

# Original Article Respiratory Diseases & Critical Care Medicine





Received: Oct 6, 2024 Accepted: Feb 10, 2025 Published online: Jul 8, 2025

#### **Address for Correspondence:**

Jin Woo Song, MD, PhD

Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43gil, Songpa-gu, Seoul 05505, Korea. Email: jwsongasan@gmail.com

© 2025 The Korean Academy of Medical Sciences.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### ORCID iDs

Jae Ha Lee 🔟

https://orcid.org/0000-0003-0932-2826 Ji Hoon Jang

https://orcid.org/0000-0002-5048-8820 Song Yee Kim

https://orcid.org/0000-0001-8627-486X Moo Suk Park (D)

https://orcid.org/0000-0003-0820-7615 Man Pyo Chung (D

https://orcid.org/0000-0002-5548-0764 Hongseok Yoo

https://orcid.org/0000-0002-2227-6441 Sung Hwan Jeong io

https://orcid.org/0000-0001-5031-1251

# Development of a Prediction Model for Acute Exacerbation in Idiopathic Pulmonary Fibrosis: A Study of the Korea IPF Cohort Registry

Jae Ha Lee [0,1] Ji Hoon Jang [0,1] Song Yee Kim [0,2] Moo Suk Park [0,2] Man Pyo Chung [0,3] Hongseok Yoo [0,3] Sung Hwan Jeong [0,4] Hong Lyeol Lee [0,5] Sun Mi Choi [0,6] Young Whan Kim [0,6] Yong Hyun Kim [0,7] Sung Woo Park [0,8] Jong Sun Park [0,9] Yangjin Jegal [0,10] Yong Suk Jo [0,11] Hee-Young Yoon [0,12] Tae-Hyung Kim [0,13] Yee Hyung Kim [0,14] Beomsu Shin [0,15] Hyun-kyung Lee [0,16] Sei-Hoon Yang [0,17] Hyun Lee [0,18] Sang-Heon Kim [0,18] Eun Joo Lee [0,19] Hye Sook Choi [0,20] Hyung Koo Kang [0,21] Eun Young Heo [0,22] Won-Yeon Lee [0,23] and Jin Woo Song [0,24]

<sup>1</sup>Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea

<sup>2</sup>Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea

<sup>3</sup>Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

<sup>4</sup>Department of Pulmonology and Allergy, Critical Care Medicine, Gil Medical Center, Gachon University, Incheon, Korea

<sup>5</sup>Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Inha University, Incheon, Korea

<sup>6</sup>Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea

<sup>7</sup>Division of Allergy and Pulmonology, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

<sup>8</sup>Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea

<sup>9</sup>Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea

<sup>10</sup>Division of Pulmonary Medicine, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea

<sup>11</sup>Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

<sup>12</sup>Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea

<sup>13</sup>Division of Pulmonary and Critical Care Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea

<sup>14</sup>Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea

<sup>15</sup>Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea

<sup>16</sup>Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Inje University Busan Paik Hospital, Busan, Korea

<sup>17</sup>Division of Pulmonary, Department of Internal Medicine, College of Medicine, Wonkwang University, Iksan, Korea

<sup>18</sup>Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea

<sup>19</sup>Division of Respiratory, Allergy, and Critical Care Medicine, Korea University College of Medicine, Korea University Medical Center, Seoul, Korea

<sup>20</sup>Department of Pulmonary and Critical Care Medicine, Kyung Hee University Medical Center, School of Medicine, Kyung Hee University, Seoul, Korea

<sup>21</sup>Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Inje University Ilsan



Hong Lyeol Lee 📵

https://orcid.org/0000-0002-4721-567X Sun Mi Choi

https://orcid.org/0000-0002-0742-6085 Young Whan Kim (b)

https://orcid.org/0000-0002-2768-2422 Yong Hyun Kim

https://orcid.org/0000-0001-9973-7632 Sung Woo Park

https://orcid.org/0000-0002-1348-7909 Jong Sun Park

https://orcid.org/0000-0003-3707-3636 Yangjin Jegal (D

https://orcid.org/0000-0002-1935-7240 Yong Suk Jo

https://orcid.org/0000-0002-6422-6530 Hee-Young Yoon D

https://orcid.org/0000-0001-9852-0036

Tae-Hyung Kim 🝺

https://orcid.org/0000-0002-3863-7854

Yee Hyung Kim 📵

https://orcid.org/0000-0002-2921-0314

Beomsu Shin 📵

https://orcid.org/0000-0002-8449-0195

Hyun-kyung Lee 📵

https://orcid.org/0000-0003-1032-0190

Sei-Hoon Yang 📵

https://orcid.org/0000-0002-2187-5581

Hyun Lee 📵

https://orcid.org/0000-0002-1269-0913

Sang-Heon Kim 🝺

https://orcid.org/0000-0001-8398-4444

Eun Joo Lee 📵

https://orcid.org/0000-0001-7884-9045

Hye Sook Choi D

https://orcid.org/0000-0001-8387-4907

Hyung Koo Kang

https://orcid.org/0000-0001-9671-0944

Eun Young Heo

https://orcid.org/0000-0003-3803-4903

Won-Yeon Lee

https://orcid.org/0000-0002-5461-6770

Jin Woo Song

https://orcid.org/0000-0001-5121-3522

#### Disclosure

The authors have no potential conflicts of interest to disclose.

#### **Author Contributions**

Conceptualization: Choi SM, Kim YW, Kim YH, Park SW, Park JS, Jegal Y, Jo YS, Yoon HY, Kim TH, Kim YH, Shin B, Song JW. Data curation: Song JW. Formal analysis: Lee HK, Yang SH, Lee H, Kim SH, Lee EJ, Choi HS, Kang HK, Heo EY, Lee WY, Song JW. Methodology: Choi SM, Kim YW, Kim YH, Park SW, Park JS, Jegal Y, Jo YS, Yoon HY, Kim TH, Kim YH, Shin B.

