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Multimodal deep learning model for prediction 
of prognosis in central nervous system 
inflammation

Bo Kyu Choi,1,2,* Yoonhyeok Choi,1,3,* Sooyoung Jang,1 Woo-Seok Ha,4 Soomi Cho,4
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Inflammatory diseases of the CNS impose a substantial disease burden, necessitating prompt and appropriate prognosis prediction. 
We developed a multimodal deep learning model integrating clinical features and brain MRI data to enhance early prognosis predic
tion of CNS inflammation. This retrospective study used thin-cut T1-weighted brain MRI scans and the clinical variables of patients 
with CNS inflammation who were admitted to a tertiary referral hospital between January 2010 and December 2023. Data collected 
after January 2022 served as the external test set. 3D MRI images were first segmented into 43 brain regions using the FastSurfer li
brary. The segmented images were then processed through a 3D convolutional neural network model for feature extraction and vec
torization, after which they were integrated with clinical features for prediction. The performance of each artificial intelligence model 
was assessed using accuracy, F1 score, area under the receiver operating characteristic curve and area under the precision-recall curve. 
The internal dataset comprised 413 images from 291 patients (mean age, 45.5 years ± 19.3 [SD]; 151 male patients; 54 with poor 
prognosis). The external dataset comprised 210 images from 106 patients (mean age, 45.5 years ± 18.9 [SD]; 59 male patients; 31 
with poor prognosis). The multimodal deep learning model outperformed unimodal models across all aetiological groups, achieving 
area under the receiver operating characteristic curve values of 0.8048 for autoimmune, 0.9107 for bacterial, 1.0000 for tuberculosis 
and 0.9242 for viral infections. Furthermore, artificial intelligence assistance improved clinicians’ prognostic accuracy, as demon
strated in comparisons with neurologists, paediatricians and radiologists. Our findings demonstrate that the multimodal deep learning 
model enhances artificial intelligence-assisted prognosis prediction in CNS inflammation, improving both model performance and 
clinician decision-making.
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Graphical Abstract

Introduction
The CNS, which comprises the brain and spinal cord, usually 
is a sterile environment. Inflammation of the CNS due to vari
ous aetiologies represents a significant disease burden, often 
resulting in severe sequelae.1 Even patients with mild initial 
symptoms may experience aggravation during hospitaliza
tion, including altered consciousness and focal neurological 
deficits.2 Prompt intervention in worsening cases is crucial 
for improving prognosis and early prediction of the prognosis 
of CNS inflammatory diseases could facilitate the provision of 
intensive care to patient groups with anticipated poor 

outcomes, ultimately contributing to overall prognosis im
provement.3 In conventional clinical practice, prognosis is of
ten estimated based on the severity of initial symptoms and 
laboratory test results, with clinicians potentially relying on 
their experience.3 Previous studies have attempted to predict 
the prognosis of CNS inflammation, but most are limited by 
focusing on a single pathogen or specific situations, making 
their application in clinical practice challenging.4-6 For in
stance, Xiang et al.4 reported a successful prognostic model, 
but it was restricted to anti-N-methyl-D-aspartate receptor 
encephalitis, a single autoantibody-mediated encephalitis, 
with considerations for future expansion to other subtypes. 

2 | BRAIN COMMUNICATIONS 2025, fcaf179                                                                                                                    B. K. Choi et al.

mailto:yurangpark@yuhs.ac


Similarly, Lu et al.6 attempted to predict prognosis in patients 
with severe traumatic brain injury after craniotomy under the 
specific condition of infection, employing conventional ma
chine learning techniques.

