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BACKGROUND: Earlier identification of high coronary artery disease (CAD) risk individuals may enable more effective prevention 
strategies. However, existing 10-year risk frameworks are ineffective at earlier identification. We sought to understand how 
the variable importance of genomic and clinical factors across life stages may significantly improve lifelong CAD event 
prediction.

METHODS: A longitudinal study was performed using data from 2 cohort studies: the FOS (Framingham Offspring Study) with 
3588 participants aged 19 to 57 years and the UKB (UK Biobank) with 327 837 participants aged 40 years to 70 years. 
A total of 134 765 and 3 831 734 person-time years were observed in FOS and UKB, respectively. Hazard ratios for CAD 
were calculated for polygenic risk score (PRS) and clinical risk factors at each age of enrollment. The relative importance of 
PRS and pooled cohort equations in predicting CAD events was also evaluated by age groups.

RESULTS: The importance of CAD PRS diminished over the life course, with a hazard ratio of 3.58 (95% CI, 1.39–9.19) at the 
age of 19 years in FOS and a hazard ratio of 1.51 (95% CI, 1.48–1.54) by the age of 70 years in UKB. Clinical risk factors 
exhibited similar age-dependent trends. PRS significantly outperformed pooled cohort equations in identifying subsequent 
CAD events in the 40- to 45-year age group, with 3.2-fold more appropriately identified events. Overall, adding PRS improved 
the area under the receiving operating curve of the pooled cohort equations by an average of +5.1% (95% CI, 4.9%–5.2%) 
across all age groups; among individuals <55 years, PRS augmented the area under the receiver operater curve (ROC) of 
the pooled cohort equations by 6.5% (95% CI, 5.5%–7.5%; P<0.001).

CONCLUSIONS: Genomic and clinical risk factors for CAD display time-varying importance across the lifespan. The study 
underscores the added value of CAD PRS, particularly among individuals younger than 55 years, for enhancing early risk 
prediction and prevention strategies. All results are available at https://surbut.github.io/dynamicHRpaper/index.html.
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Accurate risk estimation for coronary artery dis-
ease (CAD) early in the life course is a major 
goal in medicine, as CAD remains the leading 

cause of mortality and morbidity.1 Because coronary 

atherosclerosis often begins early in life and pro-
gresses over the life course, early identification of 
high-risk individuals offers the possibility for substan-
tial risk mitigation.2
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There are several reasons contemporary risk estima-
tors in clinical practice do not adequately identify high-risk 
individuals early in life. First, guideline-based risk calcula-
tors are valid only for ages ≥40 years and are often limited 
to short-term (eg, 10-year) fixed-time horizons.3,4 There-
fore, chronologic age remains the primary determinant of 
estimated 10-year risk, and high risk cannot be identified 
earlier in life, thereby delaying effective prevention oppor-
tunities.5 Second, even when prediction is extended to esti-
mate lifetime risk, it fails to capture the dynamic trajectory 
of an individual’s changing risk profile, such as changing 
biomarkers, biometric measurements, or lifestyle. Finally, 
models are developed assuming proportional hazards, 
which impose that the effect of each risk factor is either 
constant over the baseline hazard ratio (HR) through life or 
that interaction is a linear function of time. Both assump-
tions are inaccurate for CAD clinical risk factors.6

CAD polygenic risk score (PRS) has emerged as a 
tool to estimate risk complementary to clinical risk fac-
tors and is uniquely available early in life. Current model-
ing of clinical risk factors, as well as CAD PRS, typically 
use a fixed-time horizon and rely on assumptions that 
do not hold true for the dynamic landscape of CAD risk 
factors. Integrated modeling of both genomic and clini-
cal risk factors in a single, dynamically adjusting model 
over the life course might provide a more accurate esti-
mation of risk. Although recent work has shown that 
CAD PRS carries greater effects for younger people,7 
its comparative and complementary performance with 
clinical risk calculators is less clear for both premature 
and cumulative events across a broad age range. Fur-
thermore, understanding the dynamic nature of fixed risk 
factors over the life course remains unexplored. Integrat-
ing genomic and clinical risk in a single model contin-
ues to be a barrier to the clinical implementation of CAD 
PRS at scale. Such integration will ideally incorporate the 
dynamic importance of genomic and clinical risk for CAD 
over the life course for optimal utility.

