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Deep-Learning Model for Central Nervous System
Infection Diagnosis and Prognosis Using Label-Free
3D Immune-Cell Morphology in the Cerebrospinal Fluid

Bo Kyu Choi, Ho Heon Yang, Jong Hyun Kim, JaeSeong Hong, Kyung Min Kim,*

and Yu Rang Park*

Early diagnosis and prognostication of a central nervous system (CNS) infection
is essential. This study aims to use immune-cell morphology to develop a deep-
learning model for this purpose. Overall, 1427 3D images of cerebrospinal fluid
(CSF) immune cells from 14 patients with CNS infections are obtained using
holotomography. The images are categorized into infection etiology groups (viral
and non-viral) and prognosis groups (based on the modified Rankin Scale score
at discharge). A deep-learning model is constructed to predict the etiology and
prognosis of CNS infections using the immune-cell morphology. Cell morpho-
logical features and spatial distribution of CSF immune cells differ significantly
between patients in the viral and nonviral groups and between prognosis groups.
The model yields areas under the receiver operating characteristic curve of 0.89
and 0.79 for the diagnosis and prognosis, respectively. As more cell images are
used, the prediction and model robustness improve. With <10 cells, both tasks
exhibit a nearly 100% predictive performance. After dividing the cells into eight
shells, significant refractive index variations are observed. This is the first study to
use CSF cell morphology for the diagnosis and prognostication of CSF infections.
These findings can help improve patient outcomes.

which require time and specialized equip-
ment and facilities.”) Hence, the informa-
tion gleaned from clinical observations can
be used to deduce the underlying etiology.™

The cerebrospinal fluid (CSF) surrounds
the brain and spinal cord, providing cush-
ioning and protection. It helps maintain a
stable CNS environment. In cases of inflam-
mation within the CNS, an increase in the
number of immune cells and alterations in
the CSF may occur, helping identify the
cause of an infection in the clinical prac-
tice.l** Morphological alterations in blood
immune cells occur quickly with inflamma-
tion, reflecting the immunological response
of the patient and helping identify the
underlying pathology.'”! While recent stud-
ies have used genomic analysis of the CSF
immune cells to elucidate the inflammatory
response, to the best of our knowledge, no
quantitative studies have been conducted
on the morphological changes in these
immune cells.®?!

1. Introduction

Infections affecting the membranes and tissues of the central ner-
vous system (CNS) are associated with high mortality rates and
long-lasting impairment, highlighting the need for improved
diagnostic and therapeutic methods. The etiological spectrum
of CNS infections includes viruses, bacteria, mycobacteria, fungi,
and parasites; consequently, accurate diagnosis and effective treat-
ment remain a challenge, often resulting in poor outcomes.” The
pathogen is confirmed through culture and antibody test results,

We explored the potential of immune-cell morphologies as
biomarkers for CNS infections in human CSF samples using
deep-learning technology. Conventional staining and fixation
methods have limitations, as they can distort the natural state
of cells and hinder dynamic cellular studies. Therefore, we cap-
tured 3D images of the CSF immune cells using holotomogra-
phy, which can generate label-free 3D images of live cells, and
quantify a measurable physical parameter, the refractive index
(RI), associated with cellular biochemical and biophysical
characteristics.'°"? Finally, label-free 3D imaging was used
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to quantitatively evaluate immune-cell structural changes in the
CSF of patients with CNS infections.

2. Results

2.1. Study Design and Patient Enrollment

We performed a prospective cohort study between January and
October 2022 at Severance Hospital in Seoul, Republic of Korea.
Patients who met the following inclusion criteria were enrolled:
1) presenting with fever, headache, and other neurological abnor-
malities prompting clinical suspicion of encephalitis or menin-
gitis; 2) >10 cells uL " in the CSF sample; and 3) age >18 years.
Between January and October 2022, 14 patients with CNS infec-
tions were enrolled in this study; 1427 3D images of immune
cells within their CSF were included. The cohort consisted of
nine patients with viral infections, four with bacterial infections,
and one with tuberculosis. The modified Rankin Scale (mRS)
score at discharge was used for prognostic assessment, and,
three patients exhibited poor prognosis (mRS score >4 at dis-
charge). The mRS score is a regularly used measure for assessing
dependent or disabled people, who have experienced a stroke or
other neurological disabilities, in their ability to perform every-
day activities.!"* The differences in clinical features between
patients with and without viral infections are shown in
Table 1. Compared to patients with viral infection, those with
infections of other etiologies showed higher CSF white blood cell
counts and protein levels. In addition, blood procalcitonin and C-
reactive protein levels, which are commonly used as inflamma-
tory biomarkers, tended to be elevated in patients with nonviral
pathogens.