Brain MRI scans are crucial diagnostic tools used in vari
ous neurological disorders, and they are also performed to 
differentiate the causes and assess the severity of CNS inflam
mation. Distinctive MRI findings based on the underlying 
aetiologies of CNS inflammation have been identified in pre
vious research.7 Furthermore, there are several deep learning 
studies utilizing brain MRI data to predict the aetiology and 
prognosis of CNS disorders including neurodegenerative dis
eases and brain tumors.8,9 Recently, there has been a surge in 
multimodal deep learning (MMDL) research, under the 
premise that artificial intelligence (AI) models should be 
able to utilize data from various sources commonly available 
in clinical practice.10-12 Wang et al.11 reported an AI-enabled 
cardiac MRI interpretation MMDL model that achieved 
high diagnostic performance in CVD screening and diagno
sis. Wu et al.12 suggested a MMDL model using preoperative 
MRI to noninvasively predict lymph node metastasis in cer
vical cancer demonstrating prognostic value for disease-free 
survival. It has also been reported that combining brain MRI 
with clinical variables in autoimmune encephalitis shows 
higher performance in prognostic prediction compared to 
using each single modality alone.4

In this study, we aim to develop a deep learning model for 
the early prognosis prediction of CNS inflammation with 
multimodal data including clinical features and brain im
aging data. Furthermore, we validated the potential of 
AI-assisted diagnosis by demonstrating how our model can 
not only enhance predictive performance beyond that of ex
perts but also support their clinical decision-making.

Materials and methods
Patient selection
Patients diagnosed with encephalitis or meningitis and ad
mitted to Severance Hospital, an academic tertiary care med
ical centre in South Korea, between 1 January 2010 and 31 
December 2023, were recruited retrospectively. Data were 
collected from the Severance Clinical Research Analysis 
Portal, which offered anonymized patient data from 
Severance Hospital to researchers for privacy preservation. 
Patients over the age of 18 were recruited based on ICD-10 
codes indicating diagnosis of encephalitis or meningitis at 
discharge, and those without cerebrospinal fluid (CSF) ana
lysis results or 3D T1-weighted brain MRI images were ex
cluded. Patients admitted before 31 December 2020, were 
classified into the internal dataset, while those admitted 
thereafter were classified into the external validation dataset 
(Supplementary Fig. 1). Based on the modified Rankin Scale 
(mRS) score at discharge, all patients were classified into 
good prognostic groups (mRS scores of 0, 1 or 2) and poor 
prognostic groups (mRS scores of three or above).

Data pre-processing
The sagittal sections of the brain MRI images with Digital 
Imaging and Communications in Medicine (DICOM) for
mat were converted to 3D Neuroimaging Informatics 
Technology Initiative (NIfTI) images with Python dicom2
nifti library. The NIfTI images were then resampled by la
b2im library which resized the images and set the voxel 
resolutions to 1 mm3.13 The resampled images with uniform 
size were then conformed to the following specifications: lin
ear min–max intensity normalization for adherence to the 
Unsigned Character (UCHAR) format (0∼255), an image 
size of 256 × 256 × 256, isotropic voxel dimensions ranging 
from 1 to 0.7 mm and a standard slice orientation of left, in
ferior, and anterior with FastSurfer library.14 Intensities in 
the images are inhomogenous and this issue affects the per
formance of the method. To cope with this issue, an intensity 
normalization process is applied. Although various normal
ization algorithms with different image types have been im
plemented in the literature, they may lead to high 
computational costs. Therefore, in the proposed approach, 
intensity values in the MRI images have been normalized 
with linear min–max intensity normalization. After con
formation task, the images were segmented into 48 brain re
gions with FastSurfer v2.2 library. Neurologists and 
neuroradiologists manually verified the segmentation by 
checking the mean volume and shape of each brain sub
region. A total of 43 brain regions were used to train the 
deep learning model, excluding the ventricular area. The 
schematic diagram of the pre-processing pipeline is provided 
in Supplementary Fig. 2. Clinical features including demo
graphic characteristics, vital signs and laboratory findings 
within initial 24 h were collected. In cases where there 
were multiple instances of laboratory findings for a patient, 
the initial values were utilized. For vital signs, the average va
lues were used. All numerical variables were normalized with 
min–max scaling and missing values were replaced with −1. 
Based on the multicollinearity among variables and their 
clinical importance, a total of 68 clinical variables were used.

