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Multimodal deep learning model for prediction
of prognosis in central nervous system
inflammation
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Inflammatory diseases of the CNS impose a substantial disease burden, necessitating prompt and appropriate prognosis prediction.
We developed a multimodal deep learning model integrating clinical features and brain MRI data to enhance early prognosis predic-
tion of CNS inflammation. This retrospective study used thin-cut T1-weighted brain MRI scans and the clinical variables of patients
with CNS inflammation who were admitted to a tertiary referral hospital between January 2010 and December 2023. Data collected
after January 2022 served as the external test set. 3D MRI images were first segmented into 43 brain regions using the FastSurfer li-
brary. The segmented images were then processed through a 3D convolutional neural network model for feature extraction and vec-
torization, after which they were integrated with clinical features for prediction. The performance of each artificial intelligence model
was assessed using accuracy, F1 score, area under the receiver operating characteristic curve and area under the precision-recall curve.
The internal dataset comprised 413 images from 291 patients (mean age, 45.5 years + 19.3 [SD]; 151 male patients; 54 with poor
prognosis). The external dataset comprised 210 images from 106 patients (mean age, 45.5 years + 18.9 [SD]; 59 male patients; 31
with poor prognosis). The multimodal deep learning model outperformed unimodal models across all aetiological groups, achieving
area under the receiver operating characteristic curve values of 0.8048 for autoimmune, 0.9107 for bacterial, 1.0000 for tuberculosis
and 0.9242 for viral infections. Furthermore, artificial intelligence assistance improved clinicians’ prognostic accuracy, as demon-
strated in comparisons with neurologists, paediatricians and radiologists. Our findings demonstrate that the multimodal deep learning
model enhances artificial intelligence-assisted prognosis prediction in CNS inflammation, improving both model performance and
clinician decision-making.
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Multimodal Deep Learning Model for Prediction of

Prognosis in Central Nervous System Inflammation
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1. Our multimodal deep learning model
outperforms unimodal models

2. Our model not only demonstrated
superior performance compared to
clinical experts but also helped improve
the predictive power of clinicians by
providing important variables.

Introduction

The CNS, which comprises the brain and spinal cord, usually
is a sterile environment. Inflammation of the CNS due to vari-
ous aetiologies represents a significant disease burden, often
resulting in severe sequelae.' Even patients with mild initial
symptoms may experience aggravation during hospitaliza-
tion, including altered consciousness and focal neurological
deficits.” Prompt intervention in worsening cases is crucial
for improving prognosis and early prediction of the prognosis
of CNS inflammatory diseases could facilitate the provision of
intensive care to patient groups with anticipated poor

perceptron
classifier

Concatenate

Accuracy | Without Al | with Al
Our model 0.8868
Neurologist 1 0.8302 0.8679
Neurologist 2 0.7358 0.8302
Pediatrician 0.6790 0.8019
Radiologist 0.6698 0.7264

outcomes, ultimately contributing to overall prognosis im-
provement.’ In conventional clinical practice, prognosis is of-
ten estimated based on the severity of initial symptoms and
laboratory test results, with clinicians potentially relying on
their experience.’ Previous studies have attempted to predict
the prognosis of CNS inflammation, but most are limited by
focusing on a single pathogen or specific situations, making
their application in clinical practice challenging.*® For in-
stance, Xiang et al.* reported a successful prognostic model,
but it was restricted to anti-N-methyl-p-aspartate receptor
encephalitis, a single autoantibody-mediated encephalitis,
with considerations for future expansion to other subtypes.
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Similarly, Lu et al.® attempted to predict prognosis in patients
with severe traumatic brain injury after craniotomy under the
specific condition of infection, employing conventional ma-
chine learning techniques.

