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Abstract

Cardiac regeneration via the direct reprogramming of fibroblasts into chemically induced cardiomyocyte-like cells (CiCMs)
offers a potential therapeutic avenue for heart failure. Nonetheless, the absence of non-invasive techniques for evaluating
CiCM maturation and functionality while maintaining therapeutic viability poses a considerable challenge. We present poly-
L-lysine, and Matrigel double layer—coated gold nanostructured (PMGN) composite platform coupled with an electrochemi-
cal (EC) method that effectively monitors mitochondrial redox dynamics in CiCMs. Based on the metabolic transition from
glycolysis to oxidative phosphorylation (OXPHOS), this EC method provides precise measurement of fibroblast-to-CiCM
conversion in a completely non-destructive manner. Moreover, the PMGN composite platform facilitates the early detection
of functional alterations induced by drugs, such as isoproterenol and carbachol, which conventional cell viability assays fail
to detect, and exhibits exceptional sensitivity in identifying drug-induced cardiotoxicity. This in situ method offers real-time
feedback and rapid quality control during cell preparation, significantly enhancing the safety and efficacy of stem-cell-based

therapies for cardiac regeneration.

Keywords Cell adhesion polymers - Gold nanostructures - Electrochemical method - Direct cardiac reprogramming -

Mitochondrial metabolism - Cardiotoxicity testing

1 Introduction

Heart disease remains the leading cause of death worldwide.
The limited regenerative capacity of adult heart presents
considerable challenges in recovering from heart failure [1,
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2]. Current pharmacological and surgical treatments primar-
ily focus on alleviating symptoms and decelerating disease
progression, rather than restoring myocardial function [3].
Consequently, developing cardiac regeneration strategies
is of paramount importance. Direct reprogramming, which
transforms somatic cells into different cell types without a
pluripotent intermediate, offers a promising approach [4-6].
Notably, direct chemical reprogramming using small-mole-
cule compounds reduces risks associated with teratoma for-
mation and immunogenicity issues compared to gene trans-
fection methods that use transcription factors or microRNAs
[7-9]. In this context, chemically induced cardiomyocyte-
like cells (CiCMs) derived from fibroblasts through small
molecules emerge as a safe and effective source of functional
cardiomyocytes, offering substantial promise for enhancing
cardiac regeneration therapies [10-12].

To confirm the therapeutic viability of CiCMs, com-
prehensive biological analyses are necessary to assess
their maturation and functionality [13—15]. Techniques
commonly used include cell viability assays, quantitative
polymerase chain reaction (qPCR), immunocytochemical
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staining, calcium imaging, and mitochondrial metabo-
lism analysis [16—-19]. However, these conventional tools
are often labor-intensive, time-consuming, and invasive,
necessitating the destruction of cells, which limits assess-
ments of cells targeted for transplantation. FDA guidelines
for stem cell quality control mandate assessments such
as sterility, viability, genetic stability, and functionality,
which compound these challenges [20-22]. These limita-
tions impede efficient evaluation of cell functionality and
pose significant challenges to the clinical application of
CiCMs, where real-time quality control and functional
validation are crucial.

Previously, we developed a novel electrochemical (EC)
approach that demonstrated redox signals in living cells
primarily result from metabolic processes, particularly the
electron transport chains during oxidative phosphoryla-
tion (OXPHOS) [23, 24]. Given the metabolic shift from
glycolysis to OXPHOS during the direct reprogramming
of fibroblasts to CiCMs [25-28], we hypothesized that
this transition could be effectively monitored using the
EC method in a completely non-invasive way. As CiCMs
mature, they increasingly depend on OXPHOS for the sig-
nificant energy required for contraction [29-31], which is
reflected in the EC signal intensity. However, due to the
hydrophilic nature of the gold nanostructure film essential
for EC detection, Matrigel (Mat), a key component for
CiCM culture, could not be adequately coated. High Mat
film stability is crucial for effective fibroblast conversion
and the acquisition of reliable, adhesion-dependent EC sig-
nals. To resolve this, poly-L-lysine (PLL), a cationic poly-
mer, was introduced as an interfacial layer to improve Mat
film coating on the electrode through strong interactions
with the negatively charged extracellular matrix (ECM)
components in Mat. The poly-L-lysine and Matrigel dou-
ble layer—coated gold nanostructured composites, referred
to as PMGN in this study, facilitates non-destructive and
rapid (less than 30 s) monitoring of dynamic changes dur-
ing direct cardiac reprogramming, effectively surpassing
the limitations of conventional methods (Fig. 1a). Utilizing
the PMGN composites with EC detection, cardiac func-
tions were monitored for extended periods up to 29 days
(Fig. 1b) following exposure to isoproterenol (ISO) and
carbachol (Cch). The toxicity of several cardiotoxic can-
didates (doxorubicin, remdesivir, and rosiglitazone) along
with a non-toxic drug (liraglutide) was further assessed
based on EC signal intensities. In contrast to conventional
methods, the PMGN platform does not negatively affect
cardiac function or cell viability, thereby permitting the
reuse of cells for subsequent analyses. This characteristic
allows for more effective assessments of CiCMs for imme-
diate use in cell therapy, thus facilitating clinical applica-
tions (Fig. 1c).
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2 Materials and methods

2.1 Isolation and cultivation of primary mouse
embryonic fibroblasts

The Institutional Animal Care and Use Committee
(IACUC) of Yonsei University Health System granted
approval for the isolation of primary mouse embryonic
fibroblasts (pMEFs) under permit number 2033-0055.
pMEFs were isolated from 13.5-day embryos of ICR mice
(Orientbio, Seongnam, South Korea) following previously
reported methods [10, 32]. Briefly, the heads, tails, limbs,
internal organs, and vertebral columns of the embryos were
removed, and the remaining tissues were finely minced.
Subsequently, the minced tissue was thoroughly washed
with Dulbecco’s phosphate-buffered saline (DPBS; Sigma-
Aldrich, St. Louis, MO, USA) before being seeded in T75
flasks coated with 0.2% (w/v) gelatin (Sigma-Aldrich),
containing pMEF medium (Dulbecco’s Modified Eagle
Medium (DMEM; #11995065, Thermo Fisher Scientific,
Waltham, MA, USA), 10% (v/v) fetal bovine serum (FBS;
Thermo Fisher Scientific), 1% (v/v) penicillin—streptomy-
cin (Thermo Fisher Scientific), and 1% (v/v) nonessential
amino acids (NEAA; Thermo Fisher Scientific)). The
pMEFs were maintained at 37 °C in a 5% CO, incubator,
and the medium was replaced the following day.