Unimodal model training
To mitigate potential bias in prognostic predictions caused 
by aetiological differences, patients were divided into four 
aetiological groups: autoimmunity, bacteria, tuberculosis 
and virus. Patients of each aetiology were split into five sub
groups, with an even age distribution within each subgroup 
considering for age-related variations in brain volume. 
Among the five subgroups, one was used as the fixed internal 
held-out test set and the others were used to train the models 
using k-fold cross validation. To eliminate bias, multiple 
brain MRI data obtained from the same patient were 
grouped into the same fold and utilized for training. Since 
the brain is inherently symmetrical and there is no strong evi
dence suggesting a predilection for CNS inflammation on ei
ther the left or right side, brain regions present in both 
hemispheres were combined and used for training.
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A modified denseNet-169 based deep learning model for 
brain MRI images from each brain part of each aetiology 
were built.15 The training was performed with 4-fold cross 
validation and the model with the best performance was cho
sen for the inference task (Supplementary Fig. 3). In consid
eration of multimodal deep learning, clinical variables were 
vectorized at patient-level. They were then trained using a 
multilayer perceptron (MLP) architecture. The train/test val
idation set was constructed same to the MRI dataset. Data 
imbalance between the outcome was handled by weighted 
random sampling. The performance of each unimodal model 
was assessed using the area under the receiver operating 
characteristic curve (AUROC). To check the interpretability 
of the unimodal model using brain MRI data, hierarchical 
clustering method was used based on the prediction results. 
This process aimed to verify whether adjacent brain regions 
exhibited similar performance.

Feature selection
To ensure systematic application and better comprehension, 
we implemented a feature selection method separately for 
the clinical and MRI datasets. The Shapley Additive 
exPlanations (SHAP) values were used to derive feature im
portance and explain the model.16 As SHAP values are mod
el agnostic, it can be used to explain contributions of features 
across different modalities. We developed a method for se
lecting important variables applicable to this study based 
on existing methods such as groupShapley methods for vec
torized features.17 As the time complexity of direct SHAP 
calculation is exponential, implementation of an approxima
tion method is mandatory for a large number of features. The 
approximation method was implemented using coalition 
vectors18 and the details of the approximation algorithm 
are provided in Appendix 1 of the Supplementary Materials.

Multimodal model training
Clinical and brain imaging variables underwent an inde
pendent feature selection method when combined. For the 
MRI data, vector representations were extracted from each 
brain subregion through adaptive average pooling, using 
the MRI unimodal model of itself as a feature extractor. As 
SHAP values for feature groups are the direct summation 
of SHAP values for each individual feature in the group, 
we can group each brain subregion into groups, and then div
ide the SHAP value of the group by the size of the group to 
obtain the mean contribution of the brain regions in the 
group to the model output. Each brain subregion was there
fore grouped with anatomical knowledge to minimize multi
collinearity between brain subregions,17 and SHAP values 
evaluated on the all-features MLP model were used to meas
ure the importance for each group. Based on feature import
ance, the top 10 of 14 groups were selected. Clinical features 
were also vectorized and their SHAP values from the MLP 
model were used to measure the importance for each group. 
Due to the relatively smaller size of the clinical variable 

vector compared to the brain imaging, the top 30 of 68 
features were selected. The extracted data were then conca
tenated for multimodal deep learning training. The com
bined multimodality data vector was fed to a MLP 
classifier for the final prognosis prediction. Model explain
ability was analysed using SHAP values for each feature on 
the final classifier. The schematic diagram of the overall 
training process for MMDL is presented in Fig. 1. The hyper
parameters for each model are provided in Appendix 2 of the 
Supplementary Materials. The performance of MMDL mod
el was assessed using accuracy, F1 score, AUROC, and the 
area under the precision-recall curve (AUPRC).

