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Abstract
Background  Within the tumor microenvironment (TME), the association of B lymphocytes (B cells) with prognosis and 
therapy response in gastric cancer (GC) remains poorly characterized. We investigated the predictive and prognostic value 
of B cells, including their spatial organization within the TME, in one of the largest multi-cohort studies to date.
Methods  Using CD20 immunohistochemistry, we evaluated B cell density in resection specimens from 977 patients with 
resectable GC across three cohorts, including the randomized phase III Korean CLASSIC trial. The relationship between 
CD20 density, clinicopathological characteristics, and overall survival (OS) was analyzed. Digital spatial profiling of 1063 
regions of interest from 15 patients was performed to characterize B cell distribution within different regions of interest 
(ROIs) using the NanoString GeoMx platform.
Results  CD20 density was significantly higher in diffuse-type GC compared to intestinal-type (p = 0.000012). Patients 
with CD20-low diffuse-type GC had the shortest OS in the CLASSIC trial (median OS: 49 vs 62 months, HR: 1.9, 95% 
CI: 1.2–3.0, p = 0.003) and in a Japanese cohort (median OS: 49 vs 67 months, HR: 2.2, 95% CI: 1.2–4.0, p = 0.011). This 
survival difference was not seen in patients treated with adjuvant chemotherapy (median OS: 62 vs 63 months, HR: 1.8, 
95% CI: 0.88–3.5, p = 0.108). Spatial profiling revealed significant B cell enrichment within tumor ROIs compared to the 
stroma, particularly in diffuse-type GC.
Conclusions  Low CD20 positivity, especially in diffuse-type GC, is linked to poor prognosis and may identify patients who 
could benefit from chemotherapy. These findings underscore the role of B cells in GC.
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Introduction

Gastric cancer (GC) remains the fifth most deadly cancer 
globally [1], despite recent advances in therapeutic regimens 
and a deeper understanding of its tumor microenvironment. 
Whilst previous studies have delineated the distribution and 
prognostic ability of T lymphocytes (T cells) and tumor-infil-
trating lymphocytes (TILs) in its tumor microenvironment 

(TME) in GC [2–5], an understanding of the role of B lym-
phocytes (B cells) remains to be established.

Previous work using immunohistochemistry (IHC) on tis-
sue microarrays (TMAs) found that CD20, the transmem-
brane antigen expressed on B cells, is associated with higher 
pathological risk grading, suggesting a potential role of B 
cells in the prognosis of patients with GC [6]. However, 
other studies reported opposite results with respect to the 
prognostic effect of CD20 [7–9]. Although these studies 
reported an association of CD20 expression with various 
clinicopathological characteristics, the effect of the interac-
tion between CD20 expression and these clinicopathological 
characteristics has not been widely studied.

Other studies beyond IHC have also analyzed the associa-
tion of B cells with clinicopathological characteristics [10]. 
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B regulatory cells have been investigated previously showing 
an association with poorer survival in patients with GC [11]. 
The abundance of lymphocytes in GC from patients diag-
nosed with different disease stages has been studied using 
single cell RNA sequencing (scRNA-seq) suggesting that 
abundant IgA + plasma cells have been found in premalig-
nant lesions such as chronic atrophic gastritis and intestinal 
metaplasia, whilst immunosuppressive myeloid and stromal 
cell subsets seem to dominate late-stage cancers [12]. Nota-
bly, scRNA-seq enabled lineage-based comparisons of the 
TME between diffuse and intestinal GC subtypes suggested 
increased plasma cell proportions in diffuse-type GC [13].

In summary, the current literature on the relationship 
between B cells and survival in GC patients remains con-
troversial and none of the studies to date investigated the 
specific role of B cells in the prognosis of GC patients, as 
well as their association with clinicopathological charac-
teristics. We hypothesized that B cell density has a positive 
effect on GC patient survival in a subset of patients with 
specific clinicopathological characteristics. The aim of the 
current study was to analyze the relationship of B cells with 
disease stage, histological subtypes, treatment benefit and 
survival in more than 1000 GC from multiple cohorts using 
a multi-modality approach including IHC, bulk-RNAseq and 
Digital Spatial Profiling (DSP).