Here, we leverage 2 cohorts of individuals enrolled 
across the ages of 19 to 70 years and followed for up 
to 44 years to show that genomic and clinical risk fac-
tors vary in their importance over the life course and to 
explain a changing proportion of variation for CAD risk. 
We show that CAD PRS adds the most information for 

young and early middle-aged individuals when compared 
with older individuals and predicts a greater number of 
both premature and overall events for younger individu-
als. This framework mitigates current age-dependent 
limitations of CAD clinical risk scores.

METHODS
All codes necessary for reproduction of these results have 
been made publicly available on github and can be accessed at 
https://surbut.github.io/dynamicHRpaper/index.html. Informed 
consent was obtained from all participants, and secondary 
data analyses of dbGAP (data-base of genotypes and pheno-
types) -based FOS (Framingham Offspring Study) and UKB 
(UK Biobank) were approved by the Mass General Brigham 
Institutional Review Board applications 2016P002395 and 
2021P002228. All data from the UKB (https://www.ukbio-
bank.ac.uk/enable-your-research/apply-for-access) are made 
available to researchers from universities and other institu-
tions with genuine research inquiries after institutional review 
board and UKB approval. All data from the FOS are made 
available from dbGap (https://www.ncbi.nlm.nih.gov/gap/) to 
researchers from universities and other institutions with genu-
ine research inquiries after institutional review board approval. 
All data generated during this study are included in this pub-
lished article and its Supplemental Material. All methods are 
now available as Supplemental Material only.

RESULTS
Study Participants
We studied 2 cohorts free of cardiovascular disease at 
baseline and spanning the life course: (1) FOS com-
prising 3588 individuals (50.9% female) ages 19 to 50 
years at enrollment and followed for a median of 43.7 
years (interquartile range, 38.7–47.4 years) and (2) UKB, 
comprising 327 837 participants (57% female) ages 40 
to 70 years at enrollment followed for a median of 12.1 
years (interquartile range, 11.4–12.7 years; Table). Apart 
from smoking, clinical risk factors were more prevalent 
in the UKB as expected given older age compared 
with FOS. For example, 1581 (44%) FOS participants 
(enrolled 1971–1975) were current smokers, compared 
with 33 869 (10%) UKB participants (enrolled 2006–
2010). During follow-up, 695 (19.4%) FOS participants 
and 11 190 (3.4%) UKB participants developed CAD. 
Of those incident events, the proportion of premature 
CAD events—defined as occurring before the age of 55 
years—were 179 of 695 (25.8%) in the FOS and 1085 
of 11 190 (9.7%) in the UKB, respectively.

Age-Dependent Effects of Genomic and Clinical 
Risk Factors
We calculated the HR of CAD per SD of PRS at each age 
of enrollment. The HR per SD of CAD PRS decreased 
over the life course—from 3.58 (95% CI, 1.39–9.19) at 

Nonstandard Abbreviations and Acronyms

CAD	 coronary artery disease
FOS	 Framingham Offspring Study
HR	 hazard ratio
LDL	 low-density lipoprotein
PCE	 pooled cohort equations
PRS	 polygenic risk score
UKB	 UK Biobank
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age 19 years to 1.99 (95% CI, 1.06–3.70) at age 56 
years in FOS and from 2.25 (95% CI, 1.77–2.87) at age 
41 years to 1.39 (95% CI, 1.30–1.48) by the age of 70 
years in UKB (Figure 1; Tables S1 and S2).

In Figure 1A, the model suggests high cholesterol is 
protective at the youngest age range and is then associ-
ated with increasing risk from mid-20s to 40. We note 
that the use of FOS allowed us to consider a wider age 
range; however, this cohort also was followed over a dif-
ferent period of study (enrolled starting in the year 1971). 
Although we excluded individuals on lipid-lowering medi-
cation at baseline (only 22 individuals), FOS enables lon-
gitudinal follow-up of lipid-lowering medications initiated 
over time. Analysis of this data reveals that individuals 
who enrolled very young (eg, age <25 years) were not 

followed long enough to reach ages where statin pre-
scription prevalence would increase substantially and 
potentially attenuate the risk of high LDL (low-density 
lipoprotein) cholesterol, but individuals who enrolled at 
older ages (>50) reached American College of Cardiol-
ogy/American Heart Association elevated risk before 
the availability of statin medications (circa 1990). Indi-
viduals between ages 30 and 40 showed peak ultimate 
use of statins during the study period, which attenuated 
the effects of elevated cholesterol, thereby reducing the 
HR (Figure S4).

