuals
aged 40to 60 years, and 0.83 for those aged =60 years, and with
an AUPRC of 0.62 for the entire population, 0.63 for individuals
aged 40 to 60 years, and 0.68 for those aged =60 years. These
findings underscore the model’s robustness, irrespective of the
age group, thereby highlighting the model’s reliability across
diverse clinical scenarios. Although delirium generally occurs
more frequently in older patients, it can also affect younger
populations, with an incidence of 4.4% and up to 14% in
high-risk groups [21]. Age continues to serve as a significant
predictor of delirium onset, and our findings highlight the
potential of prediction models constructed using ECG, PPG,
and respiratory waveforms for any age group. Hence, variables
derived from such waveforms provide valuable information
beyond age.

Although traditional correlation analysis provides a useful
baseline, it may not fully capture the intricate relationshipsin
our data. Our RF model’s ability to identify these features as
important, despite their low linear correlations, suggeststhat it
is leveraging more complex, possibly nonlinear relationships
to improve prediction accuracy.

Our tree-based model offers interpretability, addressing the
“black box” limitation often associated with artificia
intelligence in health care. Thisis crucia in medical settings
where understanding the reasoning behind predictions is as
important as the predictions themselves. The RF algorithm we
used constructs multiple decision trees, each contributing to the

https://www.jmir.org/2025/1/€59520
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final prediction. This approach enhances predictive accuracy
while providing insights into feature importance and decision
boundaries.

Examination of our model’s decision trees (Multimedia
Appendix 9) reveas the hierarchical importance of various
features in predicting delirium, such as age, vital signs, and
waveform-derived features. This transparency allows medical
professionals to align the model’s reasoning with their clinical
judgment and established medical knowledge. It also facilitates
identification of potential biases or unexpected patterns, enabling
continuous refinement and validation of the model. This is
particularly important in critical care, where patient conditions
and treatment protocols can change rapidly.

Our decision curve analysis demonstrated the clinical utility of
our delirium prediction model. The model consistently showed
apositive net benefit exceeding both “treat all” and “treat none”
strategies across all threshold probabilities. This indicates that
our model providesvaluein clinical decision-making regardless
of risk tolerance levels, offering a more nuanced approach to
delirium prediction. It can help clinicians avoid both
overtreatment and undertreatment by effectively identifying
low-risk patients who may not need intensive preventive
measures and high-risk patients who might otherwise be
overlooked. Themodel’s potential to improve patient outcomes
through more accurate risk stratification is highlighted by its
positive net benefit across all thresholds.

The ultimate goal of the delirium prediction model is seamless
integration into clinical workflows via electronic health record
systems and bedside monitoring devices. This research serves
as a foundational step in a broader implementation strategy.
Prospective validation studies are necessary before clinical
deployment, focusing on real-time Shapl ey additive explanations
for clinicians' trust and understanding. Clear ethical guidelines
must be established to prevent overdiagnosis and maintain
appropriate human oversight. Robust model generalizability
must be achieved via rigorous validation procedures. An
automated alert system with  actionable clinical
recommendations must be tested. Building upon this
foundational research, our future studieswill focus on validating
the model’s real-world effectiveness and practical utility in
clinical settings. The next phase of research will involve
obtaining necessary regulatory approvals and ensuring
compliance with safety and performance standards required for
critical care decision support tools. This research reflects a
commitment to devel oping robust, clinically validated tools for
early delirium detection and improving patient outcomes in
ICUs.

Limitations

Our study has some limitations that should be addressed in
future research. First, the external validation of our model was
limited to use of datafrom asingleinstitution; therefore, diverse
patient populations across various health care settings may not
be fully represented. However, the patient populations used in
the model devel opment environment and the external validation
environment are from compl etely different environments, ICUs,
and completely independent hospitals. We confirmed that the
model performance was maintained in these environments.
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Second, the retrospective nature of the study, conducted at a
local ICU, may have introduced selection bias, which we
attempted to mitigate by excluding incomplete data and
validating the remaining data. This approach may limit the
model’s applicability in scenarios with missing data points. The
features used asinput to our model are less susceptible to these
issues because they areroutinely collected in the |CU; however,
future studies could consider adopting multiple imputation
methods to enhance model performance and stability with
incomplete data, as demonstrated by Rahmatinegjad et al [67].

Third, while our temporal validation approach used systematic
quarterly intervals (Q1-Q4) to account for seasonal variations,
we acknowledge that additional standardization could enhance
future studies. For example, future research could benefit from
prespecifying the exact proportion of data to be used for
validation or establishing multi-year validation periods.
Nevertheless, our current approach using quarterly divisions
over approximately a year of data after model development
provided sufficient temporal range to assess the model’s
performance across seasonal variations and evolving clinical
practices.

Finally, although our model focuses on predicting the onset of
delirium, it does not address other important aspects, such as
the duration or severity of delirium episodes. Expanding the
model to predict these additional factors would significantly
enhanceitsclinical utility. For instance, differentiating between
patientslikely to develop mild, short-term delirium versusthose
at risk of severe, prolonged episodes could greatly inform

Park et a

treatment decisions and resource alocation in ICU settings.
However, the evaluation of delirium in ICUs is conducted by
nurses, and data on the duration of the condition cannot be found
in hospital records. Due to the nature of supervised learning,
when there is a clear correct answer, the learning proceeds
through it, so there is a clear limit to the practica
implementation.

By exploring different data handling techniques, expanding
validation to diverseclinical environments, ng real-world
clinica impact, and extending the model’s predictive
capabilities, we can work toward more robust and widely
applicable delirium prediction tools. These efforts have the
potential to significantly improve patient care and outcomesin
ICUs.

Conclusions

In conclusion, we developed a machine learning model for
real-time delirium prediction in ICUs by using a concise set of
input variables, including physiological waveforms such as
ECG, PPG, and respiratory patterns. Our model not only
identified age as a significant predictor but also highlighted the
substantial predictive value of these waveforms, independent
of age. These waveforms provide critical insightsinto patients
conditions and offer potential for early delirium detection.
Overall, our model exhibits high performance in both internal
and external validation and has broad applicability across health
care settings, potentially contributing to the development of
effective early intervention strategies to improve patient
outcomes.
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IRB: institutional review board

LightGBM: light gradient boosting model
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