Materials and methods

Clinical cohorts

Korean CLASSIC trial

The CLASSIC trial was a randomized, open-label, multi-
center phase III study comparing D2 gastrectomy followed 
by adjuvant capecitabine and oxaliplatin chemotherapy with 
surgery alone demonstrating better survival in the adjuvant 
chemotherapy arm [14]. The current study was approved by 
the institutional review board at each participating institution 
and was performed in accordance with the Declaration of 
Helsinki and Good Clinical Practice Guidelines. All patients 
provided written informed consent.

Kanagawa Cancer Centre Hospital (KCCH) gastric cancer 
collection

This single hospital series from the Kanagawa Cancer Centre 
Hospital, Yokohama, Japan, comprises 215 cases, 89 treated 
with surgery alone and 126 treated with Fluorouracil-based 
adjuvant chemotherapy. The study was approved by the local 
research ethics committee.

Leeds Teaching Hospital NHS Trust (LTHT) gastric cancer 
collection

This single hospital series from the Leeds Teaching Hospi-
tals NHS Trust, Leeds, UK, comprises 213 cases, all patients 
were treated by surgery alone. The use of archival tissue 
specimens and clinicopathological data for research had 
been approved by the Leeds Research Ethics Committee 
(CA01/122); the need for patient consent was waived by the 
ethics committee.

Stomach adenocarcinoma from The Cancer Genome Atlas 
(TCGA)

Transcriptomic gene expression Level 3 RSEM-normalized 
RNASeqV2 data and clinical data from the TCGA study 
of stomach adenocarcinoma (STAD) cohort were extracted 
from the Broad GDAC Firebrowse database [15]. The his-
tology of all STAD TCGA samples was reviewed and the 
histological tumor type was classified by two pathologists 
from our group. Illumina HiSeq RNA-SeqV2 RSEM nor-
malized gene values were used for B cell gene expression 
profile comparisons.

Singapore Gastric Cancer Consortium (SGCC)

For spatial transcriptomic analysis, samples from 15 
patients diagnosed with GC undergoing surgical resection 
or endoscopic biopsy were collected at the National Uni-
versity Hospital (NUH), Singapore. From this cohort, 1063 
unique regions of interest, identified within specific regions 
within the tumor microenvironment, were analyzed. This 
group of patients has been previously studied and detailed 
methods have been provided previously [16, 17]. This study 
was approved by the local ethics board (National Health-
care Group, Domain Specific Review Board Ref Nos: 
2005/00440 and 2016/00059). Protocols were performed 
in accordance with the Declaration of Helsinki for Human 
Research.

Experimental methods

Immunohistochemistry

For previous studies, tissue microarrays (TMAs) were con-
structed from all three above-mentioned cohorts, sampling 
two 3 mm diameter cores (CLASSIC), two 1.2 mm diameter 
cores (KCCH) or three 0.6 mm cores (LTHT) from archival 
formalin-fixed paraffin-embedded GC resection specimens. 
In all cohorts, TMA cores were sampled from areas with the 
highest tumor density. Clinicopathological data including 
survival were available for all patients.
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TMAs section from CLASSIC, KCCH and LTHT GC 
series were stained for CD20, the transmembrane antigen 
expressed on B cells, and other immune cell antigens such 
as CD3, CD8, CD31, CD45, CD66b, CD68, and CD163 
as described previously [6, 14, 18–20], all slides were 
scanned at 40 × magnification using an Aperio scanner 
(Leica Microsystems, Milton Keynes, UK). For LTHT and 
KCCH, immunoreactive pixels per marker per core were 
measured using image analysis software and utilized to cal-
culate marker density (% marker positive pixel of all pixels 
per core). After visual quality control with respect to tumor 
content and staining quality, results from cores were aver-
aged if appropriate to establish the final value per patient.

The density of CD8 or CD20 positive pixels in the dual 
stained TMA sections of the CLASSIC trial cohort was 
estimated using a pixel-based Random Forest Classifier 
(Definiens Developer XD, Munich, Germany). The clas-
sifier was trained using expert annotations for CD8 posi-
tive, CD20 positive, Hematoxylin, background and artifact 
pixels. The percentage of positive CD8 or CD20 pixels per 
core was reported by the software. The same quality control 
as described above was performed and results from cores 
were averaged if appropriate to establish the final value per 
patient.