Paik Hospital, Inje University College of Medicine, Goyang, Korea

<sup>22</sup>Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea

<sup>23</sup>Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea

<sup>24</sup>Division of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

# **ABSTRACT**

**Background:** Acute exacerbation (AE) of idiopathic pulmonary fibrosis (IPF) has the most disastrous impact on prognosis as a major cause of morbidity and mortality. However, there is no proven treatment, and the occurrence of AE is unpredictable. This study aimed to develop a prediction model for AE in patients with IPF using the nationwide Korea IPF Cohort (KICO) registry.

**Methods:** This is a retrospective study of Korean patients with IPF who were enrolled from June 2016 to February 2022 in the KICO registry. We developed a prediction model for AE based on risk factors found in the multivariable logistic regression model.

**Results:** Of 678 patients with IPF, the mean age was 69.4 years, and 82.0% were male. AE occurred in 165 patients (24.3%) during follow-up (median: 40.7 months). The median time from IPF diagnosis to AE was 11.6 (interquartile range: 3.6–23.5) months. Lower forced vital capacity (FVC), shorter six-minute walking distance (6MWD), and the use of home oxygen were independently associated with AE in the multivariable logistic analysis. In a risk-predicting model using variables of FVC, 6MWD, and the use of home oxygen, there was a significant predictive power for AE in both score (area under the curve [AUC], 0.746; 95% confidence interval [CI], 0.705–0.783; P < 0.001) and stage (AUC, 0.696; 95% CI, 0.654–0.736; P < 0.001).

**Conclusion:** Our results suggest that a model using FVC, 6MWD, and home oxygen use may be useful in predicting AE in patients with IPF.

Keywords: Idiopathic Pulmonary Fibrosis; Acute Exacerbation; Prognosis; Mortality

# INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a prototype of chronic progressive fibrosing interstitial pneumonia, characterized by variable course and poor prognoses. <sup>1,2</sup> Acute exacerbation (AE) has the most serious impact on prognosis in patients with IPF and is the most common cause of death in this population. <sup>3-5</sup> AE can occur at any stage during the disease course, with an annual incidence of 5–15%, and is associated with a high mortality rate (30–85%) in patients with IPF. <sup>3,6-10</sup> The etiology and pathogenesis are not well understood. <sup>10,11</sup> The known risk factors for AE are lower forced vital capacity (FVC) and diffusing capacity of the lung for carbon monoxide (DLco) at baseline, shorter six-minute walking distance (6MWD), infections, and presence of pulmonary hypertension. <sup>9,12-15</sup>

Despite considerable progress in the management of IPF, there is no proven treatment for AE of IPF. 16,17 Only corticosteroids had been weakly recommended in the international guidelines, and this recommendation was based on expert opinion without specific guidance on dose, duration, or tapering. 2,18 Therefore, prediction and prevention based on the risk factors of AE might be important, as well as alternative ways to manage AE in patients



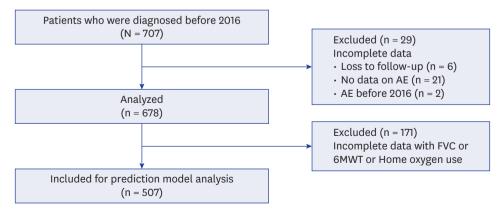
Validation: Lee HK, Yang SH, Lee H, Kim SH, Lee EJ, Choi HS, Kang HK, Heo EY, Lee WY. Writing - original draft: Lee JH, Jang JH, Kim SY, Park MS, Chung MP, Yoo H, Jeong SH, Lee HL, Song JW. Writing - review & editing: Lee JH, Jang JH, Kim SY, Park MS, Chung MP, Yoo H, Jeong SH, Lee HL, Choi SM, Kim YW, Kim YH, Park SW, Park JS, Jegal Y, Jo YS, Yoon HY, Kim TH, Kim YH, Shin B, Lee HK, Yang SH, Lee H, Kim SH, Lee EJ, Choi HS, Kang HK, Heo EY, Lee WY, Song JW.

with IPF in clinical practice. However, previous studies on the prediction of AE in patients with IPF have limitations, such as small numbers of patients (n = 110–121) and insufficient data. <sup>19,20</sup> The aim of the present study was to develop a risk prediction model using data from the Korea IPF Cohort (KICO) registry.

### **METHODS**

### **Study population**

This is a post hoc analysis using data from the KICO registry, an ongoing observational nationwide cohort study of IPF, which has recruited patients from 34 referral hospitals in Korea since 2016. A total of 707 patients with IPF who were registered from June 2016 to February 2022 in the KICO registry were screened. Among them, 29 patients were excluded due to unavailable data of AE (n = 23) or follow-up loss (n = 6), and 678 patients were ultimately included in the analysis (**Fig. 1**). All IPF patients met the criteria of the American Thoracic Society (ATS)/European Respiratory Society (ERS)/Japanese Respiratory Society/Latin American Thoracic Association. $^{2,21,22}$ 


#### Clinical data

Clinical and survival data were obtained from the KICO web-based registry (http://IPF.crf.kr). Information was collected from each center and was recorded into a central electronic Case Report Form. FVC and DLco by spirometry or plethysmography were measured at the time of diagnosis according to the ATS/ERS recommendations.<sup>23,24</sup> The six-minute walk test (6MWT) was also conducted at the time of diagnosis according to the ATS/ERS guidelines.<sup>25</sup>

AE was defined, using the criteria suggested by Collard et al.,<sup>26</sup> as acute, clinically significant deterioration of dyspnea, typically less than 30 days, with new bilateral lung infiltration that is not fully explained by heart failure or fluid overload without identified extra-parenchymal cause (pneumothorax, pleural effusion, or pulmonary embolism).