In each patient, immune cells were extracted from the
CSF samples obtained by lumbar puncture (Figure 1A).
Subsequently, 3D images of the immune cells were captured
using holotomography. We extracted biophysical features such
as protein density and dry mass and analyzed the spatial distri-
bution of the internal cell components based on their RI values
(Figure 1B). Labels pertaining to the etiology and prognosis of
each patient’s infection were assigned to each image. The labels
for pathogens were determined based on information recorded
by physicians in the electronic medical records. We developed a
deep-learning model for causal and prognostic prediction
(Figure 1C). After dichotomizing patients based on the cause
of the infection, we further subdivided the sample and conducted
a classification task. We validated this model by analyzing quan-
titative information on cellular morphology and clinical data
from each patient. Additionally, we ensured the explainability
of the artificial intelligence (AI) model.

2.2. Cell Morphological Differences Between the Groups

We also examined differences in 3D cell morphology between
the etiological and prognostic groups. Quantitative metrics were
extracted from the 3D images of the cells and compared across
each group (Figure S1, Supporting Information). The protein
density of the CSF immune cells in patients with viral infections
was significantly higher than that in the other groups (p <0.001),
and the mean whole-cell refractive index (RI) value differed
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between the groups defined by the cause of infection (Figure
S1A-C, Supporting Information). Quantitative metrics of the
cells were compared between the two groups with different prog-
noses, and all of them showed statistically significant differ-
ences between the two groups (Figure S1D-F, Supporting
Information). Immune cells in the group with poor prognosis
generally exhibited higher dry mass and lower protein density.
Furthermore, the mean values of the overall RI were significantly
different between the good and poor prognosis groups.

2.3. Model Performance

We used the modified DenseNet architecture (Figure S2,
Supporting Information) for the deep learning process to classify
patients based on their infection etiology and predict their prog-
noses. By utilizing 3D images of the CSF immune cells, our
deep-learning model achieved an area under the receiver operat-
ing characteristic curve (AUROC) of 0.89 (95% confidence inter-
val [CI] 0.88-0.91) in distinguishing patients with viral infections
from those with other etiologies (Figure 2A). We randomly sam-
pled cell images to assess the predictive performance and
observed a significant increase in AUROC as the number of cells
used increased (Figure 2B). We achieved an AUROC of 0.99,
demonstrating nearly 100% predictive power, using only five
cells, and surpassing the performance of the previous models.
As the number of cells used increased, we observed a reduction
in the AUROC range, indicating that selecting more cells
reduced the impact of selection bias and variance. We also veri-
fied the improved robustness of our model using this result.
After subdividing the “other pathogens” group into bacterial
and tubercular, multiclassification was performed. Even in this
scenario, the model yielded an AUROC of 0.86 (Figure S3,
Supporting Information). We conducted a subgrouping of three
viruses belonging to the Herpesviridae family commonly
observed in CNS viral infections (herpes simplex virus type 1,
varicella-zoster virus, and human herpesvirus 6) and performed
multiclassification. We observed the ability of our model to clas-
sify infections caused by each virus within the same family with
an AUROC of 0.87 (Figure S4, Supporting Information). We also
performed the same task with the ResNet-101-based model to
compare the performance of our presented model with the
widely known models. In the classification task, the performance
of the ResNet-based model was measured at AUROC 0.82, lower
than that of our model (Figure S5, Supporting Information).
The mRS score is commonly used for a prognostic evaluation
of neurological disorders, and a score of 4 is defined as moder-
ately severe disability, where the individual is unable to walk
without assistance and requires help for basic bodily needs. In
this study, we defined the poor prognosis group as patients with
mRS scores of >4 at discharge.'* Our model predicted patient
outcomes with 3D images of CSF immune cells and achieved a
performance AUROC of 0.79 (95% CI 0.77-0.81) (Figure 2C).
During prognosis prediction, we also conducted random sam-
pling of 3D cell images and checked an AUROC for each number
of cells (Figure 2D). Similarly, we observed a significant improve-
ment in the predictive performance with an increasing number
of cells. For prognostic prediction, the extraction of five cells
resulted in an AUROC of 0.94, indicating high predictive power.
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Etiologies® Total [n=14] Virus [n=9] Others [n=5]
Number of cell images 1427 748 679

Age 60.5 (37, 66) 43 (37, 62) 67 (66, 67)
Female sex 8 (57.1%) 5 (55.6%) 3 (60.0%)