Gene expression analysis of RNA‑seq data

Gene expression analysis was performed on RNA-seq data 
from the TCGA-STAD cohort. Data were aligned to GEN-
CODE V.19 transcript annotation using STAR v2.7.9a and 
TrimGalore v0.6.7. Transcripts per million abundance meas-
ure were generated using RSEM v1.3.3. RNA-seq transcripts 
mapping to genes profiled using the NanoString panel were 
extracted. Immune cell subsets were enumerated with the 
CIBERSORT v1.0 LM22 immune subset signature and Car-
cinoma EcoTyper v1.0 [21, 22]. This output yielded a set of 
proportions representing the estimated abundance of each 
immune cell type, inlcuding B cells within each sample.

Spatial transcriptomic analysis

Digital spatial profiling (DSP) analysis was performed 
only on the SGCC cohort. FASTQ files from DSP were 
converted into count matrices using established protocols 
[23]. Cell abundances within each ROI were estimated 
using the SpatialDecon algorithm (v.1.4.3), leveraging on a 
human cell-profile reference matrix on Nanostring Biostats 
GitHub [24, 25]. Gene Set Enrichment Analysis (GSEA) of 
the differentially expressed genes was conducted using the 
MSigDB Hallmark database through the R clusterProfiler 
package [26]. Additional known signatures and pathways 
were mapped onto DSP data through single-sample GSEA 
(ssGSEA) using the R GSVA package.

Statistical methods

Within the IHC cohorts, a two-sided Wilcoxon Rank Sum 
test was used to investigate the relationship between CD20 
density and clinicopathological characteristics. Within each 
cohort, patients with a CD20 density greater than the 75th 
percentile of that cohort were classified as “CD20-high”, 
while patients below the 25th percentile were classified as 
“CD20-low”.

The cohorts were analyzed both pooled, at individual 
cohort level and per treatment modality. To investigate the 
correlation of CD20 density with other immune cell markers, 
the strength of correlation was measured using the Spear-
man (Rho, ρ) correlation coefficient and the probability of 
observing a correlation with the corresponding p values. 
A ρ of 0.00–0.30 was interpreted as a negligible correla-
tion, 0.30 < ρ ≤ 0.50 was interpreted as a weak correlation, 
0.50 < ρ ≤ 0.70 was interpreted as a moderate correlation, 
and ρ > 0.70 was interpreted as a strong correlation. Survival 
analyses were conducted in individual cohorts. As CLASSIC 
was a randomized phase III trial cohort, subgroup survival 
analysis by treatment was performed. Univariate survival 
analyses of overall survival (OS) were performed using 
the Kaplan–Meier method and log-rank test. Multivariate 
survival analyses were performed using a Cox-proportional 
hazards model, including all clinicopathological parameters 
that were significant in univariate analysis.

Within the TCGA cohort, a two-sided Wilcoxon Rank 
Sum test was used to investigate the relationship between B 
cell proportions and clinicopathological characteristics. To 
investigate the correlation of B cell proportions with other 
immune cells, the strength of correlation was measured 
using the Spearman (Rho, ρ) correlation coefficient and the 
probability of observing a correlation with the correspond-
ing p-values. ρ was interpreted as above.

Within the DSP cohort, comparisons of B cell propor-
tions between regions were conducted with two-sided Wil-
coxon Rank Sum tests. Similar correlation analyses were 
performed between B cell proportions and other immune 
cells. All analyses were conducted in R-4.2.0 unless stated 
otherwise. Graphical illustrations were created with BioRen-
der.com. A p value < 0.05 was considered statistically 
significant.

Results

Cohort overview

In this study, a total of 1442 samples from multiple cohorts 
of patients with gastric cancer were studied using three 
methods: immunohistochemistry (IHC, n = 977), whole 
transcriptome sequencing (WTS, n = 450) and digital 
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spatial profiling (DSP, GeoMx platform, Nanostring Tech-
nologies, Inc, n = 15). Among the IHC cohorts, the South 
Korean CLASSIC trial contributed 549 samples, the Japa-
nese KCCH cohort 215 samples, and the UK LTHT cohort 
213. An overview of the samples is provided in Fig. 1.

CD20 density is higher in diffuse‑type gastric cancer

IHC staining was performed on 977 samples across three 
cohorts to establish the density of CD20 positive B cells, 
The distribution of CD20 density (% CD20 positive pixels 
of all pixels per core per patient) was consistent between 
cohorts (Fig. 2a–c). Supplementary Table S1 summarizes 
the baseline clinicopathological characteristics of the sam-
ples included in this study.