# Development of a prediction model for AE

Baseline variables at IPF diagnosis and follow-up data were evaluated as predictive factors for AE in patients with IPF. Binary logistic regression analysis was used to identify risk factors for AE. The prediction model was developed using a nomogram consisting of identified



**Fig. 1.** Flow chart of study participants and analyzed population.

AE = acute exacerbation, FVC = forced vital capacity, 6MWT = six-minute walk test.



variables with point contributions to predicting AE in patients with IPF. Categorical ranges were established based on values commonly used in clinical practice and shown to be clinically meaningful and significant for prognosis in previous studies. <sup>27-29</sup> We classified the patients into three categories based on the scores. We evaluated the performance of the model for predicting AE using the receiver operating characteristic (ROC) curve analysis. We also analyzed the differences in survival according to stage to assess the usefulness of the scoring system in predicting prognosis using Kaplan-Meier survival curve analysis and the log-rank test.

#### Statistical analysis

Data are presented as percentages for categorical variables and mean  $\pm$  standard deviation for continuous variables. Differences in study participant characteristics were compared between subgroups using the  $\chi^2$  test or Fisher's exact test for categorical variables and an independent *t*-test or Mann-Whitney *U* test for continuous variables. The Shapiro-Wilk test was used to test for normal distribution.

Overall survival probability was estimated using the Kaplan-Meier survival curve analysis. The difference between groups was assessed using the log-rank test. The time interval was calculated from the day of IPF diagnosis to death or the last follow-up. Time to AE was calculated from the day of IPF diagnosis to the event. Unadjusted and multivariable analyses, using binary logistic regression, were performed to identify predicting factors for AE. The nomogram was developed by identifying patient characteristics predicting AE in the multivariable logistic regression model. A bootstrap resampling method was used for internal validation. Bootstrap-corrected ROC curve analysis using bootstrap resampling (times = 1,000) was performed. All statistical analyses were carried out using SPSS 26.0 (IBM Corp. released 2019, IBM SPSS Statistics for Windows, Version 26.0; IBM Corp., Armonk, NY, USA), R 4.1.2 (R Core Team (2021), R: A language and environment for statistical computing; R Foundation for Statistical Computing, Vienna, Austria; https://www.R-project.org/), and MedCalc Statistical Software version 19.2.6 (2020; MedCalc Software Ltd., Ostend, Belgium; https://www.medcalc.org), and *P* values less than 0.05 were considered statistically significant.

#### **Ethics statement**

This study was approved by the Institutional Review Board of Haeundae Paik Hospital (approval No. 2021-07-017), and the requirement for written informed consent was waived due to the retrospective nature of the study. The preparation of the manuscript was carried out in accordance with the Strengthening the Reporting of Observational studies in Epidemiology guidelines for observational studies.

# **RESULTS**

#### **Baseline characteristics**

Of 678 patients, the mean age was 69 years, and 82.0% were male (**Table 1**). Most of the patients (88.4%) had received antifibrotic treatment, and the mean duration of antifibrotic use was 418.2 ± 358.5 days. During follow-up (median: 40.7 months, interquartile range [IQR]: 38.9–42.4 months), 203 (29.9%) patients died, and the one- and three-year mortality rates were 7.7% and 28.6%, respectively. AE occurred in 165 patients (24.3%), and the median time from diagnosis of IPF to AE occurrence was 11.6 (IQR: 3–23.5) months. The one- and three-year cumulative incidence rates of AE were 12.7% and 26.9%, respectively.



Table 1. Comparison of baseline characteristics of the AE and no AE groups among patients with idiopathic pulmonary fibrosis

| Characteristics            | Overall             | AE                  | No AE               | P value |
|----------------------------|---------------------|---------------------|---------------------|---------|
| All patients               | 678                 | 165                 | 513                 |         |
| Male                       | 556 (82.0)          | 137 (83.0)          | 419 (81.7)          | 0.694   |
| Age, yr                    | $69.37 \pm 8.23$    | $69.40 \pm 8.02$    | $69.37 \pm 8.30$    | 0.964   |
| BMI, kg/m <sup>2</sup>     | 24.48 ± 3.16        | $24.39 \pm 3.52$    | $24.52 \pm 3.05$    | 0.333   |
| Ever smoker                | 428 (64.4)          | 110 (70.1)          | 318 (62.6)          | 0.887   |
| PaO <sub>2</sub> , mmHg    | 99.00 ± 39.58       | 89.95 ± 23.06       | 103.24 ± 44.73      | 0.007   |
| BNP, pg/mL                 | $211.34 \pm 513.14$ | $251.25 \pm 562.94$ | $188.85 \pm 483.46$ | 0.079   |
| RVSP, mmHg                 | 29.77 ± 9.84        | 32.95 ± 11.71       | 28.06 ± 8.23        | 0.012   |
| PFT                        |                     |                     |                     |         |
| FVC, % predicted           | $85.88 \pm 17.51$   | $79.75 \pm 17.99$   | $87.85 \pm 16.90$   | < 0.001 |
| DLco, % predicted          | $61.10 \pm 20.57$   | $50.05 \pm 17.81$   | $64.64 \pm 20.15$   | < 0.001 |
| 6MWT                       |                     |                     |                     |         |
| Distance, m                | 403.95 ± 111.38     | $370.60 \pm 116.78$ | $414.98 \pm 107.42$ | < 0.001 |
| Nadir SpO <sub>2</sub> , % | $90.09 \pm 6.57$    | $87.04 \pm 7.46$    | $91.10 \pm 5.92$    | < 0.001 |
| GAP stage                  |                     |                     |                     | < 0.001 |
| Stage I                    | 355 (53.5)          | 59 (36.0)           | 296 (59.3)          |         |
| Stage II                   | 242 (36.5)          | 75 (45.7)           | 167 (33.5)          |         |
| Stage III                  | 66 (10.0)           | 30 (18.3)           | 36 (7.2)            |         |
| Home oxygen use            | 99 (16.2)           | 64 (40.3)           | 35 (7.7)            | < 0.001 |
| Lung cancer                | 60 (8.9)            | 22 (13.5)           | 38 (7.5)            | 0.018   |
| Antifibrotics use          | 536 (88.4)          | 141 (89.2)          | 395 (88.2)          | 0.717   |

Data are presented as mean ± standard deviation or number (%), unless otherwise indicated.