We next calculated the HR of clinical risk factors at 
each age of enrollment and similarly observed decreasing 
HRs over the life course. For example, the HR (95% CI) 
of CAD for smoking decreased from 1.98 (0.44–8.84) at 
the age of 19 years to 0.98 (0.41–2.33) at the age of 56 
years in the FOS and from 3.51 (2.13–5.80) at the age 
of 41 years to 1.62 (1.28–2.04) at the age of 70 years 
in the UKB. The trends were similar for systolic blood 
pressure and diabetes (Figure 1; Tables S1 and S2). 
Excess risk associated with male sex similarly declined 
with age—from 3.29 (95% CI, 0.64–16.95) at the age of 
19 years to 2.59 (95% CI, 0.92–7.25) at the age of 57 
years in the FOS and from 3.20 (95% CI, 1.82–5.64) at 
the age of 41 years to 1.99 (95% CI, 1.74–2.26) at the 
age of 70 years in the UKB (Figure 1; Tables S1 and S2).

We next computed the proportion of variation explained 
of CAD on each risk factor for individuals up to and 
including the age in question. We observed a decreas-
ing proportion of variation explained with increasing age 
for PRS, from 19% (95% CI, 18.9–19.1) at the age of 
19 years to 3.2% (95% CI, 3.19–3.21) at the age of 57 
years in the FOS and from 5.9% (95% CI, 5.89–5.91) at 
the age of 40 years to 1.7% (95% CI, 1.69–1.71) at the 
age of 70 years (Figure S5; Tables S3 and S4).

Relative Importance of Genomic and Clinical 
Risk of CAD by Age
To compare the relative importance of genomic versus 
clinical risk, we limited our analysis to the UKB where 
both could be calculated. In contrast to pooled cohort 
equations (PCE), the distributions of PRS of participants 
across all age groups were similar and the absolute 
risk of CAD increased with increasing PRS (Figure 2A 
and 2B; Figures S6 and S7). Over the study period, the 
absolute CAD risk difference between those <55 years 
in the first and 99th percentiles was 3.1%, whereas at 
>65 years rose to 7.1% (Figure 2A). However, the cor-
responding relative risks were 5.2-fold (95% CI, 5.1–5.4) 
and 3.2-fold (95% CI, 3.1–3.3), respectively (Figure 2C). 
We observe similar trends in absolute risk by using sex-
specific analyses (Figures S8 and S9), although we note 
that the steeper relative risk in younger ages is less 
apparent in males.

Table.  Characteristics of Study Participants From the FOS 
(N=3588) and UKB (N=327 837)

Characteristics FOS (N=3588) UKB (N=327 837)

Age at risk estimation, y, mean 
(SD)

35.9 (10.2) 56.1 (8.1)

Female, n (%) 1828 (50.9) 186 507 (56.9)

White race, n (%) 3588 (100) 274 927 (83.9)

Incident CAD, n (%) 695 (19.3) 11 190 (3.4)

Follow-up period, median (IQR) 43.7 (38.7–45.3) 12.1 (11.4–12.7)

Diabetes, n (%) 27 (0.7) 2413 (0.7)

Current smoking, n (%) 1581 (44.1) 33 869 (10.3)

Total cholesterol, mg/dL, mean 
(SD)

197 (38.8) 228.6 (41.4)

HDL cholesterol, mg/dL, mean 
(SD)

52.1 (16.0) 57.2 (14.8)

LDL cholesterol, mg/dL, mean 
(SD)

127 (36.6) 144.0 (31.9)

Triglycerides, mg/dL, mean (SD) 99.1 (86.7) 151.9 (90.3)

Diastolic blood pressure, mg/dL, 
mean (SD)

78.5 (10.9) 82.8 (11.2)

Systolic blood pressure, mg/dL, 
mean (SD)

121 (16.4) 139.7 (20.4)

Taking antihypertensive medica-
tion, n (%)

102 (2.8) 41 088 (12.5)

PCE 10-year risk category

 � Low or borderline (<7.5%), 
n (%)

… 207 150 (63.2)

 � Intermediate (≥7.5–<20%), 
n (%)

… 96 775 (29.5)

 � High (≥20%), n (%) … 23 912 (7.3)

Genetic data available, n (%) 2656 (72.5) 327 837 (100.0)

CAD polygenic risk score category

 � Low, n (%) 531 (20.0) 65 696 (20.0)

 � Intermediate, n (%) 1593 (60.0) 196 750 (60.0)

 � High, n (%) 532 (20.0) 65 391 (20.0)

