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Skin diseases are among the most prevalent health issues worldwide, and the prevalence of these diseases is increas-
ing, driven by factors such as aging populations and urbanization-related infrastructure imbalance. As skin diseases
become more widespread, the need for their early detection and proper management is gaining prominence,
underscoring the importance of developing advanced real-time skin health monitoring technologies. In this study,
we propose a flexible, multi-layered skin health monitoring platform capable of the real-time measurement of key
indicators such as humidity, sweat secretion, and pH levels. The platform collects sweat from direct skin contact, pro-
viding real-time, noninvasive data on humidity, sweat secretion, and pH levels, which are transmitted to a smartphone
for continuous monitoring. Sensors for this platform were fabricated using inkjet printing, which enables low-cost
and straightforward manufacturing, and were integrated into a vertically stacked configuration designed to fit wear-
able forms, such as eyewear. In addition, each sensor was constructed using a flexible substrate, making the plat-
form adaptable to various applications beyond skin health monitoring. This platform holds potential for broader use
across diverse areas of healthcare and medical science, laying the groundwork for technologies that enable continu-
ous physiological monitoring to advance fundamental research and facilitate practical solutions.
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Introduction

The human skin is the organs most directly exposed
to the external environment; as such, it serves as the
first line of defense, protecting the body from external
mechanical and chemical factors. Specifically, it plays a
vital role in blocking ultraviolet rays, preventing exces-
sive moisture loss, and safeguarding against harmful
chemicals, while also acting as a barrier to pathogens

*Byeong-Sun Park and Sangmin Lee have contributed equally to this work.

*Correspondence:

Min-gu Kim

mgk@yonsei.ackr

! Department of Electrical and Computer Engineering, Inha University,
Incheon, Republic of Korea

2 Department of Electrical Engineering, Stanford University, Stanford, CA,
USA

3 Department of Medical Engineering, Yonsei University, Seoul, Republic
of Korea

@ Springer Open

attempting to infiltrate the body [1-3]. According to the
2010 World Health Organization (WHO) Global Bur-
den of Disease (GBD) report, skin diseases are among
the most prevalent health issues globally, ranking fourth
among all disease types, and affecting approximately 30%
of the population [4]. The prevalence of skin diseases is
steadily increasing, particularly because of the increasing
number of elderly individuals susceptible to such condi-
tions as a result of global aging, and the growing popula-
tion in region where access to treatment is limited by the
infrastructural imbalances triggered by rapid urbaniza-
tion [5-7]. Skin diseases not only impose psychological
burdens on patients but, when left untreated, can pro-
gress to severe conditions such as skin cancers, includ-
ing basal cell carcinoma, squamous cell carcinoma, and
melanoma, the latter of which carries significant mortal-
ity risks [8-10]. Consequently, the importance of early
intervention and proper management of skin diseases is
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increasingly being emphasized, driving the need for tech-
nologies capable of real-time skin condition monitoring.
As such, interest in skin healthcare technologies contin-
ues to grow alongside the expanding market for related
solutions [11-15]. Currently, skin analyzers that assess
skin conditions using indicators such as pH and humid-
ity are generally limited to measuring a single parameter,
or while being portable, tend to be large and expensive.
Additionally, they are designed for short-term usage
rather than long-term monitoring, providing only tem-
porary insights. However, these methods have clear limi-
tations in capturing the dynamic nature of certain skin
conditions or simultaneously detecting multiple indica-
tors. These skin conditions are generally influenced by
factors such as physical health, diet, and emotional state,
and can change continuously [16—-20].