AE = acute exacerbation, BMI = body mass index,  $PAO_2$  = arterial partial pressure of oxygen, BNP = brain natriuretic peptide, RVSP = right ventricular systolic pressure, PFT = pulmonary function test, FVC = forced vital capacity, DLco = diffusing capacity of lung for carbon monoxide, 6MWT = six-minute walk test,  $SPO_2$  = percutaneous oxygen saturation, GAP = gender, age, and physiology.

#### **Risk factors**

The AE group had more frequent history of lung cancer, more severe dyspnea, lower arterial partial pressure of oxygen (PaO<sub>2</sub>; at rest in room air), lower lung function (FVC and DLco), shorter 6MWD, higher gender-age-physiology index, higher frequency of home oxygen use, and higher right ventricular systolic pressure than the non-AE group (**Table 1**). In the multivariable logistic regression analysis, lower FVC, shorter 6MWD, and use of home oxygen were independent risk factors for AE (**Table 2**).

# Development of a prediction model

Among 678 patients, 507 with complete datasets were included in model development. We developed a prediction model for AE in patients with IPF using variables of FVC, 6MWD, and use of home oxygen. The thresholds for the categorical variables of 6MWD and FVC were determined based on the results of previous studies,  $^{29-31}$  and were significant for predicting AE in our study. When converted to categorical variables, 6MWD < 250 m, (odds ratio [OR], 2.091; 95% confidence interval [CI], 1.038–4.214; P = 0.039), FVC (% predicted) between 50 and 75 (OR, 1.828; 95% CI, 1.151–2.904; P = 0.011) and < 50 (OR, 3.819; 95% CI, 1.406–10.370; P = 0.009), and use of home oxygen (OR, 6.541; 95% CI, 3.843–11.133; P < 0.001) were independent risk factors for AE (Table 3).

We assigned points for each variable according to the coefficients of the logistic regression model and the nomogram. The nomogram can effectively predict the risk of AE using point-linear predictor unit mapping (**Supplementary Fig. 1**). The index score was calculated from the sum of the scores for each of the three variables; an index score of 0–1 point indicates stage I (low risk), a score of 2–4 points indicates stage II (intermediate risk), and a score of 5–6 points indicates stage III (high risk) (**Table 4**). Patients were divided into three groups with different stages based on an analysis of the incidence of AE (**Supplementary Fig. 2**). The scoring system



Table 2. Analysis of risk factors for acute exacerbation with logistic regression model

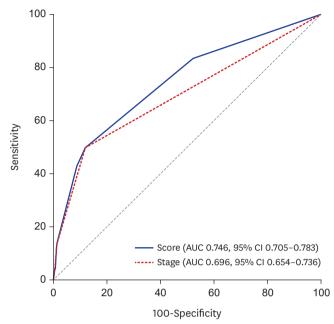
| Variables                  |       | Univariate analysis |         |       | Multivariate analysis <sup>a</sup> |         |  |
|----------------------------|-------|---------------------|---------|-------|------------------------------------|---------|--|
|                            | OR    | 95% CI              | P value | OR    | 95% CI                             | P value |  |
| Male                       | 1.098 | 0.690-1.746         | 0.694   |       |                                    |         |  |
| Age, yr                    | 1.000 | 0.979-1.022         | 0.964   |       |                                    |         |  |
| BMI, kg/m <sup>2</sup>     | 0.987 | 0.934-1.044         | 0.659   |       |                                    |         |  |
| Ever smoker                | 1.146 | 0.742-1.773         | 0.539   |       |                                    |         |  |
| PaO <sub>2</sub> , mmHg    | 0.987 | 0.978-0.997         | 0.009   | -     | -                                  | -       |  |
| PFT                        |       |                     |         |       |                                    |         |  |
| FVC, % predicted           | 0.967 | 0.955-0.978         | < 0.001 | 0.970 | 0.948-0.992                        | 0.008   |  |
| DLco, % predicted          | 0.959 | 0.949-0.970         | < 0.001 | -     | -                                  | -       |  |
| 6MWT                       |       |                     |         |       |                                    |         |  |
| Distance, m                | 0.997 | 0.995-0.998         | < 0.001 | 0.995 | 0.992-0.998                        | 0.003   |  |
| Nadir SpO <sub>2</sub> , % | 0.916 | 0.889-0.944         | < 0.001 | -     | -                                  | -       |  |
| BNP, pg/mL                 | 1.000 | 1.000-1.001         | 0.391   |       |                                    |         |  |
| GAP stage                  |       |                     |         |       |                                    |         |  |
| Stage I                    | 1.000 |                     |         |       |                                    |         |  |
| Stage II                   | 2.253 | 1.525-3.329         | < 0.001 | -     | -                                  | -       |  |
| Stage III                  | 4.181 | 2.390-7.314         | < 0.001 | -     | -                                  | -       |  |
| Home oxygen use            | 8.065 | 5.049-12.883        | < 0.001 | 5.679 | 2.676-12.049                       | < 0.001 |  |
| Lung cancer                | 1.938 | 1.110-3.385         | 0.020   | -     | -                                  | -       |  |
| Antifibrotics use          | 1.113 | 0.624-1.986         | 0.717   |       |                                    |         |  |
| RVSP, mmHg                 | 1.053 | 1.014-1.094         | 0.008   | -     | -                                  | -       |  |

OR = odds ratio, CI = confidence interval, BMI = body mass index, PaO<sub>2</sub> = arterial partial pressure of oxygen, PFT = pulmonary function test, FVC = forced vital capacity, DLco = diffusing capacity of lung for carbon monoxide, 6MWT = six-minute walk test, SpO<sub>2</sub> = percutaneous oxygen saturation, BNP = brain natriuretic peptide, GAP = gender, age, and physiology, RVSP = right ventricular systolic pressure.