AI explainability
After performing MMDL, we also calculated SHAP values as 
previously described to ensure model interpretability. For 
further explainability on our multimodal models which 
will be described later, supervised clustering based on 
SHAP values was performed to convert the units of the input 
features to the same units as the model output regardless of 
the original unit. This ensures that the changes in the feature 
values are comparable regardless of feature characteristics 
and effect the cluster formation only if the changes have 
any meaningful impact on the final outcome. Uniform 
Manifold Approximation and Projection for Dimension 
Reduction (UMAP) was used to reduce dimensionality and 
boost the performance of density-based clustering while pre
serving the overall structure of the data. The density-based 
spatial clustering of applications with noise (DBSCAN) algo
rithm was used to cluster the data in the reduced 
dimensions.19

Clinical comparison
To evaluate the potential clinical utility of the AI model, four 
clinicians were recruited, including one neuroradiologist, 
one paediatrician, and two neurologists. For testing pur
poses, the initial brain MRI scans of all 106 patients used 
in the external validation were provided. Initially, we pro
vided the doctors with NIfTI-format 3D T1-weighted MRI 
images and tabular clinical variables to predict the prognosis 
of each patient. A week later, we presented the same data 
along with the predictions from each AI model to assess 
whether the prediction performance of the clinicians 
improved.

Statistical analysis
All numerical variables were normalized with min–max scal
ing and missing values were replaced with −1. Hierarchical 
clustering was performed using an agglomerative approach 
with average linkage. Euclidean distance was used as the dis
similarity metric, and the optimal number of clusters was set 
to k = 6 based on the silhouette method, selecting the number 
of clusters that maximized the silhouette coefficient.

For efficient SHAP estimation, we employed a batch- 
sampling strategy, selecting one-fifth of the test dataset at a 
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time, randomly, to compute SHAP values for each instance. 
A single coalition was applied per batch. During this process, 
two tensors were generated: one representing the original da
taset and the other representing the sampled dataset. Each 
tensor had dimensions corresponding to the number of 
sampled instances and the size of the feature vector, ensuring 
that the SHAP estimation was applied consistently across all 
selected data points. This implementation, combined with 
parallelized models, imposed substantial memory overhead. 
As in the original SHAP framework, we imposed a maximum 
error tolerance between the summation of model predictions 
and the summation of SHAP values, ensuring local accuracy 
(Appendix 1 of the Supplementary Materials).

Computational hardware and 
software
We processed all MRIs and clinical data on a computing 
workstation with Intel Xeon Gold 6326 CPU 2.90 GHz 16 
core processor, and 2 NVIDIA A40 46GB GPUs. The pre- 
processing of clinical variables and hierarchical clustering 
process were conducted using R version 4.11. The pre- 
processing of brain MRI and the entire deep learning process 
were performed using Python version 3.10.4. Each deep 
learning model was developed using PyTorch version 1.13.1.

Ethics
This study was approved by the Yonsei University Health 
System, Institutional Review Board (Y-2021-0960). Due to 
the retrospective nature and use of de-identified data, this 
study was approved with waiver of the requirement to obtain 
informed consent by the Yonsei University Health System, 
Institutional Review Board (Y-2021-0960). The study was 
performed in accordance with approved guidelines and reg
ulations for medical research expressed in the Declaration of 
Helsinki.

Results
Patient characteristics
Between 1 January 2010, and 31 December 2020, patients 
with CNS inflammation (n = 291) were used for model train
ing. Virus was the most common aetiology (n = 170), followed 
by bacteria (n = 46), autoimmunity (n = 45) and tuberculosis 
(n = 30). Patients who were first diagnosed with CNS infection 
and admitted between 1 January 2021 and 31 December 
2023 (n = 106), were used as an external validation dataset. 
Multiple brain MRI scans taken during hospitalization for 
each patient were included, resulting in a total of 413 objects 
in the internal training dataset and 211 objects in the external 
validation dataset. The baseline characteristics according to 
different aetiology are presented in Supplementary Table 1. 
As reported in previous literature, differences in clinical vari
ables, including CSF test results, were observed depending 

on the aetiology. Characteristically, it was observed that the 
prognosis is relatively good among patient groups with viral 
infections.