Therefore, the present study proposes a platform capa-
ble of simultaneous real-time monitoring of humidity,
sweat secretion, and sweat pH, which are the key indi-
cators of skin conditions. These three metrics provide
essential information that enables a comprehensive
evaluation of skin health. First, Skin humidity is a crucial
indicator of skin health and is used to assess moisture
levels. Maintaining a relative humidity of at least 40% is
essential for healthy skin. If humidity drops below 40%,
skin aging begins, and levels below 10% can lead to fine
lines, dryness, and other skin conditions. However, pro-
longed exposure to humidity above 60% increases the risk
of heat-related illnesses, dermatitis, and eczema. There-
fore, maintaining an optimal humidity environment is
vital for preserving skin elasticity, smoothness, and pro-
tection against external irritants [21-23]. Sweat secretion
plays a vital role in thermoregulation and directly reflects
an individual’s physical activity and physiological condi-
tions. Proper sweat production is essential for maintain-
ing overall health, and offers crucial insights into factors
such as stress, fatigue, and dehydration, making it an
indispensable parameter for understanding body func-
tions [24—29]. Finally, pH levels can indicate the natural
protective barrier function and immune conditions of the
skin. Healthy skin typically maintains a slightly acidic pH
range of 4.5-5.5. Deviations from this range can compro-
mise the skin’s barrier, thereby reducing its ability to pre-
vent bacterial growth, and increasing its vulnerability to
conditions such as atopic dermatitis and acne [30, 31].

Building on our previous work [32-34], we have devel-
oped specialized sensors for humidity, sweat secretion,
and sweat pH, each integrated into a vertically laminated
structure within an eyewear platform. This platform is
designed to enable users to assess their skin condition
easily, without relying on bulky conventional equipment
or specialized medical expertise. Further, it offers con-
venience and effectiveness and is not restricted by time
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or location. Additionally, each sensor is manufactured on
a flexible substrate, polyimide (PI), so that it can be eas-
ily applied to curved surfaces, thereby allowing expansion
into various types of platforms. The platform proposed in
this paper operates in a non-invasive manner compared
to previously developed and researched devices and can
be applied to flexible substrates or plastics through a
printing process. Furthermore, while it currently meas-
ures only skin moisture, pH, and sweat rate, it can be
expanded into a platform capable of acquiring a wider
range of skin-related information by integrating addi-
tional biosensors. Consequently, the proposed platform
not only functions as a personal skin diagnostic device,
but also delivers tailored solutions based on individual
user needs. In particular, its real-time monitoring capa-
bility and flexible design hold significant potential for
application across diverse industries, including beauty,
sports, military operations, and environmental hazard
detection. These features are expected to expand the use-
fulness of this platform, allowing its establishment as an
innovative tool that surpasses the limitations of conven-
tional diagnostic methods.

Results and discussion

The multi-layered flexible sensor for skin health
monitoring

The skin health monitoring platform sensor proposed
in this study was designed as a multi-layered structure
arranged sequentially from the surface in contact with
the skin. The layers included a humidity sensor, a chan-
nel for sweat flow, a sweat rate sensor, and a pH sensor.
The humidity sensor in layer 1 directly contacts the skin
to measure the relative humidity of the skin surface. The
channel in layer 2 collects sweat produced by the skin,
guides it through an inlet, and releases it via an outlet.
Layer 3 contains a sweat rate sensor that detects the
amount and flow rate of sweat exiting the outlet. Layer 4,
the final layer, contains a pH sensor to measure the pH of
the sweat using the collected sweat (Fig. 1a). The sensors
were fabricated by inkjet printing using a V-ONE printer
(Voltera) and silver ink (Conductor3 Ink, Voltera). Poly-
imide (PI) and Polyethylene Terephthalate (PET) were
selected as substrates due to their flexibility, which ena-
bles the sensors to adhere seamlessly to curved surfaces,
such as the skin. This flexible form enhances the adapt-
ability and usability of the device (Fig. 1b).

Flexible humidity sensor

The humidity sensor operates based on a capacitive
mechanism, in which the detection of sweat on the sen-
sor induces changes in permittivity, leading to variations
in capacitance, which is expressed as the relative humid-
ity (RH). The sensor was fabricated on a PI substrate



Park et al. Micro and Nano Systems Letters (2025) 13:6
(a)
Sweat Inlet
Outlet
.‘/
(b) Fabricated Sensor