2.2 Fabrication of PLL and Mat-coated gold
nanostructure (PMGN) composites

To construct the PMGN platform, materials such as ITO
glass, gold chloride trihydrate (AuCls), poly(ethylene gly-
col) 200 (PEG 200), Triton X-100 (Sigma-Aldrich), DPBS
(Sigma-Aldrich, St. Louis, MO, USA), polydimethylsi-
loxane (PDMS), and plastic chambers were sourced from
U.L.D (Cheongju, South Korea), Sigma-Aldrich (St. Louis,
MO, USA), and Dow Corning Corp. (Midland, MI, USA),
respectively. Solutions used in this study were prepared
using deionized (DI) water, purified by a Millipore Milli-
Q Direct Water Purification System (EMD Millipore,
MA, USA). The construction of a highly conductive gold
nanostructure (HCGN) on the ITO substrate (total area
1.2 cm X 1.7 cm; thickness 0.07 cm; electrical resistance
9 ohms) utilized a multi-step potential (MSP) channel on
the EC instrument for 120 s, as previously described. To
prevent structural defects in the gold nanostructure, the
ITO-coated glass was sequentially washed with a solution
of 1% Triton X-100 in distilled water and 70% ethanol
using an ultrasonic cleaner. A plastic chamber measur-
ing 1.7 cm in diameter was attached to the sterilized ITO
substrate using PDMS (10:1) as a biocompatible adhesive,
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Fig. 1 Schematic illustration of in situ monitoring for direct cardiac reprogramming and its applications using the PMGN composite platform

facilitating the ED process of the gold mixture solution
and supporting cellular growth on a chip. A freshly pre-
pared solution containing 5 mM gold (III) chloride and
polyethylene glycol (PEG) at a 50:1 ratio was used. The
ED of the gold mixture solution (5 mM HAuCl,) was car-
ried out using the MSP method for 180 s, as previously
reported. Subsequently, thermal annealing was applied to
the prepared gold nanostructures at 100 °C for 10 min.
The completed cell chips were then washed with 70% etha-
nol and sterilized under UV light for 40 min. Following
sterilization, the gold nanostructured platform was initially
coated with 200 pg/mL PLL and incubated at 37 °C for
1 h, followed by three washes with distilled water. The
PLL-coated gold nanostructured composites were subse-
quently layered with Matrigel (#354234, Corning Incorpo-
rated, Corning, NY, USA) diluted 1:50 and maintained at
37 °C for at least 1 h to support the cultivation of CiCMs.

2.3 Topological and morphological characterization
of the PMGN composites

To characterize the surface of the PMGN composites, we
utilized FE-SEM (Carl Zeiss, Germany), AFM (Park Sys-
tems, South Korea), and c-AFM (XE-100, Park Systems,
South Korea). FE-SEM was conducted at an acceleration
voltage of 10 kV, whereas AFM was employed in tapping
mode (PR-T300, Probes, South Korea). For c-AFM analy-
sis, a platinum-coated tip was used to apply an electrical
potential between the tip and the PMGN platform’s bottom.
The sample bias voltage was set at 5 V. For determining the
size of the gold nanoparticles and calculating the root mean
square of roughness (R,) for each sample, the image process-
ing and analytical program XEI was used. This software
enabled us to calculate both the total area of roughness and
conductivity of the PMGN composites.
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2.4 Visualization of morphological changes
in CiCMs on the PMGN composites

To assess the morphology of the CiCMs (day 22) on dif-
ferent groups (no coating; control, and PMGN platform),
we fixed the CiCMs with a 10% neutral-buffered formalin
(NBF) solution for 15 min, followed by rinsing with DPBS
twice. After the washing steps, the CiCMs were dehydrated
using a series of ethanol solutions at concentrations of 50%,
60%, 70%, 80%, 90%, and 100% or hexamethyldisilazane
(HMDS) for 15 to 20 min. The dehydrated cardiomyocytes
were then visualized using FE-SEM.

2.5 ECDetection of direct cardiac reprogramming

The cyclic voltammetry (CV) and differential pulse voltam-
metry (DPV) experiments were conducted using a DY2013

Limits of quantification (LOQ) = 1OT‘T(G :

Potentiostat (EG Technology, Seoul, South Korea). The fab-
ricated PLL/Mat gold nanostructure/ITO electrode acted as
the working electrode, with platinum and Ag/AgCl (1 M
KCl) wires serving as the counter and reference electrodes,
respectively. Prior to the EC detection, the culture medium
was replaced with fresh medium to eliminate potential signal
interference from redox molecules and metabolites during
the direct cardiac reprogramming over 29 days. CV method
conditions were set as follows: initial E (V) =0, high E (V)
=0.3, low E (V) = — 0.3, and scan rate (V) =0.05. For
precise quantification, DPV signals were measured under
these conditions: initial E (V) = — 0.3, final E (V) =04,
step E (V) =0.005, and pulse period (s) =0.2. Both CV and
DPV measurements were performed at RT. The calculated
1, values were analyzed by subtracting the baseline current
from the current at E,= —0.03 V. The limit of quantifica-
tion (LOQ) from the DPV signals was determined using the
following formula:

standard error, S . slope)

Following the DPV detection, the CiCMs on the PMGN
platform were detached using a 0.05% Trypsin—EDTA solu-
tion (Thermo Fisher Scientific), and the final cell count was
conducted using the SOL COUNT automatic cell counter
(SOL Inc., South Korea).

For precise calculation of the active surface area of the
PMGN platform, the Randles—Sevcik equation was used,
described as follows,

i, = (2.69 X 10°)n*/?AD'?y!/2C

where ip= peak current, n = number of electrons involved,
A= electrode area in m?, D= diffusion coefficient in m?/s,
v= scan rate in V/s, and C= concentrations of analytes in
mol/L.

2.6 Chemical induction of pMEFs into CiCMs
on tissue culture plate and PMGN platform

For cardiac reprogramming on tissue culture plate (TCP)
and PMGN surfaces, PMGN were initially coated with 200
pg/mL PLL and Mat diluted 1:50 (v/v) in DMEM/F12 and
incubated at 37 °C for at least 1 h prior to cell seeding. In
contrast, TCP plates were coated solely with Mat, without
any prior PLL coating. pMEFs were seeded at a density of
2.5 x 10* cells/mL onto coated PMGN and TCP plates. Four
hours after seeding, the pMEF medium was replaced with
CiCM medium to initiate cardiac reprogramming. CiCM
medium consisted of DMEM/F12, 15% (v/v) FBS, 5% (v/v)
knockout serum replacement (KSR; Thermo Fisher Scien-
tific), 1% (v/v) penicillin—streptomycin, 1% (v/v) NEAA,
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1% (v/v) GlutaMax (Thermo Fisher Scientific), 0.1 mM
- mercaptoethanol, and four small molecules (15 pM For-
skolin (#F-9929, LC Laboratory), 10 pM CHIR99021 (#C-
6556, LC Laboratory, Woburn, MA, USA), 2 pM A83-01
(#2939, Tocris Bioscience, Bristol, UK), and 1 pM SC-1
(#10009557, Cayman Chemical, Ann Arbor, MI, USA)) [10,
11]. The CiCM medium was maintained at 37°C with 5%
CO,, with changes made every other day.