When analyzed across all cohorts, CD20 density was 
significantly higher in diffuse-type GC (n = 389) com-
pared to intestinal-type GC (n = 470) (1.91% vs 1.56%, 
p = 0.00025) (Fig. 2d). This association remained signifi-
cant when analysing the CLASSIC trial cohort (1.82% 
vs. 1.25%, p = 0.000014) (Fig. 2e) and the LTHT cohort 
(2.86% vs. 1.9%, p = 0.0004) (Fig. 2f) individually, but 
was not observed in the KCCH cohort (1.58% vs. 1.64%, 
p = 0.81) (Fig. 2g). Correlation analysis indicated that 
CD20 density was not significantly associated with other 
immune cell biomarkers, such as CD3, CD8, CD31, CD45, 
CD66b, CD68, and CD163 (Fig. 2h–j). CD20 density was 
not related to any of the other clinicopathological features 
(Table 1).

Relationship of CD20 density and survival 
in patients with resectable gastric cancer

As expected, there were no significant differences in CD20 
density in the resection specimen of patients who were 
treated with adjuvant chemotherapy after surgery com-
pared to those who were treated by surgery alone (CLAS-
SIC p = 0.82, KCCH p = 0.51). Patients with diffuse-type 
GC had poorer overall survival compared to those with 
intestinal-type GC in CLASSIC (HR 1.6; 95% CI: 1.1–2.3, 
p = 0.01)), KCCH (HR = 1.9 (95% CI = 1.3–2.9, p = 0.003)) 
and in LTHT (HR = 1.8 (95% CI = 1.2–2.6, p = 0.003).

Interestingly, patients with diffuse-type GC with low 
CD20 density (CD20-low diffuse-type) had the poorest OS 
when compared to all other patients. This was observed 
in patients from CLASSIC: CD20-low diffuse-type 
median OS = 49.0 months vs 62.0 months (HR = 1.9; 95% 
CI:1.2–3.0, p = 0.003) (Fig. 3a, Supplementary Figure S1a), 
and in patients from KCCH: CD20-low diffuse-type median 
OS = 49.1 vs 69.1 months (HR = 2.3 (95% CI = 1.2–4.2, 
p = 0.011)) (Fig. 3b, Supplementary Figure S1b). As the 
LTHT cohort only had 1 sample in the CD20-low diffuse-
type group, this analysis could not be performed in LTHT 
(Supplementary Fig. S1c).

In the CLASSIC trial patients, we were able to perform 
further survival analyses of the CD20 density, stratifying 
patients by treatment. In patients treated with surgery alone, 
survival was significantly poorer in CD20-low diffuse-
type patients (median OS = 46.0 vs 61.0 months (HR = 2.3 
(95% CI = 1.3–4.2, p = 0.005)) (Fig. 3c, Supplementary 

Fig. 1   Summary of included samples including cohort details, method of CD20/B cell measurement and clinicopathological characteristics stud-
ied. Created with BioRender.com
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Figure S1d). In patients treated by surgery and adjuvant 
chemotherapy, the difference in survival between CD20-low 
diffuse-type and the other patients was no longer apparent: 
CD20-low diffuse- type (median OS = 62.3 vs 63.0 months 
(HR = 1.8 (95% CI = 0.88–3.5, p = 0.108)) (Fig. 3d, Supple-
mentary Figure S1e).

Multivariate analysis including CD20 density, histologi-
cal subtype, combination of CD20-low and diffuse-type, 
disease stage, MSI status, sex, and treatment in the model, 
showed that while CD20 density alone was not an independ-
ent factor with respect to survival, a particular combination 
of CD20-low diffuse-type was associated with significantly 
poorer survival (Table 2). Similar univariate and multivari-
ate analyses were also performed for the KCCH and the 
LTHT cohorts (Tables 3, 4).  