Brain MRI scans are crucial diagnostic tools used in vari-
ous neurological disorders, and they are also performed to
differentiate the causes and assess the severity of CNS inflam-
mation. Distinctive MRI findings based on the underlying
aetiologies of CNS inflammation have been identified in pre-
vious research.” Furthermore, there are several deep learning
studies utilizing brain MRI data to predict the aetiology and
prognosis of CNS disorders including neurodegenerative dis-
eases and brain tumors.®” Recently, there has been a surge in
multimodal deep learning (MMDL) research, under the
premise that artificial intelligence (AI) models should be
able to utilize data from various sources commonly available
in clinical practice.'®'> Wang et al.'! reported an Al-enabled
cardiac MRI interpretation MMDL model that achieved
high diagnostic performance in CVD screening and diagno-
sis. Wu et al.'? suggested a MMDL model using preoperative
MRI to noninvasively predict lymph node metastasis in cer-
vical cancer demonstrating prognostic value for disease-free
survival. It has also been reported that combining brain MRI
with clinical variables in autoimmune encephalitis shows
higher performance in prognostic prediction compared to
using each single modality alone.*

In this study, we aim to develop a deep learning model for
the early prognosis prediction of CNS inflammation with
multimodal data including clinical features and brain im-
aging data. Furthermore, we validated the potential of
Al-assisted diagnosis by demonstrating how our model can
not only enhance predictive performance beyond that of ex-
perts but also support their clinical decision-making.

Materials and methods

Patients diagnosed with encephalitis or meningitis and ad-
mitted to Severance Hospital, an academic tertiary care med-
ical centre in South Korea, between 1 January 2010 and 31
December 2023, were recruited retrospectively. Data were
collected from the Severance Clinical Research Analysis
Portal, which offered anonymized patient data from
Severance Hospital to researchers for privacy preservation.
Patients over the age of 18 were recruited based on ICD-10
codes indicating diagnosis of encephalitis or meningitis at
discharge, and those without cerebrospinal fluid (CSF) ana-
lysis results or 3D T1-weighted brain MRI images were ex-
cluded. Patients admitted before 31 December 2020, were
classified into the internal dataset, while those admitted
thereafter were classified into the external validation dataset
(Supplementary Fig. 1). Based on the modified Rankin Scale
(mRS) score at discharge, all patients were classified into
good prognostic groups (mRS scores of 0, 1 or 2) and poor
prognostic groups (mRS scores of three or above).
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The sagittal sections of the brain MRI images with Digital
Imaging and Communications in Medicine (DICOM) for-
mat were converted to 3D Neuroimaging Informatics
Technology Initiative (NIfTT) images with Python dicom2-
nifti library. The NIfTT images were then resampled by la-
b2im library which resized the images and set the voxel
resolutions to 1 mm?."® The resampled images with uniform
size were then conformed to the following specifications: lin-
ear min—-max intensity normalization for adherence to the
Unsigned Character (UCHAR) format (0~255), an image
size of 256 X 256 x 256, isotropic voxel dimensions ranging
from 1 to 0.7 mm and a standard slice orientation of left, in-
ferior, and anterior with FastSurfer library.'* Intensities in
the images are inhomogenous and this issue affects the per-
formance of the method. To cope with this issue, an intensity
normalization process is applied. Although various normal-
ization algorithms with different image types have been im-
plemented in the literature, they may lead to high
computational costs. Therefore, in the proposed approach,
intensity values in the MRI images have been normalized
with linear min-max intensity normalization. After con-
formation task, the images were segmented into 48 brain re-
gions with FastSurfer v2.2 library. Neurologists and
neuroradiologists manually verified the segmentation by
checking the mean volume and shape of each brain sub-
region. A total of 43 brain regions were used to train the
deep learning model, excluding the ventricular area. The
schematic diagram of the pre-processing pipeline is provided
in Supplementary Fig. 2. Clinical features including demo-
graphic characteristics, vital signs and laboratory findings
within initial 24 h were collected. In cases where there
were multiple instances of laboratory findings for a patient,
the initial values were utilized. For vital signs, the average va-
lues were used. All numerical variables were normalized with
min-max scaling and missing values were replaced with —1.
Based on the multicollinearity among variables and their
clinical importance, a total of 68 clinical variables were used.