2.7 Immunocytochemical staining

After washing with PBS, the cells were fixed with a 10%
(v/v) formalin solution (Sigma-Aldrich) for 10 min at RT.
They were then permeabilized with 0.1% (v/v) Triton X-100
for 10 min at RT. Subsequently, the cells were blocked with
5% (w/v) bovine serum albumin (BSA; 0216006980, MP
Biomedicals, Irvine, CA, USA) for 1 h at RT. Next, the cells
were incubated overnight with primary antibodies at 4 °C.
The primary antibodies used in this study were mouse anti-
a-actinin (1:500; A7811, Sigma-Aldrich), mouse anti-car-
diac Troponin T (cTnT; 1:200; MAS5-12960, Thermo Fisher
Scientific), and mouse anti-Gata4 (1:200; sc-25310, Santa
Cruz Biotechnology, Dallas, TX, USA). After thorough
washing with PBS three times, the cells were incubated with
secondary antibodies for 1 h at RT. The secondary antibod-
ies used in this study were Alexa-Fluor 488 goat anti-mouse
IgG (1:200; A11001, Thermo Fisher Scientific) and Alexa-
Fluor 594 goat anti-mouse 1gG (1:200; A11005, Thermo
Fisher Scientific). The F-actin cytoskeleton was stained with
Phalloidin-iFluor 594 Reagent (1:1000; ab176757, Abcam,
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Cambridge, UK) for 1 h at 4 °C. To visualize t-tubules,
FITC-conjugated wheat germ agglutinin (WGA; 5 pg/ml;
L4895, Sigma-Aldrich) was used, which binds to N-acetyl-
D-glucosamine and sialic acid. After secondary antibody
staining, the cells were washed three times or more with
PBS. Nuclei were labeled with 4',6-diamidino-2-phenylin-
dole dihydrochloride (DAPI; TCI Chemicals, Tokyo, Japan).
All samples were mounted using VECTASHIELD HardSet
Antifade Mounting Medium (H-1400-100, Vector Labora-
tories, Inc., Newark, CA, USA) and imaged with a confocal
microscope (LSM 980, Carl Zeiss, Jena, Germany). Areas
positive for cardiac markers were quantified using ImageJ
(National Institutes of Health, Bethesda, MD, USA). Sar-
comere length was measured using the profile function in
ZEN Blue software (version 3.1, Carl Zeiss) on images
stained for a-actinin.

2.8 Flow cytometry for apoptosis detection

CiCMs were cultured on TCP, gold nanostructures coated
with Matrigel (Mat), or gold nanostructures coated with 200
pg/mL PLL and Matrigel (PMGN). Apoptotic cells were
detected using the Alexa Fluor™ 488 Annexin V/Dead Cell
Apoptosis Kit (V13241, Thermo Fisher Scientific) follow-
ing the manufacturer’s instructions. Briefly, cells were dis-
sociated using trypsin and then allowed to recover for 30
min under standard culture conditions to restore membrane
integrity prior to staining. After washing with PBS, cells
were stained at room temperature for 15 min with Alexa
Fluor 488-conjugated Annexin V and 100 pg/mL propidium
iodide (PI). Stained cells were immediately analyzed by flow
cytometry using a BD FACSymphony™ A5 Cell Analyzer
(BD Biosciences, Franklin Lakes, NJ, USA). Unstained and
single-stained controls were used to set the compensation
and gating strategy. Data were processed and analyzed using
FlowlJo software (FlowJo LLC, Ashland, OR, USA).

2.9 Quantitative real-time polymerase chain
reaction

Total RNA was extracted using the TaKaRa MiniBEST
Universal RNA Extraction Kit (TaKaRa, Shiga, Japan).
Complementary DNA was synthesized from total RNA
using a cDNA synthesis kit (TaKaRa). The quantitative
real-time polymerase chain reaction (QRT-PCR) was con-
ducted on a QuantStudio3 (Applied Biosystems, Waltham,
MA, USA) by combining TagMan Fast Advanced Master
Mix (Applied Biosystems) and TagMan Gene Expression
Assays (Thermo Fisher Scientific). The primers used in this
study were as follows: Cptib (Mm00487191_gl), Ppara
(Mm00440939_m1), Tfam (Mm00447485_m1), Nfe2 I2

(Mm00477784_m1), Atp2a2 (Mm01201431_m1), Nkx2-
5 MmO01309813_s1), Mef2c Mm01340842_m1), Mespl
(MmO00801883_g1), Myh7 (Mm00600555_m1), Cx43
(MmO01179639_s1), Scn5a (Mm01342518_m1), Cacnalc
(MmO01188822_m1). The relative gene expression levels
were determined using the cycle threshold (Ct) method
and normalized against the endogenous reference gene,
mouse Gapdh (Mm99999915_g1). In addition, for SYBR
Green-based qRT-PCR analysis, reactions were performed
on a QuantStudio3 (Applied Biosystems) using PowerUp™
SYBR™ Green Master Mix (Applied Biosystems) and cus-
tom oligonucleotide primers (Macrogen, Seoul, Korea).
Primer sequences are listed in Table S1. Gene expression
was normalized to the reference gene Rplp0. The relative
gene expression levels were calculated using the compara-
tive Ct method.

2.10 Evaluation of oxygen consumption rate

The oxygen consumption rate (OCR) of CiCMs was moni-
tored using the XFe96 extracellular flux analyzer (Agilent
Technologies, Santa Clara, CA, USA) as an indicator of
mitochondrial functionality. On days 8, 12, 15, 19, 22, 26,
and 29, CiCMs were seeded at a density of 5x 10 cells per
well in an XFe96 microplate coated with Matrigel. Sensor
cartridges were hydrated with XF Calibrant (pH 7.4) for 12
h under non-CO,, 37 °C conditions 1 day prior to the experi-
ment. After 12 h of seeding, the CiCM medium was aspi-
rated from the wells and the wells were washed twice with
XF assay medium. Each well was filled with 180 pL of XF
assay medium and incubated at 37 °C in a CO,-free environ-
ment for 30 min. XF assay medium comprised XF DMEM
Based Medium (pH 7.4) supplemented with 17.5 mM glu-
cose, 0.5 mM pyruvate, and 2.5 mM glutamine. The assay
cartridge, pre-loaded with 2.5 uM oligomycin, 1 uM FCCP,
and a combination of 2.5 uM rotenone and 2.5 uM antimy-
cin A, was operated using the Wave 2.6.3 software (Agilent
Technologies) following the manufacturer’s protocol.

2.11 EC detection for the assessments
of mitochondrial functionality in CiCMs

To evaluate mitochondrial functionality, mature CiCMs
(days 21-24) were exposed to various mitochondrial inhibi-
tors such as FCCP, oligomycin, rotenone, and antimycin A
at concentrations of 0.05 uM, 0.2 uM, 2 uM, 5 uM, and 10
UM for 24 h at 37 °C. Following treatment, the CiCMs were
rinsed with fresh culture media and incubated for 90 min
before DPV detection. Cell viability was then evaluated using
the CCK-8 assay according to the manufacturer’s protocol.

@ Springer
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2.12 Mitochondrial imaging

CiCMs plated in confocal dishes (SPL Life Sciences, Gyeo-
nggi-do, Korea) were loaded with 200 nM tetramethylrho-
damine, methyl ester (TMRM; #T668, Thermo Fisher Scien-
tific) for 30 min at 37 °C. After thorough washing, they were
subsequently incubated with 50 nM TMRM to maintain the
equilibrium distribution of the fluorophore, as previously
reported [33, 34]. Cells were imaged using a confocal micro-
scope (LSM980, Carl Zeiss) in a live state. CiCMs plated
on PMGN were labeled with 500 nM MitoTracker™ Red
CMXRos (#M7512, Thermo Fisher Scientific) for 30 min at
37 °C. The stained cells were washed three times with PBS
and fixed with 10% (v/v) formalin solution for 10 min. Cells
were then treated with 0.1% (v/v) Triton X-100 for 10 min
to achieve permeabilization, blocked with 5% (w/v) BSA
for 1 h, labeled with DAPI, washed with PBS, and finally,
mounted with VECTASHIELD HardSet Antifade Mounting
Medium. Images were acquired using a confocal microscope
(LSM980, Carl Zeiss).