Sweat Rate

Humidity

Page 3 of 8

@—— Layer 1: Humidity Sensor

@—— Layer 2: Sweat Fluidic Channel

@—— Layer 3: Sweat Rate Sensor

@—— Layer 4: pH Sensor

Multi-layered
Integration

pH Sensing Platform

Fig. 1 Overview of the flexible multi-layered sensing platform (a) A deconstructed view of the multi-layer sensing platform (b) Images
of the fabricated humidity, sweat rate, and pH sensors, as well as the integrated multi-layer sensor

using an interdigitated patterned structure via inkjet-
printing (Fig. 2a). The device categorizes skin humidity
levels as dry (< 40%), optimal (40-60%), or humid (>60%).
Accordingly, the performance of the humidity sensor was
evaluated within an RH range of 30-80%. The measured
skin humidity was derived from capacitance changes cor-
responding to the relative humidity caused by sweat on
the skin surface. The sensitivity of the sensor was calcu-
lated as approximately 0.0765 pF/%RH in the RH range
of 30-80% (Fig. 2b). Further, to assess the performance of
the sensor under varying moisture levels, an experiment
was conducted by attaching the sensor to the skin and
comparing bare skin with skin treated with a moisturizer.
The capacitance of the untreated skin was measured at a
baseline RH of 30%, which revealed that the AC/C, value
increased by approximately 1 when the moisturizer was
applied compared to bare skin (Fig. 2c).

Flexible sweat rate sensor

The sweat rate sensor consists of a sensing layer that
detects sweat flow and a channel layer that directs
sweat toward the sensing layer. The sensing layer was
designed using three interdigitated capacitors con-
nected in parallel, whereas the channel layer was fab-
ricated from PET material cut using a cutting machine

(Cameo4, Silhouette), and attached above the sens-
ing layer. The operating principle of the sensor begins
when sweat enters the inlet of the PET channel and
flows along the channel from high to low pressure. At
this point, as sweat passes through the parallel capaci-
tors, its dielectric constant (e=80) significantly sur-
passes that of the air (¢=1), resulting in a change in
capacitance. Based on this principle, a sweat rate sen-
sor was designed to estimate the sweat volume. As
the sweat progressed through the channel and crossed
each curved section, the capacitance measured by each
parallel capacitor increased sequentially, allowing the
amount of sweat to be quantified (Fig. 3a). The sensor’s
performance was evaluated by introducing 20 pL of a
blue solution into the channel, and observing its pro-
gression through the three curved sections under pres-
sure differences, while measuring the capacitance at
each point. The results revealed capacitance increases
of 0.51 pF, 0.52 pF, and 0.62 pF at the first, second, and
third capacitor sections, respectively (Fig. 3b). The
slope of the capacitance change relative to the flow rate
was calculated using the measured data. This enabled
the estimation of the sweat volume flowing through the
channel per unit time, allowing the sweat rate of the
user to be determined (Fig. 3c).
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Fig. 2 Overview of the humidity sensor (a) Structure of the humidity sensor (b) Capacitive measurements of the humidity sensor according
to the relative humidity (c) Sensitivity of the humidity sensor and comparison of capacitance differences resulting from the presence of a skin
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Fig. 3 Overview of the sweat rate sensor (a) Structure of the sweat rate sensor (b) Capacity measurement of the sweat rate sensor as blue liquid
passes through each capacitor (c) Relationship between the flow rate and capacitance slope
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Flexible pH sensor

Skin pH and sweat pH exhibit a strong correlation [31,
35, 36]. The pH sensor in this platform is designed to
measure pH by detecting the hydrogen ion concentra-
tion in sweat. This sensor measures the pH of sweat that
comes into contact with it through the inlet of the chan-
nel layer of the Sweat Rate Sensor. Additionally, based
on the Nernst equation, it calculates the pH by detect-
ing the potential difference between two electrodes, cor-
responding to the hydrogen ion concentration in sweat.
The sensor was fabricated on a polyimide (PI) substrate
comprising a working electrode and a reference electrode
(Fig. 4a). The working electrode was patterned with flex-
ible Ag ink using inkjet printing, followed by deposition
of graphene and polyaniline (PANi) layers. Graphene
was screen printed into a circular structure, and dried
at room temperature for 30 min. PANi solution was pre-
pared by dissolving N-Methyl-2-pyrrolidone (NMP) at a
concentration of 10 mg/mL; 8 pL of this PANi solution
was then drop-cast onto the graphene. The electrode was
cured at 80 °C for 2 h to complete its fabrication. The ref-
erence electrode was hook-shaped, fabricated by screen-
printing Ag/AgCl over Ag ink, and cured at 80 °C for
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10 min (Fig. 4b). The performance of the pH sensor was
evaluated using a source meter (2400 Standard, Keithley)
to measure the potential differences. The sensor was ini-
tially stabilized by bathing it in deionized (DI) water, and
then sequentially exposing it to buffer solutions (Sam-
chun Chemicals) with pH values ranging from 4 to 9.
The stabilization interval was set to 15 s. The evaluation
revealed a sensitivity of — 55.6 mV/pH within the pH
range of 4-9, thus demonstrating the sensor’s suitabil-
ity for rapidly detecting pH changes in sweat on the skin
(Fig. 4¢).