Analysis of Bulk‑RNAseq data from TCGA STAD 
cohort

To assess the generalizability of our CD20 immunohisto-
chemical findings, Bulk-RNAseq data from TCGA (n = 450) 
was analyzed. CIBERSORT v1.0 was used to estimate 
immune cell proportions based on Bulk-RNAseq data. 
Baseline clinicopathological characteristics are outlined in 
Supplementary Table S2. The proportion of B cells was sig-
nificantly higher in the diffuse-type GC (n = 66) compared 
to intestinal-type GC (n = 189) (15% vs 7%, p < 0.001) 
(Fig. 4a). The proportion of B cells was not correlated with 
other immune cell proportions (Fig. 4b). Supplementary 
Table S3 summarizes the relationship of the proportion of 
B cells with clinicopathological features.
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Fig. 2   Distribution of CD20 density across cohorts, by histological 
subtype and correlation with other immune cell biomarkers. A–C 
CD20 density per cohort. D CD20 density is significantly higher 
in the diffuse-type gastric cancer compared to intestinal-type GC 

(pooled analysis of all cohorts). E–G Per cohort analyses confirms 
higher CD20 density in diffuse-type GC in the CLASSIC and LTHT 
cohorts, but not in the KCCH cohort. H–J Correlation of CD20 den-
sity with other immune cell biomarkers
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Digital spatial profiling demonstrates 
differences in B cell distribution 
within the Tumor Microenvironment

Exploratory analyses were conducted in 15 GC patients uti-
lizing digital spatial profiling to establish the distribution of 
B cells within the TME. 1063 regions of interest (ROIs) were 
identified for analysis (Fig. 5a). Of these ROIs, 88 (8%) were 
from regions with intestinal metaplasia (IM), 130 (12%) from 
regions with lymphoid aggregates (LA), 179 (17%) from nor-
mal gastric epithelium, 138 (13%) from intratumoral stroma 
region, 11 (1%) from regions where lymphocytes were seen 
on top of tumor cells (TL), 87 (8%) from the tumor stro-
mal interface (TSI) region and 430 (40%) from regions with 
tumor cells. A visual depiction of the staining and identifica-
tion of these ROIs has been included in Fig. 5b.

B cell proportions, calculated as the % of immune cells 
that were B cells, within each region were compared between 
patients (Supplementary Figure S2a) and within the same 
patient (Supplementary Figure S2b). The proportion of B 
cells was significantly higher in the tumor region compared 
to the intratumoral stroma (8%vs 1%, p < 0.001) (Fig. 5c, d).

The distribution of the B cells within each region and 
its association with clinicopathological characteristics was 
further analyzed. In diffuse-type GC, B cells appeared to 
congregate in the tumor cell ROIs, while B cells were more 
evenly distributed between the various ROI compartments 
in intestinal-type GC (Fig. 5e). The proportion of B cells 
was significantly higher in the intestinal-type GC compared 
to diffuse-type GC in the normal gastric epithelium (10.8% 
vs 1.4%, p < 0.05), TSI (tumor-stromal interface) (7.3% vs 
2%, p = 0.026), and the intratumoral stroma (1.2% vs 0.2%, 
p = 0.029) regions.

B cell proportions were also significantly higher in the 
tumor region in stage IV GC vs stage I-III GC (Supplemen-
tary Figure S3a) (17% vs 7%, p < 0.05); and higher in distal 
vs proximal GC (Supplementary Figure S3b) (10% vs 6%, 
p < 0.05). Correlation analysis did not find any significant 
correlation between B cell proportion and other immune 
cells (Fig. 5f) (− 0.28 < r < 0.24). No significant correlations 
were noted when stratifying the correlation analysis by his-
tological subtype, stage or tumor location (Supplementary 
Figure S3c–e).

Discussion

To date, T cells have remained the center of attention with the 
role of B cells in gastric cancer (GC) prediction and progno-
sis remaining poorly described. We aimed to characterize the 
role of B cells in prognosis prediction in GC patients using a 
multi-modality approach (immunohistochemistry, bulk-RNA 
sequencing and digital spatial profiling) across multiple GC 

Table 1   Relationship between CD20 density and clinicopathological 
features per cohort