To mitigate potential bias in prognostic predictions caused
by aetiological differences, patients were divided into four
aetiological groups: autoimmunity, bacteria, tuberculosis
and virus. Patients of each aetiology were split into five sub-
groups, with an even age distribution within each subgroup
considering for age-related variations in brain volume.
Among the five subgroups, one was used as the fixed internal
held-out test set and the others were used to train the models
using k-fold cross validation. To eliminate bias, multiple
brain MRI data obtained from the same patient were
grouped into the same fold and utilized for training. Since
the brain is inherently symmetrical and there is no strong evi-
dence suggesting a predilection for CNS inflammation on ei-
ther the left or right side, brain regions present in both
hemispheres were combined and used for training.
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A modified denseNet-169 based deep learning model for
brain MRI images from each brain part of each aetiology
were built." The training was performed with 4-fold cross
validation and the model with the best performance was cho-
sen for the inference task (Supplementary Fig. 3). In consid-
eration of multimodal deep learning, clinical variables were
vectorized at patient-level. They were then trained using a
multilayer perceptron (MLP) architecture. The train/test val-
idation set was constructed same to the MRI dataset. Data
imbalance between the outcome was handled by weighted
random sampling. The performance of each unimodal model
was assessed using the area under the receiver operating
characteristic curve (AUROC). To check the interpretability
of the unimodal model using brain MRI data, hierarchical
clustering method was used based on the prediction results.
This process aimed to verify whether adjacent brain regions
exhibited similar performance.

To ensure systematic application and better comprehension,
we implemented a feature selection method separately for
the clinical and MRI datasets. The Shapley Additive
exPlanations (SHAP) values were used to derive feature im-
portance and explain the model.'® As SHAP values are mod-
el agnostic, it can be used to explain contributions of features
across different modalities. We developed a method for se-
lecting important variables applicable to this study based
on existing methods such as groupShapley methods for vec-
torized features.'” As the time complexity of direct SHAP
calculation is exponential, implementation of an approxima-
tion method is mandatory for a large number of features. The
approximation method was implemented using coalition
vectors'® and the details of the approximation algorithm
are provided in Appendix 1 of the Supplementary Materials.

Clinical and brain imaging variables underwent an inde-
pendent feature selection method when combined. For the
MRI data, vector representations were extracted from each
brain subregion through adaptive average pooling, using
the MRI unimodal model of itself as a feature extractor. As
SHAP values for feature groups are the direct summation
of SHAP values for each individual feature in the group,
we can group each brain subregion into groups, and then div-
ide the SHAP value of the group by the size of the group to
obtain the mean contribution of the brain regions in the
group to the model output. Each brain subregion was there-
fore grouped with anatomical knowledge to minimize multi-
collinearity between brain subregions,'” and SHAP values
evaluated on the all-features MLP model were used to meas-
ure the importance for each group. Based on feature import-
ance, the top 10 of 14 groups were selected. Clinical features
were also vectorized and their SHAP values from the MLP
model were used to measure the importance for each group.
Due to the relatively smaller size of the clinical variable
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vector compared to the brain imaging, the top 30 of 68
features were selected. The extracted data were then conca-
tenated for multimodal deep learning training. The com-
bined multimodality data vector was fed to a MLP
classifier for the final prognosis prediction. Model explain-
ability was analysed using SHAP values for each feature on
the final classifier. The schematic diagram of the overall
training process for MMDL is presented in Fig. 1. The hyper-
parameters for each model are provided in Appendix 2 of the
Supplementary Materials. The performance of MMDL mod-
el was assessed using accuracy, F1 score, AUROC, and the
area under the precision-recall curve (AUPRC).

After performing MMDL, we also calculated SHAP values as
previously described to ensure model interpretability. For
further explainability on our multimodal models which
will be described later, supervised clustering based on
SHAP values was performed to convert the units of the input
features to the same units as the model output regardless of
the original unit. This ensures that the changes in the feature
values are comparable regardless of feature characteristics
and effect the cluster formation only if the changes have
any meaningful impact on the final outcome. Uniform
Manifold Approximation and Projection for Dimension
Reduction (UMAP) was used to reduce dimensionality and
boost the performance of density-based clustering while pre-
serving the overall structure of the data. The density-based
spatial clustering of applications with noise (DBSCAN) algo-
rithm was used to cluster the data in the reduced
dimensions."’