2.13 EC detection for functional assessments
of CiCMs

To assess the functional changes in CiCMs (day 22-24), the
DPV method was employed under identical experimental
conditions as those used for living cell detection. Briefly,
mature CiCMs were treated with 1, 10, 50, and 100 nM
concentrations of ISO and Cch for 10 min. Before EC detec-
tion, the culture medium was replaced with fresh medium
to prevent potential signal interferences. EC detection was
performed at RT. After the DPV detection, cell viability test-
ing was conducted using the CCK-8 kit according to the
manufacturer’s protocol. Mature CiCMs were incubated with
1 x and 10 X concentrations of CCK-8 reagent for 70 min at
37 °C, after which the media containing CCK-8 reagent was
replaced with fresh medium, and cells were incubated for an
additional 90 min before EC detection.

2.14 Calcium imaging

Calcium transient analysis of CiCMs was carried out using
3 uM Fluo-4 AM (Thermo Fisher Scientific) for 30 min at
37°C. After a single wash with cardiac reprogramming basal
medium, serial images of the calcium transients were cap-
tured using a confocal microscope (LSM 710, Carl Zeiss).
Regions of interest (ROIs) were selected from the acquired
images, and changes in fluorescence intensity were plotted
using ZEN software (Carl Zeiss). For drug responsiveness
testing, CiCMs were exposed to concentrations of 1, 10,
50, and 100 nM of isoproterenol (#420355, Sigma-Aldrich)
and carbamoylcholine chloride (#C4382, Sigma-Aldrich).
Alterations in calcium transients of CiCMs were monitored
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post-treatment with each drug. The CCK-8 reagent was
diluted 1:10 (v/v) in culture medium to prepare a 1 X solu-
tion of standard concentration. CiCMs were treated with 1 X
and 10 X CCK-8 solutions for 70 min at 37 °C, followed by
stabilization in CCK-8-free culture medium for 90 min prior
to calcium imaging.

2.15 Contractile function analysis

The contractility of CiCMs was assessed using contraction
videos analyzed with the MUSCLEMOTION plugin for
ImagelJ [35]. Videos were acquired using a CKX53 micro-
scope (Olympus, Tokyo, Japan) and converted into individ-
ual TIFF frames using FFmpeg. The extracted frames were
imported into MUSCLEMOTION to quantify contraction
patterns, including amplitude and frequency. Contraction
parameters were calculated as the average of multiple con-
traction peaks. For electrical stimulation, biphasic pulses
(5 'V, 1 Hz, and 100 ms) optimized for CiCMs cultured on
PMGN were delivered using a WPG100e electrochemical
workstation (WonATech, Seoul, Korea).

2.16 Drug cardiotoxicity assessment

On day 21, CiCMs were treated for 24 h with the following
compound concentrations: doxorubicin (#15007, Cayman
Chemical) at 0.1, 0.5, 1, 5, and 10 uM; remdesivir (#30354,
Cayman Chemical) at 1, 3, 6, 9, and 12 uM; rosiglitazone
(#71740, Cayman Chemical) at 2, 5, 10, 30, and 50 uM; and
liraglutide (#24727, Cayman Chemical) at 0.01, 0.1, 1, 5,
and 10 uM, with a subsequent 72-h evaluation of liraglu-
tide. Cells were then washed and incubated with the Cell
Counting Kit-8 (CCK-8) reagent. Cell morphology was
examined using an optical microscope (Optinity, Korea Lab
Technology, South Korea), and cell viability was assessed
with the CCK-8 kit and DPV method. The CCK-8 assay
was conducted according to the manufacturer’s protocol,
and absorbance was measured at 450 nm using a microplate
reader (Synergy H1 Hybrid Reader, BioTek). Sarcomeric
disarray in CiCMs following drug treatment was evaluated
using immunofluorescent staining with a mouse anti-o-
actinin marker.

2.17 Statistical analysis

All quantitative data were expressed as means + standard
deviations (SD). The “n” values shown in figure legends rep-
resent biological replicates. Statistical differences between
groups were determined using a two-tailed unpaired #-test,
one-way or two-way ANOVA followed by Tukey’s post hoc
test, using Prism 8 software (GraphPad, La Jolla, CA, USA).
Differences were deemed statistically significant when the
p-value was less than 0.05. All quantitative EC results are
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presented as mean + SD from three replicates. Significant
differences are denoted as *(p < 0.05) or **(p < 0.01) using
the unpaired Student’s 7-test. Multiple comparisons were
performed using one-way ANOVA coupled with Tukey’s
post hoc test.

3 Results and discussion

3.1 Development of a PMGN composites
for enhanced cell adhesion and EC detection
of CiCM metabolic activity

To monitor the dynamics of cellular metabolism in CiCMs
using EC detection, we developed an electrochemically
deposited gold nanostructure composites coated with PLL
and Mat for CiCMs. During the development of the PMGN
composites, the highly conductive ITO substrate undergoes
three processing steps: (i) electrodeposition (ED), (ii) ther-
mal annealing (TA), and (iii) PLL/Mat coating. These steps
improve the culture conditions of CiCMs by enhancing their
adhesion to the PMGN composites (Fig. 2a). To compensate
for the low electrocatalytic properties of ITO, a gold film in
nanostructured form, offering an increased active surface
area, was fabricated to enable EC detection of dynamic
intracellular redox reactions in CiCMs. ED times for a gold
mixture solution on the ITO substrate were optimized, and
the resulting morphology and surface characteristics were
analyzed using field-emission scanning electron microscopy
(FE-SEM) and atomic force microscopy (AFM). Conse-
quently, a deposition time of 180 s was established as the
optimal condition, forming gold nanoparticles with a high
active surface area and the smallest size variations for EC
detection compared to 60 s, 120 s, and 360 s groups (Figs. 2b
and S1a). Despite the benefits of generating gold nanostruc-
tures via the ED process, a significant challenge remains the
weak adhesion of the gold film to the ITO-coated substrate,
which is essential for long-term monitoring of CiCM conver-
sion and maturation. To address this issue, the TA process
was applied and optimized, which involves restructuring the
atoms within a single nanoparticle without direct contact;
Ostwald ripening [36] causes two nanoparticles to merge
upon contact to form a single, larger nanoparticle, and coa-
lescence in metal nanostructures under optimal conditions
(T=100 °C and = 10 min) [37], while varying the time and
temperature conditions, to address this instability (Figs. 2b
and S1b). Next, to promote CiCM adhesion on our platform,
we employed PLL, a strongly positively charged polymer,
and Mat, an ECM-based hydrogel (Fig. S2a). Optimization
of PLL concentration and Mat coating conditions involved
coating the TA-processed platform with varying PLL con-
centrations (0, 100, 200, and 500 pg/mL) followed by Mat
application. The combination of 200 pg/mL PLL and Mat

provided optimal conditions, significantly improving cell
adhesion on the PMGN composites (Fig. 2b). AFM revealed
a59.96% reduction in surface roughness, a measure of struc-
tural height variations, compared to the uncoated control
(Fig. 2¢). Conductivity analysis using c-AFM demonstrated
minimal signal variation (1.59 pA), confirming that PLL and
Mat coatings did not impair platform conductivity (Figs. 2d
and S2b). For the circuit design on the PMGN composites
for CiCM detection, it was previously established that active
cellular redox reactions, especially those involving mito-
chondria [23], are crucial for generating electrical signals
at a specific potential (£, = 0 V), which subsequently influ-
ences contact resistance (R,;) and mitochondrial membrane
resistance (Ry;,). Consequently, the R, value, indicative
of the cell-electrode interface, becomes negligible (Fig. 2e)
[38].