Unimodal model performance
For each brain part of each aetiology, the 3D image dataset 
was used to develop prognostic models for prediction. The 
prognostic performance according to segmented brain re
gions for each aetiology is presented in the Supplementary 
Table 2. The brain regions with high predictive performance 
vary depending on the cause, but there are also regions such 
as the hippocampus and nucleus accumbens that generally 
show good predictive performance. Hierarchical clustering 
resulted in six clusters for a total of 43 brain regions 
(Fig. 2A). Cluster 1 included cortical regions of the temporal 
lobe, while cluster 2 comprised subcortical regions asso
ciated with the limbic system. Visualizing each cluster over
laid on brain MRI data revealed that similar brain regions 
were grouped into similar clusters (Fig. 2B–D). The perform
ance of the unimodal model, trained using the feature vectors 
derived from brain MRI data through a convolution neural 
networks (CNN) model and further processed through an 
MLP layer, is presented in Table 1. In terms of AUROC, 
the MRI-based unimodal model outperformed the clinical 
feature-based unimodal model in bacterial and viral aetiolo
gies, while the opposite trend was observed for the others.

Multimodal model performance
The multimodal model, which combines clinical and brain 
imaging variables yielded better performance overall com
pared to individual models using either clinical or imaging 
variables alone for prognostic prediction. The selected fea
tures from each modality for MMDL are presented in 
Supplementary Tables 3 and Supplementary Fig. 4. In all 
aetiological groups, including autoimmune (AUROC = 
0.8048), bacterial (AUROC = 0.9107), tuberculosis 
(AUROC = 1.0000) and viral (AUROC = 0.9242), the 
models demonstrated predictive power of over 80% on ex
ternal test set (Table 1). Even when predicting outcomes for 
all patients without information about the cause of inflam
mation, we could observe improved performance in the 
multimodal model compared to the single-modality model 
(Supplementary Table 4). The SHAP values were computed 
for each feature vector used in the multimodal model 
predictions and presented the top 20 variables in Fig. 3
and Supplementary Fig. 5. Since different variables were 
selected and used for training based on the aetiology, they 
display differing levels of significance (Supplementary 
Table 5). Interestingly, clinical and brain imaging variables 
consistently showed high SHAP values across all aetiolo
gies. Additionally, dimensional reduction of SHAP values 
with UMAP and DBSCAN algorithm for each feature vec
tors revealed a tendency for patients with the same mRS 
score to cluster together (Supplementary Fig. 6).
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Clinician performance
Based on multimodal data, 4 doctors predicted the prognosis 
of 106 patients (Table 2). The predictive performance of 
clinicians, measured by accuracy, was lower compared to 
the MMDL model: radiologists scored 0.6698, paediatricians 
0.6790, junior neurologists 0.7358 and senior neurologists 
0.8302, while the MMDL model achieved 0.8868. When 
re-evaluation was performed based on the assistance of 
the AI model, all clinicians showed improved predictive 

performance: radiologists scored 0.7264, paediatricians 
0.8019, junior neurologists 0.8302 and senior neurologists 
0.8679.