UICC, Union for International Cancer Control; LN, Lymph node; 
MSI, microsatellite instability

n CD20 den-
sity, median 
%

p value

Histological subtype
 All cohorts Diffuse 389 1.91  < 0.001

Intestinal 470 1.56
 CLASSIC Diffuse 284 1.82  < 0.001

Intestinal 184 1.25
 LTHT Diffuse 47 2.86  < 0.001

Intestinal 134 1.90
 KCCH Diffuse 58 1.56 0.81

Intestinal 152 1.64
Treatment modality
 CLASSIC Surgery alone 268 1.84 0.82

Surgery + adj. chemo 281 1.75
 KCCH Surgery alone 89 1.67 0.51

Surgery + adj. chemo 126 1.55
UICC pT category
 CLASSIC T1/T2 101 1.98 0.13

T3/T4 448 1.75
 KCCH T1/T2 40 2.4 0.39

T3/T4 175 1.42
 LTHT T1/T2 50 3.83 0.072

T3/T4 163 1.92
UICC pN category
 CLASSIC N0 43 1.32 0.95

N1 +  506 1.83
KCCH N0 33 1.02 0.11

N1 +  182 1.71
 LTHT N0 68 2.72 0.57

N1 +  145 2.21
Sex
 CLASSIC Male 395 1.88 0.87

Female 154 1.58
 KCCH Male 157 1.42 0.094

Female 58 2.08
 LTHT Male 135 2.48 0.63

Female 78 2.19
MSI status
 CLASSIC MSI negative 484 1.82 0.43

MSI positive 37 1.47
 LTHT MSI negative 106 2.15 0.034

MSI positive 9 0.49
 KCCH MSI negative 21 1.15 0.073

MSI positive 192 1.66
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cohorts. We analyzed the relationship of B cells with disease 
stage, histological subtypes, treatment benefit and survival in 
GC samples from multiple patient cohorts, including patients 
from the landmark phase III CLASSIC trial.

Differences in B cell distribution by histological 
subtype

To understand the relationship between B cell density and 
GC patient prognosis, we performed one of the largest 

immunohistochemistry (IHC) analysis of 977 GC samples 
from three independent clinical cohorts and characterized 
the distribution of B cells in the tumor microenvironment. 
We demonstrated that B cell density, quantified as CD20 
protein expression, was significantly greater in diffuse-type 
GC compared to intestinal-type gastric cancer. Orthogonal 
analysis of gene expression data from the TCGA STAD 
cohort including patients (n = 450) with either localized 
or metastatic GC further supported our findings. B cell 
proportion, calculated by deconvolution methods from 
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Fig. 3   Kaplan-Meier curves depicting OS survival analysis in IHC 
cohorts. A, B Survival analysis shows that patients with CD20-low 
diffuse-type GC have the poorest prognosis in both CLASSIC and 
KCCH. C Survival analysis of the surgery alone treated patients from 

the CLASSIC trial shows a strong difference between CD20-low dif-
fuse-type GC and the rest of the patients. D In CLASSIC, patients 
with CD20-low diffuse-type GC have the same survival as the rest of 
the patients if treated with adjuvant chemotherapy
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gene expression profiles, was significantly higher in the 
diffuse-type GC versus intestinal-type GC suggesting that 
the different B cell distributions in different histological 
subtypes are not related to disease stage. Our CD20 immu-
nohistochemistry and gene expression analysis results pro-
vide further evidence from a larger dataset, in support of 
a previous report [27].

Survival analyses

Considering that patients with locally advanced resectable 
diffuse-type GC have a poor prognosis [28], and that the 
presence of intratumoral lymphocytes and tertiary lym-
phoid structures (TLS) is usually associated with a bet-
ter prognosis [29], our findings of increased B cells in 
the diffuse-type GC appeared contradictory. We therefore 

Table 2   Univariate and 
multivariate survival analysis in 
the CLASSIC cohort

MSI  microsatellite instability, MSS microsatellite stability

Variable Univariate Multivariate

HR (95% CI) p value HR (95% CI) p value

CD20 density (low vs high) 0.9 (0.6–1.4) 0.8 – –
Diffuse-type vs intestinal-type 1.6 (1.1–2.3) 0.01 – –
CD20-low diffuse-type vs rest 1.9 (1.2–3.0) 0.003 1.8 (1.1–2.8) 0.017
Stage III vs Stage II 2.2 (1.5–3.4) 0.0003 2.4 (1.5 −3.9)  < 0.001
Tumour depth (T3/T4 vs T1/T2) 2.4 (1.3–4.5) 0.004 – –
Nodal involvement (N1-3 vs N0) 1.2 (0.6–2.4) 0.5 – –
Sex (male vs female) 1.6 (1.0–2.4) 0.03 1.7 (1.1–2.5) 0.015
Age (continuous) 1.0 (1.0–1.0) 0.3 – -
MSI vs MSS 0.1 (0.015–0.8) 0.03 0.1 (0.02–0.8) 0.03
Adjuvant chemotherapy (yes vs no) 0.6 (0.4–0.9) 0.004 0.6 (0.4–0.8) 0.003