To evaluate the potential clinical utility of the Al model, four
clinicians were recruited, including one neuroradiologist,
one paediatrician, and two neurologists. For testing pur-
poses, the initial brain MRI scans of all 106 patients used
in the external validation were provided. Initially, we pro-
vided the doctors with NIfTI-format 3D T1-weighted MRI
images and tabular clinical variables to predict the prognosis
of each patient. A week later, we presented the same data
along with the predictions from each Al model to assess
whether the prediction performance of the clinicians
improved.

All numerical variables were normalized with min-max scal-
ing and missing values were replaced with —1. Hierarchical
clustering was performed using an agglomerative approach
with average linkage. Euclidean distance was used as the dis-
similarity metric, and the optimal number of clusters was set
to k = 6 based on the silhouette method, selecting the number
of clusters that maximized the silhouette coefficient.

For efficient SHAP estimation, we employed a batch-
sampling strategy, selecting one-fifth of the test dataset at a
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time, randomly, to compute SHAP values for each instance.
A single coalition was applied per batch. During this process,
two tensors were generated: one representing the original da-
taset and the other representing the sampled dataset. Each
tensor had dimensions corresponding to the number of
sampled instances and the size of the feature vector, ensuring
that the SHAP estimation was applied consistently across all
selected data points. This implementation, combined with
parallelized models, imposed substantial memory overhead.
As in the original SHAP framework, we imposed a maximum
error tolerance between the summation of model predictions
and the summation of SHAP values, ensuring local accuracy
(Appendix 1 of the Supplementary Materials).

We processed all MRIs and clinical data on a computing
workstation with Intel Xeon Gold 6326 CPU 2.90 GHz 16
core processor, and 2 NVIDIA A40 46GB GPUs. The pre-
processing of clinical variables and hierarchical clustering
process were conducted using R version 4.11. The pre-
processing of brain MRI and the entire deep learning process
were performed using Python version 3.10.4. Each deep
learning model was developed using PyTorch version 1.13.1.

This study was approved by the Yonsei University Health
System, Institutional Review Board (Y-2021-0960). Due to
the retrospective nature and use of de-identified data, this
study was approved with waiver of the requirement to obtain
informed consent by the Yonsei University Health System,
Institutional Review Board (Y-2021-0960). The study was
performed in accordance with approved guidelines and reg-
ulations for medical research expressed in the Declaration of
Helsinki.

Results

Between 1 January 2010, and 31 December 2020, patients
with CNS inflammation (2 =291) were used for model train-
ing. Virus was the most common aetiology (7 = 170), followed
by bacteria (17 =46), autoimmunity (7 =435) and tuberculosis
(n = 30). Patients who were first diagnosed with CNS infection
and admitted between 1 January 2021 and 31 December
2023 (n=106), were used as an external validation dataset.
Multiple brain MRI scans taken during hospitalization for
each patient were included, resulting in a total of 413 objects
in the internal training dataset and 211 objects in the external
validation dataset. The baseline characteristics according to
different aetiology are presented in Supplementary Table 1.
As reported in previous literature, differences in clinical vari-
ables, including CSF test results, were observed depending

B. K. Choi et al.

on the aetiology. Characteristically, it was observed that the
prognosis is relatively good among patient groups with viral
infections.

For each brain part of each aetiology, the 3D image dataset
was used to develop prognostic models for prediction. The
prognostic performance according to segmented brain re-
gions for each aetiology is presented in the Supplementary
Table 2. The brain regions with high predictive performance
vary depending on the cause, but there are also regions such
as the hippocampus and nucleus accumbens that generally
show good predictive performance. Hierarchical clustering
resulted in six clusters for a total of 43 brain regions
(Fig. 2A). Cluster 1 included cortical regions of the temporal
lobe, while cluster 2 comprised subcortical regions asso-
ciated with the limbic system. Visualizing each cluster over-
laid on brain MRI data revealed that similar brain regions
were grouped into similar clusters (Fig. 2B-D). The perform-
ance of the unimodal model, trained using the feature vectors
derived from brain MRI data through a convolution neural
networks (CNN) model and further processed through an
MLP layer, is presented in Table 1. In terms of AUROC,
the MRI-based unimodal model outperformed the clinical
feature-based unimodal model in bacterial and viral aetiolo-
gies, while the opposite trend was observed for the others.