Discussion
In this retrospective prognostic classification study, we devel
oped a MMDL algorithm capable of predicting CNS inflam
mation by using brain MRI and clinical information from 

Figure 2 Hierarchical clustering results based on predictive performance of unimodal models using brain MRI. (A) The 43 brain 
regions were divided into 6 clusters. (B–D) Visualization of hierarchical clustering of each brain region overlaid on brain MRI images. (B) Coronal, 
(C) sagittal and (D) axial section. Hierarchical clustering was performed using an agglomerative approach with average linkage and Euclidean 
distance as the dissimilarity metric. Clustering was conducted on an internal dataset derived from the results of the MRI unimodal model. The 
dataset included autoimmune (n = 45), bacterial (n = 46), tuberculosis (n = 30) and viral (n = 170) cases.
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291 patients. The performance of the model was evaluated 
using a separate dataset consisting of 106 patients, demon
strating high accuracy and good discriminative ability. To 
our knowledge, this study is the first to perform prognostic 
prediction of CNS inflammatory diseases, regardless of the 
cause, using a MMDL approach. The algorithm not only de
monstrated superior performance compared to clinical ex
perts but also helped improve the predictive power of 
clinicians by providing important variables.

Prompt and appropriate treatment of CNS inflammation 
is crucial, especially when the brain is involved, leading to 
complications such as seizures or altered consciousness, ne
cessitating rapid initiation of intensive care measures such 
as respiratory support.2,3 However, due to economic and hu
man resource constraints, it is necessary to predict and pre
pare for disease aggravation in advance, as continuous 
monitoring for all patients is impractical. Previous attempts 
to predict the prognosis of CNS inflammatory diseases have 
been limited by their focus on specific situations, making 
them insufficient for widespread application to real world.4-6

Meanwhile, in this study, we developed successful prognos
tic prediction models for the most common causes of inflam
mation: viral, bacterial, autoimmune, and tuberculosis. 
Remarkably, we achieved an AUROC of over 75% even 
without information on the aetiology.

In this study, single-modality models based on clinical vari
ables alone showed unsatisfactory performance overall. This 
is similar to our previous study, where we attempted progno
sis prediction using only initial clinical variables but failed to 
achieve satisfactory performance.20 Also, Broadley et al.21 re
ported a review article analysing studies that predicted the 
prognosis of autoimmune encephalitis using clinical variables. 
They highlighted a key limitation in these studies, noting that 
variations in the definition and analytical approach of clinical 
variables across studies make result comparisons difficult and 
limit the ability to fully explain long-term neurological recov
ery. Inspired by recent advances in deep learning research util
izing multimodal data, and considering the use of diagnostic 
equipment such as brain MRI, computed tomography and 
electroencephalography in clinical practice to estimate the 
prognosis of CNS inflammation patients, we incorporated 
brain MRI variables in addition to clinical variables.7,22

While the model based solely on brain MRI modality did 
not show high predictive performance, the multimodal model 
combining both modalities demonstrated good predictive per
formance. To evaluate the model’s performance, we used an 
external dataset to mitigate the risk of overfitting, and the 
model showed an AUROC of over 80% for all pathogens. 
Similar to multimodal models applied in other diseases,10-12,23

the model presented in this study outperformed unimodal 
models, providing evidence for further research combining 
multiple modalities in CNS inflammatory diseases.

In previous studies utilizing brain MRI, the entire brain 
was commonly used as a single image for prediction.4,8,9,24

This method was mainly applied to neurodegenerative dis
eases with overall brain atrophy or relatively large and clear
ly visible brain tumours, aiming to reduce information loss T
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and allow intuitive analysis. However, in CNS inflammation, 
where inflammation may be localized, subtle changes may 
occur only in specific brain regions rather than affecting 
the entire brain.7 Therefore, the conventional approach of 
using the entire brain image as input for training may not 
be effective. To address this, we utilized segmentation techni
ques to divide the brain into 43 subregions, allowing us to 
capture subtle changes in each brain region separately and 
incorporate them into our model training. The whole seg
mentation was automatically processed by combining exist
ing segmentation codes, which might make fewer errors 
compared to manual work. Indeed, after segmentation, we 
evaluated the mean volume of each brain subregion and 
compared the shapes of the visualized subregions with those 

obtained using previous segmentation techniques. Based on 
this evaluation by clinicians, we concluded that there were 
no significant differences, indicating minimal errors in our 
automated segmentation process. For more accurate seg
mentation, only 3D thin-cut sagittal T1-weighted images, 
with a slice thickness of <1 mm from the initial scans, were 
utilized. Even with a relatively small sample size, our model 
showed stable predictive performance by treating multiple 
MRI scans of the same patient during hospitalization as sep
arate cases for training. Before conducting MMDL, feature 
vectors were extracted from each modality and combined 
while minimizing information loss.