Table 3   Univariate and 
multivariate survival analysis in 
the KCCH cohort

Variable Univariate Multivariate

HR (95% CI) p val HR (95% CI) p value

CD20 density (low vs high) 0.9 (0.8–1.0) 0.03 – –
Diffuse-type vs intestinal-type 1.9 (1.3–2.9) 0.003 – –
CD20-low diffuse-type vs rest 2.3 (1.2–4.2) 0.011 2.5 (1.3–4.7) 0.005
Stage III vs Stage II 3.3 (2.0–5.7)  < 0.001 – –
Tumour depth (T3/T4 vs T1/T2) 2.4 (1.2–4.6) 0.001 2.9 (1.5–5.7) 0.001
Nodal involvement (N1-3 vs N0) 2.9 (1.3–6.2) 0.01 3.6 (1.7–7.9) 0.001
Sex (male vs female) 1.0 (0.6–1.6) 1.0 – –
Age (continuous) 1.0 (1.0–1.0) 0.96 – –
Adjuvant chemotherapy (yes vs no) 1.3 (0.8–2.0) 0.186 – –

Table 4   Univariate and 
multivariate survival analysis in 
the LTHT cohort

p values of statistical significance were bolded

Variable Univariate Multivariate

HR (95% CI) p val HR (95% CI) p value

CD20 density (low vs high) 0.9 (0.9–1.0) 0.04 1.0 (0.9–1.0) 0.26
Diffuse-type vs intestinal-type 1.8 (1.2–2.6) 0.004 1.5 (1.0–2.2) 0.07
CD20-low diffuse-type vs rest 15.3 (2.0–116.7) 0.009 – –
Stage III vs Stage II 2.4 (1.6–3.5)  < 0.001 – –
Tumour depth (T3/T4 vs T1/T2) 3.9 (2.3–6.5)  < 0.001 2.2 (1.2–3.8) 0.01
Nodal involvement (N1-3 vs N0) 2.6 (1.7–3.8)  < 0.001 1.9 (1.2–2.9) 0.01
Sex (male vs female) 0.9 (0.7–1.3) 0.6 – –
Age (continuous) 1.0 (1.0–1.0) 0.08 – –
MSI vs MSS 0.5 (0.2–1.4) 0.2 – –
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performed additional exploratory survival analyses strati-
fying patients by CD20 density and histological subtype.

Across multiple cohorts, we found that patients with 
diffuse-type GC with a low CD20 (CD20-low diffuse-
type) had significantly poorer survival compared to all 
other patients. Furthermore, we were able to leverage on 
data from the landmark phase III CLASSIC randomized 
control trial to determine whether the use of adjuvant 
chemotherapy has an impact on survival in this particular 
subgroup of patients.

The findings from our study add insight into the prog-
nostic role of B cells in GC. Two previous GC studies using 
IHC suggested that CD20 positive B cell infiltration alone 
was associated with better prognosis [8, 9], while other IHC 
and bulk-RNAseq analyses found that B cell infiltration was 
not associated with significant survival differences [7, 10]. 
While the difference in prognostic outcomes may be attrib-
uted to variation in the number of patients and the meth-
odology of the individual studies, each study also differed 
in terms of clinicopathological characteristics. Our study 
addresses this knowledge gap and is the first to demonstrate 
that it is a specific combination of diffuse-type samples with 
low CD20 that are associated with the worst prognosis. Pre-
viously proposed mechanisms may explain this observation. 
Studies in other cancer types highlight two ways B cells may 
exert an anti-tumor immune response. Firstly, via differentia-
tion into plasma cells and subsequent antibody production,  
and secondly via antigen presentation to CD4 T cells within 
the TME [30, 31]. Considering the “immune-suppressive” 
features that have previously been observed in diffuse-type 

GC, this may explain the variability in CD20/B cell-asso-
ciated survival between diffuse-type and intestinal-tpye GC 
[32].