Characteristics for study participants from the FOS and UKB are reported 
for all individuals based on data obtained at enrollment. CAD indicates coronary 
artery disease; FOS, Framingham Offspring Study; HDL, high-density lipopro-
tein cholesterol; IQR, interquartile range; LDL, low-density lipoprotein cholesterol; 
PCE, pooled cohort equations; and UKB, UK Biobank.
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One might expect that individuals free of CAD at 
enrollment (our study population) should be depleted, 
particularly at older age, in high PRS, and thus scaling 
to the general population should reveal this bias should 
it exist. However, both QQ plots and density histograms 
(Figure 2B) with and without principal component (PC) 
adjustment demonstrated no differences between PRS 
distributions among age categories, within the subset or 
general population (Figure S10).

When classifying PCE and PRS strata within each 
age group as high (top quintile), intermediate (middle 
3 quintiles), and low (bottom quintile; Figure S11; Table 
S5), there was a marked gradient of cumulative hazard of 
CAD events over the 12-year follow-up period (Figure 3). 
This stratification was highest in the <55 years age 
group, ranging from 0.045% (95% CI, 0.23–0.67) for 
individuals with low PRS and low PCE to 14.6% (95% 
CI, 12.8–15.5) for individuals with high PRS and high 
PCE. The corresponding stratification in the >65 years 
age group was 4.6% (95% CI, 0.01–0.09) to 37.6% 
(95% CI, 0.11–0.64; Figure 3).

We then compared the ability of a high PRS versus 
high PCE in predicting CAD events across different 
age groups (Figure 4A). At younger ages of enrollment 
(40–45 years), high PRS predicted over 3.5-fold more 
events compared with high PCE—32.3% (95% CI, 32.0–
32.5) of CAD events occurring in this age group were 
predicted by high PRS alone compared with only 9.1% 
(95% CI, 9.0–9.2) by high PCE alone.

Prediction of Premature CAD Events
Individuals with high PRS developed CAD earlier in life 
(mean 65.3 [95% CI, 65.0–65.5] years), whereas the 
average age of first CAD among the high PCE group 
was 70.8 (95% CI, 70.6–71.0) years (Tables S7 and 
S8). Mean age of CAD event decreased with increasing 
PRS, from 67.2 (95% CI, 66.6–67.8) years in the lowest 
decile to 64.5 (95% CI, 64.1–65.0) years in the highest 
decile. Conversely, individuals in the highest PCE decile 
had events 13.7 years later in life than those of the low-
est PCE (Figure 4B; Table S9; Figure S11). Among indi-
viduals with CAD events occurring at <55 years, 427 
(39.3%) had high PRS, but only 32 (2.9%) had high PCE. 
Because age is part of the PCE, this is not unexpected: 
individuals with higher PCE at enrollment will be older at 
enrollment and will therefore have later ages of events.

Augmenting Clinical Risk Models With Genomic 
Risk
Adding PRS to PCE augmented area under the curve 
across all ages but with the greatest impact in younger 
individuals (Figure 4C; Table S10). For individuals <55 
years, the improvement was 6.3% (95% CI, 4.8–7.8) 
compared with only 2.9% (95% CI, 2.2–3.8) for those 
over 55 years. Furthermore, the area under the curve 
increased by 8.8% (95% CI, 8.4%–9.2%) in the 40- 
to 44-year age group, 7.8% (95% CI, 7.6%–8.0%) in 

Figure 1. Dynamic hazard ratio of coronary artery disease (CAD) for genomic and clinical risk factors by age at estimation.
The age-specific hazard ratio (HR) for risk of CAD is plotted for multiple risk factors at each age of enrollment (A) between 19 and 57 years 
in the FOS (Framingham Offspring Study; N=3588) and (B) between 40 and 70 years in the UKB (UK Biobank; N=327 837). The HR is 
obtained from Cox proportional hazards estimate at each age of enrollment for a standardized unit increase in each polygenic score, total 
cholesterol, HDL (high-density lipoprotein) cholesterol, and systolic blood pressure or a binary indicator for smoking, male sex, and diabetes 
(only in the UKB given the low prevalence of diabetes in FOS). No covariates are used in the analysis to isolate the effect of each risk factor 
separately.
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the 45- to 49-year group and 4.9% (95% CI, 4.7%–
5.1%) in the 50- to 55-year age group, respectively 
(Figure 4C). The net proportion of CAD cases correctly 
reclassified by genomic risk (high PRS) was the high-
est in younger participants (16.1% for age <50 years 
and 3.4% for age <55 years) but receded for those 
over 55 years. The net proportion of controls correctly 
reclassified by genomic risk (low PRS) was the highest 
at older ages (15.1% at age <75 years) but diminishes 
in utility for those younger than 60 years (Figure S12; 
Table S11).