To capture subtle changes in the brain, we segmented the 
brain for analysis. However, since the brain is a continuous 

Figure 3 Top 20 variables crucially utilized in multimodal deep learning for each aetiology in the external test set and their 
SHAP values. A batch-sampling strategy was employed for SHAP estimation, selecting one-fifth of the test dataset at a time to compute SHAP 
values while balancing memory efficiency and estimation performance. (A) Autoimmune (n = 29), (B) bacteria (n = 8), (C) tuberculosis (n = 3) and 
(D) virus (n = 66). CSF, cerebrospinal fluid; WBC, white blood cell; PMN, polymorphonuclear.
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single structure, it is practically impossible for inflammation to 
affect only a single brain subregion, even when it is localized.25

To create a model that better reflects real clinical situations, we 
selected brain areas for use in MMDL through a grouping pro
cess. During multimodal deep learning, brain MRI data were 
processed through a CNN model to create feature vectors. 
Subsequently, these feature vectors underwent MLP model
ling, which represents a form of joint fusion technique. 
Unlike simple late fusion methods that only combine predic
tion values, this approach, although computationally more in
tensive, enables more real-world applicable predictions.23

The brain MRI-based unimodal model outperformed the 
clinical variable-based model in predicting outcomes for vir
al infections. Unlike other causes, viral infections can invade 
brain parenchyma or be confined to the meninges, leading to 
distinct prognostic differences and clear radiological distinc
tions.26,27 Based on this, performing brain MRI scans when 
viral brain infection is suspected could be particularly helpful 
in prognostic prediction. In the case of autoimmune inflam
mation, the disease spectrum is broader and relatively het
erogeneous compared to other infectious diseases.28 Hence, 
the final predictive performance is presumed to be the most 
unsatisfactory. This issue was also encountered in our previ
ous clinical feature-based model for predicting the aeti
ology.20 To overcome this, recruiting a larger patient 
population for more detailed classification will be necessary 
in the future. Tuberculous infection also had a small number 
of patients included in the external test set. Therefore, we an
ticipate that recruiting more patients in the future will lead to 
a more stable predictive performance. Our model exhibited 
higher predictive performance compared to clinicians with 
varying levels of experience. All clinicians experienced a sig
nificant improvement in predictive accuracy, indicating the 
potential of AI-assisted care in CNS inflammatory diseases. 
These findings suggest that our model could be utilized as a 
decision-support tool during the initial assessment.

As recent studies highlight the importance of separate fea
ture selection within each modality in multimodal integra
tions for enhanced accuracy and interpretability, and its 
systematic application for application and comprehension, 
a feature selection method was constructed and applied inde
pendently in clinical and MRI datasets.29 The clinical 

variables selected for MMDL differed depending on the aeti
ology. In patients with bacterial infection, inflammatory 
markers such as lactate and procalcitonin were prominently 
utilized.30 Overall, the level of consciousness at admission 
was crucially utilized, which is consistent with clinical prior 
knowledge.31 The brain regions identified as important in 
MRI also varied slightly depending on the cause. This is con
sistent with previous research indicating that the brain areas 
predominantly affected vary depending on the pathogen.7

Autoimmune and viral aetiologies are known to frequently 
involve the limbic system and temporal lobe.26,28,32