Body mass index

Comorbidities

Charlson comorbidity index
Tuberculosis history

Seizure

Abnormal brain CT

Abnormal chest X-ray

EEG

Abnormal

Unreactivity

Slowing

Epileptiform discharges

Clinical severity

Modified Rankin Scale at discharge
In hospital mortality

ICU admission during hospitalization
ICU duration [days]

Length of stay [days]

Abnormal mentality at day 1 [n, %]
Glasgow Coma Scale on day 1
Vital signs

Mean systolic blood pressure [mmHg]
Mean diastolic blood pressure [mmHg]
Mean heart rate [rate min’1]

Mean respiratory rate [rate min~']
Maximum body temperature [°C]
Mean body temperature [°C]

CSF

WBC count [/pL]

Protein [mgdL™]

Glucose [mgdL™"]

CSF/serum glucose ratio

RBC count > 100 L™

Turbidity

Adenosine deaminase [IU L]
Abnormal color

High pH

Blood

WBC count [10° L]

Hemoglobin [gdL™"]

Platelet count [10°L~"]

Mean platelet volume [fL]

Red cell distribution width [%]

Delta neutrophil index [%]
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22.3 (20.5, 23.6)

25 (0, 5)
1(7.1%)
2 (14.3%)
4 (28.6%)
2 (14.3%)

5 (35.7%)
0 (0.0%)
5 (35.7%)
1(7.1%)

00,2
1(7.1%)
4 (28.6%)
0(03)

15.5 (8, 43)
6 (42.9%)
15 (14, 15)

125.8 (113.3,138.2)

711 (62.9, 81.1)
79.8 (77.9, 89.3)
18.5 (18.0, 19.3)
38.0 (37.6, 38.3)
37.2 (37.1, 37.3)

87.5 (43.0, 170.0)
822 (63.2, 118.9)
65.0 (48.0, 75.0)
0.6 (0.5, 0.7)
4 (28.6%)
3 (21.4%)
23 (2.1, 4.8)
2 (14.3%)
13 (92.9%)

7.8 (5.9, 9.2)
12.8 (122, 13.7)

234.5 (200.0, 285.0)

9.4 (8.8, 10.4)
13.4 (12.7, 13.8)
0.0 (0.0, 0.0)

2401145 (3 of 10)

21.5 (19.6, 22.7)

2 (0, 3)
0 (0.0%)
1.(11.1%)
1(11.1%)
2 (22.2%)

2 (22.2%)
0 (0.0%)
2 (22.2%)
1.(11.1%)

0001
0 (0.0%)
1.(11.1%)
0 (0, 0)
9 (7, 16)
2 (22.2%)
15 (15, 15)

125.1 (113.3, 137.3)

75.0 (70.7, 84.7)
78.5 (74.8, 88.3)
18.3 (17.2, 18.5)
38.0 (37.4, 38.2)
37.2 (37.1, 37.3)

58.0 (28.0, 75.0)
72.7 (54.6, 88.0)
63.0 (47.0, 73.0)
0.7 (0.6, 0.7)
1.(11.1%)
1.(11.1%)
23 (22, 2.8)
0 (0.0%)
1.(11.1%)

8.2 (6.4,9.2)
12.8 (122, 13.0)

235.0 (211.0, 285.0)

9.5 (9.0, 10.4)
12.7 (12,6, 13.7)
0.0 (0.0, 0.0)

23.4 (22.1, 23.6)

5 (5, 6)
1 (20.0%)
1 (20.0%)
3 (60.0%)
0 (0.0%)

3 (60.0%)
0 (0.0%)
3 (60.0%)
0 (0.0%)

0(0,5)
1 (20.0%)
3 (60.0%)
3(0,3)
43 (22, 52)
4 (80.0%)
14 (13, 14)

133.6 (120.4, 143.1)
68.6 (62.9, 69.4)
85.8 (80.0, 103.4)
18.6 (18.5, 19.6)
37.9 (37.9, 39.1)
37.1 (36.9, 37.2)

170.0 (137.0, 900.0)
118.9 (103.6, 149.4)
73.0 (48.0, 76.0)
0.5 (0.5, 0.5)

3 (60.0%)

2 (40.0%)

52 (1.4, 6.6)

2 (40.0%)
3 (60.0%)

7.3 (5.7, 8.9)
13.7 (127, 14.4)
234.0 (105.0, 244.0)
8.8 (8.4, 11.2)
13.6 (13.2, 13.8)
0.0 (0.0, 0.0)
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Etiologies®

Total [n=14]

Virus [n=9]