The multimodal model, which combines clinical and brain
imaging variables yielded better performance overall com-
pared to individual models using either clinical or imaging
variables alone for prognostic prediction. The selected fea-
tures from each modality for MMDL are presented in
Supplementary Tables 3 and Supplementary Fig. 4. In all
aetiological groups, including autoimmune (AUROC=
0.8048), bacterial (AUROC=0.9107), tuberculosis
(AUROC =1.0000) and viral (AUROC=0.9242), the
models demonstrated predictive power of over 80% on ex-
ternal test set (Table 1). Even when predicting outcomes for
all patients without information about the cause of inflam-
mation, we could observe improved performance in the
multimodal model compared to the single-modality model
(Supplementary Table 4). The SHAP values were computed
for each feature vector used in the multimodal model
predictions and presented the top 20 variables in Fig. 3
and Supplementary Fig. 5. Since different variables were
selected and used for training based on the aetiology, they
display differing levels of significance (Supplementary
Table 5). Interestingly, clinical and brain imaging variables
consistently showed high SHAP values across all aetiolo-
gies. Additionally, dimensional reduction of SHAP values
with UMAP and DBSCAN algorithm for each feature vec-
tors revealed a tendency for patients with the same mRS
score to cluster together (Supplementary Fig. 6).
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Figure 2 Hierarchical clustering results based on predictive performance of unimodal models using brain MRI. (A) The 43 brain
regions were divided into 6 clusters. (B—D) Visualization of hierarchical clustering of each brain region overlaid on brain MRI images. (B) Coronal,
(C) sagittal and (D) axial section. Hierarchical clustering was performed using an agglomerative approach with average linkage and Euclidean
distance as the dissimilarity metric. Clustering was conducted on an internal dataset derived from the results of the MRI unimodal model. The
dataset included autoimmune (n = 45), bacterial (n = 46), tuberculosis (n = 30) and viral (n = 170) cases.

Clinician performance

Based on multimodal data, 4 doctors predicted the prognosis
of 106 patients (Table 2). The predictive performance of
clinicians, measured by accuracy, was lower compared to
the MMDL model: radiologists scored 0.6698, paediatricians
0.6790, junior neurologists 0.7358 and senior neurologists
0.8302, while the MMDL model achieved 0.8868. When
re-evaluation was performed based on the assistance of
the AI model, all clinicians showed improved predictive

performance: radiologists scored 0.7264, paediatricians
0.8019, junior neurologists 0.8302 and senior neurologists
0.8679.

Discussion

In this retrospective prognostic classification study, we devel-
oped a MMDL algorithm capable of predicting CNS inflam-
mation by using brain MRI and clinical information from
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€| E¢ & ~°-° ~—=° 3 achieve satisfactory performance.”” Also, Broadley et al.”" re-
— QU = = . . . . .
R g ported a review article analysing studies that predicted the
5| £¢ g g3gsg go g : . SRR .
t |3 a SSS3 8w g prognosis of autoimmune encephalitis using clinical variables.
- X 3 WY 3 3 = . . . . . . . .
o |5 a 2 225 =o 2 They highlighted a key limitation in these studies, noting that
5 2 2 y highlig y g
Y= = hd P . - . R
g v U ccoo o a variations in the definition and analytical approach of clinical
o0 . . . i
b 2 8383 8¢ s variables across studies make result comparisons difficult and
S § 8R8R Sao 5 . . . :
S I —°-° -9 2 limit the ability to fully explain long-term neurological recov-
'é » 3988 81 g ery. Inspired by recent advances in deep learning research util-
< | w LSS58 293 2 izing multimodal data, and considering the use of diagnostic
- w —o oo — o e : :
& g equipment such as brain MRI, computed tomography and
e 2 £ I halography in clinical pract i h
5| S Y gxus g3 s electroencephalography in clinical practice to estimate the
% g N § STz 81 fé. prognosis of CNS inflammation patients, we incorporated
g |g g ~°°° ~° brain MRI variables in addition to clinical variables.”**
2|2 < 5 rain variables addition to clinical variables.
8 lSg 3 4 While the model based solely on brain MRI modality did
Eles| & 8m2g sy |i : i :
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2 2 —Sos -9 ) model showed an AUROC of over 80% for all pathogens.
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A Autoimmune