Consistently, in our study, these regions emerged as import
ant predictors for prognosis. Upon examining the import
ance of variables used for prediction after MMDL, we 
observed a balanced distribution of clinical and brain 
imaging-related variables. In bacterial infections, CSF white 
blood cell count emerged as a strong prognostic factor com
pared to other variables.33 This underscores the importance 
of paying close attention to CSF test results in clinical prac
tice. In patients with bacterial infections, changes in the oc
cipital lobe, including the pericalcarine cortex, cuneus, and 
lingual gyrus, were identified as important variables for 
prognostic prediction. While brain abscesses are commonly 
associated with frontal and temporal lobes in bacterial infec
tions, they can also occur in the occipital lobe, facilitated by 
the lateral ventricle.34 Although previous studies reported no 
difference in prognosis based on the location of brain ab
scesses,35 our findings suggest that changes in the occipital 
lobe should also be considered significant. In viral infections, 
brain subregions within the temporal lobe were identified as 
important for prognostic prediction in the multimodal mod
el. Given that herpes viruses, which invade the temporal 
lobe, account for a considerable portion of viral brain infec
tions, these results are considered reasonable.36 The high 
SHAP value in autoimmune cases was not confined to specif
ic brain regions. This may be due to the heterogeneity of 
autoimmune encephalitis, as different regions may be af
fected depending on the antibodies involved. Meanwhile, 
serum creatine kinase levels, which can increase with fre
quent seizures, status epilepticus, or severe agitation, showed 
high SHAP values, indicating their influence on outcomes in 
autoimmune inflammation.37 After MMDL, clustering based 

Table 2 The performance metrics comparing the AI model with clinicians for predicting the prognosis of central 
nervous system inflammation

Accuracy Precision Recall F1 score

AI models Unimodal model with MRI data 0.7830 0.8571 0.8675 0.8623
Unimodal model with clinical dada 0.7642 0.8919 0.7952 0.8408
Multimodal model with MRI and clinical data 0.8868 0.9176 0.9398 0.9286

Initial prediction Junior neurologist 0.7358 0.8571 0.7952 0.8250
Senior neurologist 0.8302 0.8916 0.8916 0.8916
Neuroradiologist 0.6698 0.8750 0.6747 0.7619
Paediatrician 0.6970 0.8077 0.8077 0.8077

AI-supported prediction Junior neurologist 0.8302 0.9114 0.8675 0.8889
Senior neurologist 0.8679 0.9157 0.9157 0.9157
Neuroradiologist 0.7264 0.8649 0.7711 0.8153
Paediatrician 0.8019 0.8875 0.8554 0.8712
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on SHAP values revealed a tendency for patient clusters to group 
according to mRS scores in the UMAP plot. Particularly, we ob
served distinct clusters for patients with very poor outcomes 
(mRS 5,6) and those with less severe outcomes (mRS 3,4). 
Based on this, we can expand from binary classification model 
to multiclassification in the future with additional data to con
sider for more realistic predictive modelling.

Limitation
The present study has some limitations. First, due to the 
small sample size, patients with fungal and parasitic infec
tions could not be included in the study, and the number of 
patients with bacterial and tuberculosis infections was rela
tively low in the external validation dataset. Second, since 
we divided the CNS inflammation into four broad categor
ies, we were unable to predict specific pathogens such as 
auto-antibodies or species of bacteria at the individual level. 
Third, there may be differences when applying the results of 
this study to patients of other races as most of the population 
included in this study are of Asian ethnicity. Finally, due to a 
lack of a sufficient number of thin-cut images necessary for 
training, we were unable to utilize T2-weighted brain MRI 
imaging, widely used in encephalitis patients. The previously 
mentioned limitations, including the small sample size and 
the inability to utilize all MRI protocols, may reduce the gen
eralizability of this study. Therefore, we believe that future 
collection of brain imaging data from a larger cohort of pa
tients could enhance the proposed MMDL model.

Conclusion
In this study, we developed a successful MMDL model using 
brain MRI and clinical data to predict prognosis of CNS inflam
mation. This model not only outperformed clinical experts but 
also helped their decision-making process. A possible extension 
of this work can be automated measurement of changes in cor
tical thickness, which is a challenging and important process.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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