When cultured on the PMGN platform for 4 days follow-
ing 19 days of reprogramming, CiCMs with PLL200 + Mat
coating demonstrated enhanced adhesion and spreading,
while control cells formed compact clusters with limited
spreading (Fig. 2f). Further assessment revealed that only
PLL200 +Mat and PLL500 +Mat coatings supported an
increased number of a-actinin-positive cardiomyocyte-like
cells, whereas other groups (Control, + Mat, and PLL100
+ Mat) exhibited poor adhesion and resultant aggregation
with low a-actinin expression (Figs. 2g and S2c—f). These
findings underscore the importance of combining PLL and
Mat for stable adhesion and spreading of reprogrammed
cardiomyocyte-like cells.

Following the confirmation of stable CiCMs cultivation
on the PMGN composites, differential pulse voltammetry
(DPV) analysis was conducted (Figs. 2h and S2g). The PLL
200 +Mat group exhibited a 13.54-fold increase in DPV
signal intensity and a 2.64-fold increase in cell numbers,
as determined by CCK-8 assay results, compared to the
uncoated control (Fig. 2h, i). The correlation between elec-
trical signals and cell viability demonstrates the sensitiv-
ity of the EC method, as the DPV signal for the PMGN
group was 5.13 times higher than that of the control group,
outperforming the conventional CCK-8 assay. This height-
ened sensitivity differentiated between the PLL200 + Mat
and PLL500 + Mat groups, confirmed by immunostain-
ing, which the CCK-8 assay could not detect. To further
validate the biosafety of the PMGN platform (PLL200
+ Mat), considering the potential cytotoxicity of PLL at
high concentrations, we conducted an additional analysis
using Annexin V/PI staining. Flow cytometry revealed that
CiCMs cultured on PMGN exhibited a higher proportion of
viable cells (87.73%) and lower apoptotic cell levels (9.15%)
compared to the TCP and Mat groups, while necrotic cell
proportions remained low and comparable across all condi-
tions (Fig. S3). These results confirm that the 200 pg/mL
PLL used in the PMGN platform does not disrupt membrane
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«Fig.2 Development and characterization of the PMGN platform. a
Schematic of the PMGN platform development and its adhesive capa-
bilities. b AFM images of the fabrication processes for the PMGN
platform alongside FE-SEM images of electrodeposited (ED) gold
nanostructure (180 s), thermally annealed (TA) gold nanostructure at
100 °C for 10 min, and the PMGN platform (scale bars =100 nm). ¢
Root mean square roughness (R,) analysis for EC process, TA process
(control), and the PMGN platform groups (n= 4). d Results from
c-AFM image analysis (Fig. S2b). e Schematic illustration of the cir-
cuit flow in the EC detection components of our system. Cy: capaci-
tance of the electrical double layer; C,: capacitance of the cell mem-
brane; R: resistance of culture media; R : charge transfer resistance;

R, resistance of CiCM-PMGN distance; R, : resistance of the

cell membrane; Ry;,: resistance of the mitochondrial membrane in

CiCM; Cy,,,: capacitance of the mitochondrial membrane in CiCM;

C,: parasitic capacitance. f FE-SEM images of CiCMs (day 23) for

each group at control and on the PMGN platform (scale bars =10

um). Enlarged FE-SEM image in the PMGN platform (i) (scale bars
=1 pm). g Immunofluorescence images of CiCMs, cultured on the

PMGN platform with different concentrations of PLL and Matrigel

coatings, showing a-actinin and F-actin expression (scale bars =100

um). h DPV measurements of CiCMs (day 23) under various coat-
ing conditions (left panel) and the quantification of the DPV results
presented as a bar graph (right panel) (n= 4). i Cell viability tests
for CiCMs cultured under various coating conditions (n= 4). Statis-
tical significance between groups was determined using a one-way
ANOVA followed by Tukey’s multiple comparisons test (*p < 0.05,
**p < 0.01, and ***¥p < 0.001). Data are presented as mean +S.D

integrity or induce cytotoxicity, supporting its suitability for
sensitive electrochemical measurements.

Furthermore, the long-term stability of the PMGN plat-
form was systematically evaluated. The results demonstrate
that although limited surface erosion of the PLL/Mat layer
occurs over a 30-day period, the PMGN platform retains
structural integrity, electrical conductivity, electrocatalytic
activity, and the ability to detect cell-specific EC signals.
These findings validate the reliability and functional robust-
ness of PMGN platform for long-term monitoring applica-
tions (Fig. S4).

3.2 Redox reactions from mitochondrial
metabolism generate the electrical signals
in CiCMs

Having demonstrated that the PMGN platform can reliably
monitor cellular processes in CiCMs, we further investigated
the mechanism for EC detection of mitochondrial metabo-
lism, particularly OXPHOS, by examining intracellular
redox reactions and assessing how mitochondrial inhibitors
modulate these reactions and alter resultant electrical signals
(Fig. 3a). To evaluate the impact of mitochondrial inhibitors
on cellular redox activity, CiCMs were treated with com-
pounds targeting various mitochondrial complexes, such as
rotenone (complex I), antimycin A (complex III), oligomy-
cin (complex V), and carbonyl cyanide-p-trifluoromethoxy-
phenylhydrazone (FCCP; disrupts the proton gradient and
decouples electron transport from ATP synthesis). These