Others [n=5]

Prothrombin time [INR]

aPTT [s]

Sodium ion concentration [mmol L™']
Potassium ion concentration [mmol L™']
tCO2 [mmol L™

Blood urea nitrogen [mgdL ']

0.9 (0.9, 1.1)
32.2 (26.2, 34.5)
136.5 (135.0, 139.0)
40 (3.9, 43)
27.0 (26.0, 27.5)
16.5 (103, 22.5)

0.9 (0.9, 0.9)
32.6 (25.9, 34.5)
138.0 (135.0, 139.0)
41 (3.9, 43)
27.0 (27.0, 28.0)
1.1 (9.7, 16.6)

12 (1.0, 1.2)
31.9 (30.7, 33.6)
136.0 (134.0, 137.0)
40 (3.6, 4.2)
26.0 (26.0, 26.0)
22.5 (22.1, 22.5)

Creatinine [mgdL™"] 0.7 (0.6, 0.8) 0.7 (0.6, 0.8) 0.7 (0.6, 0.8)
Glucose [mgdL™"] 134.5 (102.0, 158.0) 128.0 (94.0, 158.0) 138.0 (137.0, 153.0)
Albumin [gdL ] 42 (3.3, 4.6) 43 (4.1, 4.6) 3.8 (3.7, 4.1)

Aspartate transaminase [IU L’1]

Alanine aminotransferase [IU L]

26.5 (17.0, 57.0)
19.0 (14.0, 51.0)

21.0 (13.0, 30.0)
17.0 (13.0, 21.0)

36.0 (25.0, 57.0)
32.0 (19.0, 73.0)

Total bilirubin [mgdL™"] 0.3 (0.5, 1.2) 0.5 (0.4, 1.0) 1.2 (0.9, 1.5)
Alkaline phosphatase [IU L] 84.0 (65.0, 99.0) 68.0 (62.0, 85.0) 99.0 (87.0, 103.0)
Uric acid [mgdL™] 41 (26, 5.1) 42 (3.4, 5.) 32 (2.6, 4.8)
Inorganic phosphorus [mgdL™] 3.3 (2.9, 3.5) 3.4 (3.2, 3.5) 2.9 (2.2, 3.1)
Calcium [mgdL™] 9.0 (3.4, 9.2) 9.0 (8.9, 9.2) 8.9 (8.3, 9.0)

Creatinine kinase [IU L]

Ammonia [ugdL™]

121.0 (29.0, 270.0)
54.0 (33.0, 59.0)

29.0 (25.5, 75.0)
54.0 (43.5, 56.5)

1701.5 (270.0, 3133.0)
54.5 (22.0, 87.0)

C-reactive protein [mg L] 4.0 (0.6, 6.9) 1.7 (03, 5.2) 6.9 (4.1, 61.8)
Erythrocyte sedimentation rate [mmh ] 12.0 (4.0, 21.0) 10.0 (4.0, 12.0) 17.5 (8.5, 38.0)
Procalcitonin [ngmL™"] 0.1 (0.0, 0.2) 0.0 (0.0, 0.1) 0.1 (0.1, 2.1)
Lactate [mmol L™'] 2.5 (2.0, 3.1) 2.2 (1.8, 2.7) 42 (3.1,5.1)

A0One-way analysis of variance was used to compare continuous variables, and chi-square test was used to compare categorical variables. Abbreviations: CT, computed

tomography; EEG, electroencephalography; CSF, cerebrospinal fluid; WBC, white blood cell; RBC, red blood cell; aPTT, activated partial thromboplastin time
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Figure 1. Schematic overview of the study workflow: A) This study included 14 patients with a CNS infection, including nine patients with a viral infection.
Patients were divided into two prognosis groups based on the modified Rankin Scale (mRS) score at discharge, with a cutoff of 4 points. Three patients
were classified into the poor prognosis group. CSF samples were collected from all patients via a lumbar puncture; only the cellular layer was isolated from
the samples. B) 3D cell images were acquired using holotomography. The quantitative morphological features were also obtained and compared. All
images underwent a preprocessing step before being used in the deep-learning model. C) Deep-learning models, based on the DenseNet model for CNS
infection diagnosis and prognostication, were developed and validated based on internal cell structure.