DISCUSSION
Our findings enhance our understanding of CAD risk 
factors by illustrating their dynamic importance through-
out life. Unlike traditional models that operate under the 
constraints of fixed windows of time and proportional 
hazards, our work goes beyond these limitations to 
embrace the time-varying nature of these risk factors. 
The ability to track this dynamic trajectory provides new 
granularity in risk assessment, particularly for younger 
individuals. Our approach not only reconciles the time-
varying impact of genomic and clinical risk factors 
but also highlights that CAD PRS offers value for risk 
assessment in individuals under 55 years over clinical 
risk factors alone.

Although current risk stratification emphasizes a 
focus on short-term risk, even an emphasis on a longer 
duration of risk fails to capture the dynamic trajectory of 
an individual’s changing risk profile over time. A dynamic 
model of both genomic and clinical risk factors offers 
several practical implications. First, it is more accurate 
than existing risk calculators based on clinical risk fac-
tors alone. Second, it allows for more precise clinical risk 
stratification among younger individuals, for whom clinical 
risk factors perform poorly. Third, it supports the integra-
tion of genomics into clinical practice toward improved 
prevention of premature CAD events, which are generally 
missed by current clinical risk calculators.

HRs for conventional CAD risk factors and PRS are 
both age-dependent and challenge traditional model-
ing assumptions. This is important for consideration of 
risk across the life course beyond the present 10-year 
estimated risk framework, as recently highlighted in a 
National Heart Lung and Blood Institute workshop.8 The 
Cox proportional hazards model has been the default 
approach for cardiovascular risk prediction, but its fun-
damental assumption—that the hazards in both groups 
compared are proportional—is often erroneous, and 
commonly reported HRs and risk estimates, such as 
the 10-year risk estimate from the PCE, are weighted 
averages of time-varying HRs.9 Current risk calcula-
tors provide a fixed window estimate, as opposed to a 

Figure 2. Absolute and relative incidence rate of coronary artery disease (CAD) by genomic risk per age group.
In the UK Biobank (N=327 837), 3 age groups (<55, 55–65, and >65 years) at risk estimation were used to compare the stratification of the 
observed absolute and relative risk across polygenic score percentile. A, The absolute risk of CAD increased with increasing polygenic score 
percentile in all 3 age groups, and older participants had higher absolute risk of CAD. Absolute risk of CAD ranged from 0.7% to 3.9% in the 
<55 years age group, from 1.9% to 7.0% in the 55–65 years age group, and from 3.3% to 10.4% in the >65 years age group. B, The polygenic 
score distribution was similar across 3 age groups. C, Relative risk gradient of genomic risk is greatest for younger age groups. The 99th 
percentile of polygenic score was associated with a 5.2-fold increase in risk in the <55 years age group, 3.6-fold increase in risk in the 55–65 
years age group, and 3.2-fold increase in risk in the >65 years age group.
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dynamic trajectory.10 Future approaches need to account 
for time-varying effects while also considering the time 
of assessment. This may require the use of time-varying 
coefficients,11 multistate models,12 and a more nuanced 
approach to handling time-varying competing risks.13

Although the relative contribution is much greater, the 
absolute number of events is lower among this age group 
within short-to-intermediate time intervals. Thus, there is 
value in a model that is capable of recognizing high-risk 
but rare events. Young individuals have higher rates of 
subsequent events lifelong with potential downstream 
complications.14 Furthermore, our analysis highlights 
interesting sex-specific differences in the FOS cohort. 
We note the interesting peak of the average HR between 
the ages 35 to 37 years and the decline after in the FOS 
population (Figure 1A). In this analysis, we use age as 
the time scale and report the HR over the follow-up 
period to ensure consistency in absolute calendar ages 
among all participants. Participants were considered by 
their age at first examination to ensure sufficient follow-
up and reduce missing data. Most individuals in the FOS 
cohort had a follow-up period between 27 and 30 years, 
meaning those under the age of 30 years had minimal 
overlap with postmenopausal years. In FOS, the median 