effects were analyzed at different concentrations using the
EC detection and the CCK-8 assay (Figs. 3b, c and S5). The
PMGN composites demonstrated a highly sensitive response
to the mitochondrial inhibitors, starting at concentrations
as low as 2 pM, with changes in EC signals ranging from
18.59 to 36.11%. Conversely, the CCK-8 assay, which indi-
rectly measures cell viability through mitochondrial dehy-
drogenase activity, exhibited only minor fluctuations in the
range of 1.58 to 4.16% at these concentrations (Fig. 3b, c).
These results demonstrate that the PMGN composites offer
superior sensitivity in detecting mitochondrial dysfunction
as they directly capture variations in electron transfer linked
to mitochondrial redox reactions. This enhanced detection
capability enables more precise and sensitive measurements
of mitochondrial activity compared to traditional methods.
To further verify the EC method for monitoring mitochon-
drial activities in CiCMs, changes in the OCR were monitored
over 29 days during direct cardiac reprogramming (Fig. 3d).
As mitochondrial metabolism intensified, OCR values for
maximal respiration, basal respiration, and ATP production
rose by 2.92-fold, 1.69-fold, and 1.43-fold, respectively, by
day 29 compared to day 8, indicating significant metabolic
maturation in CiCMs (Fig. 3e). To further explore the rela-
tionship between mitochondrial activity (i.e., OXPHOS) and
CiCM maturation, mitochondrial membrane potential (A¥),)
was measured over 1 month using tetramethylrhodamine
methyl ester (TMRM) staining (Figs. 3f, g and S6). AY,,,
generated by proton pumps in complexes I, III, and 1V, is
critical for energy storage during OXPHOS and plays a vital
role in CiCM maturation [39, 40]. Consistent with the OCR
results depicted in Fig. 3e, A¥), increased 4.71-fold by day
29 compared to day 8 (Fig. 3g). Furthermore, an analysis of
mitochondrial mass in CiCMs on PMGN using Mito-Tracker
red staining showed a 13.31-fold increase by day 29 relative
to day 8 (Fig. S7). Subsequently, to monitor the maturation of
CiCMs, the expression of genes associated with metabolism
(Cptlb, Ppara, Tfam, Nfe2 12, Atp2a2) was examined over a
29-day period (Fig. 3h). Cptlb is instrumental in regulating
the p-oxidation pathway by facilitating the transport of long-
chain fatty acids into mitochondria [41-43], while Ppara
serves as a crucial regulator of mitochondrial fatty acid oxi-
dation and metabolic homeostasis [44—46]. Tfam supports
mitochondrial DNA replication and transcription [47, 48],
while Nfe2 I2 preserves cellular redox homeostasis, impact-
ing mitochondrial membrane potential and ATP synthesis
[49, 50]. Atp2a?2 regulates the movement of calcium ions
critical for muscle contraction and energy metabolism [51].
Over time, the expression levels of these genes increased,
peaking on day 29. Particularly, Cptlb and Ppara, crucial
p-oxidation genes, exhibited significant upregulation, with
increases of 22.49-fold and 15.45-fold by day 29 compared
to day 1. This upregulation signifies that CiCMs become
metabolically more mature over time, increasingly depending
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on fB-oxidation and OXPHOS for energy. To ensure that the
observed upregulation patterns were not affected by poten-
tial metabolic responsiveness of the reference gene Gapdh,
we additionally performed qRT-PCR using Rplp0, a com-
monly used housekeeping gene with stable expression across
metabolic states [52-54]. This analysis confirmed consist-
ent upregulation trends for key metabolic markers (Cpt1b,
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Ppara) (Fig. S8). Traditional methods, as demonstrated in
Fig. 3d-h, effectively analyzed these metabolic shifts and
monitored CiCM maturation throughout the 29-day period.
Although these methods are powerful analytical tools, they
are inherently invasive and destructive, which precludes the
reuse of CiCMs.
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«Fig. 3 Electrical signals rely on the redox reactions of mitochondrial
metabolism. a A schematic representation of EC detection in CiCMs
and the control of electrical signals through mitochondrial inhibitors.
b Heatmap depicting electrical signals in CiCMs (n= 3) following
the administration of mitochondrial inhibitors, derived from Fig. S5a
(DPV graph). ¢ Heatmap showing CCK-8 results (n= 3) post mito-
chondrial inhibitor treatment. d Measurement of OCR in CiCMs on
each respective day using an XFe96 extracellular flux analyzer (n=
10). OCR readings were taken over 72 min. At 16 min, 2.5 uM Oli-
gomycin (Oligo) was administered, followed by 1 uM FCCP at 35
min, and finally a mixture of 2.5 uM rotenone and 2.5 uM antimycin
A (Rot +AA) at 55 min. e Quantitative analysis of maximal respi-
ration (n= 10), basal respiration (n= 10), and ATP production (n=
10) derived from OCR findings. f Pseudo-colored images of TMRM
staining employed to analyze the increase in mitochondrial membrane
potential (A¥),) in CiCMs over time, with the reference bar indicat-
ing red for high A¥,; and blue for low AW, cells (scale bars =20
um). g Quantification of relative TMRM fluorescence intensity in
CiCMs using TMRM confocal images (n= 54 ~76). Statistical signif-
icance between groups was determined using one-way ANOVA fol-
lowed by Tukey’s multiple comparisons test (*p < 0.05, **p< 0.01,
and ***p < 0.001 versus Day 8 group). h qRT-PCR analysis of car-
diac-related mRNA expressions in CiCMs cultured on a PMGN plat-
form (n= 3, one-way ANOVA followed by Tukey, *p < 0.05, **p<
0.01, and ***p< 0.001 versus day 1 group). Data are presented as
means +S.D

3.3 Non-destructive in situ EC monitoring
and assessment of CiCM reprogramming using
the PMGN platform

The PMGN composites were employed to monitor mito-
chondrial redox dynamics throughout the entire direct repro-
gramming process into CiCMs, capturing critical transi-
tions from a fibroblast-like state to cardiomyocyte-like cells
(Fig. 4(a)). Initial validation involved comparing the expres-
sion of key cardiac markers in CiCMs cultured on TCP
through immunostaining with the metabolic and electrical
signals detected by the PMGN composites (Figs. S9 and
S10). During the initial 6 days of reprogramming, CiCMs
exhibited significant changes in key cardiac proteins, includ-
ing a-actinin, cardiac troponin-T (cTnT), and Gata4. A nota-
ble observation was the 51.24% increase in the early cardiac
marker Gata4 [55-57] from day 1 to day 3, followed by a
decline starting on day 3 (Figs. S9a, b), while a-actinin and
cTnT levels increased (Fig. S9c). These transitions indicate
rapid transdifferentiation toward a cardiomyocyte-like phe-
notype. The electrical signals recorded by the PMGN plat-
form mirrored these early-stage changes, showing a 312.32%
increase from day 1 to day 3, followed by a 23.38% decrease
on day 4, before rising again on day 5 (Fig. S10). These
results demonstrate that the PMGN platform effectively cap-
tures early-stage transdifferentiation dynamics, potentially
unveiling metabolic shifts more dramatically than structural
protein expression, such as a-actinin and cTnT.

Building on these early-stage findings, the PMGN plat-
form was further employed to monitor the maturation

process over a 29-day period (Fig. S11). As illustrated in
Fig. 4(b), pMEFs consistently exhibited low CV signals,
likely due to their minimal reliance on OXPHOS. During
the direct cardiac reprogramming process, fibroblasts pri-
marily utilize glycolysis for energy production [27]. As these
cells transition into cardiomyocyte-like cells, they undergo
a metabolic shift, favoring OXPHOS in the mitochondria
to accommodate the increased energy demands essential
for cardiomyocyte functions, particularly contraction [28].
This transition from glycolysis to OXPHOS is crucial for
reprogramming efficiency and the functional maturation of
CiCMs. Unlike pMEFs, CiCMs showed a clear maturation-
dependent increase in EC signals, distinctively separating the
early reprogramming state on day 2 from the more mature
state observed by day 22. From day 5 to day 12, EC signals
remained relatively stable, indicating an initial stabilization
phase of reprogramming (Fig. 4(c, d)). However, between
days 12 and 22, EC signals significantly increased. By day
15, the signals had increased by 50.99% compared to day 12,
and by day 22, the increase had reached 146.55%, possibly
indicating a critical transition in the maturation process. The
pMEEF signals remained consistently low and did not inter-
fere with the EC signals observed in CiCMs throughout the
29-day period (Fig. 4(c)). Immunostaining of CiCMs cul-
tured on the PMGN platform revealed that a-actinin-positive
cells exhibiting cross-striated patterns began to appear as
early as day 5 of cardiac reprogramming, with more pro-
nounced sarcomere structures observed by day 19 (Fig. 4(e,
f)). Over the 29-day period, a-actinin-positive CiCMs also
demonstrated clearer and more frequent development of
transverse tubules (t-tubules), confirmed by wheat germ
agglutinin (WGA) labeling (Fig. 4(e, g)). The findings indi-
cate a strong correlation between increased mitochondrial
activity, as detected through EC signals, and the matura-
tion of cardiomyocytes. By monitoring mitochondrial redox
reactions, the PMGN platform correlates these metabolic
shifts with structural developments, such as sarcomere for-
mation and t-tubule organization, enabling earlier and more
precise evaluation of cardiomyocyte maturation compared
to conventional methods. Unlike conventional methods that
provide static snapshots, the PMGN platform facilitates con-
tinuous, in situ monitoring, offering a more accurate and
dynamic assessment of cellular transitions over both short-
and long-term periods in a non-destructive manner.