Blood creatine kinase
Blood cholesterol
CSF mononuclear leukocyte ratio
Mean systolic blood pressure
Blood Alkaline phosphatase
Blood erythrocyte sedimentation rate
Right Pars orbitalis
Left Lateral occipital cortex
Right Ventral diencephalon
Left Hippocampus
Right Isthmus of cingulate gyrus
Left Medial orbitofrontal gyrus
Left Transverse temporal gyrus
Left Choroid plexus
Left Nucleus accumbens
Left Pars orbitalis
Right Entorhinal cortex
Left Parahippocampal gyrus
Age
Left Thalamus

Cc Tuberculosis

Left Globus pallidum IS 1.7703
Left Entorhinal cortex | 1.4988
Right Nucleus accumbens [N 1.1904
CSF protein [l 1.0057
Left Choroid plexus [l 0.8339
Right Choroid plexus [l 0.7659
Left Nucleus accumbens |l 0.6767
Right Globus pallidum [l 0.6325
Left Thalamus |l 0.5887
Right Isthmus of cingulate gyrus [ll 0.4770
Right Entorhinal cortex [l 0.4284
Blood C-reactive protein [l 0.3792
Right Posterior cingulate |l 0.3772
Left Isthmus of cingulate gyrus [l 0.3731
Right Thalamus [ll 0.3642
Blood cholesterol Jll 0.3160
Left Caudal anterior cingulate [l 0.3041
Right Paracentral lobule Jll 0.2943
Left Paracentral lobule |l 0.2701
Right Supramarginal gyrus Jlil 0.2692
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B Bacteria

CSF WBC count
Blood creatine kinase
Blood C-reactive protein
Right Pallidum
Left Pericalcarine cortex
CSF PMN leukocyte ratio
Left Cuneus
Right Pericalcarine cortex
Right Lingual gyrus
Left Transverse temporal gyrus
Left Lingual gyrus
Left Cerebellum cortex
Right Nucleus accumbens
Blood cholesterol
Posterior cingulate
Right Cerebellum cortex
Right Globus pallidum
Left Nucleus accumbens
Left Superior temporal gyrus
Right Cuneus cortex

D Virus

Blood cholesterol | I 0.5052
Blood glucose [N 0.3282
Blood creatine kinase [l 0.1986
Blood neutrophil ratio |Ill 0.1738
Blood ammonia |l 0.1385
Age |l 0.1313

Left Transverse temporal gyrus [l 0.1037
Right Middle temporal gyrus [l 0.1023
Left Cerebellum cortex [l 0.0910
Right Fusiform gyrus [l 0.0850
Right Cerebellum cortex [l 0.0810
Left Superior temporal gyrus [l 0.0807
Blood tCO2 il 0.0774
Blood C-reactive protein [l 0.0752
Right Transverse temporal gyrus Jll 0.0699
Blood eonsinophil ratio Jll 0.0672
Entorhinal cortex Il 0.0671
Left Cerebellum white matter [l 0.0636
Right Lateral occipital cortex [l 0.0610
Left Cuneus [l 0.0607

Figure 3 Top 20 variables crucially utilized in multimodal deep learning for each aetiology in the external test set and their
SHAP values. A batch-sampling strategy was employed for SHAP estimation, selecting one-fifth of the test dataset at a time to compute SHAP
values while balancing memory efficiency and estimation performance. (A) Autoimmune (n = 29), (B) bacteria (n = 8), (C) tuberculosis (n = 3) and