<sup>a</sup>The effect of independent variables on response variable was analyzed using the multivariate logistic regression, and the statistically significant variables were included in the univariate logistic regression with 0.05 alpha level. The multivariate model was created using a backward elimination method, and the probability was set at 0.05 for removal.

**Table 3.** Analysis of risk factors for acute exacerbation with logistic regression model including home oxygen status, six-minute walking distance, and FVC

| Variables        |       | Univariate   |         | Multivariate |              |         |  |
|------------------|-------|--------------|---------|--------------|--------------|---------|--|
|                  | OR    | 95% CI       | P value | OR           | 95% CI       | P value |  |
| Home oxygen      |       |              |         |              |              |         |  |
| Yes              | 8.065 | 5.049-12.883 | < 0.001 | 6.541        | 3.843-11.133 | < 0.001 |  |
| No               | 1.000 |              |         |              |              |         |  |
| Distance, m      |       |              |         |              |              |         |  |
| ≥ 250            | 1.000 |              |         |              |              |         |  |
| < 250            | 2.621 | 1.508-4.556  | 0.001   | 2.091        | 1.038-4.214  | 0.039   |  |
| FVC, % predicted |       |              |         |              |              |         |  |
| > 75             | 1.000 |              |         |              |              |         |  |
| 50-75            | 1.796 | 1.230-2.623  | 0.002   | 1.828        | 1.151-2.904  | 0.011   |  |
| < 50             | 5.824 | 2.888-11.744 | < 0.001 | 3.819        | 1.406-10.370 | 0.009   |  |


OR = odds ratio, CI = confidence interval, FVC = forced vital capacity.

showed 394 patients (77.7%) with stage I, 88 patients with stage II (17.4%), and 25 patients with stage III (4.9%) disease. We analyzed the model performance with the area under the curve (AUC) using ROC curve analysis. This model showed a statistically significant ability to predict AE in terms of both score (AUC, 0.746; 95% CI, 0.705–0.783; P < 0.001) and stage (AUC, 0.696; 95% CI, 0.654–0.736; P < 0.001) (Fig. 2).

# Survival data

There was a significant difference in median survival time from IPF diagnosis between the AE and non-AE groups (median: 8.4 months vs. not reached, log-rank test, P < 0.001). The overall mortality rate after AE was 36.4%. In the multivariable Cox analysis for survival after AE, older age was the only independent risk factor for mortality (**Supplementary Table 1**). The model developed in this study was also useful for predicting survival after diagnosis.





| Laboratory | Cut-point | Gro    | oup    | Cut-point     | AUC                     | Sensitivity, | Specificity, | PPV, | NPV, |
|------------|-----------|--------|--------|---------------|-------------------------|--------------|--------------|------|------|
| evaluation | value     | AE (+) | AE (-) | value         | (P)                     | %            | %            | %    | %    |
| Score      | > 1       | 68     | 45     | . 1           | 0.746                   | 50.4         | 87.9         | 60.2 | 83.0 |
| Score      | ≤ 1       | 67     | 327    | >1            | 0.746<br>(< 0.001) 50.4 | 67.9         | 60.2         | 63.0 |      |
| Ctogo      | > 1       | 68     | 45     | > 1           | 0.696                   | 50.4         | 87.9         | 60.2 | 83.0 |
| Stage      | ≤ 1       | 67     | 327    | <i>&gt;</i> 1 | (< 0.001)               | 50.4         | 07.9         | 60.2 | 63.0 |

**Fig. 2.** Comparison of the model performance for predicting AE in patients with idiopathic pulmonary fibrosis with AUC using receiving operating characteristic curve analysis.

AUC = area under the curve, CI = confidence interval, AE = acute exacerbation, PPV = positive predictive value, NPV = negative predictive value.

Table 4. Distribution of patients according to the scoring system of the new prediction model

| Variables        | Score | No. of patients (%) |
|------------------|-------|---------------------|
| Home oxygen      |       |                     |
| Yes              | 3     | 423 (83.4)          |
| No               | 0     | 84 (16.6)           |
| FVC, % predicted |       |                     |
| < 75             | 0     | 233 (46.0)          |
| 50-75            | 1     | 247 (48.7)          |
| < 50             | 2     | 27 (5.3)            |
| Distance, m      |       |                     |
| ≥ 250            | 0     | 457 (90.1)          |
| < 250            | 1     | 50 (9.9)            |
| Score            |       |                     |
| 0                | 0     | 200 (39.4)          |
| 1                | 1     | 194 (38.3)          |
| 2                | 2     | 23 (4.5)            |
| 3                | 3     | 29 (5.7)            |
| 4                | 4     | 36 (7.1)            |
| 5                | 5     | 18 (3.6)            |
| 6                | 6     | 7 (1.4)             |
| Stage            |       | ,                   |
| 1                | 0-1   | 394 (77.7)          |
| II               | 2-4   | 88 (17.4)           |
| III              | 5-6   | 25 (4.9)            |

FVC = forced vital capacity.



In the Kaplan-Meier survival analysis, each stage showed significant differences in all-cause mortality after IPF diagnosis (Supplementary Fig. 3).

# **DISCUSSION**

In this study, we developed a risk prediction model for AE in patients with IPF. Lower lung function, poor functional capacity, and use of home oxygen were independent risk factors for AE, and the scoring system using them showed good performance in predicting AE in IPF.