age at enrollment was 36 years, with a median age of 70 
years at the end of follow-up. Therefore, younger indi-
viduals had peak overlap of menopausal years, making 
the age of enrollment a proxy for the overall follow-up 
period, with significant changes observed in those enroll-
ing around age 30 years (Figure S13). In summary, this 
illustrates the heterogeneity among a cohort that is fol-
lowed during these important life transitions. Indeed, 
cardiovascular disease is the leading cause of death in 
women, particularly increasing postmenopause. Longi-
tudinal studies over the past 20 years have shown that 
menopause transition contributes to this increased risk 
due to changes in sex hormones, body composition, lip-
ids, and vascular health.15–17 These findings highlight the 
importance of midlife as a critical period for monitoring 
and early intervention to reduce cardiovascular disease 
risk. Our results corroborate this transition, as the inflec-
tion in the rising HR for younger women is a proxy for 
those patients who will undergo the menopause transi-
tion during the study.7

We also demonstrate that CAD PRS allows us to (1) 
predict lifetime risk earlier in someone’s life course and 
(2) predict events that will occur earlier in life (ie, prema-
ture CAD). Although the PCE tends to capture individuals 

Figure 3. Cumulative hazard of incident coronary artery disease (CAD) by clinical and genomic risk in 3 age groups.
In the UK Biobank (N=327 837), 3 age groups (<55, 55–65, and over 65 years) at risk estimation were used to compare the cumulative 
incidence of CAD by genomic (polygenic risk score [PRS]) and clinical (pooled cohort equations [PCE]) risk levels defined as low (bottom 
quintile), intermediate (middle 3 quintiles), and high (top quintile) within each age group (see Figure S5; Table S5). We report the cumulative 
hazard over the observed follow-up time (median, 12.2 years). The stratification was highest in the <55 years age group (A), where the 
cumulative hazard ranged from 0.45% (95% CI, 0.23–0.67) for individuals with low PRS and low PCE to 14.6% (95% CI, 12.8–15.5) for 
individuals with high PRS and high PCE. The stratification decreased but persisted in the older age groups (B and C). Here, we feature the 
same y axis to emphasize differences in absolute risk among young, middle-aged, and older individuals.
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who have higher rates of known clinical risk factors, 
genetic risk is largely independent with a broadly uniform 
distribution of clinical risk factors among varying levels of 
genetic risk. PCE incorporates age as a constant inter-
action with time-to-risk models but our study shows that 
this change is not linear nor easily predictable.3,5

In conclusion, our work highlights 3 areas in which 
CAD PRS adds value to current guideline-based clinical 
risk prediction using the PCE: (1) CAD PRS had the most 
value in augmenting risk prediction for CAD among indi-
viduals younger than 55 years of age. Prior work for CAD 
has largely examined area under the curve augmentation 
with PRS in aggregate of middle-aged or even older par-
ticipants noting minimal incremental value.18,19 (2) CAD 
PRS improves precision in risk estimation for individu-
als within the strata of clinical risk according to the PCE 
throughout the life course, but such stratification is highest 
among individuals under the age of 55 years. (3) Integra-
tion of genomics in risk prediction enables the detection 
of premature events that are missed by current guideline-
supported tools. Collectively, these findings support inclu-
sion of PRS to augment current clinical risk estimation 
toward better allocation of preventive therapies.7,20

Limitations
Our results should be interpreted in the context of 
potential limitations. First, survival bias is an impor-
tant limitation with a broad age of inclusion in any vol-
unteer cohort. However, this also reflects the dynamic 
importance of risk factors when considering event-free 
individuals at increasing age, which is leveraged in the 

present study. Second, the 2 cohorts studied spanned 
different countries, time periods, and medical guidelines 
epochs, making absolute estimates between FOS and 
UKB not directly comparable, but the overall dynamic 
age-dependent trends were consistent. Third, we do not 
compare genomic to lifestyle-based ‘primordial’ risk cal-
culators in individuals under the age of 40 years, which 
would further illuminate the value of genomics in com-
parison to those measures before onset of disease risk 
factors. Fourth, because this study is predominantly of 
individuals of European ancestry, additional research 
is needed to evaluate whether these observations are 
applicable to other ancestries. CAD PRS has reduced 
performance in ancestries outside of Europe but cross-
ethnic transferability of PRS is improving with more 
diverse training data and novel methods.21

Conclusions
In summary, this study extends current CAD risk predic-
tion models by offering a dynamic framework that also 
includes genomics toward improved prediction. We show 
that genomic information adds the most information for 
young and middle-aged individuals when compared with 
older individuals for the prediction of CAD events.
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