(D) virus (n = 66). CSF, cerebrospinal fluid; WBC, white blood cell; PMN, polymorphonuclear.

and allow intuitive analysis. However, in CNS inflammation,
where inflammation may be localized, subtle changes may
occur only in specific brain regions rather than affecting
the entire brain.” Therefore, the conventional approach of
using the entire brain image as input for training may not
be effective. To address this, we utilized segmentation techni-
ques to divide the brain into 43 subregions, allowing us to
capture subtle changes in each brain region separately and
incorporate them into our model training. The whole seg-
mentation was automatically processed by combining exist-
ing segmentation codes, which might make fewer errors
compared to manual work. Indeed, after segmentation, we
evaluated the mean volume of each brain subregion and
compared the shapes of the visualized subregions with those

obtained using previous segmentation techniques. Based on
this evaluation by clinicians, we concluded that there were
no significant differences, indicating minimal errors in our
automated segmentation process. For more accurate seg-
mentation, only 3D thin-cut sagittal T1-weighted images,
with a slice thickness of <1 mm from the initial scans, were
utilized. Even with a relatively small sample size, our model
showed stable predictive performance by treating multiple
MRI scans of the same patient during hospitalization as sep-
arate cases for training. Before conducting MMDL, feature
vectors were extracted from each modality and combined
while minimizing information loss.

To capture subtle changes in the brain, we segmented the
brain for analysis. However, since the brain is a continuous
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Table 2 The performance metrics comparing the Al model with clinicians for predicting the prognosis of central

nervous system inflammation

Unimodal model with MRI data
Unimodal model with clinical dada

Al models

Multimodal model with MRI and clinical data

Initial prediction Junior neurologist
Senior neurologist
Neuroradiologist
Paediatrician
Junior neurologist
Senior neurologist
Neuroradiologist
Paediatrician

Al-supported prediction

Accuracy Precision Recall Fl score
0.7830 0.8571 0.8675 0.8623
0.7642 0.8919 0.7952 0.8408
0.8868 09176 0.9398 0.9286
0.7358 0.8571 0.7952 0.8250
0.8302 0.8916 0.8916 0.8916
0.6698 0.8750 0.6747 0.7619
0.6970 0.8077 0.8077 0.8077
0.8302 09114 0.8675 0.8889
0.8679 09157 0.9157 0.9157
0.7264 0.8649 0.7711 0.8153
0.8019 0.8875 0.8554 0.8712

single structure, it is practically impossible for inflammation to
affect only a single brain subregion, even when it is localized.*’
To create a model that better reflects real clinical situations, we
selected brain areas for use in MMDL through a grouping pro-
cess. During multimodal deep learning, brain MRI data were
processed through a CNN model to create feature vectors.
Subsequently, these feature vectors underwent MLP model-
ling, which represents a form of joint fusion technique.
Unlike simple late fusion methods that only combine predic-
tion values, this approach, although computationally more in-
tensive, enables more real-world applicable predictions.*

The brain MRI-based unimodal model outperformed the
clinical variable-based model in predicting outcomes for vir-
al infections. Unlike other causes, viral infections can invade
brain parenchyma or be confined to the meninges, leading to
distinct prognostic differences and clear radiological distinc-
tions.?®?” Based on this, performing brain MRI scans when
viral brain infection is suspected could be particularly helpful
in prognostic prediction. In the case of autoimmune inflam-
mation, the disease spectrum is broader and relatively het-
erogeneous compared to other infectious diseases.”® Hence,
the final predictive performance is presumed to be the most
unsatisfactory. This issue was also encountered in our previ-
ous clinical feature-based model for predicting the aeti-
ology.”® To overcome this, recruiting a larger patient
population for more detailed classification will be necessary
in the future. Tuberculous infection also had a small number
of patients included in the external test set. Therefore, we an-
ticipate that recruiting more patients in the future will lead to
a more stable predictive performance. Our model exhibited
higher predictive performance compared to clinicians with
varying levels of experience. All clinicians experienced a sig-
nificant improvement in predictive accuracy, indicating the
potential of Al-assisted care in CNS inflammatory diseases.
These findings suggest that our model could be utilized as a
decision-support tool during the initial assessment.