To further investigate the influence of PMGN sur-
face properties on cardiomyocyte development (i.e.,
physical cues), the maturation of CiCMs was assessed
through immunostaining and PCR (Fig. 4(f=h)). In the
TCP group, CiCMs successfully exhibited distinct striated
patterns characteristic of mature cardiomyocytes for 29
days (Figs. S12, S13). By day 19, the sarcomere length
in CiCMs on TCP reached approximately 2.2 pm, akin to
that in adult cardiomyocytes, indicating that structural
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maturation had occurred (Fig. S12) [58]. These struc-
tural changes in CiCM development and maturation were
similar to those seen in CiCMs on the PMGN platform.
Additionally, the incidence of CiCMs displaying pro-
nounced t-tubules was nearly identical in both the TCP
and PMGN groups (Fig. 4(g)). Cardiac-specific gene
expression in the TCP and PMGN groups was further
examined by qPCR on days 5 and 26 (Fig. 4(h)). Early
cardiac transcription factors involved in cardiomyocyte
lineage specification and initial development, such as
Nkx2-5, Mef2c, and Mesp1, exhibited similar expression
levels in both groups on days 5 and 26, except for Mef2c,
which showed elevated expression in the PMGN group
on day 26 (Fig. 4(h(a—c))). Unexpectedly, markers of car-
diomyocyte maturation, including Myh7 (sarcomere for-
mation) and Cx43 (gap junctions), demonstrated signifi-
cantly higher expression levels on day 26 in the PMGN
group compared to the TCP group (Fig. 4(h(d, e))). Con-
versely, Scn5a (sodium channels) and Cacnalc (calcium
channels) showed similar expression levels between the
two groups (Fig. 4(h(f, g))). Notably, ATP2a2, crucial for
calcium handling in mature cardiomyocytes, was more
highly expressed in CiCMs on the PMGN platform by
day 26 (Fig. 4(h(h))). These unexpected findings suggest
that the PMGN platform not only supports cardiomyocyte
differentiation but also enhances advanced maturation,
particularly in terms of calcium regulation and structural
organization, surpassing the outcomes observed in the
TCP group.

To evaluate whether CiCMs cultured on the PMGN
platform exhibit functional cardiomyocyte-like proper-
ties, we analyzed their spontaneous contractile activ-
ity and responsiveness to electrical pacing (Fig. S14).
Time-lapse imaging of intracellular Ca®" influx using
Fluo-4 AM demonstrated consistent calcium transients
and rhythmic beating activity in CiCMs on both TCP and
PMGN, indicating stable spontaneous contractile func-
tion (Fig. S14a). Subsequent MUSCLEMOTION analysis
confirmed no significant differences in beats per minute
(BPM), peak-to-peak time, and contraction amplitude
between CiCMs on TCP and PMGN, suggesting that
both substrates support comparable spontaneous con-
tractility (Fig. S14b, c). Importantly, CiCMs on PMGN
responded reliably to 1-Hz electrical pacing, exhibiting
synchronized contractions with a BPM of 60.15 +0.52
and a peak-to-peak interval of 1.00 +0.04 s (Fig. S14 d,
e, and Supplementary Movie 1). These findings provide
functional evidence that CiCMs on the PMGN platform
not only undergo metabolic and structural maturation but
also acquire electrophysiological responsiveness, thereby
underscoring the utility of PMGN as a functional assess-
ment platform for reprogrammed cardiomyocyte-like
cells.

3.4 Electrophysiological function analysis of CiCMs
via EC methods

While the PMGN platform has demonstrated potential for
long-term cultivation and maturation assessment of CiCMs,
a precise functional assessment of mature CiCMs, espe-
cially their electrophysiological properties, remains to be
elucidated. To investigate this, we explored whether the
PMGN platform could detect drug responses by assessing
the effects of f-adrenergic and muscarinic stimulation on
CiCMs through EC detection and compared these results
with those from calcium transient measurements. ISO and
Cch alter intracellular calcium levels in cardiomyocytes,
directly linked to mitochondrial activity and OXPHOS. ISO
activates f-adrenergic receptors (f-AR), which stimulate
adenylate cyclase to catalyze the conversion of intracellular
ATP to cyclic AMP (cAMP) [59, 60]. This process acti-
vates protein kinase A (PKA), which then phosphorylates
L-type calcium channels (LTCC) in the sarcoplasmic retic-
ulum (SR), elevating intracellular calcium levels [61, 62].
The increase in calcium enhances mitochondrial OXPHOS,
boosting ATP production, which supports contractility and
raises the CiCM beating rate [63]. Conversely, Cch interacts
with muscarinic acetylcholine receptors (mAchR), reducing
cAMP levels and PKA activity, which decreases calcium
influx [64]. Consequently, this reduction in calcium influx
decreases mitochondrial OXPHOS and ATP production,
lowering the beating rate (Fig. 5a).

As hypothesized, applying ISO and Cch to CiCMs cul-
tured on the PMGN platform for 10 days induced remarkable
dynamic changes in OXPHOS activities, resulting in meas-
urable alterations in electrical signals (Fig. 5b, c). These
dynamics were compared with the results from the CCK-8
assay and calcium transient to assess cell viability and func-
tions, such as beats per minute (BPM) (Fig. 5d—f). The elec-
trical signals and cell viability were quantified at various
concentrations of ISO and Cch treatments. It was found that
the PMGN platform elicited precise functional assessments
from 50 nM of both drugs (ISO and Cch) without damage
to cell viability. Interestingly, despite no changes in cell
viability, we observed significant fluctuations in electrical
signals in mature CiCMs treated with ISO (22.07% increase)
and Cch (20.92% decrease) at a concentration of 100 nM
(Fig. 5¢, d). Similarly, we investigated the responsiveness
of CiCMs (days 22-24) treated with ISO and Cch, which
influenced cardiomyocyte beating rates (Fig. Se, f). Nota-
bly, the frequency of Ca>* transients (104.9% +21.9% at 10
nM and 146.5% + 16.9% at 100 nM) increased, with a more
pronounced BPM increase observed at higher ISO concen-
trations. In contrast, opposite trends in the frequency of Ca**
transients (73.9% +13.3% at 10 nM and 50.8% +10% at 100
nM) were observed with higher Cch concentrations. These
results indicate that the PMGN platform can accurately and
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Fig.5 The PMGN platform evaluates the electrophysiological func-
tions in CiCMs. a Schematic illustrating the actions of isoproterenol
(IS0, left) and carbachol (Cch, right) in CiCMs. b DPV graphs from
CiCMs exposed to ISO (left panel) and Cch (right panel) for 10 min
at concentrations ranging from 1 to 100 nM. ¢ Quantified electri-
cal signals from DPV results in iCMs exposed to both ISO and Cch
(n=3). d CCK-8 assay results of CiCMs treated with ISO and Cch
after EC detection (n= 3). Statistical significance across groups was
determined using one-way ANOVA followed by Tukey’s multiple
comparisons test (*p < 0.05, **p < 0.01, and ***p < 0.001). Data are
expressed as means +S.D. e Representative patterns of Ca>* fluo-
rescence alterations as a function of ISO and Cch concentrations. f

sensitively detect functional changes in mature CiCMs asso-
ciated with OXPHOS-mediated processes, such as responses
to f-adrenergic and muscarinic signaling, providing an alter-
native to calcium imaging. Consequently, the results of EC
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Changes in BPM of CiCMs exposed to various doses of ISO and Cch,
normalized against the untreated control (n= 10, two-way ANOVA
followed by Tukey, **p < 0.01 and ***p < 0.001 versus 0 nM control
group within each drug). g DPV graph of CiCMs treated with 1 X and
10 X CCK-8 reagents for 70 min. And the quantified results of elec-
trical signals from the left panel (n= 3). h Representative patterns
of Ca* fluorescence variations as a function of 1x and 10 x CCK-8
reagents. And BPM of CiCMs treated with 1X and 10 X CCK-8 rea-
gents, normalized against the untreated control (n= 25, two-tailed
t-test, ***p< 0.001 versus control group). Data are presented as
means +S.D

detection and Ca®* transient measurements displayed a simi-
lar trend (Fig. 5c, f).