Lower lung function is associated with an increased risk of AE in patients with IPF.<sup>32</sup> In our study, only FVC was an independent risk factor for AE among variables of lung function. Previous studies supported our results.<sup>9,33,34</sup> Song et al.,<sup>9</sup> in 461 patients with IPF, showed that lower FVC was an independent risk factor (hazard ratio [HR], 0.979; 95% CI, 0.964–0.995; P = 0.011) for AE. In the previous study of 77 patients with IPF, Ohshimo et al.<sup>34</sup> also reported that lower FVC was significantly associated with AE (HR, 0.92; 95% CI, 0.87–0.97; P = 0.004).

In our study, lower 6MWD was significantly associated with the occurrence of AE. The 6MWT has been used widely to measure exercise tolerance and capacity and is recommended for monitoring disease severity and progression in international guidelines.  $^{18,21,35}$  The 6MWD is an independent prognostic factor for mortality in patients with IPF.  $^{36,37}$  In addition to indicating advanced disease, distance during the 6MWT can also provide a functional measure of overall cardiopulmonary capacity.  $^{38,39}$  The 6MWD should be considered as an independent predictor of poor prognosis, including AE, as well as mortality in patients with IPF. Previous studies have supported our findings. Alhamad et al.,  $^{40}$  in 667 patients with interstitial lung diseases, showed that lower 6MWD was an independent risk factor (HR, 1.615; 95% CI, 1.108–2.353; P = 0.013) for AE as well as lower FVC in the Cox proportional hazards regression analysis.

In our study, the use of home oxygen reflecting hypoxemia was an independent risk factor for AE. In 267 patients with IPF, Kondoh et al.  $^{12}$  reported that baseline alveolar-arterial oxygen pressure difference was a risk factor for AE (HR, 1.062; 95% CI, 1.003–1.124; P=0.038). In a previous study of 107 patients with IPF, the minimum peripheral oxygen saturation was a predictive factor for AE incidence (HR, 5.28; 95% CI, 1.44–19.32; P=0.012).  $^{41}$ 

With regard to AE in patients with IPF, prevention after identification of risk factors and avoidance of triggering factors might be more effective than conventional treatment. Our results suggest that the risk prediction system in our study might play an important role in providing information on AE in patients with IPF, managing risk factors to reduce the incidence of AE, and achieving earlier diagnosis and treatment. Two antifibrotic agents, nintedanib and pirfenidone, have been approved and used to reduce lung function decline. 42,43 Since lower FVC was an independent factor of AE in our study, reducing FVC decline might be useful in preventing AE in patients with IPF. A recent study supports our hypothesis. 44 Petnak et al., 44 in a systemic review and meta-analysis of the impact of antifibrotic therapy in IPF patients, reported that antifibrotic treatment was associated with reduced risks of AE (relative risk, 0.63; 95% CI, 0.53–0.76; *P* < 0.001) and mortality in patients with IPF. The authors suggested that, although the actual mechanism is unknown, antifibrotic treatment may reduce the FVC decline rate by down-regulating pro-inflammatory and antioxidant effects. 38,44



This study has some limitations. First, it was retrospectively conducted exclusively on Korean participants in a multi-center cohort, and it might be difficult to generalize our findings to other races. However, baseline characteristics of IPF and clinical features of AE, including incidence and outcomes, were similar to those of previous studies. 14,45,46 Second, due to the limitations of the nature of the cohort in this study, variables related to disease progression such as decline in lung function were not included beyond baseline characteristics. Further studies are needed, including emerging biomarkers, genetic testing, and disease progression. Third, we used home oxygen use as an indicator of hypoxemia. Home oxygen use might be a less objective indicator than present hypoxemia. However, the use of home oxygen was not only a significant risk factor for AE (HR, 2.47; 95% CI, 1.37–4.47; P = 0.002) in 1,061 patients with IPF in the INPULSIS trial but also was an independent risk factor of mortality (HR, 1.88; 95% CI, 1.15–3.09, P = 0.01) after AE in previous meta-analyses including 160 patients with IPF in four studies.<sup>33,47</sup> Fourth, AE was not sub-classified as triggered or idiopathic as suggested in international guidelines.<sup>26</sup> However, in previous studies, there was no significant difference in prognosis between triggered and idiopathic AE. 41,48 Despite these limitations, this study has substantial value in proposing a new model for predicting AE using other risk factors, distinct from predicting mortality in patients with IPF.

In conclusion, our results suggest that our scoring system based on lower lung function, poor functional capacity, and use of home oxygen may have good performance in predicting the risk of AE. This model might be helpful in preventing AE, and further studies are needed for validation.

# SUPPLEMENTARY MATERIALS

# Supplementary Table 1

Cox proportional hazard regression analysis of risk factor for mortality in patients with acute exacerbation

### Supplementary Fig. 1

Nomogram using the multivariate logistic regression model consisted of three variables; use of home oxygen, FVC, and six-minute walking distance.

#### Supplementary Fig. 2

Comparison of incidence of acute exacerbation in patients with idiopathic pulmonary fibrosis between scores and stages in the risk prediction model.

#### Supplementary Fig. 3

Comparison of survival curve after acute exacerbation between scores and groups based on the prediction model (Kaplan-Meier curves).