Virus or Others Good or Poor

Adv. Intell. Syst. 2025, 7, 2401145 2401145 (4 of 10) © 2025 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

85U01 SUOWWOD SAIES.D 3|edl|dde au Ag pauienoh ae s3joe VO ‘88N JO S9N 10y AT 8UIIUO AB|IA UO (SUORIPUOD-PUR-SLLBYWI0D A8 | 1M AReIq)1BU1 UO//Sd1Y) SUORIPUOD PUe SWwis | 38U} 89S *[GZ02/TT/0T] uo Ariqiiauliuo As|im ‘Ariqil peN AIseAlun Bsuo A Aq STTOYZ0Z ASe/z00T 0T/10p/woo" A 1m Aiq1uluo peouenpe//Sdny Wwoly papeoiumod ‘9 ‘5202 ‘L9SH0r9e


http://www.advancedsciencenews.com
http://www.advintellsyst.com

ADVANCED
SCIENCE NEWS

www.advancedsciencenews.com

www.advintellsyst.com

A ROC curve with 95% ClI B
100+ - @ - 94— = = 5 — -
foo : % =k 3l AL
°
90 ' PY
80 95 [ °

270

Eeo g 90 °

3 50 8

5 & L4

& 40 2 85-

30
°
20 804
10
0 ——  AUROC =0.894
75+ [ ]

C 0 10 2 3 40 5 60 70 80 9 100 1 2 3 4 5 6 7 8 9 10
100 100-——0—-0——0-—0——0——-——|——|——]————
%0 | | —

°
95
80 °

370‘ 8

g% £ * 8 o

3 50 8 o ¢

& o )

® 40 2 85- °
30 | °
20 80 )

10 | °
—— AUROC =0.787 °
0 75+ $ °
0 10 20 30 40 50 60 70 8 90 100 1 2 3 4 5 6 7 8 9 10

1 - Specificity (%)

Number of cells

Figure 2. AUROC for the deep-learning models developed in the study: A) Receiver operating characteristic (ROC) curve with the corresponding 95% ClI
in predicting the etiology of the CNS infection. The black dot depicts the best point of the curve. B) Boxplot of AUROCsS for predicting infection etiology
when cells were randomly sampled. C) ROC curve with the corresponding 95% Cl in predicting the etiology of the CNS infection. The black dot depicts the
best point of the curve. D) Boxplot of AUROC curves for predicting the prognostic group when cells were randomly sampled.

While it is challenging to make a direct comparison owing to the
differences in conditions from previous studies predicting out-
comes in CNS infections, it is evident that our model demon-
strated high predictive power, even when considering this
aspect. As the number of cells increased, the variability in
AUROC decreased (Figure 2D).

2.4. Interpretability and Explainability of Al Models

In patients with a viral infection (Figure 3A), a decrease in the
density of a cell component appeared more centrally, which
explains why the effective cell region was limited to the inner
shell. In shells 6, 7, and 8, there was a significant difference
between the groups (p <0.001). In contrast, in the case of
nuclear component density (Figure 3B), the proportion of
nuclear components in the viral group representing high RI
values was higher for all shells than for the other groups,
and the nuclear components were evenly lateral. This observa-
tion led us to infer that the proportion of nuclear components in

Adv. Intell. Syst. 2025, 7, 2401145 2401145 (5 of 10)

the cells of patients with viral infections was larger than that in
the cells of other groups, and the size of the effective nucleus,
defined as containing nuclear components, was also larger.
Overall, patients with viral infections have a small effective cell
size but a large effective nucleus size, and the nucleus is a major
component of the cell. Figure 3C,D shows the spatial density
distribution in patient groups based on their prognosis; the size
of the effective cells was smaller and that of the more effective
nucleus was wider in patients with good outcomes than in their
counterparts.

We used the gradient-weighted class activation mapping
(Grad-CAM) algorithm to explain the deep-learning models.
Figure 3E depicts the intracellular region that the deep-learning
model localizes, suggesting that the classification task is per-
formed based on the proper extraction of morphological fea-
tures from the RI distribution in the immune cell, especially
the morphological distribution of the nucleus. We also observed
that even during prognosis prediction using Grad-CAM, it was
possible to utilize differences within cells for prediction
(Figure 3F).
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Figure 3. Spatial distribution within cells for each pathogen and prognosis group, and validation of the morphological feature through the visual expla-
nation: A-D) 2D sectioned images are divided into eight elliptically shaped regions, with the region closest to the center referred to as shell 1 and the
region furthest from the center referred to as shell 8. The shell density is defined as the ratio of pixels with a value above the target Rl to the total number of
pixels in that shell. The shell density of (A) the overall Rl and (B) the nuclear component Rl of each pathogen group are demonstrated. The shell density of
(C) the overall Rl and (D) the nuclear component Rl of each prognostic group are compared. The gradient-weighted class activation mapping (Grad-CAM)
algorithm is used to visually expand the presented deep-learning models. The Grad-CAM images superimposed on the original image are plotted in

panels E) (etiological prediction) and F) (prognostic prediction).