Integrated platform test

To monitor skin conditions in real-time, the humidity,
sweat rate, and pH sensors were vertically integrated into
an eyewear-type platform. This integrated sensor system
was then connected to a microcontroller unit (MCU) and
a Bluetooth module, enabling the real-time transmission
of skin condition data to a smartphone to allow continu-
ous monitoring (Fig. 5a). The experiment was conducted
in an environment conducive to sweat collection with
the participants engaging in physical exercise to facili-
tate data acquisition. During the experiment, real-time
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Fig. 4 Overview of the pH sensor (a) Structure of the pH sensor (b) Fabrication process of pH sensor (c) Performance evaluation of the pH sensor’s
open circuit voltage with a pH range of 4-9 and the resulting linear calibration curve
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Fig. 5 Overview of the integrated platform test (a) Diagram showing the system configuration of the flexible multi-layer sensing platform (b)
An example of the real-time on-body monitoring of the subject skin's humidity, sweat rate, and sweat pH levels

monitoring of the data collected from the participants’
skin was performed. For the initial 6 min, the partici-
pant remained inactive, during which the humidity, sweat
rate, and pH sensors maintained relatively stable read-
ings, owing to the absence of sweat secretion. After six
minutes, sweat secretion commenced as the participants
began exercising, resulting in a rapid increase in skin
humidity and sweat rate. Before exercise, the capacitance
readings representing humidity remained in the range
of 1.9-2.7 pF, whereas the post-exercise sweat secretion
caused the readings to exceed 3 pF. The sweat rate was
ultimately calculated to peak at 0.18 pL/min during the
maximum sweat secretion. Regarding pH, the values
showed a sharp increase approximately 7 min after suffi-
cient sweat collection was initiated following exercise and
subsequently stabilized at approximately pH 5.6 (Fig. 5b).

Conclusion

Overall, this paper proposes a flexible multi-layer eye-
wear platform for real-time skin condition monitor-
ing. The proposed platform collects real-time data
on humidity, sweat rate, and sweat pH, and transmits
it to a smartphone via a Bluetooth module, thereby
enabling users to monitor their skin condition with-
out any constraints on time or location. The findings
of this study indicate that this platform can overcome
the limitations of conventional large-scale equipment

and measurement devices that provide only temporary
information by demonstrating the feasibility of a sensor
system capable of performing continuous skin condi-
tion monitoring. Notably, the proposed sensor system
successfully detected and quantitatively evaluated the
physiological changes in the skin with high sensitiv-
ity and stability. This study primarily focused on test-
ing the platform in a specific scenario, transitioning
from a non-sweating state to a sweating state. While
the results validate the functionality of the platform in
this scenario, future research should expand the scope
of the application of this platform by exploring its per-
formance under various environmental conditions,
situational scenarios, and long-term monitoring. Addi-
tionally, incorporating stretchable substrates or further
physical and chemical sensing functionalities could
enhance its potential. Such advancements could be
expected to facilitate the development of personalized
health management solutions in the healthcare and
medical fields, as well as its applications in sports, mili-
tary, and industrial settings. Moreover, the platform’s
lightweight and adaptive design suggests its potential
as a key tool for providing tailored medical services to
specific groups (e.g., the elderly, athletes, and soldiers).
This not only anticipates a paradigm shift in healthcare
technology but also establishes a comprehensive plat-
form that sets a new standard for skin condition moni-
toring technology.
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