# **REFERENCES**

 American Thoracic Society; European Respiratory Society. American Thoracic Society/European Respiratory Society international multidisciplinary consensus classification of the idiopathic interstitial pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am J Respir Crit Care Med 2002;165(2):277-304. PUBMED | CROSSREF



- Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. *Am J Respir Crit Care Med* 2011;183(6):788-824. PUBMED | CROSSREF
- 3. Kim DS, Park JH, Park BK, Lee JS, Nicholson AG, Colby T. Acute exacerbation of idiopathic pulmonary fibrosis: frequency and clinical features. *Eur Respir J* 2006;27(1):143-50. PUBMED | CROSSREF
- 4. Collard HR, Moore BB, Flaherty KR, Brown KK, Kaner RJ, King TE Jr, et al. Acute exacerbations of idiopathic pulmonary fibrosis. *Am J Respir Crit Care Med* 2007;176(7):636-43. PUBMED | CROSSREF
- 5. Luppi F, Cerri S, Taddei S, Ferrara G, Cottin V. Acute exacerbation of idiopathic pulmonary fibrosis: a clinical review. *Intern Emerg Med* 2015;10(4):401-11. PUBMED | CROSSREF
- 6. Leuschner G, Behr J. Acute exacerbation in interstitial lung disease. Front Med (Lausanne) 2017;4:176. PUBMED | CROSSREF
- 7. Usui Y, Kaga A, Sakai F, Shiono A, Komiyama K, Hagiwara K, et al. A cohort study of mortality predictors in patients with acute exacerbation of chronic fibrosing interstitial pneumonia. *BMJ Open* 2013;3(7):e002971. PUBMED | CROSSREF
- Simon-Blancal V, Freynet O, Nunes H, Bouvry D, Naggara N, Brillet PY, et al. Acute exacerbation of idiopathic pulmonary fibrosis: outcome and prognostic factors. *Respiration* 2012;83(1):28-35. PUBMED | CROSSREF
- 9. Song JW, Hong SB, Lim CM, Koh Y, Kim DS. Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. *Eur Respir J* 2011;37(2):356-63. **PUBMED | CROSSREF**
- 10. Juarez MM, Chan AL, Norris AG, Morrissey BM, Albertson TE. Acute exacerbation of idiopathic pulmonary fibrosis-a review of current and novel pharmacotherapies. *J Thorac Dis* 2015;7(3):499-519. 
  PUBMED | CROSSREF
- 11. Ryerson CJ, Cottin V, Brown KK, Collard HR. Acute exacerbation of idiopathic pulmonary fibrosis: shifting the paradigm. *Eur Respir J* 2015;46(2):512-20. **PUBMED | CROSSREF**
- 12. Kondoh Y, Taniguchi H, Ebina M, Azuma A, Ogura T, Taguchi Y, et al. Risk factors for acute exacerbation of idiopathic pulmonary fibrosis--extended analysis of pirfenidone trial in Japan. *Respir Investig* 2015;53(6):271-8. PUBMED | CROSSREF
- 13. Wootton SC, Kim DS, Kondoh Y, Chen E, Lee JS, Song JW, et al. Viral infection in acute exacerbation of idiopathic pulmonary fibrosis. *Am J Respir Crit Care Med* 2011;183(12):1698-702. PUBMED | CROSSREF
- Kondoh Y, Taniguchi H, Katsuta T, Kataoka K, Kimura T, Nishiyama O, et al. Risk factors of acute exacerbation of idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis 2010;27(2):103-10. PUBMED | CROSSREF
- 15. Judge EP, Fabre A, Adamali HI, Egan JJ. Acute exacerbations and pulmonary hypertension in advanced idiopathic pulmonary fibrosis. *Eur Respir J* 2012;40(1):93-100. PUBMED | CROSSREF
- 16. Renzoni EA, Wells AU. Clinical trial design for acute exacerbations in idiopathic pulmonary fibrosis: a thorny path. *Respirology* 2019;24(7):620-1. **PUBMED | CROSSREF**
- 17. Cuerpo S, Moisés J, Hernández-González F, Benegas M, Ramirez J, Sánchez M, et al. Acute exacerbations of idiopathic pulmonary fibrosis: does clinical stratification or steroid treatment matter? *Chron Respir Dis* 2019;16:1479973119869334. PUBMED | CROSSREF
- 18. Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. *Am J Respir Crit Care Med* 2022;205(9):e18-47. PUBMED | CROSSREF
- Wu Q, Xu Y, Zhang KJ, Jiang SM, Zhou Y, Zhao Y. A clinical model for the prediction of acute exacerbation risk in patients with idiopathic pulmonary fibrosis. *BioMed Res Int* 2020;2020(1):8848919. PUBMED | CROSSREF
- 20. Hirano C, Ohshimo S, Horimasu Y, Iwamoto H, Fujitaka K, Hamada H, et al. Baseline high-resolution CT findings predict acute exacerbation of idiopathic pulmonary fibrosis: German and Japanese cohort study. *J Clin Med* 2019;8(12):2069. PUBMED | CROSSREF
- 21. Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis. an official ATS/ERS/JRS/ALAT clinical practice guideline. *Am J Respir Crit Care Med* 2018;198(5):e44-68. PUBMED | CROSSREF
- Travis WD, Costabel U, Hansell DM, King TE Jr, Lynch DA, Nicholson AG, et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 2013;188(6):733-48.

  PUBMED | CROSSREF
- 23. Graham BL, Brusasco V, Burgos F, Cooper BG, Jensen R, Kendrick A, et al. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. *Eur Respir J* 2017;49(1):1600016. PUBMED | CROSSREF