3. Discussion

In this study, we identified the causal pathogen and predicted the
prognosis of patients with CNS infections, based on 3D images
of the CSF immune cells, using a deep-learning model. To the
best of our knowledge, this is the first study to utilize the mor-
phological features of CSF cells for this purpose. We believe that
this model may help reduce the time required for patient diag-
nosis and prognostication. Furthermore, we report how classifi-
cation using the deep-learning model was achieved using various
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methods. This study demonstrated that 3D label-free CSF
immune-cell morphology could be a potential biomarker for
CNS infections.

Early diagnosis and treatment of CNS infections are crucial.™”
However, in real-world clinical settings, they are difficult to
achieve.”” Previous studies have commonly relied on the
CSF test results to identify the cause.**! Manual confirmation
of cell shape and count are required when using conventional
methods to identify cells.’*! This process relies heavily on
human labor, and observer expertise can affect the results.'*
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The equipment for measuring the glucose and protein levels also
takes over 3 h to generate results.'>) However, our deep-learning
model, which utilizes 3D images of immune cells in the CSF, can
significantly reduce the time taken from CSF collection to evalu-
ation to within 1 h. The method we propose is faster than the
current diagnostic techniques, such as brain imaging, and the
frequently employed clinical biomarkers such as blood levels
of procalcitonin and C-reactive protein."*=*"! In previous studies,
clinical indicators were collected for predictive analysis using AI,
which demonstrated performance accuracy of >90%.%*! These
studies primarily relied on electronic medical records data, which
may introduce delays in data input and availability. In addition,
the accuracy of the predictions can be influenced by the person
entering the data. Furthermore, a common limitation across
most studies was the collection of variables at least 24 h postad-
mission before constructing predictive models. In contrast, our
approach, which used <10 CSF immune cell images, had an
average AUROC value of 100% for both CNS infection diagnosis
and prognosis prediction. In addition, as emphasized earlier,
data collection and imaging can be performed within a very short
timeframe after admission, without showing variations based on
the individual performing the task. These findings highlight the
potential of cell morphology as a highly accurate and effective
biomarker for CNS infections. 3D holotomography provides
real-time, label-free, and cost-effective imaging of cell morphol-
ogy."") While recent studies utilizing genomic analysis of CSF
immune cells have enabled the identification of molecular path-
ways and gene expression changes underlying inflammatory
responses in patients with CNS infections, our approach offers
distinct advantages in terms of cost-effectiveness, real-time anal-
ysis, and morphologically interpretable information.®%

Even in multiclassification, the deep-learning model leverag-
ing the cell structure performed well. In the future, it might be
feasible to classify the different etiologies that were not covered
in this study. Viral infections, particularly those from the herpes
virus family and enteroviruses, are the most frequent causes of
CNS infections.??! From our cohort, we isolated patients with
Herpesviridae and performed individual classifications. The
model showed respectable performance, with AUROC >0.86.
Even in infections caused by the same viral family, immune
responses may vary depending on the specific subtypes.’*’!
This study highlighted the possibility of identifying these differ-
ences. Previously published prognostic prediction studies were
confined to specific situations.****~2%! However, our study used
CSF data obtained from patients in the early stages of admission,
without being limited to specific scenarios. Furthermore, our Al
model does not require the identification of the cause, which
makes it particularly helpful in primary care settings.

In this study, the DenseNet model achieved an AUROC of
0.89, demonstrating superior diagnostic discrimination perfor-
mance compared to the ResNet model, which achieved an
AUROC of 0.82. This performance difference is likely due to
DenseNet’s architecture, which concatenates features from all
preceding layers rather than relying on skip connections like
ResNet.””) This enhances feature reuse, gradient flow, and
robustness, particularly in tasks requiring fine-grained feature
extraction.”®! These advantages extend to cell morphology image
classification, as demonstrated in a previous study on RBC mor-
phology, where the DenseNet-121 model outperformed the
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ResNet-50 model in accuracy.”® Similarly, our modified 3D
DenseNet-169 likely exhibited greater resistance to overfitting
and improved gradient flow compared to 3D ResNet-101, con-
tributing to its superior performance in 3D cellular image clas-
sification. For the AI explainability, we used the Grad-CAM
algorithm, in addition to applying deep learning to create a pre-
dictive model. Grad-CAM is a technique that visualizes which
part of the image the model focuses on when making predic-
tions, allowing us to observe the concentration in the interior
of cells, particularly the nucleus. When we analyzed the cells
on a shell-by-shell basis, we observed a rapid decrease in RI den-
sity toward the outer regions in patients with a viral infection,
accompanied by an overall increase in nuclear components.
This pattern is believed to be associated with the focus on the
interior of the cells in Grad-CAM. Cells with active immune
responses exhibit a distribution of cellular structures across
the entire cell, showing a pattern of cell expansion and gradual
decrease in density as they move peripherally.”*”! This pattern
has been observed in patients with bacterial infections and tuber-
culosis. Interestingly, when analyzed on a shell-by-shell basis,
even in the group with poor prognosis at discharge, a pattern
similar to that of the nonviral group was observed. This suggests
that changes in the internal structure of the immune cell driven
by early immune responses may be linked to patient prognosis.