As recent studies highlight the importance of separate fea-
ture selection within each modality in multimodal integra-
tions for enhanced accuracy and interpretability, and its
systematic application for application and comprehension,
a feature selection method was constructed and applied inde-
pendently in clinical and MRI datasets.”” The clinical

variables selected for MMDL differed depending on the aeti-
ology. In patients with bacterial infection, inflammatory
markers such as lactate and procalcitonin were prominently
utilized.?® Overall, the level of consciousness at admission
was crucially utilized, which is consistent with clinical prior
knowledge.?' The brain regions identified as important in
MRI also varied slightly depending on the cause. This is con-
sistent with previous research indicating that the brain areas
predominantly affected vary depending on the pathogen.”
Autoimmune and viral aetiologies are known to frequently
involve the limbic system and temporal lobe.??%32
Consistently, in our study, these regions emerged as import-
ant predictors for prognosis. Upon examining the import-
ance of variables used for prediction after MMDL, we
observed a balanced distribution of clinical and brain
imaging-related variables. In bacterial infections, CSF white
blood cell count emerged as a strong prognostic factor com-
pared to other variables.?>® This underscores the importance
of paying close attention to CSF test results in clinical prac-
tice. In patients with bacterial infections, changes in the oc-
cipital lobe, including the pericalcarine cortex, cuneus, and
lingual gyrus, were identified as important variables for
prognostic prediction. While brain abscesses are commonly
associated with frontal and temporal lobes in bacterial infec-
tions, they can also occur in the occipital lobe, facilitated by
the lateral ventricle.** Although previous studies reported no
difference in prognosis based on the location of brain ab-
scesses,>> our findings suggest that changes in the occipital
lobe should also be considered significant. In viral infections,
brain subregions within the temporal lobe were identified as
important for prognostic prediction in the multimodal mod-
el. Given that herpes viruses, which invade the temporal
lobe, account for a considerable portion of viral brain infec-
tions, these results are considered reasonable.’® The high
SHAP value in autoimmune cases was not confined to specif-
ic brain regions. This may be due to the heterogeneity of
autoimmune encephalitis, as different regions may be af-
fected depending on the antibodies involved. Meanwhile,
serum creatine kinase levels, which can increase with fre-
quent seizures, status epilepticus, or severe agitation, showed
high SHAP values, indicating their influence on outcomes in
autoimmune inflammation.’” After MMDL, clustering based
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on SHAP values revealed a tendency for patient clusters to group
according to mRS scores in the UMAP plot. Particularly, we ob-
served distinct clusters for patients with very poor outcomes
(mRS 5,6) and those with less severe outcomes (mRS 3,4).
Based on this, we can expand from binary classification model
to multiclassification in the future with additional data to con-
sider for more realistic predictive modelling.

The present study has some limitations. First, due to the
small sample size, patients with fungal and parasitic infec-
tions could not be included in the study, and the number of
patients with bacterial and tuberculosis infections was rela-
tively low in the external validation dataset. Second, since
we divided the CNS inflammation into four broad categor-
ies, we were unable to predict specific pathogens such as
auto-antibodies or species of bacteria at the individual level.
Third, there may be differences when applying the results of
this study to patients of other races as most of the population
included in this study are of Asian ethnicity. Finally, due to a
lack of a sufficient number of thin-cut images necessary for
training, we were unable to utilize T2-weighted brain MRI
imaging, widely used in encephalitis patients. The previously
mentioned limitations, including the small sample size and
the inability to utilize all MRI protocols, may reduce the gen-
eralizability of this study. Therefore, we believe that future
collection of brain imaging data from a larger cohort of pa-
tients could enhance the proposed MMDL model.

Conclusion

In this study, we developed a successful MMDL model using
brain MRI and clinical data to predict prognosis of CNS inflam-
mation. This model not only outperformed clinical experts but
also helped their decision-making process. A possible extension
of this work can be automated measurement of changes in cor-
tical thickness, which is a challenging and important process.

Supplementary material

Supplementary material is available at Brain Communications
online.
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