- 24. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J 2005;26(2):319-38. PUBMED | CROSSREF
- 25. Singh SJ, Puhan MA, Andrianopoulos V, Hernandes NA, Mitchell KE, Hill CJ, et al. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. *Eur Respir J* 2014;44(6):1447-78. PUBMED | CROSSREF
- Collard HR, Ryerson CJ, Corte TJ, Jenkins G, Kondoh Y, Lederer DJ, et al. Acute exacerbation of idiopathic pulmonary fibrosis. An international working group report. Am J Respir Crit Care Med 2016;194(3):265-75.
   PUBMED | CROSSREF
- 27. Kolb M, Collard HR. Staging of idiopathic pulmonary fibrosis: past, present and future. *Eur Respir Rev* 2014;23(132):220-4. PUBMED | CROSSREF
- 28. du Bois RM, Albera C, Bradford WZ, Costabel U, Leff JA, Noble PW, et al. 6-Minute walk distance is an independent predictor of mortality in patients with idiopathic pulmonary fibrosis. *Eur Respir J* 2014;43(5):1421-9. PUBMED | CROSSREF
- 29. Ley B, Ryerson CJ, Vittinghoff E, Ryu JH, Tomassetti S, Lee JS, et al. A multidimensional index and staging system for idiopathic pulmonary fibrosis. *Ann Intern Med* 2012;156(10):684-91. **PUBMED | CROSSREF**
- Tsubouchi K, Hamada N, Tokunaga S, Ichiki K, Takata S, Ishii H, et al. Survival and acute exacerbation for patients with idiopathic pulmonary fibrosis (IPF) or non-IPF idiopathic interstitial pneumonias:
   5-year follow-up analysis of a prospective multi-institutional patient registry. BMJ Open Respir Res 2023;10(1):e001864. PUBMED | CROSSREF
- 31. Chandel A, Pastre J, Valery S, King CS, Nathan SD. Derivation and validation of a simple multidimensional index incorporating exercise capacity parameters for survival prediction in idiopathic pulmonary fibrosis. *Thorax* 2023;78(4):368-75. PUBMED | CROSSREF
- 32. Qiu M, Chen Y, Ye Q. Risk factors for acute exacerbation of idiopathic pulmonary fibrosis: a systematic review and meta-analysis. *Clin Respir J* 2018;12(3):1084-92. PUBMED | CROSSREF
- 33. Kamiya H, Panlaqui OM. Systematic review and meta-analysis of prognostic factors of acute exacerbation of idiopathic pulmonary fibrosis. *BMJ Open* 2020;10(6):e035420. PUBMED | CROSSREF
- Ohshimo S, Ishikawa N, Horimasu Y, Hattori N, Hirohashi N, Tanigawa K, et al. Baseline KL-6 predicts increased risk for acute exacerbation of idiopathic pulmonary fibrosis. *Respir Med* 2014;108(7):1031-9.
   PUBMED | CROSSREF
- 35. Lee SH, Yeo Y, Kim TH, Lee HL, Lee JH, Park YB, et al. Korean guidelines for diagnosis and management of interstitial lung diseases: part 2. idiopathic pulmonary fibrosis. *Tuberc Respir Dis* 2019;82(2):102-17.
- 36. Lancaster LH. Utility of the six-minute walk test in patients with idiopathic pulmonary fibrosis. *Multidiscip Respir Med* 2018;13(1):45. PUBMED | CROSSREF
- 37. du Bois RM, Weycker D, Albera C, Bradford WZ, Costabel U, Kartashov A, et al. Six-minute-walk test in idiopathic pulmonary fibrosis: test validation and minimal clinically important difference. *Am J Respir Crit Care Med* 2011:183(9):1231-7. PUBMED I CROSSREF
- 38. Sato N, Iwanami Y, Ebihara K, Nakao K, Miyagi M, Nakamura Y, et al. Determinants of six-minute walk distance in idiopathic pulmonary fibrosis and idiopathic pleuroparenchymal fibroelastosis. *Biomedicines* 2022;10(10):2556. PUBMED | CROSSREF
- Giannitsi S, Bougiakli M, Bechlioulis A, Kotsia A, Michalis LK, Naka KK. 6-minute walking test: a useful tool in the management of heart failure patients. *Ther Adv Cardiovasc Dis* 2019;13:1753944719870084.
   PUBMED | CROSSREF
- Alhamad EH, Cal JG, Alrajhi NN, AlBoukai AA. Acute exacerbation in interstitial lung disease. *Ann Thorac Med* 2021;16(2):178-87.

  PUBMED | CROSSREF
- 41. Okuda R, Hagiwara E, Katano T, Ikeda S, Sekine A, Kitamura H, et al. Newly defined acute exacerbation of idiopathic pulmonary fibrosis with surgically-proven usual interstitial pneumonia: risk factors and outcome. *Sarcoidosis Vasc Diffuse Lung Dis* 2019;36(1):39-46. PUBMED | CROSSREF
- 42. Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 2014;370(22):2071-82. PUBMED | CROSSREF
- King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 2014;370(22):2083-92.
   PUBMED | CROSSREF
- 44. Petnak T, Lertjitbanjong P, Thongprayoon C, Moua T. Impact of antifibrotic therapy on mortality and acute exacerbation in idiopathic pulmonary fibrosis: a systematic review and meta-analysis. *Chest* 2021;160(5):1751-63. PUBMED | CROSSREF
- 45. Kakugawa T, Sakamoto N, Sato S, Yura H, Harada T, Nakashima S, et al. Risk factors for an acute exacerbation of idiopathic pulmonary fibrosis. *Respir Res* 2016;17(1):79. PUBMED | CROSSREF



- 46. Homma S, Suda T, Hongo Y, Yoshida M, Hiroi S, Iwasaki K, et al. Incidence and changes in treatment of acute exacerbation of idiopathic pulmonary fibrosis in Japan: a claims-based retrospective study. *Respir Investig* 2022;60(6):798-805. PUBMED | CROSSREF
- 47. Collard HR, Richeldi L, Kim DS, Taniguchi H, Tschoepe I, Luisetti M, et al. Acute exacerbations in the INPULSIS trials of nintedanib in idiopathic pulmonary fibrosis. *Eur Respir J* 2017;49(5):1601339. PUBMED | CROSSREF
- 48. Yamazoe M, Tomioka H. Acute exacerbation of idiopathic pulmonary fibrosis: a 10-year single-centre retrospective study. *BMJ Open Respir Res* 2018;5(1):e000342. PUBMED | CROSSREF