Depending on the source of infection, phenomena such as
monocyte vacuolization, atypical lymphocytes, and myeloid shifts
can occur.’?! However, infection-related morphological
changes in immune cells have not been fully studied previ-
ously.”! Particularly in the CSF, where cells are naturally less
abundant, unlike in the blood, little is known about structural
changes in the immune cells during inflammation.” Recent
genomic studies revealed the role of the immune cells within
the CSF in various brain disorders, including neurodegenerative
conditions.®?3%* Morphological changes in the CSF immune
cells in acute and infectious brain disorders were the basis of our
research, and we found that the structure of these cells could vary
depending on the invading pathogen. This information can be
used for prognostication. Future studies based on genomic anal-
ysis may help identify biomarkers for a wide range of brain
disorders.

4. Limitation

The present study had some limitations. First, the small sample
size may have led to sampling bias, while precluding detailed
analysis based on pathogen type. Second, this study was con-
ducted at a single center; thus, external validation could not
be performed. Third, holotomography used to analyze cellular
morphological features does not provide molecular-level infor-
mation, such as RNA or DNA. While this study primarily focuses
on the novel contributions of cell morphology, we recognize the
potential for integrating genomic and morphological data in
future research to establish a more comprehensive multi-modal
framework. Therefore, we plan to explore potential quantitative
comparisons within a well-defined experimental scope that
allows for a meaningful evaluation of both modalities. Finally,
because most individuals included in this study were of Asian
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ethnicity, there may be variations when the findings are applied
to patients of other ethnicities.

5. Conclusion

This study represents the first attempt at utilizing the 3D mor-
phological features of immune cells in the CSF and a deep-
learning model for the diagnosis and prognosis prediction of
patients with CNS infections. In this Al-driven study, we applied
various techniques to clarify and explain our results. The pre-
sented findings may shorten the time required for the diagnosis
and prognosis prediction if applied in clinical practice. This study
will help improve patient outcomes by rapidly providing custom-
ized therapy.

6. Experimental Section

CSF Sample Preparation: The CSF samples obtained through lumbar
puncture were stored in a BD Vacutainer Urinalysis Tube 364979
(Becton Dickinson, Franklin Lakes, NJ, USA) and kept refrigerated at
4°C. The sample was centrifuged at 400 x g for 5 min at room tempera-
ture (22-24°C). The plasma layer was carefully separated, and the pellet
was resuspended in phosphate-buffered saline using a sterile Pasteur
pipette.

Cell Image Acquisition and Preprocessing: All 3D cell structural images of
the immune cells in the CSF were captured using 3D holotomography
(HT-2H; Tomocube Inc., Daejeon, Republic of Korea). This technology
reconstructed 3D RI portrayals by merging various 2D quantitative phase
images.*¥ Cellular Rl served as an inherent optical parameter that dictates
the trajectory of light traversing the cell matrix, as evidenced by physical
phenomena such as light scattering and absorption. As a result, Rl was
closely associated with the quantity and dispersion of cellular mass.I'"
Our preprocessing methods involved the manual exclusion of subpar
instances (encompassing low-quality, low-resolution, and noisy backdrop
depictions), as well as images exhibiting excessive adjacency of two or
more cells. Through this process, 463 images were excluded from the ini-
tial set of 1,890 images, resulting in 1427 images being used for training.

The following preprocessing steps were performed after the image
selection. The morphological form of each cell was determined using a
predetermined threshold. After the acquisition, each 3D cell image was
subjected to a center-cropping process to a size of 64 x 64 x 64 pixels
and centered around the morphological center co-ordinates determined
manually during the previous curation process.