Interestingly, adjuvant chemotherapy appears to be able to 
rescue the poor prognostic effect as patients with CD20-low 
diffuse-type GC randomized to adjuvant chemotherapy have 
the same survival as the rest of the patients in the adjuvant 
chemotherapy arm of the study. Chemotherapy agents are 
known to to induce immunogenic cell death in tumor cells 
[33]. Considering the role of B cells as antigen-presenting 
cells that mediate T cell cytotoxicity, chemotherapy may 
act as a compensatory mechanism in samples with lower B 
cell infiltration [34]. Overall, these findings provide impe-
tus for the development of therapeutics targeting the B cell 
axis, perhaps particularly for patients with diffuse type GC. 
Significantly, we exhibit that this is show in two cohorts of 
distinct ethnicities and are also the first study to conduct sur-
vival analyses on samples from a randomized control trial.

Digital spatial profiling exploratory analyses

To add further granularity to our understanding of the spatial 
organization of the B cells in the tumor microenvironment 
(TME), we performed an exploratory analysis utilizing DSP 
technology, analyzing more than 1000 regions of interest 
(ROIs) from 15 GC patients. We were able to characterize 
the distribution of B cell proportions within different regions 
in the TME and relate findings to various clinicopathological 
characteristics.
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Our study is the first to demonstrate that B cells in GC 
preferably located in the tumor cell regions compared to 
intratumoral stromal regions. A previous pan-cancer analysis 
of breast, gastrointestinal and gynecological malignancies 
found that B cells tend to congregate in high proximity to the 
tumor cells [35]. Our findings confirm that this is a trend that 
is present specifically in GC. These results were unexpected 
considering that tertiary lymphoid structures, which contain 
B cells, are usually located in the stroma [36]. In addition, 
it was also interesting that we found B cells tended to con-
gregate in the tumor cell region in diffuse-type GC, while B 
cells seem to be more evenly distributed across the different 
regions (tumor cells, normal epithelial) in intestinal-type 
GC. Furthermore, stage IV GC had a significantly higher 
proportion of B cells in the tumor cell region compared to 
stage I-III GC. These findings could suggest that B cells are 
especially present in the tumor cell region in certain histo-
logical subtypes or higher disease stages.

This study has some limitations. To date, there are no 
standardized cut-offs for determining what constitutes a 
high/low number of CD20 positive B cells in a tumor sam-
ple. Therefore, it is challenging to directly compare results 
between our study and previous reports on B cell density 
in GC and to identify the CD20 cut off most relevant for 
prognosis prediction and/or response to treatment. IHC sam-
ples used in our study were from early, resectable GC. This 
limited the feasibility of analyses on CD20/B cell density in 
later-stage tumors.CD20 was measured on tissue microarray 
cores sampled from areas with the highest tumor density 
irrespective of the location within the tumor. Therefore, it is 
not possible to assess whether there is intratumoral variation 
of B cell infiltration and how this might influence the predic-
tive value of B cells. Although the spatial characterization 
of the GC TME highlights an important association between 
clinicopathological characteristics and spatial distribution of 
the B cells, results need to be interpreted with caution due 
to the relatively low number of patients in this exploratory 
study.

Conclusion

To date, our study is the largest and the only multicenter 
cohort study including the landmark Korean CLASSIC trial 
of B cells in gastric cancer providing unique insights into B 
cell distribution and prognostic impact across multiple dis-
ease stages, histological subtypes and treatment regimens. 
Using a multi-modal experimental approach, our study iden-
tified in multiple cohorts that patients with diffuse-type GC 
containing only low levels of CD20 positive B cells have the 
poorest survival when treated with surgery alone. Clinically, 
most interesting is the finding that adjuvant chemotherapy 
improves the survival of this patient subgroup up to the 

level of the rest of the patients. We can only speculate that 
this effect may be attributed to the immunogenic cell death 
induced by the chemotherapeutic agents, which may act as 
a compensatory mechanism for the lower B cell infiltration, 
or inhibitory to the proliferative nature of diffuse-type GC. 
Our study is the first to describe that B cells appear to be 
more frequent in tumor cell regions than in the intratumoral 
stroma which could be relevant for the development of B cell 
targeting therapies. Results from our investigations highlight 
the important prognostic role of B cells in the GC TME, 
particularly in diffuse-type GC, paving the way for the devel-
opment of potential therapeutics targeting the B cell axis.
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