Next, we examined the effects of CCK-8 reagent on
CiCMs over 24 h at 1 X and 10 X concentrations by tracking



Advanced Composites and Hybrid Materials (2025) 8:256

Page 150f20 256

changes in electrical signals and calcium transients (Fig. 5g,
h). No significant changes in electrical signals or BPM were
observed at 1 X CCK-8 concentration. However, at a 10
X concentration, there was a decrease in BPM and electri-
cal signals, suggesting that the reagent, commonly used for
colorimetric detection of cell viability, may induce cardiac
toxicity at high concentrations. In contrast, the proposed EC
detection using the PMGN platform eliminates the need for
external reagents, thereby avoiding the potential risk of tox-
icity associated with reagents in colorimetric assays. These
results collectively indicate that the PMGN platform can
effectively monitor cardiomyocyte maturation and functional
changes driven by mitochondrial metabolism in response
to B-adrenergic and muscarinic stimulation. By detecting
dynamic shifts in mitochondrial activity following drug
exposure, the platform can sensitively capture electrophysi-
ological changes without compromising the underlying cel-
lular state.

3.5 Cardiotoxicity assessment using EC methods

Given its proven ability to assess CiCM maturation and
function, the PMGN platform was further adapted for high-
throughput drug screening to evaluate cardiotoxicity. We
hypothesized that, owing to its high sensitivity, the PMGN
platform combined with the EC method would facilitate
early detection of drug-induced cardiotoxic effects. Four
drugs were selected for evaluation: (i) the anti-cancer agent
doxorubicin [65-67]; (ii) the COVID-19 therapeutic remde-
sivir [68, 69]; (iii) the diabetes drug rosiglitazone [70, 71];
and (iv) the type 2 diabetes and chronic obesity therapeutic
liraglutide (Fig. 6a) [72, 73].

The DPV signals sourced from CiCMs indicated that
doxorubicin, remdesivir, and rosiglitazone cause cardio-
toxic effects, whereas liraglutide did not show a significant
decrease in signal intensity, suggesting an absence of cardio-
toxicity (Fig. 6b). These observations were consistent across
various concentrations (0—10 pM) under both 24-h and 72-h
treatment conditions. These findings were substantiated by
cell viability assessments and sarcomere structure analysis.
Specifically, doxorubicin caused a 5.47% decrease in elec-
trical signal at a low concentration of 0.1 pM, a change not
detectable using the CCK-8 assay (Fig. 6¢, d). Cellular dam-
age was apparent at concentrations of 1 pM, as shown by
immunostaining and CCK-8 assay, which highlighted sarco-
meric disarray with unclear a-actinin striated patterns and a
reduction in cell viability (Fig. 6d, e). At this concentration,
electrical signals decreased by a significant 30.12%, indicat-
ing exceptional sensitivity in detecting changes in cardiac
cell viability and function (Fig. 6¢). Remdesivir exhibited
cardiotoxicity at concentrations above 3 pM as assessed by
both the PMGN platform and conventional assays (Fig. 6c¢,
e). At 6 pM, EC signals decreased by 50.55% along with

a 26.11% reduction in cell viability and sarcomere disrup-
tion. Rosiglitazone displayed cardiotoxic effects more rap-
idly, evidenced by a 23.46% decrease in EC signal at 2 pM
(Fig. 6¢), while the CCK-8 assay indicated only a 7.32%
reduction in cell viability (Fig. 6d). In contrast, the liraglu-
tide group exhibited no significant changes in either EC
signals or conventional assays (Figs. 6¢c—e and S15). These
results illustrate that the EC method offers superior sensi-
tivity in detecting early-stage cardiotoxic effects compared
to conventional assays. Significant changes in electrical
signals were noted at lower drug concentrations, whereas
traditional methods necessitated higher concentrations and
more extensive cellular damage. With its rapid, reagent-free
assessments (less than 30 s), the PMGN platform provides
a high-throughput and effective solution for cardiotoxicity
screening in preclinical drug evaluations.

4 Conclusions

The PMGN composite platform was developed to moni-
tor real-time mitochondrial dynamics during direct cardiac
reprogramming via EC methods. This label-free, non-
destructive approach allows for precise assessments of cell
maturity, functionality, and cardiotoxicity in CiCMs. By
tracking cellular energy metabolism, intrinsically linked to
cardiac maturation and functional competency, the platform
facilitates a more accurate and efficient evaluation of meta-
bolic shifts throughout the maturation process, all without
necessitating cell destruction.

EC analysis used in this study identifies redox reactions
during mitochondrial metabolism, proving highly effective
for evaluating the metabolic dynamics of CiCMs. Mature
CiCMs at day 22 demonstrated a 153.55% increase in elec-
trical signals compared to their immature counterparts at
day 5, showing the platform’s high sensitivity for detect-
ing metabolic shifts during reprogramming and maturation.
Furthermore, the platform was highly effective in assessing
functional changes induced by B-adrenergic and muscarinic
stimulation. Treatment with ISO and Cch at 100 nM resulted
in significant changes in electrical signals—an increase of
22.07% with ISO and a decrease of 20.92% with Cch—illus-
trating the platform’s capability to monitor mitochondrial
activity shifts, even without detectable changes in cell via-
bility. This sensitivity indicates that the PMGN composite
platform could accurately evaluate cardiomyocyte function-
ality and drug responsiveness. The ability of the platform to
detect drug-induced cardiotoxicity early, as demonstrated by
the detection of toxic effects from doxorubicin and remdesi-
vir, further underscores its utility.

In clinical translation, guidelines for cell therapy devel-
opment emphasize the need for comprehensive functional
and safety assessments of therapeutic cells [74, 75]. While
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traditional assays like viability tests, molecular profiling,
and immunohistochemistry staining are essential, they are
often destructive and time-consuming, making them poorly
suited for real-time monitoring and efficient feedback during
cell preparation. The PMGN composite platform provides
a complementary solution by enabling real-time, non-inva-
sive tracking of functional and metabolic changes, thereby
ensuring effective quality control during cell preparation.
This system has the potential to streamline the monitoring
process and ensure that the utilized cardiomyocytes are func-
tionally mature. By detecting subtle shifts in mitochondrial
metabolism, the PMGN composite platform offers immedi-
ate feedback, enabling rapid adjustments. This approach can
significantly enhance clinical workflows by ensuring regula-
tory compliance, reducing the time to therapy for patients,
and improving quality control during cardiotoxicity testing.
Overall, the PMGN composite platform provides a
robust, real-time alternative to traditional methods for
evaluating cardiomyocyte maturation, functionality, and
drug response, thereby enhancing the preparation and
quality control of stem cell-based therapies. In addition,
the PMGN platform can be readily expanded to multi-well
formats, enabling high-throughput screening and standard-
ized evaluation of stem cell-derived cardiomyocytes under
clinical conditions. This expandability supports large-scale
and reproducible metabolic assessments, highlighting its
potential utility in clinical translation (Fig. S16), particu-
larly for the validation and safety monitoring of cardio-
myocyte products in regenerative medicine [76, 77].
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