Quantitative Analysis of Cell Morphology: The quantitative features of
each cell structure were calculated from independent label-free 3D cell
images. First, a binary mask was created to segment the cells in the back-
ground by applying a predefined threshold RI. Subsequently, the cell vol-
ume (fL) was determined based on the number of voxels corresponding to
the interior of the cell. Protein density (g dL™") was calculated by summing
the differences between the RI of individual voxels within the cell and the
medium RI value, followed by multiplying the sum by 500. The calculated
protein density was multiplied by the cell volume and divided by 100 to
obtain the dry mass (pg).

Deep-Learning Model Development for Etiological Classification: A deep-
learning model for identifying the pathogen and predicting the prognosis
of CNS infections was developed based on 3D cell images of each cell. All
models were built by receiving 3D Rl tomogram images as inputs and
outputting the final predictions. The dataset was divided into training, val-
idation, and test sets at a ratio of 8:1:1.

The model architecture was derived from a modified DenseNet, which
had been utilized in previous research.?®! To train the model, we imple-
mented a cross-entropy loss function and utilized a stochastic gradient
descent algorithm with 8 minibatch sizes of 8. We employed the cosine
annealing technique without restarts to dynamically adjust the learning
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rate, initially setting it to 0.0001 and altering it over a span of 128 epochs.
As the cosine annealing technique rapidly increases and then decreases
the learning rate with cosine function between the maximum and mini-
mum values, this enables the model to quickly escape saddle points in
the manifold space of the model and maximizes the generalizability of
the model. To prevent model overfitting, data augmentation, drop-out,
and early stopping methods were incorporated into the training process.
Data augmentation involved several transformations, including random
rotations, horizontal flips, and vertical flips, which were applied to each
image once in every epoch to diversify the training dataset. The drop-
out rate was set to 0.5. The early stopping mechanism monitored the mod-
el's performance by evaluating the validation loss, and the training was
terminated if no improvement was observed within the patience window
of 15 epochs. For class imbalance, we used class weights. We evaluated all
models using 10-fold cross validation, and the overall performance was
measured using the AUROC, accuracy, and F1 score. During the
AUROC calculation, we estimated the corresponding 95% Cl obtained
through 1000 bootstrapping iterations. The Grad-CAM algorithm was
applied to confirm the visual expansion of the proposed deep-learning
model by checking the area where the model was focused locally for
each image.

The entire deep-learning process was conducted using PyTorch
version 1.12.1 (Meta Al, Astor Place, NY, USA) and Python version
3.9.12 (Python Software Foundation, Beaverton, OR, USA). The entire
process was executed on a server equipped with two Quadro RTX
8000 GPUs (Nvidia Corp., Santa Clara, CA, USA), each with 48 GB of
memory, and operated on CUDA version 11.6 (Nvidia Corp.) to accelerate
computations.

Cellular Shell Segmentation and Spatial Distribution: We extracted the
cross-sectional images by segmenting each cell region based on the center
co-ordinates set earlier and divided the cell into eight elliptical shell
regions. We calculated the Euclidean distances from the center of the cell
to every voxel, resulting in a ranked list ranging from the nearest to the
farthest voxels. This ranked list was then evenly divided into eight seg-
ments, each of which was assigned a unique shell. Shell 1 represented
the innermost domain, whereas shell 8 occupied the outermost territory.
This subdivision strategy ensured an equitable distribution of voxels across
each shell, generating eight discrete subregions within each cell. Following
segmentation into shells, each shell was transformed into a binary mask.
Subsequently, we applied a lower-intensity threshold to the original image
to enhance the visibility of the cellular structures while reducing the back-
ground noise. The next step involved multiplying the binary mask of each
shell by the original image, resulting in a shell-specific image. This process
selectively highlighted the voxels within each specific shell, setting all
others to “0” for precise differentiation. To determine the density of each
shell, we tabulated the count of nonzero voxels and divided this image by
the total number of voxels within that specific shell. The example images
of the segmented cell images into shell units and their distribution of
the refractive index values are visualized in Figure S6, Supporting
Information.

Statistical Analysis: The patients’ demographic and clinical characteris-
tics were summarized for the entire cohort at the patient level. Categorical
variables are expressed as frequencies and percentages, and continuous
variables as medians with interquartile ranges. The quantified features of
cell morphology were continuous variables, and independent t-tests were
used for comparisons between the groups. To compare the spatial distri-
bution within the cells, the Rl density of each shell component was com-
pared between groups using an independent t-test.

All statistical analyses were performed using R, version 4.11 (R foun-
dation for Statistical Computing, Vienna, Austria). Two-sided p-values
<0.05 were considered indicative of statistical significance.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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